A combinatorial identity and the finite dual of infinite dihedral group algebra

Gongxiang Liu (A joint work with Fan Ge)

Department of Mathematics, Nanjing University

Outline

(1) Motivations
(2) A combinatorial identity (3) The results

Outline

(1) Motivations
(2) A combinatorial identity
(3) The results

Outline

(1) Motivations
(2) A combinatorial identity
(3) The results

Outline

2 A combinatorial identity

(3) The results

Preparation and aim

- In this talk, \mathbb{k} an algebraically closed field of characteristic zero.
- All spaces and algebras are over \mathfrak{k}.
- Aim: Determine the finite dual H° of a prime regular Hopf

Preparation and aim

- In this talk, \mathbb{k} an algebraically closed field of characteristic zero.
- All spaces and algebras are over \mathfrak{k}.

Preparation and aim

- In this talk, \mathbb{k} an algebraically closed field of characteristic zero.
- All spaces and algebras are over \mathfrak{k}.
- Aim:

Preparation and aim

- In this talk, \mathbb{k} an algebraically closed field of characteristic zero.
- All spaces and algebras are over \mathfrak{k}.
- Aim: Determine the finite dual H° of a prime regular Hopf algebra H.

A Larson-Radford's result

- It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

> Theorem
> Let H be a finite dimensional Hopf algebra, then H is
> semisimple if and only if H^{*} is semisimple.

- A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

- It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^{*} is semisimple.

- A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

- It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^{*} is semisimple.

- A natural question is: How about the infinite dimensional

A Larson-Radford's result

- It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^{*} is semisimple.

- A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra H has finite global dimension if and only if H^{*} has finite global dimension?
- But H^{*} has no dual Hopf algebra structure in general.
- So a natural candidate for H^{*} is H°, the finite dual of H.

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra H has finite global dimension if and only if H^{*} has finite global dimension?
- But H^{*} has no dual Hopf algebra structure in general.
- So a natural candidate for H^{*} is H°, the finite dual of H.

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra H has finite global dimension if and only if H^{*} has finite global dimension?
- But H^{*} has no dual Hopf algebra structure in general.
- So a natural candidate for H^{*} is H°, the finite dual of H.

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra H has finite global dimension if and only if H^{*} has finite global dimension?
- But H^{*} has no dual Hopf algebra structure in general.
- So a natural candidate for H^{*} is H°, the finite dual of H.

A Takeuchi's definition

- Takeuchi defined a quantum group as follows.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $\left(\mathbb{k} \mathbb{D}_{\infty}\right)$

A Takeuchi's definition

- Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$
G=(A, U,\langle,\rangle)
$$

where A and U are Hopf algebras, and \langle,$\rangle is a Hopf pairing on$ $U \times A$.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $\left(\mathbb{k D D}_{\infty}\right)$

A Takeuchi's definition

- Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$
G=(A, U,\langle,\rangle)
$$

where A and U are Hopf algebras, and \langle,$\rangle is a Hopf pairing on$ $U \times A$.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $\left(\mathbb{k D D}_{\infty}\right)$

A Takeuchi's definition

- Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$
G=(A, U,\langle,\rangle)
$$

where A and U are Hopf algebras, and \langle,$\rangle is a Hopf pairing on$ $U \times A$.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $\left(\mathbb{k} \mathbb{D}_{\infty}\right)^{\circ}$.

Outline

(1) Motivations

(2) A combinatorial identity

(3) The results

Description of the identity

- To describe the identity, we need some notions at first.
- Let m and n are positive integers, define

- For a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_{X} the Vandermonde determinant of X. That is,

Description of the identity

- To describe the identity, we need some notions at first.
- Let m and n are positive integers, define

$$
U:=U(m, n)=\{1,2, \ldots, m+n\} .
$$

- For a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_{X} the Vandermonde determinant of X. That is,

Description of the identity

- To describe the identity, we need some notions at first.
- Let m and n are positive integers, define

$$
U:=U(m, n)=\{1,2, \ldots, m+n\} .
$$

- For a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_{X} the Vandermonde determinant of X. That is,
- $G(m+1):=(m-1)!\cdots 1$! is the Barnes G-function.

Description of the identity

- To describe the identity, we need some notions at first.
- Let m and n are positive integers, define

$$
U:=U(m, n)=\{1,2, \ldots, m+n\} .
$$

- For a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_{X} the Vandermonde determinant of X. That is,

$$
V_{X}=\prod_{1 \leq i<j \leq m}\left(x_{j}-x_{i}\right)
$$

- $G(m+1):=(m-1)!\cdots 1!$ is the Barnes G-function.

Description of the identity

- To describe the identity, we need some notions at first.
- Let m and n are positive integers, define

$$
U:=U(m, n)=\{1,2, \ldots, m+n\} .
$$

- For a set $X=\left\{x_{1}, \ldots, x_{m}\right\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_{X} the Vandermonde determinant of X. That is,

$$
V_{X}=\prod_{1 \leq i<j \leq m}\left(x_{j}-x_{i}\right)
$$

- $G(m+1):=(m-1)!\cdots 1$! is the Barnes G-function.

Description of the identity

- The identity is given in the following conlusion.

Description of the identity

- The identity is given in the following conlusion.

Theorem

Let $t \in\left[\frac{m(m+1)}{2}, \frac{m(m+1)}{2}+m n\right]$ be an integer, and let $t^{*}=t-\frac{m(m+1)}{2}$. We have

Here the sum is over all subsets X of U whose elements' sum

 is t, and $Y=U-X$.
Description of the identity

- The identity is given in the following conlusion.

Theorem

Let $t \in\left[\frac{m(m+1)}{2}, \frac{m(m+1)}{2}+m n\right]$ be an integer, and let $t^{*}=t-\frac{m(m+1)}{2}$. We have

$$
\sum_{\substack{x=\left\{\begin{array}{l}
\left.x_{1}, \ldots, x_{m}\right\} \subset U \\
\sum x_{i}=t \\
\hline
\end{array}\right.}} V_{X} V_{Y}=G(m+1) G(n+1)\binom{m n}{t^{*}}
$$

Here the sum is over all subsets X of U whose elements' sum is t, and $Y=U-X$.

Description of the identity

- This identity is related with the following known function:

Description of the identity

- This identity is related with the following known function:

$$
\begin{aligned}
\gamma_{m}(c) & =\frac{1}{m!G(m+1)^{2}} \int_{[0,1]^{m}} \delta\left(s_{1}+s_{2}+\cdots+s_{m}-c\right) \\
& \prod_{i<j}\left(s_{i}-s_{j}\right)^{2} d s_{1} \cdots d s_{m}
\end{aligned}
$$

- which is used in some aspects of number theory.

Description of the identity

- This identity is related with the following known function:

$$
\begin{aligned}
\gamma_{m}(c) & =\frac{1}{m!G(m+1)^{2}} \int_{[0,1]^{m}} \delta\left(s_{1}+s_{2}+\cdots+s_{m}-c\right) \\
& \prod_{i<j}\left(s_{i}-s_{j}\right)^{2} d s_{1} \cdots d s_{m}
\end{aligned}
$$

- which is used in some aspects of number theory.

Sketch of the proof

- Step 1: Explain the number $\frac{V_{x}}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_{Y}}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_{X} V_{Y}}{G(m+1) G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

Sketch of the proof

- Step 1: Explain the number $\frac{V_{X}}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_{Y}}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_{X} V_{Y}}{G(m+1) G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Sten 4: Anply the Robinson-Schensted-Knuth correspondence.

Sketch of the proof

- Step 1: Explain the number $\frac{V_{X}}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_{Y}}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_{X} V_{Y}}{G(m+1) G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

Sketch of the proof

- Step 1: Explain the number $\frac{V_{X}}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_{Y}}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_{X} V_{Y}}{G(m+1) G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

A corollary

- This observation has the following direct consequence.

Corollary

Let x be an indeterminate and A be the $2 m \times 2 m$ matrix

where $M=2 m-1$. Then the determinant of A is

$$
|A|=G(m+1)^{2}
$$

A corollary

- This observation has the following direct consequence.

Corollary

Let x be an indeterminate and A be the $2 m \times 2 m$ matrix

where $M=2 m-1$. Then the determinant of A is

A corollary

- This observation has the following direct consequence.

Corollary

Let x be an indeterminate and A be the $2 m \times 2 m$ matrix

$$
\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
x & x & \cdots & x & x^{-1} & x^{-1} & \cdots & x^{-1} \\
x^{2} & 2 x^{2} & \cdots & 2^{m-1} x^{2} & x^{-2} & 2 x^{-2} & \cdots & 2^{m-1} x^{-2} \\
x^{3} & 3 x^{3} & \cdots & 3^{m-1} x^{3} & x^{-3} & 3 x^{-3} & \cdots & 3^{m-1} x^{-3} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
x^{M} & M x^{M} & \cdots & M^{m-1} x^{M} & x^{-M} & M x^{-M} & \cdots & M^{m-1} x^{-M}
\end{array}\right)
$$

where $M=2 m-1$. Then the determinant of A is

A corollary

- This observation has the following direct consequence.

Corollary

Let x be an indeterminate and A be the $2 m \times 2 m$ matrix

$$
\left(\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
x & x & \cdots & x & x^{-1} & x^{-1} & \cdots & x^{-1} \\
x^{2} & 2 x^{2} & \cdots & 2^{m-1} x^{2} & x^{-2} & 2 x^{-2} & \cdots & 2^{m-1} x^{-2} \\
x^{3} & 3 x^{3} & \cdots & 3^{m-1} x^{3} & x^{-3} & 3 x^{-3} & \cdots & 3^{m-1} x^{-3} \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
x^{M} & M x^{M} & \cdots & M^{m-1} x^{M} & x^{-M} & M x^{-M} & \cdots & M^{m-1} x^{-M}
\end{array}\right)
$$

where $M=2 m-1$. Then the determinant of A is

$$
|A|=G(m+1)^{2} \cdot\left(x^{-1}-x\right)^{m^{2}}
$$

Outline

(2) A combinatorial identity

(3) The results

Gongxiang Liu (A joint work with Fan Ge)
A combinatorial identity and the finite dual of infinite dihedral grou

Finite Dual

- Let H be a Hopf algebra, the finite dual H° of H is defined by
- A basic fact: H° is a Hopf algebra.

Finite Dual

- Let H be a Hopf algebra, the finite dual H° of H is defined by

$$
H^{\circ}:=\left\{f \in H^{*} \mid f(I)=0, \text { some ideal } I \text { s.t. } \operatorname{dim}(H / I)<\infty\right\}
$$

- A basic fact: H° is a Hopf algebra.

Finite Dual

- Let H be a Hopf algebra, the finite dual H° of H is defined by

$$
H^{\circ}:=\left\{f \in H^{*} \mid f(I)=0, \text { some ideal } I \text { s.t. } \operatorname{dim}(H / I)<\infty\right\}
$$

- A basic fact: H° is a Hopf algebra.

Finite Dual

- Let H be a Hopf algebra, the finite dual H° of H is defined by

$$
H^{\circ}:=\left\{f \in H^{*} \mid f(I)=0, \text { some ideal } I \text { s.t. } \operatorname{dim}(H / I)<\infty\right\}
$$

- A basic fact: H° is a Hopf algebra.

Some known examples

Example

Let $H=\mathbb{k}[x], \quad \Delta(x)=1 \otimes x+x \otimes 1$. Then we have

where $G=(\mathbb{k},+)$.
Example
Let $H=\mathbb{k}\left[x, x^{-1}\right], \Delta(x)=x \otimes x$. Then we have

$$
H^{\circ} \cong \mathbb{k}[x] \otimes \mathbb{k} G
$$

where $G=\left(\mathbb{k}^{\times}, \cdot\right)$.

Some known examples

Example

Let $H=\mathbb{k}[x], \quad \Delta(x)=1 \otimes x+x \otimes 1$. Then we have

$$
H^{\circ} \cong \mathbb{k}[x] \otimes k G
$$

where $G=(\mathbb{k},+)$.
Example
Let $H=\mathbb{k}\left[x, x^{-1}\right], \Delta(x)=x \otimes x$. Then we have

$$
H^{\circ} \cong \mathbb{k}[x] \otimes \mathbb{k} G
$$

where $G=\left(\mathbb{k}^{\times}, \cdot\right)$.

Some known examples

Example

Let $H=\mathbb{k}[x], \quad \Delta(x)=1 \otimes x+x \otimes 1$. Then we have

$$
H^{\circ} \cong \mathbb{k}[x] \otimes k G
$$

where $G=(\mathbb{k},+)$.

Example

Let $H=\mathbb{k}\left[x, x^{-1}\right], \Delta(x)=x \otimes x$. Then we have

where $G=\left(\mathbb{k}^{\times}, \cdot\right)$.

Some known examples

Example

Let $H=\mathbb{k}[x], \quad \Delta(x)=1 \otimes x+x \otimes 1$. Then we have

$$
H^{\circ} \cong \mathbb{k}[x] \otimes k G
$$

where $G=(\mathbb{k},+)$.

Example

Let $H=\mathbb{k}\left[x, x^{-1}\right], \Delta(x)=x \otimes x$. Then we have

$$
H^{\circ} \cong \mathbb{k}[x] \otimes \mathbb{k} G
$$

where $G=\left(\mathbb{k}^{\times}, \cdot\right)$.

Some known examples

- There is a common point in above examples, that is, H is commutative. Therefore H° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example
Consider the quantum group $U_{q}\left(S I_{n}\right)$. Then we have

$$
U_{q}\left(s I_{n}\right)^{\circ} \cong \mathcal{O}_{q}\left(S L_{n}\right) \# k \mathbb{Z}_{2}^{n-1}
$$

This is proved by Takeuchi in 1992.

- The key point of above example is that the category of finite-dimensional representations of $U_{q}\left(s I_{n}\right)$ is semisimple.

Some known examples

- There is a common point in above examples, that is, H is commutative. is cocommutative and thus one can apply Milnor-Moore's Theorem.

> Example
> Consider the quantum group $U_{q}\left(S I_{n}\right)$. Then we have $U_{q}\left(S I_{n}\right)^{\circ} \cong \mathcal{O}_{q}\left(S L_{n}\right) \# k \mathbb{Z}_{2}^{n-1}$

This is proved by Takeuchi in 1992.

- The key point of above example is that the category of finite-dimensional representations of $U_{q}\left(s l_{n}\right)$ is semisimple.

Some known examples

- There is a common point in above examples, that is, H is commutative. Therefore H° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example
Consider the quantum group $U_{q}\left(S I_{n}\right)$. Then we have

$$
U_{q}\left(S I_{n}\right)^{\circ} \cong \mathcal{O}_{q}\left(S L_{n}\right) \# k \mathbb{Z}_{2}^{n-1} .
$$

This is proved by Takeuchi in 1992.

- The key point of above example is that the category of finite-dimensional representations of $U_{q}\left(s I_{n}\right)$ is semisimple.

Some known examples

- There is a common point in above examples, that is, H is commutative. Therefore H° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_{q}\left(s /_{n}\right)$. Then we have

$$
U_{q}\left(S l_{n}\right)^{\circ} \cong \mathcal{O}_{q}\left(S L_{n}\right) \# k \mathbb{Z}_{2}^{n-1} .
$$

This is proved by Takeuchi in 1992.

- The key point of above example is that the category of finite-dimensional representations of $U_{q}\left(s l_{n}\right)$ is semisimple.

Some known examples

- There is a common point in above examples, that is, H is commutative. Therefore H° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_{q}\left(s l_{n}\right)$. Then we have

$$
U_{q}\left(s I_{n}\right)^{\circ} \cong \mathcal{O}_{q}\left(S L_{n}\right) \# k \mathbb{Z}_{2}^{n-1} .
$$

This is proved by Takeuchi in 1992.

- The key point of above example is that the category of finite-dimensional representations of $U_{q}\left(s l_{n}\right)$ is semisimple.

Some known examples

- There is a common point in above examples, that is, H is commutative. Therefore H° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_{q}\left(s l_{n}\right)$. Then we have

$$
U_{q}\left(s I_{n}\right)^{\circ} \cong \mathcal{O}_{q}\left(S L_{n}\right) \# k \mathbb{Z}_{2}^{n-1}
$$

This is proved by Takeuchi in 1992.

- The key point of above example is that the category of finite-dimensional representations of $U_{q}\left(s l_{n}\right)$ is semisimple.

Our situation

- By definition, the infinite dihedral group \mathbb{D}_{∞} is generated by two elements g and x satisfying

Note that ${\mathbb{k} \mathbb{D}_{\infty}}^{\text {is not not commutative and thus }\left(\mathbb{k} \mathbb{D}_{\infty}\right)^{\circ} \text { is }}$
not cocommutative. Also, the category of finite-dimensional
representations of ${\mathbb{k} \mathbb{D}_{\infty}}^{\text {is not semisimple. }}$

Our situation

- By definition, the infinite dihedral group \mathbb{D}_{∞} is generated by two elements g and x satisfying

$$
x^{2}=1, \quad x g x=g^{-1}
$$

Note that $\mathbb{k}_{\infty} \mathbb{D}_{\infty}$ is not not commutative and thus $\left(\mathbb{k} \mathbb{D}_{\infty}\right)^{\circ}$ is
not cocommutative. Also, the category of finite-dimensional
representations of $\mathbb{k} \mathbb{D}_{\infty}$ is not semisimple.

Our situation

- By definition, the infinite dihedral group \mathbb{D}_{∞} is generated by two elements g and x satisfying

$$
x^{2}=1, \quad x g x=g^{-1}
$$

- Note that ${\mathbb{k} \mathbb{D}_{\infty}}$ is not not commutative and thus $\left(\mathbb{k} \mathbb{D}_{\infty}\right)^{\circ}$ is not cocommutative. Also, the category of finite-dimensional representations of $\mathbb{k d D}_{\infty}$ is not semisimple.

Our situation

- By definition, the infinite dihedral group \mathbb{D}_{∞} is generated by two elements g and x satisfying

$$
x^{2}=1, \quad x g x=g^{-1}
$$

- Note that ${\mathbb{k} \mathbb{D}_{\infty}}$ is not not commutative and thus $\left(\mathbb{k} \mathbb{D}_{\infty}\right)^{\circ}$ is not cocommutative. Also, the category of finite-dimensional representations of ${\mathbb{k} \mathbb{D}_{\infty}}$ is not semisimple.

The Hopf algebra $k \mathbb{D}_{\infty^{\circ}}$

- As an algebra, $\mathbb{k P}_{\infty^{\circ}}$ is generated by $F, \phi_{\lambda}, \psi_{\lambda}$ for $\lambda \in \mathbb{k}^{\times}=\mathbb{k} \backslash\{0\}$ and subjects to the following relations

The Hopf algebra $k \mathbb{D}_{\infty^{\circ}}$

- As an algebra, $\mathbb{k P}_{\infty^{\circ}}$ is generated by $F, \phi_{\lambda}, \psi_{\lambda}$ for $\lambda \in \mathbb{k}^{\times}=\mathbb{k} \backslash\{0\}$ and subjects to the following relations

$$
\begin{aligned}
& F \phi_{\lambda}=\phi_{\lambda} F, \quad F \psi_{\lambda}=\psi_{\lambda} F, \quad \phi_{1}=1 \\
& \phi_{\lambda} \psi_{\lambda^{\prime}}=\psi_{\lambda^{\prime}} \phi_{\lambda}=\psi_{\lambda \lambda^{\prime}}, \quad \phi_{\lambda} \phi_{\lambda^{\prime}}=\phi_{\lambda \lambda^{\prime}}, \quad \psi_{\lambda} \psi_{\lambda^{\prime}}=\phi_{\lambda \lambda^{\prime}}
\end{aligned}
$$

for all $\lambda, \lambda^{\prime} \in \mathbb{k}^{\times}$.

The Hopf algebra $\mathbb{k}^{\mathbb{D}_{\infty}}$

The comultiplication, counit and the antipode are given by

$$
\begin{aligned}
& \Delta(F)=F \otimes 1+\psi_{1} \otimes F, \\
& \Delta\left(\phi_{\lambda}\right)=\frac{1}{2}\left(\phi_{\lambda}+\psi_{\lambda}\right) \otimes \phi_{\lambda}+\frac{1}{2}\left(\phi_{\lambda}-\psi_{\lambda}\right) \otimes \phi_{\lambda^{-1}}, \\
& \Delta\left(\psi_{\lambda}\right)=\frac{1}{2}\left(\phi_{\lambda}+\psi_{\lambda}\right) \otimes \psi_{\lambda}-\frac{1}{2}\left(\phi_{\lambda}-\psi_{\lambda}\right) \otimes \psi_{\lambda^{-1}}, \\
& \varepsilon(F)=0, \quad \varepsilon\left(\phi_{\lambda}\right)=\varepsilon\left(\psi_{\lambda}\right)=1, \\
& S(F)=-\psi_{1} F, \quad S\left(\phi_{\lambda}\right)=\frac{1}{2}\left(\phi_{\lambda^{-1}}+\psi_{\lambda^{-1}}\right)+\frac{1}{2}\left(\phi_{\lambda}-\psi_{\lambda}\right), \\
& S\left(\psi_{\lambda}\right)=\frac{1}{2}\left(\phi_{\lambda^{-1}}+\psi_{\lambda^{-1}}\right)-\frac{1}{2}\left(\phi_{\lambda}-\psi_{\lambda}\right)
\end{aligned}
$$

for $\lambda \in \mathbb{k}^{\times}$.

Main result

Lemma
 With operations defined above, $\mathbb{k R D}_{\infty}$ is a Hopf algebra.

Theorem

As Hopf alaebras, we have

Main result

Lemma
 With operations defined above, $\mathbb{k}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem
 As Hopf alaebras, we have

Main result

Lemma

With operations defined above, \mathbb{k}_{∞} 。 is a Hopf algebra.

Theorem

As Hopf algebras, we have

$$
\left(\mathbb{k}_{\mathbb{D}}^{\infty}\right)^{\circ} \cong \mathbb{k}_{\mathbb{D}_{\infty^{\circ}}}
$$

Sketch of the proof

- Clearly, $\left\{g^{i} x^{j} \mid i \in \mathbb{Z}, j=0,1\right\}$ is a basis of $k \mathbb{D} \infty_{\infty}$. Denote its dual basis by $f_{i, j}$.
- Construct:
for $\lambda \in \mathbb{k}$

Sketch of the proof

- Clearly, $\left\{g^{i} x^{j} \mid i \in \mathbb{Z}, j=0,1\right\}$ is a basis of $k \mathbb{D}_{\infty}$. Denote its dual basis by

- Construct:

Sketch of the proof

- Clearly, $\left\{g^{i} x^{j} \mid i \in \mathbb{Z}, j=0,1\right\}$ is a basis of $k \mathbb{D}_{\infty}$. Denote its dual basis by $f_{i, j}$.

- Construct:

Sketch of the proof

- Clearly, $\left\{g^{i} x^{j} \mid i \in \mathbb{Z}, j=0,1\right\}$ is a basis of $k \mathbb{D}_{\infty}$. Denote its dual basis by $f_{i, j}$.
- Construct:

Sketch of the proof

- Clearly, $\left\{g^{i} x^{j} \mid i \in \mathbb{Z}, j=0,1\right\}$ is a basis of $k \mathbb{D}_{\infty}$. Denote its dual basis by $f_{i, j}$.
- Construct:

$$
\begin{aligned}
& E:=\sum_{i \in \mathbb{Z}} i\left(f_{i, 0}+f_{i, 1}\right), \\
& \Phi_{\lambda}:=\sum_{i \in \mathbb{Z}} \lambda^{i}\left(f_{i, 0}+f_{i, 1}\right), \\
& \Psi_{\lambda}:=\sum_{i \in \mathbb{Z}} \lambda^{i}\left(f_{i, 0}-f_{i, 1}\right)
\end{aligned}
$$

for $\lambda \in \mathbb{k}^{\times}$.

Sketch of the proof

- Key: As an algebra, $\left(k D_{\infty}\right)^{\circ}$ is generated by E, Φ_{λ} and ψ_{λ}. To prove this, we need The Identity we proved before.
- Define a map

which gives the desired isomorphism.

Sketch of the proof

- Key: As an algebra, $\left(k \mathbb{D}_{\infty}\right)^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ}. To prove this, we need The Identity we proved before. - Define a map

which gives the desired isomorphism.

Sketch of the proof

- Key: As an algebra, $\left(k \mathbb{D}_{\infty}\right)^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ}. To prove this, we need The Identity we proved before.
- Define a map

which gives the desired isomorphism.

Sketch of the proof

- Key: As an algebra, $\left(k \mathbb{D}_{\infty}\right)^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ}. To prove this, we need The Identity we proved before.
- Define a map
which gives the desired isomorphism.

Sketch of the proof

- Key: As an algebra, $\left(k \mathbb{D}_{\infty}\right)^{\circ}$ is generated by E, Φ_{λ} and Ψ_{λ}. To prove this, we need The Identity we proved before.
- Define a map

$$
\Theta: \mathbb{k}_{\infty^{\circ}} \rightarrow\left(\mathbb{k} \mathbb{D}_{\infty}\right)^{\circ}, \quad F \mapsto E, \phi_{\lambda} \mapsto \Phi_{\lambda}, \psi_{\lambda} \mapsto \Psi_{\lambda}, \quad\left(\lambda \in \mathbb{k}^{\times}\right)
$$

which gives the desired isomorphism.

Remarks

- The connected component (Montgomery-Radford's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_{1} which can be described as follows

$$
\begin{aligned}
& E \psi_{1}=\psi_{1} E, \quad \psi_{1}^{2}=1 \\
& \Delta(E)=E \otimes 1+\psi_{1} \otimes E, \quad \Delta\left(\psi_{1}\right)=\psi_{1} \otimes \psi_{1} .
\end{aligned}
$$

- This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

Remarks

- The connected component (Montgomery-Radford's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_{1} which can be described as follows

- This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

Remarks

- The connected component (Montgomery-Radford's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_{1} which can be described as follows

$$
\begin{aligned}
& E \Psi_{1}=\Psi_{1} E, \quad \Psi_{1}^{2}=1 \\
& \Delta(E)=E \otimes 1+\Psi_{1} \otimes E, \quad \Delta\left(\Psi_{1}\right)=\Psi_{1} \otimes \Psi_{1}
\end{aligned}
$$

- This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

Remarks

- The connected component (Montgomery-Radford's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_{1} which can be described as follows

$$
\begin{aligned}
& E \Psi_{1}=\Psi_{1} E, \quad \Psi_{1}^{2}=1 \\
& \Delta(E)=E \otimes 1+\Psi_{1} \otimes E, \quad \Delta\left(\Psi_{1}\right)=\Psi_{1} \otimes \Psi_{1}
\end{aligned}
$$

- This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will
find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

Remarks

- The connected component (Montgomery-Radford's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_{1} which can be described as follows

$$
\begin{aligned}
& E \Psi_{1}=\Psi_{1} E, \quad \Psi_{1}^{2}=1 \\
& \Delta(E)=E \otimes 1+\Psi_{1} \otimes E, \quad \Delta\left(\Psi_{1}\right)=\Psi_{1} \otimes \Psi_{1}
\end{aligned}
$$

- This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.
- Thanks for your attention!

