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ABSTRACT. Let 4 be a finite-dimensional algebra over an algebraically closed
field and denote by N the Jacobson radical of A . If there is an integer { > 2
such that A/N' is quasi-hereditary, then A is quasi-hereditary.

Let 4 be a finite-dimensional algebra over an algebraically closed field k.
By N we denote the Jacobson radical of 4. An ideal of A is called a heredity
ideal of A if it satisfies (1) J? = J,(2) JNJ =0, and (3) J isa projective left
A-module. We recall that the algebra A is said to be quasi-hereditary provided
there is a ¢hain

Ochchoc--Ccl,=4

of ideals of A4 such that J;/J;_, is a heredity ideal of A/J;,_; for all [ =
1, ..., n. Some basic properties on quasi-hereditary algebras may be found in
[DR]. The aim of this note is to show the following: If the algebra A is not
quasi-hereditary, then, for any 7 > 2, the factor algebra 4/N‘ never becomes
a quasi-hereditary algebra.

Throughout this note all algebras are finite-dimensional k-algebras with 1,
module means finitely generated left module. By a (or J) we denote the
image of a € A (or J C A) under the canonical map A — A/I, where [ is
an ideal of A.

The above-mentioned result may be reformulated as the following theorem.

Theorem 1. Let A be a basic connected algebra with Jacobson radical N. If
A/N' is quasi-hereditary for some [ > 2, then A is quasi-hereditary.

To prove this result we need some preparations,
Lemma 2. Let A be a basic algebra and e be a primitive idempotent such that
J = AeA is a heredity ideal of A. Then ede = k.

Proof. Since the field k is algebraically closed and the Jacobson radical of eAe
is eNe, it follows from the definition of a heredity ideal that eNe = 0 and
ede =2 k.
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Lemma 3. Let A be a basic connected algebra with radical N such that A =
AINE is quasi-hereditary for some 1 2 2. Let e be a primitive idempotent of A
such that A2A is a heredity ideal of A. Then J = AeAd is a heredity ideal of
A.

FProof. By [DR] an idempotent ideal ded of A with eNe = 0 is a heredity
ideal of A4 1f and only 1if the multiplication map

Ae QoA — AeA
is bijective. Since 4¢4 is a heredity ideal of A, the multiplication map
Ni—le @, eN — Ni-leN = 0

is bijective. This implies that N 'e =0 or éN = 0. Similarly, we consider
the mulitiplication map

Ne @, eNi—l o NeN-1 =0,
This gives us that either Ne = 0 or eN—| = 0. If Ne = 0 or eN = 0,
then we get Ne = 0 or eN = 0. Thus J = 4ed 1s obviously a heredity
ideal of A. Now let us assume Ne # 0 and eN # 0. Then N' & = 0 and

=i

eN'" = 0. It follews from Ni-le = 0 that N'~'e = 0, since N'7'e # 0
yields that NN{~le is a proper submodule of N 'e. Similarly, there holds
eN'=! = 0. In particular, we have N'e = 0 and eN' =0, and therefore the

canonical maps de — Aé, eA — &4 are bijective. On the one hand, it follows
from eNe C N! that eNe = 0. On the other hand, the canonical commutative
diagram

Ae @, ed —5— Aded

! l

dew, ed —2— deA
shows that with & also u is injective. Hence J = Aed is a heredity ideal of
A.

The following lemma is an easy observation.

Lemma 4. Let A be an artin algebra, N =radd, A = A/N'. Let ¢ bea
primitive idempotent in A. Then (AjAeA))rad'(4/ded) = A/ AeA.
Proof. Let J = Aed . Note that J = {(J + N'})/N’. From
AJT = (A/NYJ((T + NN
= A/(J + N = (4/D)/((J + N/ T)
= (AT + N T
the lemma follows.

Proof of the theorem. We choose a complete set of pairwise nonisomorphic or-
thogonal primitive idempotents, say e,,...,&,, such that for J; =
Afe, +--- + €;)4, the chain

0cJ clyccy=4
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of ideals of A is a heredity chain for A. Using Lemmas 3 and 4 repeatedly,
we then get a heredity chain

Ochchc--Cly=4
of ideals of 4. And therefore A is quasi-hereditary.

Remarks 5. (1) The converse of the theorem is false. The following simple
example is a desired one. Let A be given by the quiver with the relation

lo é 02, aff =0
A
Then it is easy to verify that A is quasi-hereditary but 4/N? is not.

(2) If one only assumes in the theorem that there exists an ideal J C N?
such that A/J is quasi-hereditary then 4 may not be quasi-hereditary. Let
A be given by the above quiver with relations affa =0 and faf = 0. Then
A is not quasi-hereditary, but if one takes J to be the socle of the projective
module corresponding to the vertex 1 then J < N? and A/J is isomorphic
to the algebra displayed in (1), in particular, it is quasi-hereditary. Further
examples may be found in [X].
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