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Preparation and aim

In this talk, k an algebraically closed field of characteristic
zero.
All spaces and algebras are over k.
Aim: Determine the finite dual H◦ of a prime regular Hopf
algebra H.
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A Larson-Radford’s result

It is well-known that Larson-Radford (J. Algebra, 1988)
proved the following result:

Theorem
Let H be a finite dimensional Hopf algebra, then H is
semisimple if and only if H∗ is semisimple.

A natural question is: How about the infinite dimensional
case?
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A Larson-Radford’s result

Naively, the infinite dimensional analogue seems to be:
A Hopf algebra H has finite global dimension if and only if
H∗ has finite global dimension?
But H∗ has no dual Hopf algebra structure in general.
So a natural candidate for H∗ is H◦, the finite dual of H.
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A Takeuchi’s definition

Takeuchi defined a quantum group as follows.

Definition
A quantum group G is defined to be a triple

G = (A,U, 〈 , 〉)

where A and U are Hopf algebras, and 〈 , 〉 is a Hopf pairing on
U × A.

A natural question is: Is a prime regular Hopf algebra a
quantum group in the Takeuchi’s sense?
In this talk, we will determine (kD∞)◦.
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Description of the identity

To describe the identity, we need some notions at first.
Let m and n are positive integers, define

U := U(m,n) = {1,2, ...,m + n}.

For a set X = {x1, ..., xm} of nonnegative integers whose
elements are listed in increasing order, we denote by VX
the Vandermonde determinant of X . That is,

VX =
∏

1≤i<j≤m

(
xj − xi

)
.

G(m + 1) : = (m − 1)! · · · 1! is the Barnes G-function.
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Description of the identity

The identity is given in the following conlusion.

Theorem

Let t ∈
[

m(m+1)
2 , m(m+1)

2 + mn
]

be an integer, and let

t∗ = t − m(m+1)
2 . We have

∑
X={x1,...,xm}⊂U∑

xi=t

VX VY = G(m + 1)G(n + 1)

(
mn
t∗

)
.

Here the sum is over all subsets X of U whose elements’ sum
is t, and Y = U − X.
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Description of the identity

This identity is related with the following known function:

γm(c) =
1

m!G(m + 1)2

∫
[0,1]m

δ(s1 + s2 + · · ·+ sm − c)∏
i<j

(si − sj)
2 ds1 · · · dsm.

which is used in some aspects of number theory.
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Sketch of the proof

Step 1: Explain the number VX
G(m+1) as the number of some

semi-standard Young tableaus (SSYTs).
Step 2: Explain the number VY

G(n+1) as the number of some
semi-standard Young tableaus with transpose shape with
respect to SSYTs in step 1.
Step 3: The number

∑ VX VY
G(m+1)G(n+1) equals to the number

of some pairs of SSYTs (P,Q).
Step 4: Apply the Robinson-Schensted-Knuth
correspondence.
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A corollary

This observation has the following direct consequence.

Corollary
Let x be an indeterminate and A be the 2m × 2m matrix

1 0 · · · 0 1 0 · · · 0
x x · · · x x−1 x−1 · · · x−1

x2 2x2 · · · 2m−1x2 x−2 2x−2 · · · 2m−1x−2

x3 3x3 · · · 3m−1x3 x−3 3x−3 · · · 3m−1x−3

...
... · · ·

...
...

... · · ·
...

xM MxM · · · Mm−1xM x−M Mx−M · · · Mm−1x−M


where M = 2m − 1. Then the determinant of A is

|A| = G(m + 1)2 ·
(

x−1 − x
)m2

.
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Finite Dual

Let H be a Hopf algebra, the finite dual H◦ of H is defined
by

H◦ := {f ∈ H∗|f (I) = 0, some ideal I s.t. dim(H/I) <∞}.

A basic fact: H◦ is a Hopf algebra.
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Some known examples

Example

Let H = k[x ], ∆(x) = 1⊗ x + x ⊗ 1. Then we have

H◦ ∼= k[x ]⊗ kG

where G = (k,+).

Example

Let H = k[x , x−1], ∆(x) = x ⊗ x . Then we have

H◦ ∼= k[x ]⊗ kG

where G = (k×, ·).
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Some known examples

There is a common point in above examples, that is, H is
commutative. Therefore H◦ is cocommutative and thus one
can apply Milnor-Moore’s Theorem.

Example

Consider the quantum group Uq(sln). Then we have

Uq(sln)◦ ∼= Oq(SLn)#kZn−1
2 .

This is proved by Takeuchi in 1992.

The key point of above example is that the category of
finite-dimensional representations of Uq(sln) is semisimple.
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This is proved by Takeuchi in 1992.

The key point of above example is that the category of
finite-dimensional representations of Uq(sln) is semisimple.
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Our situation

By definition, the infinite dihedral group D∞ is generated by
two elements g and x satisfying

x2 = 1, xgx = g−1.

Note that kD∞ is not not commutative and thus (kD∞)◦ is
not cocommutative. Also, the category of finite-dimensional
representations of kD∞ is not semisimple.
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The Hopf algebra kD∞◦

As an algebra, kD∞◦ is generated by F , φλ, ψλ for
λ ∈ k× = k \ {0} and subjects to the following relations

Fφλ = φλF , Fψλ = ψλF , φ1 = 1,
φλψλ′ = ψλ′φλ = ψλλ′ , φλφλ′ = φλλ′ , ψλψλ′ = φλλ′

for all λ, λ′ ∈ k×.

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral group algebra



Motivations
A combinatorial identity

The results

The Hopf algebra kD∞◦

As an algebra, kD∞◦ is generated by F , φλ, ψλ for
λ ∈ k× = k \ {0} and subjects to the following relations

Fφλ = φλF , Fψλ = ψλF , φ1 = 1,
φλψλ′ = ψλ′φλ = ψλλ′ , φλφλ′ = φλλ′ , ψλψλ′ = φλλ′

for all λ, λ′ ∈ k×.

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral group algebra



Motivations
A combinatorial identity

The results

The Hopf algebra kD∞◦

The comultiplication, counit and the antipode are given by

∆(F ) = F ⊗ 1 + ψ1 ⊗ F ,

∆(φλ) =
1
2

(φλ + ψλ)⊗ φλ +
1
2

(φλ − ψλ)⊗ φλ−1 ,

∆(ψλ) =
1
2

(φλ + ψλ)⊗ ψλ −
1
2

(φλ − ψλ)⊗ ψλ−1 ,

ε(F ) = 0, ε(φλ) = ε(ψλ) = 1,

S(F ) = −ψ1F , S(φλ) =
1
2

(φλ−1 + ψλ−1) +
1
2

(φλ − ψλ),

S(ψλ) =
1
2

(φλ−1 + ψλ−1)− 1
2

(φλ − ψλ)

for λ ∈ k×.
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Main result

Lemma
With operations defined above, kD∞◦ is a Hopf algebra.

Theorem
As Hopf algebras, we have

(kD∞)◦ ∼= kD∞◦ .
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Sketch of the proof

Clearly, {g ix j |i ∈ Z, j = 0,1} is a basis of kD∞. Denote its
dual basis by fi,j .
Construct:

E :=
∑
i∈Z

i(fi,0 + fi,1),

Φλ :=
∑
i∈Z

λi(fi,0 + fi,1),

Ψλ :=
∑
i∈Z

λi(fi,0 − fi,1)

for λ ∈ k×.
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Sketch of the proof

Key: As an algebra, (kD∞)◦ is generated by E ,Φλ and Ψλ.
To prove this, we need The Identity we proved before.
Define a map

Θ: kD∞◦ → (kD∞)◦, F 7→ E , φλ 7→ Φλ, ψλ 7→ Ψλ, (λ ∈ k×)

which gives the desired isomorphism.
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Remarks

The connected component (Montgomery-Radford’s sense)
containing 1 is the Hopf subalgebra generated by E ,Ψ1
which can be described as follows

EΨ1 = Ψ1E , Ψ2
1 = 1,

∆(E) = E ⊗ 1 + Ψ1 ⊗ E , ∆(Ψ1) = Ψ1 ⊗Ψ1.

This verifies the infinite-dimensional case of the theorem of
Larson-Radford. In our subsequent computations, we will
find that the infinite-dimensional analogue of
Larson-Radford’s theorem is not always true.
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Thanks for your attention!

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral group algebra


	Motivations
	A combinatorial identity
	The results

