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Overview

Keller’s conjecture links the singular Hochschild cohomology

to the Hochschild cohomology of the dg singularity category,

on the B∞-level

Confirm Keller’s conjecture for finite dimensional algebras with

radical square zero, via Leavitt path algebras (which are

usually infinite dimensional)

joint with o��£S �Æ¤§���£dã\A�Æ¤
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The content

An introduction to the singularity category

Singular Hochschild cohomology and Keller’s conjecture

The main results

Main ingredients of the proof
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The convention and notation

We work over a fixed field k.

A = a finite dimensional associative k-algebra with unit

A-mod = the abelian category of finite dimensional left

A-modules

A-proj = the full subcategory of finite dimensional projective

A-modules
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The derived category

Db(A-mod) = the bounded derived category of A-mod

Kb(A-proj) = the bounded homotopy category of A-proj

View Kb(A-proj) ⊆ Db(A-mod) a full triangulated subcategory

Lemma

Kb(A-proj) = Db(A-mod) if and only if gl.dim(A) <∞.
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The singularity category

Definition (Buchweitz 1987/Orlov 2004)

The singularity category of A is the Verdier quotient category

Dsg(A) = Db(A-mod)/Kb(A-proj).

Dsg(A) vanishes if and only if gl.dim(A) <∞

Dsg(A) is a homological invariant for algebras with infinite

global dimension

Dsg(A) is invariant under derived equivalences
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Aspects of singularity categories

in mathematical physics, singularity categories are viewed as

the B-side in the homological mirror symmetry of LG models

in commutative algebra, it relates to matrix factorizations and

classical singularities of equations

in noncommutative geometry, its graded version relates to the

bounded derived category of sheaves over noncommutative

projective schemes

in homological algebra, it relates to Gorenstein projective

modules, and Tate-Vogel cohomology

......
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Singularity category via stablization

The stable module category A-mod = A-mod/[A-proj]: killing

morphisms factoring through projectives

The stable module category A-mod is left triangulated

The syzygy functor Ω: A-mod −→ A-mod (usually not an

equivalence!)

Short exact sequences induce exact triangles:

Ω(N)

��

// P(N)

��

// N

L // M // N
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Singularity category via stablization, continued

The stablization S(A-mod) is obtained from A-mod by

formally inverting Ω!

More precisely, the objects are (M, n), with an A-module M

and n ∈ Z; the morphisms are given

Hom((M, n), (L,m)) = colim HomA(Ωi−n(M),Ωi−m(L))

Ω now becomes M = (M, 0) 7→ (M,−1), an automorphism!

The stabilization S(A-mod) is naturally triangulated.

Theorem (Keller-Vossieck 1987/Beligiannis 2000)

There is a triangle equivalence

S(A-mod) ' Dsg(A).

��Î, ¥I�ÆEâ�Æ Keller’s conjecture



Singularity category via stablization, continued

The stablization S(A-mod) is obtained from A-mod by

formally inverting Ω!

More precisely, the objects are (M, n), with an A-module M

and n ∈ Z; the morphisms are given

Hom((M, n), (L,m)) = colim HomA(Ωi−n(M),Ωi−m(L))

Ω now becomes M = (M, 0) 7→ (M,−1), an automorphism!

The stabilization S(A-mod) is naturally triangulated.

Theorem (Keller-Vossieck 1987/Beligiannis 2000)

There is a triangle equivalence

S(A-mod) ' Dsg(A).

��Î, ¥I�ÆEâ�Æ Keller’s conjecture



Singularity category via stablization, continued

The stablization S(A-mod) is obtained from A-mod by

formally inverting Ω!

More precisely, the objects are (M, n), with an A-module M

and n ∈ Z; the morphisms are given

Hom((M, n), (L,m)) = colim HomA(Ωi−n(M),Ωi−m(L))

Ω now becomes M = (M, 0) 7→ (M,−1), an automorphism!

The stabilization S(A-mod) is naturally triangulated.

Theorem (Keller-Vossieck 1987/Beligiannis 2000)

There is a triangle equivalence

S(A-mod) ' Dsg(A).

��Î, ¥I�ÆEâ�Æ Keller’s conjecture



Singularity category via stablization, continued

The stablization S(A-mod) is obtained from A-mod by

formally inverting Ω!

More precisely, the objects are (M, n), with an A-module M

and n ∈ Z; the morphisms are given

Hom((M, n), (L,m)) = colim HomA(Ωi−n(M),Ωi−m(L))

Ω now becomes M = (M, 0) 7→ (M,−1), an automorphism!

The stabilization S(A-mod) is naturally triangulated.

Theorem (Keller-Vossieck 1987/Beligiannis 2000)

There is a triangle equivalence

S(A-mod) ' Dsg(A).

��Î, ¥I�ÆEâ�Æ Keller’s conjecture



The dg singularity category

The dg quotient [Keller 1999/Drinfeld 2004] enhances the Verdier

quotient

for example, Db
dg(A-mod) = the bounded dg derived category: a

dg category with H0(Db
dg(A-mod)) = Db(A-mod)

Definition (Keller 2018)

The dg singularity category of A is given by the dg quotient

Sdg(A) = Db
dg(A-mod)/Cb

dg(A-proj).

Sdg(A) is a finer invariant as H0(Sdg(A)) = Dsg(A)

There are various “realizations” of Sdg(A); cf. [C-Li-Wang]
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The singular Hochschild cohomology

the enveloping algebra Ae = A⊗ Aop: A-A-bimodules = left

Ae-modules

The Hochschild cohomology of A

HH∗(A,A) = HomDb(Ae-mod)(A,Σ∗(A))

The singular Hochschild cohomology of A

HH∗sg(A,A) = HomDsg(Ae)(A,Σ∗(A))

Both are graded-commutative algebras

The Hochschild cohomology are well known to relate to

deformation theory and noncommutative differential

geometry...
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Keller’s theorem, the background

HH∗ is defined naturally for any dg categories: the

deformation theory of categories

Set Db = Db
dg(A-mod) the bounded dg derived category

There is a canonical triangle embedding

Db(Ae-mod) ↪→ D(Db), X 7→ RHomA(−,X ⊗L
A −)

inducing an isomorphism

HH∗(A,A) ' HH∗(Db,Db).

Lowen-Van den Bergh 2005: this isomorphism lifts to B∞-level
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Keller’s theorem

Theorem (Keller 2018)

Assume that A/rad(A) is separable over k. Then there is an

canonical isomorphism of graded algebras

Φ: HH∗sg(A,A) −→ HH∗(Sdg(A),Sdg(A)).

The isomorphism is induced by a triangle functor

Dsg(Ae) −→ D(Sdg(A)).

It is compatible with the previous isomorphism.

It plays an essential role in Keller-Hua’s work on

Donovan-Wemyss’s conjecture.
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Kelle’s conjecture

Conjecture (Keller 2018)

The isomorphism Φ lifts to B∞-level, in particular, Φ preserves the

Gerstenhaber structures.

To be more precise,

The Hochschild cochain complex C ∗(Sdg(A),Sdg(A)), lifting

HH∗(Sdg(A),Sdg(A)), is a B∞-algebra, with the cup product

and brace operations

The singular Hochschild cochain complex C ∗sg(A,A), lifting

HH∗sg(A,A), is also a B∞-algebra, with the cup product and

brace operations [Wang 2018]
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The singular Hochschild cochain complex

Following [Cuntz-Quillen 1995], in the bar resolution, we have

Ωp = (sĀ)⊗p ⊗ A

the (graded) bimodule of noncommutative differential p-forms

using stabilization

HH∗sg(A,A) = colim HH∗(A,Ωp)

There are natural cochain maps

θp : C ∗(A,Ωp) −→ C ∗(A,Ωp+1), f 7→ IdsĀ ⊗ f

between the Hochschild cochain complexes. Therefore, taking

the colimit, we obtain C ∗sg(A,A), called the singular

Hochschild cochain complex of A; it computes HH∗sg(A,A).
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Ωp = (sĀ)⊗p ⊗ A

the (graded) bimodule of noncommutative differential p-forms

using stabilization

HH∗sg(A,A) = colim HH∗(A,Ωp)

There are natural cochain maps

θp : C ∗(A,Ωp) −→ C ∗(A,Ωp+1), f 7→ IdsĀ ⊗ f
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Ωp = (sĀ)⊗p ⊗ A

the (graded) bimodule of noncommutative differential p-forms

using stabilization

HH∗sg(A,A) = colim HH∗(A,Ωp)

There are natural cochain maps

θp : C ∗(A,Ωp) −→ C ∗(A,Ωp+1), f 7→ IdsĀ ⊗ f
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Wang’s theorem

Theorem (Wang 2018)

There is a natural B∞-algebra structure on C ∗sg(A,A).

It is compatible with the inclusion C ∗(A,A) ↪→ C ∗sg(A,A).

Two versions of C ∗sg(A,A), right and left; there is a nontrivial

B∞-duality between them.
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A few words on B∞-algebras

1 The notion of a B∞-algebra is due to [Getzler-Jones, 1994].

2 Roughly speaking, a B∞-algebra B is a graded Poisson algebra

up to homotopy; its cohomology H∗(B) is a Gerstenhaber

algebra.

3 a B∞-algebra is an A∞-algebra with µp,q : B⊗p ⊗ B⊗q → B

with p, q ≥ 0.

4 Our concern: brace B∞-algebra, with dg algebra and µp,q = 0

for p > 1; more precisely, a dg algebra with brace operations

subject to the higher pre-Jacobi identity, the distributivity, and

the higher homotopy.
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Keller’s conjecture, revisited

Two (brace) B∞-algebras for A: the classical one

C ∗(Sdg(A),Sdg(A)), and the singular one C ∗sg(A,A)

Keller’s theorem says that they have the same cohomology

Conjecture (Keller 2018)

There is an isomorphism in the homotopy category of B∞-algebras

C ∗(Sdg(A),Sdg(A)) ' C ∗sg(A,A).

In particular, the isomorphism on the cohomology respects the

Gerstenhaber structures.

The stronger version: the above isomorphism is required to be

compatible with the canonical isomorphism Φ.

We treat the above slightly weakened form.
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The content

An introduction to the singularity category

Singular Hochschild cohomology and Keller’s conjecture

The main results

Main ingredients of the proof
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An invariance theorem

Theorem (C.-Li-Wang)

Keller’s conjecture is invariant under one-point (co)extensions and

singular equivalences with levels.

We can remove the sinks and sources from the quiver of A.

Keller’s conjecture is invariant under derived equivalences.
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The proof of the invariance theorem

It is well known that one-point (co)extensions and singular

equivalences with level preserve singularity categories [C.

2011], [Wang 2015].

These equivalences lift to the dg

singularity categories.

For the invariance of C ∗sg(A,A) under one-point (co)extension,

one constructs explicit B∞-quasi-isomorphisms; for the

invariance of C ∗sg(A,A) under singular equivalences with level,

one modifies an argument by [Keller 2013], using a triangular

matrix algebra.
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Keller’s conjecture for algebras with radical square zero

Q = a finite quiver without sinks

AQ = kQ/J2 the algebra with radical square zero

L(Q) = the Leavitt path algebra

Theorem (C.-Li-Wang)

Then there are isomorphisms in the homotopy category of

B∞-algebras

C ∗sg(AQ ,AQ)
Υ−→ C ∗(L(Q), L(Q))

∆−→ C ∗(Sdg(AQ),Sdg(AQ)).

Keller’s conjecture holds for any kQ/J2 (iterated one-point

coextensions), and also for gentle algebras (singular

equivalence with level).

We use the Leavitt path algebra L(Q) as a bridge!
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The content
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To be explained

What is Leavitt path algebra L(Q)?

How does AQ = kQ/J2 relate to L(Q)?

The categorical proof of

∆: C ∗(L(Q), L(Q))→ C ∗(Sdg(AQ),Sdg(AQ))

The combinatorial proof of

Υ: C ∗sg(AQ ,AQ)→ C ∗(L(Q), L(Q))
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Reminders on quivers

Q = (Q0,Q1; s, t : Q1 → Q0) a finite quiver (= oriented

graph)

Q0 = the set of vertices, Q1 = the set of arrows

visualize an arrow α as s(α)
α−→ t(α)

a vertex i is called a sink, if s−1(i) = ∅;

We assume that Q has no sinks.
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Reminders on path algebras

a finite path in Q is p = αn · · ·α2α1 of length n

· α1−→ · α2−→ · · · · · αn−→ ·

In this case, we set s(p) = s(α1) and t(p) = t(αn).

paths of length one = arrows; paths of length zero = vertices

(for i ∈ Q0, we associate a trivial path ei .)

The path algebra kQ: k-basis = paths in Q, the multiplication

= concatenation of paths.

More precisely, for two paths p and

q in Q, p · q = pq if s(p) = t(q), otherwise, p · q = 0.

For example, eiej = δi ,jei , eip = δi ,t(p)p, pei = δs(p),ip.
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Reminders on path algebras, continued

Qn = the set of paths in Q of length n; then kQ =
⊕

n≥0 kQn

is naturally N-graded.

The unit 1kQ =
∑

i∈Q0
ei has a decomposition into pairwise

orthogonal idempotents.

Set J =
⊕

n≥1 kQn, the two-sided ideal of kQ generated by

arrows.

The algebra AQ = kQ/J2 with radical square zero is finite

dimensional. Indeed, AQ has a basis

{ei | i ∈ Q0} ∪ {α | α ∈ Q1}, the multiplication rule is given

by eiej = δi ,jei , eiα = δi ,t(α)α, βej = δs(β),jβ, αβ = 0.
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What is Leavitt path algebra?

Q̄ = the double quiver of Q, that is, for each arrow α : i → j

in Q, we add a new arrow α∗ : j → i .

Definition (Abrams-Aranda Pino 2005/Ara-Moreno-Pardo 2007)

The Leavitt path algebra L(Q) of Q is the quotient algebra of kQ̄

by the two-sided ideal generated by the following elements

(CK1) αβ∗ − δα,βet(α), for all α, β ∈ Q1;

(CK2)
∑
{α∈Q1 | s(α)=i} α

∗α− ei , for all i ∈ Q0.

Here, CK stands for Cuntz-Krieger.
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Example: The Leavitt algebra

Example

Let Q be the rose quiver with two petals. Then we have an

isomorphism

L(Q) ' k〈x1, x2, y1, y2〉
〈xiyj − δi ,j , y1x1 + y2x2 − 1〉

.

The latter algebra is called the Leavitt algebra L2 of order two,

studied by W. Leavitt in 1958, related to the non-IBN property.
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Nice properties of the Leavitt path algebra

The Leavitt path algebra L(Q) is naturally Z-graded as

L(Q) =
⊕

n∈Z L(Q)n with ei ∈ L(Q)0, α ∈ L(Q)1 and

α∗ ∈ L(Q)−1.

L(Q)n · L(Q)m = L(Q)n+m, that is, L(Q) is strongly graded.

The zeroth component subalgebra L(Q)0 is a direct limit of

finite products of full matrix algebras; in particular, it is von

Neumann regular.

The subalgebra
⊕

i∈Q0
eiL(Q)ei is related to parallel paths in

Q, and also to an explicit colimit (namely,

(p, q) 7→ q∗p ∈ L(Q); very useful to us, later!).
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Some consequences

Consider the category L(Q)-grproj of finitely generated

Z-graded projective L(Q)-modules.

Proposition

The category L(Q)-grproj is a semisimple abelian category.

The proof: strongly gradation implies that

L(Q)-grproj ' L(Q)0-proj.

Now, use the von Neumann regularity of L(Q)0.

We will consider the degree-shift (1) on L(Q)-grproj.

(L(Q)ei )(1) '
⊕

{α∈Q1 | s(α)=i}

L(Q)et(α)
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How does AQ relate to L(Q)?

Theorem (Smith 2012)

There is an equivalence (of triangulated categories)

Dsg(AQ) ' L(Q)-grproj

sending the simple AQ-module Si to L(Q)ei , with Σ−1

corresponding to (1).

The idea: the degree-shift functor (1) on L(Q)-grproj behaves

similarly as the syzygy functor Ω on AQ-mod. Now use

stabilization as in [C. 2011].
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Enhancing Smith’s equivalence

The dg level contains more rigid information, for example, the

Hochschild cohomology.

Enhancements:

Dsg(AQ) Sdg(AQ) and L(Q)-grproj perdg(L(Q)op)

Proposition (C.-Li-Wang)

There is a zigzag of quasi-equivalences between

Sdg(AQ) ' perdg(L(Q)op).

Taking H0, we recover Smith’s equivalence.

The idea: enhance a result of [Krause 2005] and use H. Li’s

injective Leavitt complex [Li 2018], which gives an explicit compact

generator to realize a triangle equivalence in [C.-Yang 2015].
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The categorical proof of ∆

Proposition

There is an isomorphism in the homotopy category of B∞-algebras

C ∗(L(Q), L(Q))
∆−→ C ∗(Sdg(AQ),Sdg(AQ)).

Recall the fact that C ∗(−,−) is invariant under Morita morphisms

between dg categories [Keller 2013] (eg. quasi-equivalences or

L(Q) ↪→ perdg(L(Q)op)). Then use the above enhancement of

Smith’s equivalence.
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Towards Υ: C ∗sg(AQ ,AQ)→ C ∗(L(Q), L(Q))

We introduce two new and explicit B∞-algebras:

(1) the combinatorial B∞-algebra C ∗sg(Q,Q), via parallel

paths in Q (appearing in the relative bar resolution!), and taking

colimits (as in C ∗sg(AQ ,AQ))

(2) the Leavitt B∞-algebra Ĉ ∗(L, L), whose algebra structure

is a trivial extension of a subalgebra of L = L(Q)⊕
i∈Q0

eiLei ⊕ s−1
⊕

i∈Q0
eiLei

So, we have

C ∗sg(AQ ,AQ)
κ−→ C ∗sg(Q,Q)

ρ−→ Ĉ ∗(L, L)

strict B∞-isomorphisms, where ρ sends a parallel path (p, q)

to q∗p ∈ L!
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Towards Υ: C ∗sg(AQ ,AQ)→ C ∗(L(Q), L(Q)), continued

an explicit bimodule projective resolution P of L = L(Q),

together with a homotopy deformation retract (in particular, L

is quasi-free in the sense of [Cuntz-Quillen 1995]);

moreover,

we have Ĉ ∗(L, L) = HomLe (P, L).

the homotopy transfer theorem for dg algebras yields an

A∞-quasi-isomorphism

(Φ1,Φ2, · · · ) : Ĉ ∗(L, L) −→ C ∗(L, L)

each Φi is explicit; by manipulation on brace B∞-algebras, we

eventually verify that it is a B∞-morphism.

��Î, ¥I�ÆEâ�Æ Keller’s conjecture



Towards Υ: C ∗sg(AQ ,AQ)→ C ∗(L(Q), L(Q)), continued

an explicit bimodule projective resolution P of L = L(Q),

together with a homotopy deformation retract (in particular, L

is quasi-free in the sense of [Cuntz-Quillen 1995]); moreover,
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The combinatorial proof of Υ

In summary, we have

Proposition

There is an isomorphism in the homotopy category of B∞-algebras

C ∗sg(AQ ,AQ)
Υ−→ C ∗(L(Q), L(Q)).

It is given by the following composition:

C ∗sg(AQ ,AQ)

κ

��

Υ // C ∗(L, L)

C ∗sg(Q,Q)
ρ // Ĉ ∗(L, L)

(Φ1,Φ2,··· )

OO
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