Trigonometric Lie algebras, affine Lie algebras and vertex algebras

Qing Wang

Xiamen University

Joint with Haisheng Li, Shaobin Tan

Sep. 19, 2020

Outline

Basics: Affine vertex algebras

② Main Results: Trigonometric Lie algebras and Γ-vertex algebras

U: a vector space,

$$U[[z,z^{-1}]] = \{ \sum_{n \in \mathbb{Z}} u_n z^n | u_n \in U \}.$$

 Non-associative algebra: A vector space A equipped with a bilinear operation, which is equivalent to a linear map from A to EndA (through left multiplication).

Vertex algebra: A vector space *V* equipped with infinitely many bilinear operations parametrized by integers, which is equivalent to infinitely many linear maps:

$$V \rightarrow \operatorname{End} V$$

$$v \mapsto v_n$$
.

For each v, the infinitely many associated left multiplications are written in terms of generating function as:

$$Y(v,z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1} \in (\text{End}V)[[z,z^{-1}]],$$

that is, A vector space V equipped with a linear map:

$$Y(\cdot, z): V \longrightarrow (\operatorname{End} V)[[z, z^{-1}]]$$

$$v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-1}, \quad v_n \in \operatorname{End} V,$$

- (1) for $u, v \in V$: $u_n v = 0$ if n sufficiently large;
- (2) vacuum vector **1** : Y(1, z) = id;
- (3) weak commutativity: for any $u, v \in V$, there exists $n \ge 0$ such that

$$(z_1-z_2)^n Y(u,z_1)Y(v,z_2) = (z_1-z_2)^n Y(v,z_2)Y(u,z_1);$$

(4) weak associativity: for any $u, v, w \in V$, there exists $l \ge 0$ such that

$$(z_0+z_2)^I Y(u,z_0+z_2) Y(v,z_2) w = (z_0+z_2)^I Y(Y(u,z_0)v,z_2) w.$$

Remark. $V = (V, Y, \mathbf{1})$: VA.

ロト 4 個 ト 4 差 ト 4 差 ト 9 Q Q

Example. Commutative associative algebra A with identity 1: Y(a, z)b = ab for $a, b \in A$.

Example. Affine VA, Virasoro VA, lattice VA

Vertex Operator Algebra

Vertex operator algebra: A vector space $V = \bigoplus_{n \in \mathbb{Z}} V_n$, dim $V_n < \infty$, equipped with a vertex algebra structure $(V, Y, \mathbf{1})$,

+the Virasoro vector $\omega \in V_2$:

$$Y(\omega,z)=\sum_{n\in\mathbb{Z}}L(n)z^{-n-2},$$

$$[L(m), L(n)] = (m-n)L(m+n) + \frac{m^3-m}{12}\delta_{m+n,0}c,$$

where $c \in \mathbb{C}$ is called the central charge. Moreover,

$$Y(L(-1)v,z) = \frac{d}{dz}Y(v,z), \quad v \in V,$$

 $L(0) = n \text{ on } V_n.$

Remark. $V = (V, Y, \mathbf{1}, \omega)$: VOA.

Vertex Operator Algebra

- V: VA
- Module: A vector space M equipped with a linear map:

$$Y_M(\cdot, z) : V \longrightarrow (\text{End}M)[[z, z^{-1}]]$$

 $v \mapsto Y_M(v, z) = \sum_{n \in \mathbb{Z}} v_n^M z^{-n-1}, \ v_n^M \in \text{End}M$

- + some axioms.
- Remark. Simple VA: V is an irreducible as a V-module.

Affine VA

- g: finite dimensional simple Lie algebra
- the affine Kac-Moody Lie algebra:

$$\hat{\mathfrak{g}}=\mathfrak{g}\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c,$$

where c is central and

$$[a \otimes t^m, b \otimes t^n] = [a, b] \otimes t^{m+n} + m\langle a, b \rangle \delta_{m+n,0} c$$

for $a, b \in \mathfrak{g}, m, n \in \mathbb{Z}$.

Affine VA

- Set $\hat{\mathfrak{g}}_{\geq 0} = \mathfrak{g} \otimes \mathbb{C}[t] \oplus \mathbb{C}c$, a Lie subalgebra of $\hat{\mathfrak{g}}$. Let $k \in \mathbb{C}$.
- Denote by \mathbb{C}_k the 1-dimensional $\hat{\mathfrak{g}}_{\geq 0}$ -module with $\mathfrak{g}[t]$ acting trivially and with c acting as scalar k. Form the induced $\hat{\mathfrak{g}}$ -module

$$V_{\hat{g}}(k,0) = U(\hat{g}) \otimes_{U(\hat{g}_{\geq 0})} \mathbb{C}_k.$$

• $V_{\hat{q}}(k,0)$ has a VA structure:

$$V = V_{\hat{g}}(k,0),$$

$$Y(a,x)=a(x)=\sum_{n\in\mathbb{Z}}(a\otimes t^n)x^{-n-1},\ a\in\mathfrak{g},$$

$$1$$
 = 1 ⊗ 1.

• $k \neq -h^{\vee}$, $V_{\hat{g}}(k,0)$ is a VOA.

Affine Lie algebras and vertex algebras

Theorem 1.1 (Li, 1996)

For any $\ell \in \mathbb{C}$, let W be any restricted $\hat{\mathfrak{g}}$ -module W of level ℓ . Then there exists a $V_{\hat{\mathfrak{g}}}(\ell,0)$ -module structure on W, which is uniquely determined by

$$Y_W(a,x) = a(x)$$
 for $a \in \mathfrak{g}$.

On the other hand, let (W, Y_W) be a $V_{\hat{g}}(\ell, 0)$ -module. Then W affords a restricted \hat{g} -module of level ℓ with

$$a(x) = Y_W(a, x)$$
 for $a \in \mathfrak{g}$.

[Li] H.-S. Li, Local systems of vertex operators, vertex subalgebras and modules, *J. Pure Appl. Algebra* **109** (1996), 143-195.

Affine Lie algebras and vertex algebras

• $L_{\hat{\mathfrak{g}}}(\ell,0)$: the simple quotient of the vertex algebra $V_{\hat{\mathfrak{g}}}(\ell,0)$

Theorem 1.2 (Dong-Li-Mason, 1997)

Let ℓ be a positive integer and let W be a restricted $\hat{\mathfrak{g}}$ -module. Then W is a $L_{\hat{\mathfrak{g}}}(\ell,0)$ -module if and only if W is an integrable $\hat{\mathfrak{g}}$ -module of level ℓ .

[DLM] C. Dong, H.-S. Li and G. Mason, Regularity of rational vertex operator algebras, *Adv. Math.* **132** (1997), 148-166.

Vertex algebra from local system

- W: a vector space, $\mathcal{E}(W) = \text{Hom}(W, W((x)))$
- A subset(subspace) U of $\mathcal{E}(W)$ is said to be local if for any $a(x), b(x) \in U$, there exists a nonnegative integer k such that

$$(x_1-x_2)^k a(x_1)b(x_2) = (x_1-x_2)^k b(x_2)a(x_1).$$

• It was proved by Li that any local subset U_W of $\mathcal{E}(W)$ canonically generates a vertex algebra $\langle U_W \rangle$ with W a module, where for $a(x), b(x) \in \mathcal{E}(W)$,

$$Y_{\mathcal{E}}(a(x),x_0)b(x) = \sum_{n \in \mathbb{Z}} a(x)_n b(x) x_0^{-n-1}$$

$$= x_0^{-k}((x_1-x)^k a(x_1)b(x))|_{x_1=x+x_0}$$

• Main difficulty: How to identify $\langle U_W \rangle$.

Affine vertex algebras

For affine Kac-Moody algebra case:

- Let $a(x) = \sum_{n \in \mathbb{Z}} (a \otimes t^n) x^{-n-1}$, $a \in \mathfrak{g}$
- The Lie relation of affine Lie algebra can be written as

$$[a(x_1),b(x_2)] = [a,b](x_2)x_1^{-1}\delta\left(\frac{x_2}{x_1}\right) + \langle a,b\rangle\frac{\partial}{\partial x_2}x_1^{-1}\delta\left(\frac{x_2}{x_1}\right)\mathbf{c}$$

where $\delta(x) = \sum_{n \in \mathbb{Z}} x^n$.

• Locality for affine Lie algebras: for two generating functions a(x), b(x), we have

$$(x_1-x_2)^2a(x_1)b(x_2)=(x_1-x_2)^2b(x_2)a(x_1).$$

• Fact: $\langle U_W \rangle = V_{\hat{\mathfrak{q}}}(\ell, 0)$.

Trigonometric Lie algebras

- Trigonometric Lie algebras, of types A, B, C, and D, are a family of infinite-dimensional Lie algebras.
- [FFZ] D. Fairlie, P. Fletcher, C. Zachos, Trigonometric structure constants for new infinite-dimensional algebras, *Phys. Lett.* **B 218** (1989) 203-206.
- [F] E. G. Floratos, Spin wedge and vertex operator representations of trigonometric algebras and their central extensions, *Phys. Lett.* **B 232** (1989) 467-474.
 - The rank 2 trigonometric (sine) Lie algebra \widehat{A}_{\hbar} (of type A) with a real parameter \hbar is the Lie algebra with generators $A_{\alpha,m}$ for $(\alpha,m) \in \mathbb{Z}^2$ and \mathbf{c} , a central element, subject to the relation

$$[A_{\alpha,m},A_{\beta,n}]=2i\sin\hbar(m\beta-n\alpha)A_{\alpha+\beta,m+n}+m\delta_{\alpha+\beta,0}\delta_{m+n,0}\mathbf{c}$$

for $\alpha, \beta, m, n \in \mathbb{Z}$.

Trigonometric Lie algebras

• Quantum torus A_q is generated by two invertible elements U_1 , U_2 , subjects to the relation $(q = e^{i\hbar})$:

$$U_2U_1=q^2U_1U_2.$$

- A_q and A_{\hbar} (with c=0) are related by $A_{m,n}=q^{mn}U_1^mU_2^n$ for $m,n\in\mathbb{Z}$.
- The quantum torus plays crucial rule in the classification of nullity two extended affine Lie algebras.
- [ABP] B. Allison, S. Berman, A. Pianzola, Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2, *J. Eur. Math. Soc.* 16 (2014), 327-385.
- [G-KL] M. Golenishcheva-Kutuzova and D. Lebedev, Vertex operator representations of some quantum tori Lie algebras, *Commun. Math. Phys.*, **148**(1992) 403-416.
- [KR] V. G. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, *Commun. Math. Phys.* **157** (1993) 429-457.

Trigonometric Lie algebras of B, C, D types

• Define a second order automorphism τ_B of \widehat{A}_\hbar by

$$\tau_B(\mathbf{c}) = \mathbf{c}, \quad \tau_B(A_{\alpha,m}) = -(-1)^m A_{-\alpha,m} \quad \text{for } \alpha, m \in \mathbb{Z}.$$
(2.1)

- $\widehat{B}_{\hbar} = (\widehat{A}_{\hbar})^{\tau_B}$: the τ_B -fixed points subalgebra of \widehat{A}_{\hbar} .
- Define a second order automorphism τ_C of \widehat{A}_\hbar by

$$\tau_C(\mathbf{c}) = \mathbf{c}, \quad \tau_C(A_{\alpha,m}) = -(-1)^m q^{2\alpha} A_{-\alpha,m} \quad \text{for } \alpha, m \in \mathbb{Z}.$$
 (2.2)

- $\widehat{C}_{\hbar} = (\widehat{A}_{\hbar})^{\tau_{\mathcal{C}}}$: the $\tau_{\mathcal{C}}$ -fixed points subalgebra of \widehat{A}_{\hbar} .
- Define a second order automorphism τ_D of \widehat{A}_{\hbar} by

$$\tau_D(\mathbf{c}) = \mathbf{c}, \quad \tau_D(A_{\alpha,m}) = -q^{2\alpha}A_{-\alpha,m} \quad \text{for } \alpha, m \in \mathbb{Z}.$$
(2.3)

• $\widehat{D}_{\hbar} = (\widehat{A}_{\hbar})^{\tau_D}$: the τ_D -fixed points subalgebra of \widehat{A}_{\hbar} .

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Problems

Problems:

- Can we associate the trigonometric Lie algebras with the vertex algebras?
- How to establish the equivalence between the module categories of the trigonometric Lie algebras and their corresponding vertex algebras?

Main Results: Trigonometric Lie algebras and vertex algebras

• Recall the type A trigonometric Lie algebra \widehat{A}_{\hbar} , with $q=e^{i\hbar}\in\mathbb{C}^{\times}$:

$$[A_{\alpha,m},A_{\beta,n}]=2i\sin\hbar(m\beta-n\alpha)A_{\alpha+\beta,m+n}+m\delta_{\alpha+\beta,0}\delta_{m+n,0}\mathbf{c}$$
 for $\alpha,\beta,m,n\in\mathbb{Z}$.

• For $\alpha \in \mathbb{Z}$, form a generating function

$$A_{\alpha}(z) = \sum_{n \in \mathbb{Z}} A_{\alpha,n} z^{-n-1}.$$

Then the defining relation of the trigonometric Lie algebra \widehat{A}_{\hbar} can be written as

$$[A_{\alpha}(x), A_{\beta}(z)] = q^{\alpha} A_{\alpha+\beta}(q^{\alpha}z) x^{-1} \delta\left(\frac{q^{\alpha+\beta}z}{x}\right)$$
$$-q^{-\alpha} A_{\alpha+\beta}(q^{-\alpha}z) x^{-1} \delta\left(\frac{q^{-(\alpha+\beta)}z}{x}\right) + \delta_{\alpha+\beta,0} \frac{\partial}{\partial z} x^{-1} \delta\left(\frac{z}{x}\right) \mathbf{c}$$

for $\alpha, \beta \in \mathbb{Z}$.

Γ-local system

• Let Γ be a subgroup of \mathbb{C}^* . A subset U of $\mathcal{E}(W)$ is called Γ -local if for any $a(x), b(x) \in U$, there exists

$$p(x_1, x_2) \in \langle (x_1 - \alpha x_2) \mid \alpha \in \Gamma \rangle \subset \mathbb{C}[x_1, x_2]$$

such that

$$p(x_1, x_2)a(x_1)b(x_2) = p(x_1, x_2)b(x_2)a(x_1).$$

• When we consider $a(\alpha x)$ with $\alpha \in \mathbb{C}^*$, the vertex algebra comes with a group action.

Γ-vertex algebra

Definition 2.1

Let Γ be a group. A Γ -vertex algebra is a vertex algebra V equipped with group homomorphism

$$R: \Gamma \to \operatorname{GL}(V); g \longmapsto R_g, \text{ and } \chi: \Gamma \to \mathbb{C}^{\times}$$

such that $R_g(1) = 1$ for $g \in \Gamma$ and

$$R_g Y(v, x) R_g^{-1} = Y(R_g(v), \chi(g)^{-1} x) \text{ for } g \in \Gamma, \ v \in V.$$

H.-S. Li, A new construction of vertex algebras and quasi modules for vertex algebras, *Adv. Math.* **202** (2006) 232-286.

Γ-vertex algebra

Definition 2.2

Let V be a Γ -vertex algebra. An equivariant quasi V-module is a quasi module (W, Y_W) for V viewed as a vertex algebra, satisfying the following conditions that $Y_W(R_g(v), x) = Y_W(v, \chi(g)x)$ for $g \in \Gamma$, $v \in V$ and for $u, v \in V$, there exist $\alpha_1, \ldots, \alpha_k \in \chi(\Gamma) \subset \mathbb{C}^\times$ such that

$$(x_1 - \alpha_1 x_2) \cdots (x_1 - \alpha_k x_2) [Y_W(u, x_1), Y_W(v, x_2)] = 0.$$

• Let U be a Γ -local subset of $\mathcal{E}(W)$. Set $U_{\Gamma} = \{a(\alpha x) | a(x) \in U, \alpha \in \Gamma\}$, then U_{Γ} is also Γ -local.

Theorem 2.3 (Li, 2006)

For every Γ -local subset U of $\mathcal{E}(W)$, the vertex algebra $\langle U_{\Gamma} \rangle$ generated by U_{Γ} is a Γ -vertex algebra with W an equivariant quasi module.

Qing Wang (XMU) vertex algebras Sep. 19, 2020 22 / 36

Trigonometric Lie algebras and affine Lie algebras

- Now we relate \widehat{A}_{\hbar} to an affine Lie algebra.
- \mathfrak{gl}_{∞} : the associative algebra
- \mathfrak{gl}_{∞} is a Lie algebra with a basis $E_{m,n}$ $(m, n \in \mathbb{Z})$, where

$$[E_{m,n}, E_{p,q}] = \delta_{n,p} E_{m,q} - \delta_{q,m} E_{p,n}$$

for $m, n, p, q \in \mathbb{Z}$.

• Equip \mathfrak{gl}_{∞} with the bilinear form $\langle \cdot, \cdot \rangle$ defined by

$$\langle E_{m,n}, E_{r,s} \rangle = \operatorname{tr}(E_{m,n}E_{r,s}) = \delta_{m,s}\delta_{n,r}$$

for $m, n, r, s \in \mathbb{Z}$.

- This bilinear form is non-degenerate, symmetric and associative
- For $r \in \mathbb{Z}$, define a linear operator σ_r on \mathfrak{gl}_{∞} by

$$\sigma_r(E_{m,n}) = E_{m+r,n+r}$$
 for $m, n \in \mathbb{Z}$.

Qing Wang (XMU)

Trigonometric Lie algebras and affine Lie algebras

- Set $\mathcal{H} = \text{span}\{E_{m,n} \mid m, n \in \mathbb{Z} \text{ with } m+n \in 2\mathbb{Z}\}$, which is an associative subalgebra of \mathfrak{gl}_{∞} .
- For $\alpha, m \in \mathbb{Z}$, set $G_{\alpha,m} = E_{\alpha+m,m-\alpha} \in \mathcal{A}$. Then $G_{\alpha,m}$ (for $\alpha, m \in \mathbb{Z}$) form a basis of \mathcal{A} and

$$\langle G_{\alpha,m}, G_{\beta,n} \rangle = \delta_{\alpha+\beta,0} \delta_{m,n}.$$

• \mathcal{A} is stable under the action of \mathbb{Z} , where

$$\sigma_r(G_{\alpha,m}) = G_{\alpha,m+r}$$
 for $r, \alpha, m \in \mathbb{Z}$.

• View $\mathcal A$ as a Lie algebra and equip $\mathcal A$ with the non-degenerate symmetric invariant bilinear form $\langle \cdot, \cdot \rangle$ defined above. Then we have an affine Lie algebra

$$\widehat{\mathcal{A}} = \mathcal{A} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}\mathbf{k},$$

on which \mathbb{Z} acts as an automorphism group.

• Define a linear character $\chi_q: \mathbb{Z} \to \mathbb{C}^{\times}$ by

$$\chi_q(n) = q^n \quad \text{for } n \in \mathbb{Z},$$

where $q = e^{i\hbar}$ is the same one as for \widehat{A}_{\hbar} . Then we have:

Proposition 2.4 (Li-Tan-W, 2020)

The trigonometric Lie algebra \widehat{A}_{\hbar} is isomorphic to the (\mathbb{Z}, χ_q) -covariant algebra $\widehat{\mathcal{A}}[\mathbb{Z}]$ of the affine Lie algebra $\widehat{\mathcal{A}}$ with $\mathbf{c} = \mathbf{k}$ and with

$$A_{\alpha,m} = \overline{G_{\alpha,0} \otimes t^m}$$
 for $\alpha, m \in \mathbb{Z}$.

25/36

Trigonometric Lie algebras and vertex algebras

Now we associate the trigonometric Lie algebras to vertex algebras.

Theorem 2.5 (Li-Tan-W, 2020)

Assume that q is not a root of unity and let $\ell \in \mathbb{C}$. Then for any restricted \widehat{A}_{\hbar} -module W of level ℓ , there exists an equivariant quasi $V_{\widehat{\mathcal{R}}}(\ell,0)$ -module structure $Y_W(\cdot,x)$ on W, which is uniquely determined by

$$Y_W(G_{\alpha,m},x)=q^mA_{\alpha}(q^mx) \quad \text{ for } \alpha,m\in\mathbb{Z}.$$

On the other hand, for any equivariant quasi $V_{\widehat{\mathcal{A}}}(\ell,0)$ -module (W,Y_W) , W becomes a restricted \widehat{A}_{\hbar} -module of level ℓ with

$$A_{\alpha}(z) = Y_{W}(G_{\alpha,0}, z)$$
 for $\alpha \in \mathbb{Z}$.

Qing Wang (XMU)

Simple vertex algebra $L_{\widehat{\mathcal{A}}}(\ell,0)$ and its modules

• Let $L_{\widehat{\mathcal{A}}}(\ell,0)$ be the simple quotient of $V_{\widehat{\mathcal{A}}}(\ell,0)$

Proposition 2.6

Let ℓ be a complex number. Then $L_{\widehat{\mathcal{A}}}(\ell,0)$ is an integrable $\widehat{\mathcal{A}}$ -module if and only if ℓ is a nonnegative integer.

Theorem 2.7 (Li-Tan-W, 2020)

Let W be a restricted $\widehat{\mathcal{A}}$ -module. Then W is an $L_{\widehat{\mathcal{A}}}(\ell,0)$ -module if and only if W is an integrable $\widehat{\mathcal{A}}$ -module of level ℓ .

- - V. G. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, *Commun. Math. Phys.* **157** (1993) 429-457.

Quasi modules for simple vertex algebra $L_{\widehat{\mathcal{A}}}(\ell,0)$

Then we have:

Theorem 2.8 (Li-Tan-W, 2020)

Let ℓ be a positive integer. Then every unitary quasifinite highest weight irreducible \widehat{A}_{\hbar} -module of level ℓ is an irreducible equivariant quasi $L_{\widehat{\mathcal{A}}}(\ell,0)$ -module.

Proposition 2.9

Lie algebra \widehat{B}_{\hbar} is isomorphic to the $(\mathbb{Z}_2 \times \mathbb{Z}, \chi_q^B)$ -covariant algebra $\widehat{\mathcal{A}}[\mathbb{Z}_2 \times \mathbb{Z}]$ of the affine Lie algebra $\widehat{\mathcal{A}}$ with $\mathbf{c} = \frac{1}{2}\mathbf{k}$ and with

$$B_{\alpha,m} = \overline{G_{\alpha,0} \otimes t^m} \quad \text{for } \alpha, m \in \mathbb{Z},$$
 (2.4)

where

$$B_{\alpha,m} := A_{\alpha,m} - (-1)^m A_{-\alpha,m}$$
 (2.5)

for α , $m \in \mathbb{Z}$ and **c** are generators of \widehat{B}_{\hbar} .

Proposition 2.10

Lie algebra \widehat{C}_{\hbar} is isomorphic to \widehat{B}_{\hbar} , which is isomorphic to the $(\mathbb{Z}_2 \times \mathbb{Z}, \chi_q^B)$ -covariant algebra $\widehat{\mathcal{A}}[\mathbb{Z}_2 \times \mathbb{Z}]$.

Trigonometric Lie algebra of type B and vertex algebra

Theorem 2.11 (Li-Tan-W, 2020)

Assume that q is not a root of unity and let $\ell \in \mathbb{C}$. Then for any restricted $\widehat{\mathbf{B}}_{\hbar}$ -module W of level ℓ , there exists an equivariant quasi $V_{\widehat{\mathcal{R}}}(2\ell,0)$ -module structure $Y_W(\cdot,x)$ on W, which is uniquely determined by

$$Y_W(G_{\alpha,m},x)=q^mB_{\alpha}(q^mx)\quad \text{for }\alpha,m\in\mathbb{Z}.$$
 (2.6)

On the other hand, every equivariant quasi $V_{\widehat{\mathcal{A}}}(2\ell,0)$ -module W is a restricted \widehat{B}_{\hbar} -module of level ℓ with

$$B_{\alpha}(z) = Y_W(G_{\alpha,0}, z)$$
 for $\alpha \in \mathbb{Z}$.

Qing Wang (XMU)

- Recall that the Lie algebra $\widehat{D}_{\hbar} = (\widehat{A}_{\hbar})^{\tau_D}$ is the τ_D -fixed points subalgebra of \widehat{A}_{\hbar} .
- For α , $m \in \mathbb{Z}$, set

$$D_{\alpha,m} = A_{\alpha,m} - q^{2\alpha} A_{-\alpha,m}. \tag{2.7}$$

Then \widehat{D}_{\hbar} is linearly spanned by $D_{\alpha,m}$ for $\alpha, m \in \mathbb{Z}$ and \mathbf{c} , and

$$[D_{\alpha,m}, D_{\beta,n}] = 2i \sin \hbar (m\beta - n\alpha) D_{\alpha+\beta,m+n} + 2iq^{2\beta} \sin \hbar (m\beta + n\alpha) D_{\alpha-\beta,m+n} + 2m(\delta_{\alpha+\beta,0} - q^{2\alpha}\delta_{\alpha-\beta,0}) \delta_{m+n,0} \mathbf{c}.$$
(2.8)

◆ロト ◆部ト ◆ 差ト ◆ 差ト ・ 差 ・ 釣りぐ

• Denote by \mathcal{A}^{τ} the Lie subalgebra of τ -fixed points in \mathcal{A} :

$$\mathcal{A}^{\tau} = \{ a \in \mathcal{A} \mid \tau(a) = a \}, \tag{2.9}$$

where $\tau(E_{m,n}) = -E_{n,m}$ for $m, n \in \mathbb{Z}$.

Proposition 2.12

Lie algebra $\widehat{\mathcal{D}}_{\hbar}$ is isomorphic to the covariant algebra $\widehat{\mathcal{A}}^{\tau}[\mathbb{Z}]$ with

$$D_{\alpha,m} = q^{\alpha} \overline{G_{\alpha,0}^{\tau} \otimes t^{m}} \quad \text{for } \alpha, m \in \mathbb{Z}$$

and with $\mathbf{c} = \mathbf{k}$, where $G_{\alpha,0}^{\tau} = G_{\alpha,0} - G_{-\alpha,0} \in \mathcal{A}^{\tau}$.

- The trigonometric Lie algebra \widehat{D}_{\hbar} is isomorphic to the q-Virasoro algebra D_a (cf. [N]) in the study of lattice conformal theory.
- [N] A. Nigro, A q-Virasoro algebra at roots of unity, Free Fermions and Temperley Lieb Hamiltonians, J. Math. Phys. 57(4) (2016), 041702.

vertex algebras Sep. 19, 2020 32/36 • The *q*-Virasoro algebra D_q is a Lie algebra with generators **c** and $D^{\alpha}(n)$ ($\alpha, n \in \mathbb{Z}$), subject to relations $D^{-\alpha}(n) = -D^{\alpha}(n)$, and

$$[D^{\alpha}(n), D^{\beta}(m)] = (q - q^{-1})[\alpha m - \beta n]_{q}D^{\alpha + \beta}(m + n) - (q - q^{-1})[\alpha m + \beta n]_{q}D^{\alpha - \beta}(m + n) + ([m]_{q^{\alpha + \beta}} - [m]_{q^{\alpha - \beta}})\delta_{m + n, 0}\mathbf{c}$$

for $\alpha, \beta, m, n \in \mathbb{Z}$, where **c** is a central element and $[n]_q$ is the q-integer defined by $[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}$.

[BC] A. Belov and K. Chaltikian, *Q*-deformation of Virasoro algebra and lattice conformal theories, *Modern Phys. Lett.* **8** (1993), 1233-1242.

q-Virasoro algebra

Theorem 2.13 (Guo-Li-Tan-W, 2019)

Let q be a primitive (2l + 1)-th root of unity, then q-Virasoro algebra D_q (i.e. the trigonometric Lie algebra \widehat{D}_{\hbar}) is isomorphic to the affine Kac-Moody algebra of type B_l , that is, $D_q \cong B_l^{(1)}$.

- [GLTW1] H. Guo, H. Li, S. Tan and Q. Wang, *q*-Virasoro algebra and vertex algebras, *J. Pure and Appl. Algebra*, **219** (2015), 1258-1277.
- [GLTW2] H. Guo, H. Li, S. Tan and Q. Wang, *q*-Virasoro algebra and affine Kac-Moody Lie algebras, *J. Algebra*, **534** (2019), 168-189.

Trigonometric Lie algebra of type D and vertex algebra

Theorem 2.14 (Guo-Li-Tan-W, 2019; Li-Tan-W, 2020)

Let $\ell \in \mathbb{C}$, for any restricted D_{\hbar} -module W of level ℓ , there exists an equivariant quasi $V_{\widehat{\mathcal{A}^{r}}}(\ell,0)$ -module structure $Y_{W}(\cdot,x)$ on W, which is uniquely determined by

$$Y_W(G_{\alpha,m}^{\tau},x)=q^{-\alpha+m}D_{\alpha}(q^mx)\quad \text{for }\alpha,m\in\mathbb{Z},$$
 (2.10)

35 / 36

where $G_{\alpha,m}^{\tau} = G_{\alpha,m} - G_{-\alpha,m} \in \mathcal{A}^{\tau}$. On the other hand, every equivariant quasi $V_{\widehat{\mathcal{H}^{\tau}}}(\ell,0)$ -module (W,Y_W) , one has a restricted \widehat{D}_{\hbar} -module structure of level ℓ on W such that $D_{\alpha}(x) = q^{\alpha}Y_W(G_{\alpha,0}^{\tau},x)$ for $\alpha \in \mathbb{Z}$.

- H. Guo, H. Li, S. Tan and Q. Wang, *q*-Virasoro algebra and affine Kac-Moody Lie algebras, *J. Algebra*, **534** (2019), 168-189.
- H. Li, S. Tan, Q. Wang, Trigonometric Lie algebras, affine Lie algebras and vertex algebras, *Adv. Math.*, **363** (2020), 106985.

Thank You!