The structure of connected (graded) Hopf algebras

D.-M. LU

Zhejiang University

Sept.19, 2020; BNU

Joint work with Gui-Song Zhou and Yuan Shen

<日

<</p>

э

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

• Knowledge of the infinite dimensional Hopf algebras less than that of the finite dimensional Hopf algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Knowledge of the infinite dimensional Hopf algebras less than that of the finite dimensional Hopf algebras.
- Often required additional conditions, to deal with the infinite dimensional Hopf algebras, are: noetherian and/or of finite Gelfand-Kirillov dimension.

A B F A B F

- Knowledge of the infinite dimensional Hopf algebras less than that of the finite dimensional Hopf algebras.
- Often required additional conditions, to deal with the infinite dimensional Hopf algebras, are: noetherian and/or of finite Gelfand-Kirillov dimension.
 - * *GK-dimension*: a measure of the rate of growth of the algebra in terms of any generating set.

A B F A B F

- Knowledge of the infinite dimensional Hopf algebras less than that of the finite dimensional Hopf algebras.
- Often required additional conditions, to deal with the infinite dimensional Hopf algebras, are: noetherian and/or of finite Gelfand-Kirillov dimension.
 - * *GK-dimension*: a measure of the rate of growth of the algebra in terms of any generating set.
 - ★ Facts:
 - \diamond finitely generated commutative implies GKdim = Krull-dim;
 - \diamond for any $2 \leq r \in \mathbb{R}$, \exists finitely generated algebras with GKdim = r;
 - \diamond for a connected graded noetherian algebra with finite gldim, then GKdim $<\infty;$

 $\diamond \cdots \cdots$

- Knowledge of the infinite dimensional Hopf algebras less than that of the finite dimensional Hopf algebras.
- Often required additional conditions, to deal with the infinite dimensional Hopf algebras, are: noetherian and/or of finite Gelfand-Kirillov dimension.
 - * *GK-dimension*: a measure of the rate of growth of the algebra in terms of any generating set.
 - ★ Facts:
 - \diamond finitely generated commutative implies GKdim = Krull-dim;
 - \diamond for any $2 \leq r \in \mathbb{R}$, \exists finitely generated algebras with GKdim = r;
 - \diamond for a connected graded noetherian algebra with finite gldim, then GKdim $<\infty;$

 $\diamond \cdots \cdots$

* **Conjecture**: GKdim of any Hopf algebra is in $\mathbb{Z}_{\geq 0} \cup \{\infty\}$.

イロト 不得 トイヨト イヨト

• The Fundamental Theorem on Coalgebras says that coalgebras are always "locally finite": any subcoalgebra generated by a finite subset of a coalgebra is finite-dimensional.

<日

<</p>

- The Fundamental Theorem on Coalgebras says that coalgebras are always "locally finite": any subcoalgebra generated by a finite subset of a coalgebra is finite-dimensional.
- The coradical of a coalgebra = ∑ simple subcoalgebras. The coradical filtration of a coalgebra is very useful as a vehicle for inductive arguments.

A E • A E •

- The Fundamental Theorem on Coalgebras says that coalgebras are always "locally finite": any subcoalgebra generated by a finite subset of a coalgebra is finite-dimensional.
- The coradical of a coalgebra = ∑ simple subcoalgebras. The coradical filtration of a coalgebra is very useful as a vehicle for inductive arguments.
- The notion of coradically graded Hopf algebra is very natural: let H be a pointed Hopf algebra with coradical filtration $\{H_n\}_{n\geq 0}$. Then the associated graded space $gr(H) = \bigoplus_{n\geq 0} H_n/H_{n-1}$ is a coradically graded Hopf algebra, moreover, GKdim(gr(H)) = GKdim(H).

(4回) (4回) (4回)

- The Fundamental Theorem on Coalgebras says that coalgebras are always "locally finite": any subcoalgebra generated by a finite subset of a coalgebra is finite-dimensional.
- The coradical of a coalgebra = ∑ simple subcoalgebras. The coradical filtration of a coalgebra is very useful as a vehicle for inductive arguments.
- The notion of coradically graded Hopf algebra is very natural: let H be a pointed Hopf algebra with coradical filtration $\{H_n\}_{n\geq 0}$. Then the associated graded space $gr(H) = \bigoplus_{n\geq 0} H_n/H_{n-1}$ is a coradically graded Hopf algebra, moreover, GKdim(gr(H)) = GKdim(H).
- The structure of gr(H) is relatively easier: it is commutative and has a nice decomposition $gr(H) \cong R \# kG$, where R is a certain graded subalgebra of gr(H).

Basic definitions

A Hopf algebra is called

- *pointed* if every simple subcoalgebra is one-dimensional;
- connected if its coradical is of dimension one;
- connected graded if it is equipped with a (an ℕ-)grading which is compatible with the algebra structure and the coalgebra structure, and of one-dimensional 0th component.

Basic definitions

A Hopf algebra is called

- *pointed* if every simple subcoalgebra is one-dimensional;
- connected if its coradical is of dimension one;
- connected graded if it is equipped with a (an ℕ-)grading which is compatible with the algebra structure and the coalgebra structure, and of one-dimensional 0th component.

An easy observation

For a Hopf algebra, we have

connected graded \Longrightarrow connected.

Theorem (Cartier-Gabriel-Konstant)

The assignment $\mathfrak{g} \mapsto U(\mathfrak{g})$ and $H \mapsto P(H)$ define mutually inverse equivalences between the category of Lie algebras and the category of cocommutative connected Hopf algebras. Moreover,

 $\operatorname{GKdim} U(\mathfrak{g}) = \dim \mathfrak{g}.$

Theorem (Cartier-Gabriel-Konstant)

The assignment $\mathfrak{g} \mapsto U(\mathfrak{g})$ and $H \mapsto P(H)$ define mutually inverse equivalences between the category of Lie algebras and the category of cocommutative connected Hopf algebras. Moreover,

 $\operatorname{GKdim} U(\mathfrak{g}) = \dim \mathfrak{g}.$

Connected Hopf algebras of finite GK dimension can be viewed as

★ generalizations of enveloping algebras of finite dimensional Lie algebras.

イロト イヨト イヨト ・

Theorem (Basic facts of group schemes + Lazard's Theorem)

Let H be an commutative Hopf algebra. TFAE:

- **1** *H* is connected and affine.
- **2** $H \cong k[x_1, \cdots, x_d]$ as algebras for some integer $d \ge 0$.

• *H* is the coordinate ring of a connected unipotent algebraic group *U*. In this case,

$$\operatorname{GKdim} H = \operatorname{gldim} H = \operatorname{dim} U = d.$$

Theorem (Basic facts of group schemes + Lazard's Theorem)

Let H be an commutative Hopf algebra. TFAE:

- H is connected and affine.
- **2** $H \cong k[x_1, \cdots, x_d]$ as algebras for some integer $d \ge 0$.

• *H* is the coordinate ring of a connected unipotent algebraic group *U*. In this case,

$$\operatorname{GKdim} H = \operatorname{gldim} H = \operatorname{dim} U = d.$$

Connected Hopf algebras of finite GK dimension can be viewed as

* NC counterpart of connected unipotent algebraic groups.

Theorem (Zhuang, 2012)

Let H be a connected Hopf algebra. Let gr(H) be the associated graded Hopf algebra w.r.t. the coradical filtration. Then gr(H) is commutative and TFAE:

- GKdim $H < \infty$;
- 2 GKdim gr(H) < ∞ ;
- **3** gr(H) is affine;
- $gr(H) \cong k[x_1, \cdots, x_n]$ as algebras for some integer $n \ge 0$.

In this case, $\operatorname{GKdim} H = \operatorname{GKdim} \operatorname{gr}(H) = n$.

Theorem (Zhuang, 2012)

Let H be a connected Hopf algebra. Let gr(H) be the associated graded Hopf algebra w.r.t. the coradical filtration. Then gr(H) is commutative and TFAE:

- GKdim $H < \infty$;
- 2 GKdim gr(H) < ∞ ;
- **3** gr(H) is affine;

• $gr(H) \cong k[x_1, \cdots, x_n]$ as algebras for some integer $n \ge 0$.

In this case, $\operatorname{GKdim} H = \operatorname{GKdim} \operatorname{gr}(H) = n$.

Connected Hopf algebras of finite GK dimension can be viewed as

 $\star\,$ deformations of polynomial algebras in finitely many variables.

イロト イヨト イヨト ・

- Detecting properties and structures of connected Hopf algebras.
- Classifying connected Hopf algebras of low GK dimensions.
- Relating connected Hopf algebras to general Hopf algebras.

A B A A B A

Ring-theoretic and homological properties

The above Zhuang's result is the keystone theorem for many recent studies on connected Hopf algebras. An easy consequence is:

Theorem (Zhuang, 2012)

Let H be a connected Hopf algebra with $\operatorname{GKdim} H = n < \infty$.

- *H* is a noetherian domain of Krull dimension $\leq n$;
- **2** *H* is Artin-Schelter regular of global dimension n;
- **③** H is Auslander-regular, Cohen-Macaulay and skew n-Calabi-Yau.

On the antipode

Theorem (Brown-Gilmartin, 2013)

The antipode of a connected Hopf algebra is either of order 2 or infinite.

On the antipode

Theorem (Brown-Gilmartin, 2013)

The antipode of a connected Hopf algebra is either of order 2 or infinite.

Theorem (Brown-Gilmartin-Zhang, 2017)

If a Hopf algebra has finite GK dimension and is connected graded as an algebra, then its antipode is of order 2.

Consequently, a connected graded Hopf algebra of finite GK dimension has antipode of order 2.

On the classification problem

Theorem (Zhuang, 2012; Wang-Zhang-Zhuang, 2013)

Assume k is alg. closed. Let H be a connected Hopf algebra.

- If GKdim H = 0 then H = k;
- **2** If $\operatorname{GKdim} H = 1$ then $H \cong k[x]$ with x primitive;
- If GKdim H = 2 then H is isomorphic to the enveloping algebra of one of the two Lie algebras of dimension 2;
- If GKdim H = 3, then H is either isomorphic to enveloping algebras of Lie algebras of dimension 3, or H is a member of one of two explicitly defined families;
- If GKdim H = 4, then H is either isomorphic to enveloping algebras of Lie algebras of dimension 4, or H is a member of one of 12 explicitly defined families.

イロト 不得 トイヨト イヨト

On the underlying algebra structure

Theorem (Wang-Zhang-Zhuang, 2013)

Connected Hopf algebras of GK dimension \leq 4 are isomorphic as algebras to enveloping algebras of Lie algebras.

Theorem (Wang-Zhang-Zhuang, 2013)

Let H be a connected Hopf algebra of finite GK dimension d. If dim $P(H) \ge d - 1$, then H is isomorphic as algebras to an enveloping algebra of some Lie algebra of dimension d.

On the underlying algebra structure

Theorem (Wang-Zhang-Zhuang, 2013)

Connected Hopf algebras of GK dimension \leq 4 are isomorphic as algebras to enveloping algebras of Lie algebras.

Theorem (Wang-Zhang-Zhuang, 2013)

Let H be a connected Hopf algebra of finite GK dimension d. If dim $P(H) \ge d - 1$, then H is isomorphic as algebras to an enveloping algebra of some Lie algebra of dimension d.

Theorem (Brown-Gilmartin-Zhang, 2017)

There is a connected graded Hopf algebra of GK dimension 5 which is not isomorphic as algebras to the enveloping algebra of any Lie algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Brown-Gilmartin-Zhang's example

Generators: a, b, c, z, w of degrees 1, 2, 1, 3, 3 respectively; Relations:

$$\begin{split} [b,a] &= 0, \quad [c,a] = -b, \quad [c,b] = 0, \\ [z,a] &= [z,b] = [z,c] = 0, \\ [w,a] &= [w,b] = [w,c] = 0, \quad [w,z] = -\frac{1}{3}b^3; \end{split}$$

Comultiplication:

$$\begin{array}{ll} \mathsf{a} \mapsto 1 \otimes \mathsf{a} + \mathsf{a} \otimes 1, \quad b \mapsto 1 \otimes b + b \otimes 1, \quad c \mapsto 1 \otimes c + c \otimes 1, \\ z \mapsto 1 \otimes z + z \otimes 1 + \underline{a \otimes b - b \otimes a}, \\ w \mapsto 1 \otimes w + w \otimes 1 + \underline{c \otimes b - b \otimes c}; \end{array}$$

Counit:

$$a, b, c, z, w \mapsto 0.$$

э

A (10) × (10)

Iterated Hopf Ore extension

An effective way to construct "nontrivial" connected Hopf algebras of high GK dimension is iterated Hopf Ore extension (IHOE).

Definition (Brown-O'Hagan-Zhang-Zhuang, 2013)

A Hopf algebra H is called an IHOE if there is a chain of Hopf subalgebras

$$k = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_n = H$$

such that $H_i = H_{i-1}[x_i; \sigma_i, \delta_i]$, an Ore extension of H_{i-1} , for $1 \le i \le n$.

Iterated Hopf Ore extension

An effective way to construct "nontrivial" connected Hopf algebras of high GK dimension is iterated Hopf Ore extension (IHOE).

Definition (Brown-O'Hagan-Zhang-Zhuang, 2013)

A Hopf algebra H is called an IHOE if there is a chain of Hopf subalgebras

$$k = H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_n = H$$

such that $H_i = H_{i-1}[x_i; \sigma_i, \delta_i]$, an Ore extension of H_{i-1} , for $1 \le i \le n$.

Theorem (Brown-O'Hagan-Zhang-Zhuang, 2013)

Let H be an IHOE with a defining series as above. Then H is a connected Hopf algebra of GK dimension n.

イロト イヨト イヨト ・

A connected Hopf algebra of finite GK dimension is not necessarily an IHOE (e.g. the enveloping algebra of some f.d. Lie algebra).

э

A connected Hopf algebra of finite GK dimension is not necessarily an IHOE (e.g. the enveloping algebra of some f.d. Lie algebra). But,

- Commutative connected Hopf algebras of finite GK dimension are IHOE.
- Cocommutative connected graded Hopf algebras of finite GK dimension are IHOE.
- Connected Hopf algebras of GK dimension \leq 4 are IHOE.
- Brown-Gilmartin-Zhang's example is an IHOE.

<日

<</p>

A connected Hopf algebra of finite GK dimension is not necessarily an IHOE (e.g. the enveloping algebra of some f.d. Lie algebra). But,

- Commutative connected Hopf algebras of finite GK dimension are IHOE.
- Cocommutative connected graded Hopf algebras of finite GK dimension are IHOE.
- Connected Hopf algebras of GK dimension \leq 4 are IHOE.
- Brown-Gilmartin-Zhang's example is an IHOE.

Question

Is every connected graded Hopf algebra of finite GK dimension an IHOE?

The main result

Theorem (Zhou-Shen-L., Adv. Math., 2020)

Let H be a connected graded Hopf algebra of finite GK dimension d. Then there exists a finite sequence z_1, \dots, z_d of homogeneous elements of H of positive degrees such that

$$\Delta_H(z_r) \in 1 \otimes z_r + z_r \otimes 1 + H^{< r} \otimes H^{< r},$$

where $H^{< r}$ is the subalgebra of H generated by z_1, \dots, z_{r-1} and

$$H = k[z_1][z_2; \mathrm{id}, \delta_2] \cdots [z_d; \mathrm{id}, \delta_d].$$

In particular, H is an IHOE.

Brown-Gilmartin-Zhang's question

Brown-Gilmartin-Zhang, 2017

For a Hopf algebra of finite GK dimension, do we have:

connected graded as an algebra \Longrightarrow connected as a coalgebra?

Brown-Gilmartin-Zhang's question

Brown-Gilmartin-Zhang, 2017

For a Hopf algebra of finite GK dimension, do we have:

connected graded as an algebra \Longrightarrow connected as a coalgebra?

For a Hopf algebra of finite GK dimension, do we have:

connected graded as an algebra \Longrightarrow IHOE?

The idea of our argument is originated from the following work:

• V. K. Kharchenko, A quantum analogue of Poincaré-Birkhoff-Witt theorem, Alg. Log., vol 38, (1999) 259-276.

He construct a set of PBW generators for *primitively generated* connected graded braided Hopf algebras with braiding of diagonal type, in terms of Lyndon words and braided bracketing on words.

Warning!

Connected graded Hopf algebras are not necessarily primitively generated!

- 4 回 ト 4 三 ト 4 三 ト

Lyndon words

Let (X, \leq) be a well ordered set of variables.

For words $u, v \in \langle X \rangle$,

$$u <_{\text{lex}} v \iff \begin{cases} v \text{ is a proper prefix of } u, & \text{or} \\ u = rxs, v = ryt, & \text{with } x, y \in X; x < y. \end{cases}$$

Definition

A word *u* on *X* is called *Lyndon* if $u \neq 1$ and $u >_{lex} wv$ for every factorization u = vw with $v, w \neq 1$.

Lyndon words of length ≤ 4 in $X = \{x_1 < x_2\}$ are:

$$x_1, x_2, x_2x_1, x_2x_1^2, x_2^2x_1, x_2x_1^3, x_2^2x_1^2, x_2^3x_1.$$

Useful characterizations of Lyndon words

Let *u* be a word of length ≥ 2 . TFAE:

- \bigcirc *u* is a Lyndon word.
- 2 $u >_{\text{lex}} w$ for every factorization u = vw with $v, w \neq 1$.
- **3** $v >_{\text{lex}} w$ for every factorization u = vw with $v, w \neq 1$.
- u = vw with v, w both Lyndon and $v >_{lex} w$.
- In the proper Lyndon and u_L >_{lex} u_R, where u_R is the proper Lyndon suffix of maximal length of u and u_L := uu_R⁻¹.

The pair $Sh(u) := (u_L, u_R)$ is called the *Shirshov factorization* of u.

E.g.
$$\operatorname{Sh}(x_2^3x_1) = (x_2, x_2^2x_1)$$
, $\operatorname{Sh}(x_2^2x_1x_2x_1) = (x_2^2x_1, x_2x_1)$.

Some facts on Lyndon words

- Every nonempty word u can be written uniquely as a nondecreasing product $u = u_1 u_2 \cdots u_r$ of Lyndon words.
- Let $u = u_1 u_2 \cdots u_r$ be a nondecreasing product of Lyndon words. If v is a Lyndon factor of u then v is a factor of some u_i .
- Let u, v be Lyndon words such that $u >_{\text{lex}} v$. Then Sh(uv) = (u, v) if and only if either $u \in X$ or $|u| \ge 2$ and $u_R \le_{\text{lex}} v$.
- Let w_1, w_2, w_3 be words with w_2 nonempty. If w_1w_2 and w_2w_3 are both Lyndon words, then $w_1w_2w_3$ is also a Lyndon word.
- Let $u_1 >_{\text{lex}} u_2 >_{\text{lex}} u'$ be nonempty words. If $u_1 u_2$ and u' are Lyndon words, then $u_1 u_2 u' >_{\text{lex}} u_1 u' >_{\text{lex}} u'$ and $u_1 u_2 u' >_{\text{lex}} u_2 u' >_{\text{lex}} u'$.

イロト 不得 トイラト イラト 一日

Fix a grading on $k\langle X \rangle$ by a map $X \to \mathbb{Z}_{>0}$.

Let I be an ideal of $k\langle X \rangle$. A word on X is called *I-reducible* if it is the leading word of some polynomial in I. We let

 $\begin{aligned} \mathcal{O}_I &:= \{ \text{ } I\text{-reducible words with proper factors } I\text{-irreducible } \}, \\ \mathcal{N}_I &:= \{ \text{ } I\text{-irreducible Lyndon words } \}, \\ \mathcal{B}_I &:= \{ u_1 \cdots u_n \mid u_1 \leq_{\text{lex}} \cdots \leq_{\text{lex}} u_n \in \mathcal{N}_I \}. \end{aligned}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix a grading on $k\langle X \rangle$ by a map $X \to \mathbb{Z}_{>0}$.

Let I be an ideal of $k\langle X \rangle$. A word on X is called *I-reducible* if it is the leading word of some polynomial in I. We let

 $\begin{aligned} \mathcal{O}_I &:= \{ \text{ } I\text{-reducible words with proper factors } I\text{-irreducible } \}, \\ \mathcal{N}_I &:= \{ \text{ } I\text{-irreducible Lyndon words } \}, \\ \mathcal{B}_I &:= \{ u_1 \cdots u_n \mid u_1 \leq_{\text{lex}} \cdots \leq_{\text{lex}} u_n \in \mathcal{N}_I \}. \end{aligned}$

Easy observations

- The set of *I*-irreducible words is included in *B_I*, and they are equal if and only if *O_I* consists of Lyndon words.
- The quotient algebra $k\langle X\rangle/I$ is generated by $\{ u+I \mid u \in \mathcal{N}_I \}$.

イロト 不得 トイヨト イヨト 二日

An ideal I of $k\langle X \rangle$ is called Lyndon if \mathcal{O}_I consists of Lyndon words.

E.g. The ideal of $k\langle d, u \rangle$ generated by

$$d^2u - \alpha dud - \beta ud^2 - \gamma d$$
, $du^2 - \alpha udu - \beta ud^2 - \gamma u$.

An observation

Let *I* be a \mathbb{Z}^2 -homogeneous ideal of $k\langle x_1, x_2 \rangle$ with x_1 and x_2 of degrees (1,0) and (0,1) respectively. If $k\langle x_1, x_2 \rangle/I$ is an AS-regular domain of global dimension ≤ 5 , then *I* is a Lyndon ideal.

- 4 冊 ト 4 三 ト 4 三 ト

Theorem (Zhou-L., 2014)

Let I be a Lyndon ideal of $k\langle X \rangle$ and let $A = k\langle X \rangle / I$. Then

 $\operatorname{GKdim} A = \#(\mathcal{N}_I).$

Assume further I is homogeneous and \mathcal{N}_{I} is finite. Then

$$H_{\mathcal{A}}(t) = \prod_{u \in \mathcal{N}_{I}} (1 - t^{\deg(u)})^{-1},$$

A is homologically smooth in the graded sense,

$$\operatorname{pdim}_{A^e}(A) = \operatorname{gldim} A = \#(N_I),$$

and

$$\underline{\operatorname{Ext}}_{\mathcal{A}}^{d}({}_{\mathcal{A}}k,{}_{\mathcal{A}}k) = \underline{\operatorname{Ext}}_{\mathcal{A}}^{d}(k_{\mathcal{A}},k_{\mathcal{A}}) = k(I),$$

where $d := #(\mathcal{N}_I)$ and $I := \sum_{u \in \mathcal{N}_I} \deg(u)$.

イロト 不得 トイヨト イヨト

Standard bracketing of words

The *standard bracketing* of words $[-]: \langle X \rangle \rightarrow k \langle X \rangle$ is defined as follows.

- first set [1] = 1 and [x] := x for $x \in X$;
- then for words u of length ≥ 2 , inductively set

$$[u] = \begin{cases} [[u_L], [u_R]], & u \text{ is Lyndon;} \\ \\ [u_L][u_R], & u \text{ is not Lyndon.} \end{cases}$$

Note that u is the leading word of [u].

Standard bracketing of words

The *standard bracketing* of words $[-]: \langle X \rangle \rightarrow k \langle X \rangle$ is defined as follows.

- first set [1] = 1 and [x] := x for $x \in X$;
- then for words u of length ≥ 2 , inductively set

$$[u] = \begin{cases} [[u_L], [u_R]], & u \text{ is Lyndon;} \\ \\ [u_L][u_R], & u \text{ is not Lyndon.} \end{cases}$$

Note that u is the leading word of [u]. Consequently, one has:

An easy observation

The quotient algebra $k\langle X\rangle/I$ is generated by $\{ [u] + I \mid u \in \mathcal{N}_I \}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

A well-known fact

Let $\Delta_s: k\langle X
angle o k\langle X
angle$ be the algebra homomorphism given by

 $x \mapsto 1 \otimes x + x \otimes 1$.

Theorem

For an ideal I of $k\langle X \rangle$, TFAE:

I is generated by Lie polynomials (i.e. linear combinations of standard bracketing of Lyndon words).

In this case, $k\langle X \rangle / I \cong U(\text{Lie}(X) / \text{Lie}(X) \cap I)$.

Triangular comultiplication on $k\langle X \rangle$

Definition

A triangular comultiplication on $k\langle X \rangle$ is an algebra homomorphism $\Delta : k\langle X \rangle \rightarrow k\langle X \rangle \otimes k\langle X \rangle$ such that for each letter $x \in X$,

$$\Delta(x) = 1 \otimes x + x \otimes 1 + f_x + g_x$$

with
$$f_x \in \sum_{\substack{i,j > 0 \\ i+j = \deg(x)}} k\langle X \rangle_i^{< x} \otimes k\langle X \rangle_j^{< x}$$
 and $g_x \in (k\langle X \rangle \otimes k\langle X \rangle)_{<\deg(x)}$.

Notation: $k\langle X
angle^{< w}$, the subalgebra of $k\langle X
angle$ generated by

{
$$[u] \mid u \text{ is a Lyndon word and } u <_{\text{lex}} w$$
 }.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Triangular comultiplication on $k\langle X \rangle$

Definition

A triangular comultiplication on $k\langle X \rangle$ is an algebra homomorphism $\Delta : k\langle X \rangle \rightarrow k\langle X \rangle \otimes k\langle X \rangle$ such that for each letter $x \in X$,

$$\Delta(x) = 1 \otimes x + x \otimes 1 + f_x + g_x$$

with
$$f_x \in \sum_{\substack{i,j > 0 \\ i+j = \deg(x)}} k\langle X \rangle_i^{< x} \otimes k\langle X \rangle_j^{< x}$$
 and $g_x \in (k\langle X \rangle \otimes k\langle X \rangle)_{<\deg(x)}$.

Notation: $k\langle X \rangle^{<w}$, the subalgebra of $k\langle X \rangle$ generated by

{ $[u] \mid u \text{ is a Lyndon word and } u <_{\text{lex}} w$ }.

Warning! Such Δ is no longer coassociative in general!

・ロト ・四ト ・ヨト ・ヨト

The first technical observation

Let Δ be a triangular comultiplication on $k\langle X \rangle$. Then

$$\Delta([u]^n) = \sum_{p=0}^n \binom{n}{p} [u]^p \otimes [u]^{n-p} + f_{u,n} + g_{u,n}$$

with

$$f_{u,n} \in \sum_{\substack{r,s \geq 0 \\ r+s \leq n}} \sum_{i,j > 0 \\ i+j=(n-r-s)\deg(u)} k\langle X \rangle_i^{\leq u} \cdot [u]^r \otimes k\langle X \rangle_j^{\leq u} \cdot [u]^s$$

and

$$g_{u,n} \in \left(k\langle X
angle \otimes k\langle X
angle
ight)_{<\deg(u^n)}$$

for every Lyndon word u and every positive integer n.

<日

<</p>

The second technical observation

Assume that there exists a triangular comultiplication Δ on $k\langle X \rangle$ such that $\Delta(I) \subseteq k\langle X \rangle \otimes I + I \otimes k\langle X \rangle$.

For every *I*-reducible Lyndon words *v*,

$$[v] \in k\langle X|I\rangle_{\deg(v)}^{$$

② For every pair of *I*-irreducible Lyndon words $u >_{\text{lex}} v$,

$$[u][v] - [v][u] \in k\langle X|I\rangle_{\deg(uv)}^{\leq uv} + k\langle X|I\rangle_{\deg(uv)} + I.$$

• The set { $[w] + I | w \in B_I$ } form a basis of $k\langle X \rangle / I$. Consequently, \mathcal{O}_I consists of Lyndon words.

Notation: $k\langle X|I\rangle^{\leq w}$ (resp. $k\langle X|I\rangle^{\leq w}$), the subalgebra of $k\langle X\rangle$ generated

$$\{ [u] \mid u \in \mathcal{N}_I, u <_{\text{lex}} w \} \quad (\text{resp.}\{ [u] \mid u \in \mathcal{N}_I, u \leq_{\text{lex}} w \}).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch

Now let H be a connected graded Hopf algebra.

- First fix an arbitrary set X of homogeneous generators of positive degree for H.
- Then fix an arbitrary homomorphism $\Delta : k\langle X \rangle \rightarrow k\langle X \rangle \otimes k\langle X \rangle$ of graded algebras that lifts Δ_H .

<日

<</p>

Sketch

Now let H be a connected graded Hopf algebra.

- First fix an arbitrary set X of homogeneous generators of positive degree for H.
- Then fix an arbitrary homomorphism $\Delta : k\langle X \rangle \rightarrow k\langle X \rangle \otimes k\langle X \rangle$ of graded algebras that lifts Δ_H .

An easy observation

One may choose a well order on X so that the chosen lifting Δ is a triangular comultiplication.

The Structure Theorem

Theorem (Zhou-Shen-L., Adv. Math., 2020)

Let H be a connected graded Hopf algebra. Then there exists an indexed family $\{z_{\gamma}\}_{\gamma \in \Gamma}$ of homogeneous elements of H of positive degrees and a total order \leq on Γ satisfying the following conditions:

• for every index $\gamma \in \Gamma$,

$$\Delta_H(z_\gamma) \in 1 \otimes z_\gamma + z_\gamma \otimes 1 + H^{<\gamma} \otimes H^{<\gamma},$$

where $H^{<\gamma}$ is the subalgebra of H generated by $\{ z_{\delta} | \delta < \gamma \}$; of every pair of indices $\gamma, \delta \in \Gamma$ with $\delta < \gamma$,

$$[z_{\gamma}, z_{\delta}] \in H^{<\gamma};$$

● { $z_{\gamma_1} \cdots z_{\gamma_n}$ | $\gamma_1 \leq \cdots \leq \gamma_n \in \Gamma$ } is a basis of H. Moreover, GKdim $H = #(\Gamma)$.

э

イロト イボト イヨト イヨト

Remarks

- The total order on the index set Γ may be not compatible with the degrees of the indexed generators.
- The totally ordered set (Γ, \leq) may be weird when Γ is infinite. It may contain no totally ordered subset isomorphic to

$$(\mathbb{N},\leq)=\{0<1<2<3<\cdots\}.$$

 $\mathsf{E.g.} \ (\Gamma, \leq) = \{ 0 < \cdots < 3 < 2 < 1 \}.$

<日

<</p>

Theorem (Zhou-Shen-L., Adv. Math., 2020)

Let H be a commutative Hopf algebra. Assume that H is either connected as a coalgebra or connected graded as an algebra. Then H is isomorphic as an algebra to the polynomial algebra in some family of variables.

Theorem (Zhou-Shen-L., Adv. Math., 2020)

Let H be a commutative Hopf algebra. Assume that H is either connected as a coalgebra or connected graded as an algebra. Then H is isomorphic as an algebra to the polynomial algebra in some family of variables.

Many Hopf algebras arose from combinatoric (e.g. quasi-symmetric functions) are <u>NON-affine</u> commutative connected Hopf algebras.

Some corollaries

Corollary 1

Let *H* be a connected Hopf algebra. Then for every algebra *A* which is a domain, $H \otimes A$ is a domain. In particular, $H^{\otimes n}$ are domains for $n \ge 1$.

Corollary 2

Let H be a connected Hopf algebra. Then

 $\operatorname{GKdim} H = \operatorname{GKdim} \operatorname{gr}(H) \in \mathbb{N} \cup \{\infty\}.$

Corollary 3 (Zhuang's keystone theorem, 2012)

A connected Hopf algebra H has finite GK dimension d iff gr(H) is a polynomial algebra in d variables.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Thanks!

3

イロト イヨト イヨト イヨト