A combinatorial identity and the finite dual of infinite dihedral group algebra

Gongxiang Liu (A joint work with Fan Ge)

Department of Mathematics, Nanjing University

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

Motivations

A combinatorial identity

3 The results

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

<ロト <回 > < 注 > < 注 > 、

ъ

Motivations

- A combinatorial identity
 - 3 The results

イロン イロン イヨン イヨン

3

- Motivations
- A combinatorial identity
- The results

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

イロン イロン イヨン イヨン

3

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

イロン イロン イヨン イヨン

э

Preparation and aim

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over \mathbf{k} .
- Aim: Determine the finite dual H° of a prime regular Hopf algebra H.

くロト (過) (目) (日)

Preparation and aim

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- Aim: Determine the finite dual H° of a prime regular Hopf algebra H.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Preparation and aim

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- Aim: Determine the finite dual *H*^o of a prime regular Hopf algebra *H*.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Preparation and aim

- In this talk, k an algebraically closed field of characteristic zero.
- All spaces and algebras are over k.
- Aim: Determine the finite dual *H*[°] of a prime regular Hopf algebra *H*.

くロト (過) (目) (日)

æ

A Larson-Radford's result

 It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^{*} is semisimple.

• A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

 It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

 It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

 It is well-known that Larson-Radford (J. Algebra, 1988) proved the following result:

Theorem

Let H be a finite dimensional Hopf algebra, then H is semisimple if and only if H^* is semisimple.

• A natural question is: How about the infinite dimensional case?

A Larson-Radford's result

• Naively, the infinite dimensional analogue seems to be:

- A Hopf algebra *H* has finite global dimension if and only if *H** has finite global dimension?
- But *H** has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

・ロト ・ 日本・ ・ 日本・

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra *H* has finite global dimension if and only if *H** has finite global dimension?
- But *H** has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

くロト (過) (目) (日)

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra *H* has finite global dimension if and only if *H** has finite global dimension?
- But *H*^{*} has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

ヘロト 人間 ト ヘヨト ヘヨト

A Larson-Radford's result

- Naively, the infinite dimensional analogue seems to be:
- A Hopf algebra *H* has finite global dimension if and only if *H** has finite global dimension?
- But *H*^{*} has no dual Hopf algebra structure in general.
- So a natural candidate for H^* is H° , the finite dual of H.

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group *G* is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}$.

・ロト ・回ト ・ヨト ・ヨト

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $(k\mathbb{D}_{\infty})^{\circ}$.

ヘロン ヘアン ヘビン ヘビン

-

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

• A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?

• In this talk, we will determine $(\mathbb{k}\mathbb{D}_{\infty})^{\circ}$.

・ロト ・ 理 ト ・ ヨ ト ・

-

A Takeuchi's definition

• Takeuchi defined a quantum group as follows.

Definition

A quantum group G is defined to be a triple

$$G = (A, U, \langle , \rangle)$$

where A and U are Hopf algebras, and \langle , \rangle is a Hopf pairing on $U \times A$.

- A natural question is: Is a prime regular Hopf algebra a quantum group in the Takeuchi's sense?
- In this talk, we will determine $(\Bbbk \mathbb{D}_{\infty})^{\circ}$.

ヘロン 人間 とくほ とくほ とう

э.

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

イロン イロン イヨン イヨン

э

Description of the identity

- To describe the identity, we need some notions at first.
- Let *m* and *n* are positive integers, define

$$U := U(m, n) = \{1, 2, ..., m + n\}.$$

• For a set $X = \{x_1, ..., x_m\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_X the Vandermonde determinant of *X*. That is,

$$V_X = \prod_{1 \le i < j \le m} (x_j - x_i).$$

• $G(m+1) := (m-1)! \cdots 1!$ is the Barnes G-function.

(E) < E)</p>

Description of the identity

- To describe the identity, we need some notions at first.
- Let *m* and *n* are positive integers, define

$$U := U(m, n) = \{1, 2, ..., m + n\}.$$

• For a set $X = \{x_1, ..., x_m\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_X the Vandermonde determinant of *X*. That is,

$$V_X = \prod_{1 \le i < j \le m} (x_j - x_i).$$

• $G(m+1) := (m-1)! \cdots 1!$ is the Barnes G-function.

(E) < E)</p>

Description of the identity

- To describe the identity, we need some notions at first.
- Let *m* and *n* are positive integers, define

$$U := U(m, n) = \{1, 2, ..., m + n\}.$$

• For a set $X = \{x_1, ..., x_m\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_X the Vandermonde determinant of X. That is,

$$V_X = \prod_{1 \le i < j \le m} (x_j - x_i).$$

• $G(m+1) := (m-1)! \cdots 1!$ is the Barnes G-function.

E > < E >

Description of the identity

- To describe the identity, we need some notions at first.
- Let *m* and *n* are positive integers, define

$$U := U(m, n) = \{1, 2, ..., m + n\}.$$

• For a set $X = \{x_1, ..., x_m\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_X the Vandermonde determinant of X. That is,

$$V_X = \prod_{1 \le i < j \le m} (x_j - x_i).$$

• $G(m+1) := (m-1)! \cdots 1!$ is the Barnes G-function.

E > < E >

Description of the identity

- To describe the identity, we need some notions at first.
- Let *m* and *n* are positive integers, define

$$U := U(m, n) = \{1, 2, ..., m + n\}.$$

• For a set $X = \{x_1, ..., x_m\}$ of nonnegative integers whose elements are listed in increasing order, we denote by V_X the Vandermonde determinant of X. That is,

$$V_X = \prod_{1 \le i < j \le m} (x_j - x_i).$$

• $G(m+1) := (m-1)! \cdots 1!$ is the Barnes G-function.

프 🖌 🛪 프 🕨

Description of the identity

• The identity is given in the following conlusion.

Theorem Let $t \in \left[\frac{m(m+1)}{2}, \frac{m(m+1)}{2} + mn\right]$ be an integer, and let $t^* = t - \frac{m(m+1)}{2}$. We have $\sum_{\substack{X = \{x_1, \dots, x_m\} \subset U\\ \sum x_i = t}} V_X V_Y = G(m+1)G(n+1)\binom{mn}{t^*}.$

Here the sum is over all subsets X of U whose elements' sum is t, and Y = U - X.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Description of the identity

• The identity is given in the following conlusion.

Theorem Let $t \in \left[\frac{m(m+1)}{2}, \frac{m(m+1)}{2} + mn\right]$ be an integer, and let $t^* = t - \frac{m(m+1)}{2}$. We have $\sum_{\substack{X = \{x_1, \dots, x_m\} \subset U\\ \sum x_i = t}} V_X V_Y = G(m+1)G(n+1)\binom{mn}{t^*}.$ Here the sum is over all subsets X of U whose elements' sum

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Description of the identity

• The identity is given in the following conlusion.

Theorem

Let
$$t \in \left[\frac{m(m+1)}{2}, \frac{m(m+1)}{2} + mn\right]$$
 be an integer, and let $t^* = t - \frac{m(m+1)}{2}$. We have

$$\sum_{\substack{X=\{x_1,\ldots,x_m\}\subset U\\\sum x_i=t}}V_XV_Y=G(m+1)G(n+1)\binom{mn}{t^*}.$$

Here the sum is over all subsets X of U whose elements' sum is t, and Y = U - X.

ヘロト 人間 ト ヘヨト ヘヨト

3

Description of the identity

This identity is related with the following known function:

$$\gamma_m(c) = rac{1}{m! \, G(m+1)^2} \int_{[0,1]^m} \delta(s_1 + s_2 + \dots + s_m - c) \ \prod_{i < j} (s_i - s_j)^2 \, ds_1 \dots ds_m.$$

which is used in some aspects of number theory.

Description of the identity

This identity is related with the following known function:

$$\gamma_m(c) = rac{1}{m! \, G(m+1)^2} \int_{[0,1]^m} \delta(s_1 + s_2 + \dots + s_m - c) \ \prod_{i < j} (s_i - s_j)^2 \, ds_1 \dots ds_m.$$

which is used in some aspects of number theory.

Description of the identity

This identity is related with the following known function:

$$\gamma_m(c) = rac{1}{m! \, G(m+1)^2} \int_{[0,1]^m} \delta(s_1 + s_2 + \dots + s_m - c) \ \prod_{i < j} (s_i - s_j)^2 \, ds_1 \dots ds_m.$$

• which is used in some aspects of number theory.

Sketch of the proof

- Step 1: Explain the number $\frac{V_X}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_Y}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_X V_Y}{G(m+1)G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

ヘロト 人間 ト ヘヨト ヘヨト

Sketch of the proof

- Step 1: Explain the number $\frac{V_X}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_Y}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_X V_Y}{G(m+1)G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sketch of the proof

- Step 1: Explain the number $\frac{V_X}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_Y}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_X V_Y}{G(m+1)G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Sketch of the proof

- Step 1: Explain the number $\frac{V_X}{G(m+1)}$ as the number of some semi-standard Young tableaus (SSYTs).
- Step 2: Explain the number $\frac{V_Y}{G(n+1)}$ as the number of some semi-standard Young tableaus with transpose shape with respect to SSYTs in step 1.
- Step 3: The number $\sum \frac{V_X V_Y}{G(m+1)G(n+1)}$ equals to the number of some pairs of SSYTs (P, Q).
- Step 4: Apply the Robinson-Schensted-Knuth correspondence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

A corollary

• This observation has the following direct consequence.

Corollary

Let x be an indeterminate and A be the $2m \times 2m$ matrix

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ x & x & \cdots & x & x^{-1} & x^{-1} & \cdots & x^{-1} \\ x^2 & 2x^2 & \cdots & 2^{m-1}x^2 & x^{-2} & 2x^{-2} & \cdots & 2^{m-1}x^{-2} \\ x^3 & 3x^3 & \cdots & 3^{m-1}x^3 & x^{-3} & 3x^{-3} & \cdots & 3^{m-1}x^{-3} \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ x^M & Mx^M & \cdots & M^{m-1}x^M & x^{-M} & Mx^{-M} & \cdots & M^{m-1}x^{-M} \end{pmatrix}$$

where M = 2m - 1. Then the determinant of A is

$$|A| = G(m+1)^2 \cdot (x^{-1}-x)^{m^2}.$$

Gongxiang Liu (A joint work with Fan Ge)

A combinatorial identity and the finite dual of infinite dihedral grou

A corollary

• This observation has the following direct consequence.

A corollary

• This observation has the following direct consequence.

Gongxiang Liu (A joint work with Fan Ge)

A combinatorial identity and the finite dual of infinite dihedral grou

A corollary

• This observation has the following direct consequence.

A combinatorial identity and the finite dual of infinite dihedral grou

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

イロン イロン イヨン イヨン

ъ

Let H be a Hopf algebra, the finite dual H° of H is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

• A basic fact: H° is a Hopf algebra.

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 Let H be a Hopf algebra, the finite dual H° of H is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

• A basic fact: H° is a Hopf algebra.

 Let H be a Hopf algebra, the finite dual H° of H is defined by

 $H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$

• A basic fact: H° is a Hopf algebra.

 Let H be a Hopf algebra, the finite dual H° of H is defined by

$$H^{\circ} := \{ f \in H^* | f(I) = 0, \text{ some ideal } I \text{ s.t. } \dim(H/I) < \infty \}.$$

• A basic fact: H° is a Hopf algebra.

Some known examples

Example

Let
$$H = \Bbbk[x]$$
, $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have
 $H^{\circ} \cong \Bbbk[x] \otimes kG$

where G = (k, +).

Example

Let $H = \Bbbk[x, x^{-1}], \ \Delta(x) = x \otimes x$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$

where $G = (\mathbb{k}^{\times}, \cdot)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Some known examples

Example

Let $H = \Bbbk[x], \ \Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes kG$

where G = (k, +).

Example

Let $H = \Bbbk[x, x^{-1}], \ \Delta(x) = x \otimes x$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$

where $G = (\mathbb{k}^{\times}, \cdot)$.

Some known examples

Example

Let $H = \Bbbk[x]$, $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes kG$

where G = (k, +).

Example

Let $H = \Bbbk[x, x^{-1}]$, $\Delta(x) = x \otimes x$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$

where $G = (\mathbb{k}^{\times}, \cdot)$.

Some known examples

Example

Let
$$H = \Bbbk[x]$$
, $\Delta(x) = 1 \otimes x + x \otimes 1$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes kG$

where G = (k, +).

Example

Let $H = \Bbbk[x, x^{-1}], \ \Delta(x) = x \otimes x$. Then we have

 $H^{\circ} \cong \Bbbk[x] \otimes \Bbbk G$

where $G = (\mathbb{k}^{\times}, \cdot)$.

Some known examples

 There is a common point in above examples, that is, H is commutative. Therefore H° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

 $U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$

This is proved by Takeuchi in 1992.

• The key point of above example is that the category of finite-dimensional representations of *U*_q(*sl*_n) is semisimple.

ヘロア 人間 アメヨア 人口 ア

Some known examples

• There is a common point in above examples, that is, *H* is commutative. Therefore *H*^o is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

 $U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$

This is proved by Takeuchi in 1992.

• The key point of above example is that the category of finite-dimensional representations of *U*_q(*sl*_n) is semisimple.

ヘロア 人間 アメヨア 人口 ア

Some known examples

 There is a common point in above examples, that is, *H* is commutative. Therefore *H*° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

 $U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$

This is proved by Takeuchi in 1992.

• The key point of above example is that the category of finite-dimensional representations of *U*_q(*sl*_n) is semisimple.

ヘロン ヘアン ヘビン ヘビン

Some known examples

 There is a common point in above examples, that is, *H* is commutative. Therefore *H*° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sl_n)$. Then we have

 $U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$

This is proved by Takeuchi in 1992.

The key point of above example is that the category of finite-dimensional representations of U_q(sl_n) is semisimple.

・ロト ・ 理 ト ・ ヨ ト ・

Some known examples

 There is a common point in above examples, that is, *H* is commutative. Therefore *H*° is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sI_n)$. Then we have

$$U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$$

This is proved by Takeuchi in 1992.

 The key point of above example is that the category of finite-dimensional representations of U_q(sl_n) is semisimple.

Some known examples

 There is a common point in above examples, that is, *H* is commutative. Therefore *H*^o is cocommutative and thus one can apply Milnor-Moore's Theorem.

Example

Consider the quantum group $U_q(sI_n)$. Then we have

$$U_q(sl_n)^{\circ} \cong \mathcal{O}_q(SL_n) \# k\mathbb{Z}_2^{n-1}.$$

This is proved by Takeuchi in 1992.

 The key point of above example is that the category of finite-dimensional representations of U_q(sl_n) is semisimple.

→ E > < E >

Our situation

 By definition, the infinite dihedral group D_∞ is generated by two elements g and x satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

 Note that kD∞ is not not commutative and thus (kD∞)° is not cocommutative. Also, the category of finite-dimensional representations of kD∞ is not semisimple.

ヘロト 人間 ト ヘヨト ヘヨト

 By definition, the infinite dihedral group D_∞ is generated by two elements *g* and *x* satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

 Note that kD∞ is not not commutative and thus (kD∞)° is not cocommutative. Also, the category of finite-dimensional representations of kD∞ is not semisimple.

ヘロト ヘアト ヘビト ヘビト

1

 By definition, the infinite dihedral group D_∞ is generated by two elements *g* and *x* satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

 Note that kD_∞ is not not commutative and thus (kD_∞)° is not cocommutative. Also, the category of finite-dimensional representations of kD_∞ is not semisimple.

ヘロン 人間 とくほ とくほ とう

э.

 By definition, the infinite dihedral group D_∞ is generated by two elements *g* and *x* satisfying

$$x^2 = 1$$
, $xgx = g^{-1}$.

 Note that kD_∞ is not not commutative and thus (kD_∞)° is not cocommutative. Also, the category of finite-dimensional representations of kD_∞ is not semisimple.

ヘロン 人間 とくほ とくほ とう

E DQC

The Hopf algebra $k\mathbb{D}_{\infty^{\circ}}$

 As an algebra, kD_{∞°} is generated by F, φ_λ, ψ_λ for λ ∈ k[×] = k \ {0} and subjects to the following relations

$$\begin{split} F\phi_{\lambda} &= \phi_{\lambda}F, \ F\psi_{\lambda} = \psi_{\lambda}F, \ \phi_{1} = 1, \\ \phi_{\lambda}\psi_{\lambda'} &= \psi_{\lambda'}\phi_{\lambda} = \psi_{\lambda\lambda'}, \ \phi_{\lambda}\phi_{\lambda'} = \phi_{\lambda\lambda'}, \ \psi_{\lambda}\psi_{\lambda'} = \phi_{\lambda\lambda'} \end{split}$$

for all $\lambda, \lambda' \in \mathbb{k}^{\times}$.

(ロ) (同) (三) (三) (三) (○)

The Hopf algebra $k\mathbb{D}_{\infty^{\circ}}$

۲

 As an algebra, kD_{∞°} is generated by F, φ_λ, ψ_λ for λ ∈ k[×] = k \ {0} and subjects to the following relations

$$\begin{aligned} F\phi_{\lambda} &= \phi_{\lambda}F, \ F\psi_{\lambda} = \psi_{\lambda}F, \ \phi_{1} = 1, \\ \phi_{\lambda}\psi_{\lambda'} &= \psi_{\lambda'}\phi_{\lambda} = \psi_{\lambda\lambda'}, \ \phi_{\lambda}\phi_{\lambda'} = \phi_{\lambda\lambda'}, \ \psi_{\lambda}\psi_{\lambda'} = \phi_{\lambda\lambda'} \end{aligned}$$

for all $\lambda, \lambda' \in \mathbb{k}^{\times}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The Hopf algebra $\mathbb{kD}_{\infty^{\circ}}$

The comultiplication, counit and the antipode are given by

$$\begin{split} \Delta(F) &= F \otimes 1 + \psi_1 \otimes F, \\ \Delta(\phi_{\lambda}) &= \frac{1}{2}(\phi_{\lambda} + \psi_{\lambda}) \otimes \phi_{\lambda} + \frac{1}{2}(\phi_{\lambda} - \psi_{\lambda}) \otimes \phi_{\lambda^{-1}}, \\ \Delta(\psi_{\lambda}) &= \frac{1}{2}(\phi_{\lambda} + \psi_{\lambda}) \otimes \psi_{\lambda} - \frac{1}{2}(\phi_{\lambda} - \psi_{\lambda}) \otimes \psi_{\lambda^{-1}}, \\ \varepsilon(F) &= 0, \ \varepsilon(\phi_{\lambda}) &= \varepsilon(\psi_{\lambda}) = 1, \\ S(F) &= -\psi_1 F, \ S(\phi_{\lambda}) &= \frac{1}{2}(\phi_{\lambda^{-1}} + \psi_{\lambda^{-1}}) + \frac{1}{2}(\phi_{\lambda} - \psi_{\lambda}), \\ S(\psi_{\lambda}) &= \frac{1}{2}(\phi_{\lambda^{-1}} + \psi_{\lambda^{-1}}) - \frac{1}{2}(\phi_{\lambda} - \psi_{\lambda}) \end{split}$$

for $\lambda \in \mathbb{k}^{\times}$.

Main result

_emma

With operations defined above, $\mathbb{kD}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $(\Bbbk \mathbb{D}_{\infty})^{\circ} \cong \Bbbk \mathbb{D}_{\infty^{\circ}}.$

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

Main result

Lemma

With operations defined above, $\mathbb{kD}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $(\Bbbk \mathbb{D}_{\infty})^{\circ} \cong \Bbbk \mathbb{D}_{\infty^{\circ}}.$

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

Main result

Lemma

With operations defined above, $\mathbb{kD}_{\infty^{\circ}}$ is a Hopf algebra.

Theorem

As Hopf algebras, we have

 $(\Bbbk \mathbb{D}_{\infty})^{\circ} \cong \Bbbk \mathbb{D}_{\infty^{\circ}}.$

Gongxiang Liu (A joint work with Fan Ge) A combinatorial identity and the finite dual of infinite dihedral grou

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sketch of the proof

Clearly, {gⁱx^j | i ∈ ℤ, j = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{i,j}.

• Construct:

$$\begin{split} E &:= \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}), \\ \Phi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}), \\ \Psi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) \end{split}$$

for $\lambda \in \mathbb{k}^{\times}$.

(ロ) (同) (目) (日) (日) (の)

Sketch of the proof

Clearly, {gⁱx^j | i ∈ ℤ, j = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{i,j}.

• Construct:

$$\begin{split} E &:= \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}), \\ \Phi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}), \\ \Psi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) \end{split}$$

for $\lambda \in \mathbb{k}^{\times}$.

(ロ) (同) (目) (日) (日) (の)

Sketch of the proof

Clearly, {gⁱx^j | i ∈ ℤ, j = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{i,j}.

• Construct:

$$\begin{split} E &:= \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}), \\ \Phi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}), \\ \Psi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) \end{split}$$

for $\lambda \in \mathbb{k}^{\times}$.

Sketch of the proof

- Clearly, {gⁱx^j | i ∈ ℤ, j = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{i,j}.
- Construct:

$$\begin{split} E &:= \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}), \\ \Phi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}), \\ \Psi_{\lambda} &:= \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) \end{split}$$

for $\lambda \in \mathbb{k}^{\times}$.

Sketch of the proof

- Clearly, {gⁱx^j | i ∈ ℤ, j = 0, 1} is a basis of kD_∞. Denote its dual basis by f_{i,j}.
- Construct:

$$egin{aligned} & E := \sum_{i \in \mathbb{Z}} i(f_{i,0} + f_{i,1}), \ & \Phi_\lambda := \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} + f_{i,1}), \ & \Psi_\lambda := \sum_{i \in \mathbb{Z}} \lambda^i (f_{i,0} - f_{i,1}) \end{aligned}$$

for $\lambda \in \mathbb{k}^{\times}$.

Sketch of the proof

- Key: As an algebra, (kD_∞)° is generated by E, Φ_λ and Ψ_λ.
 To prove this, we need The Identity we proved before.
- Define a map

 $\Theta \colon \Bbbk \mathbb{D}_{\infty^{\circ}} \to (\Bbbk \mathbb{D}_{\infty})^{\circ}, \ F \mapsto E, \ \phi_{\lambda} \mapsto \Phi_{\lambda}, \ \psi_{\lambda} \mapsto \Psi_{\lambda}, \ (\lambda \in \Bbbk^{\times})$

which gives the desired isomorphism.

イロト イポト イヨト イヨト

E DQC

Sketch of the proof

- Key: As an algebra, (kD_∞)° is generated by E, Φ_λ and Ψ_λ. To prove this, we need The Identity we proved before.
- Define a map

 $\Theta \colon \Bbbk \mathbb{D}_{\infty^{\circ}} \to (\Bbbk \mathbb{D}_{\infty})^{\circ}, \ F \mapsto E, \ \phi_{\lambda} \mapsto \Phi_{\lambda}, \ \psi_{\lambda} \mapsto \Psi_{\lambda}, \ (\lambda \in \Bbbk^{\times})$

which gives the desired isomorphism.

Sketch of the proof

- Key: As an algebra, (kD_∞)° is generated by E, Φ_λ and Ψ_λ.
 To prove this, we need The Identity we proved before.
- Define a map

$\Theta \colon \Bbbk \mathbb{D}_{\infty^{\circ}} \to (\Bbbk \mathbb{D}_{\infty})^{\circ}, \ F \mapsto E, \ \phi_{\lambda} \mapsto \Phi_{\lambda}, \ \psi_{\lambda} \mapsto \Psi_{\lambda}, \ (\lambda \in \Bbbk^{\times})$

which gives the desired isomorphism.

Sketch of the proof

- Key: As an algebra, (kD_∞)° is generated by E, Φ_λ and Ψ_λ. To prove this, we need The Identity we proved before.
- Define a map

$\Theta \colon \Bbbk \mathbb{D}_{\infty^{\circ}} \to (\Bbbk \mathbb{D}_{\infty})^{\circ}, \ F \mapsto E, \ \phi_{\lambda} \mapsto \Phi_{\lambda}, \ \psi_{\lambda} \mapsto \Psi_{\lambda}, \ (\lambda \in \Bbbk^{\times})$

which gives the desired isomorphism.

(ロ) (同) (三) (三) (三) (○)

Sketch of the proof

- Key: As an algebra, (kD_∞)° is generated by E, Φ_λ and Ψ_λ. To prove this, we need The Identity we proved before.
- Define a map

 $\Theta \colon \Bbbk \mathbb{D}_{\infty^{\circ}} \to (\Bbbk \mathbb{D}_{\infty})^{\circ}, \ F \mapsto E, \ \phi_{\lambda} \mapsto \Phi_{\lambda}, \ \psi_{\lambda} \mapsto \Psi_{\lambda}, \ (\lambda \in \Bbbk^{\times})$

which gives the desired isomorphism.

(ロ) (同) (三) (三) (三) (○)

Remarks

• The connected component (Montgomery-Radford's sense) containing 1 is the Hopf subalgebra generated by E, Ψ_1 which can be described as follows

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

 This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

• This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

 This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

 This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

$$\begin{split} E\Psi_1 &= \Psi_1 E, \ \Psi_1^2 = 1, \\ \Delta(E) &= E \otimes 1 + \Psi_1 \otimes E, \ \Delta(\Psi_1) = \Psi_1 \otimes \Psi_1. \end{split}$$

 This verifies the infinite-dimensional case of the theorem of Larson-Radford. In our subsequent computations, we will find that the infinite-dimensional analogue of Larson-Radford's theorem is not always true.

Thanks for your attention!

<ロト <回 > < 注 > < 注 > 、

æ