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Let A be a finite-dimensional algebra over an algebraically closed field. If A4 is
an $(A)-finite quasi-hereditary algebra, then the endomorphism algebra of the
direct sum of all non-isomorphic indecomposable A-good modules over A is
quasi-hereditary. Moreover, this endomorphism algebra is left QF-3 if and only if
the injective direct summand of the characteristic module T cogenerates 7.
© 1995 Academic Press, Inc.

1. INTRODUCTION AND THE RESULTS

Quasi-hereditary algebras have been defined by E. Cline, B. Parshall,
and L. Scott to build the relationship between the representation theory of
semisimple complex Lie-algebras and algebraic groups on the one hand
and the representation theory of finite-dimensional associative algebras on
the other hand [CPS]. Many important algebras such as algebras of global
dimension two, algebras of the category &, which is defined by Bernstein,
Gelfand, and Gelfand in [BGG], and Schur algebras [G] are quasi-heredi-
tary algebras. Recently, Ringel, Dlab and Ringel have conducted many
remarkable investigations into quasi-hereditary algebras (see [DR1] {R2)]).
Ringel proved in [R2] that the full subcategory of the category of all
finitely generated A-modules consisting of all A-good modules over a
quasi-hereditary algebra has almost split sequences and has a characteris-
tic module which is a minimal Ext-injective cogenerator for the A-good
module category. In [DR2] one may find further study of this full subcate-
gory. In the present paper we study the algebraic properties of this
category #(A), namely, the endomorphism algebra of this full subcategory
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in the case in which there are only finitely many non-isomorphic indecom-
posable objects. Usually this algebra is no longer an algebra of global
dimension two (see Section 4). However, our study shows that this endo-
morphism algebra is again quasi-hereditary.

To state our result more precisely, let us first introduce some notation.

Let A be a finite-dimensional k-algebra over an algebraically closed
field &, and we denote by A-mod the category of all finitely generated left
A-modules and by A-ind a full subcategory of A-mod formed by choosing
representatives of isomorphism classes of indecomposable modules in
A-mod. If ® is a class of A-modules (closed under isomorphisms), F(0)
stands for the class of all 4A-modules M which have a ®-filtration, i.e., a
filtration M =M, DM, > --- DM, D> - > M, = 0 such that all factor
modules M,_,/M,, 1 <t < m, belong to 0. Also, we use add © to denote
the full subcategory of 4-mod whose objects are direct sums of modules
in O.

Let E(1),..., E(n) be the simple A-modules (one from each isomor-
phism class), and note that we fix here a particular ordering of simple
modules. Let P(i) be the projective cover of E(i), and Q(i) denote the
injective envelope of E(i). By A(i) we denote the maximal factor module
of P(i) with composition factors of the form E(j), where j <i; the
modules A(i) are called the standard modules, and we set A = (A() |1 <
i < n} and call the modules in F(A) A-good modules. Similarly, we denote
by V(i) the maximal submodule of Q(i) with composition factors of the
form E(j) with j < i; in this way, we get a set V ={V(i) |1 <i < n} of
costandard modules.

The algebra A, or, better, the pair (A, E) is called quasi-hereditary
provided

(1) End (A(i)) = k for all i, and
(2) every projective module belongs to F(A).

For each quasi-hereditary algebra A with standard modules A(Q), i =
1,...,n, C. M. Ringel proved in [R2] that for each { € {1,...,n}, there is a
unique indecomposable module 7(i) which lies in $(A) N F(V) and that
the direct sum T of all T(i) cogenerates #(A) and the endomorphism
algebra of T is quasi-hereditary. The module T is called the characteristic
module of (A, E).

A quasi-hereditary algebra A is said to be #(A)-finite if there are only
finitely many non-isomorphism indecomposable A-good modules over 4.
In this case, we denote by End $(A) the endomorphism algebra of the
module @ X;, where X, ranges over all non-isomorphic indecomposable

{

modules in #(A). Our main results are the following theorems.
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THEGREM A. Let A be a quasi-hereditary algebra. If A is F{A)finite then
End #(A) is quasi-hereditary. In particular, the global dimension of End #(A)
is finite.

We remark that a special case of this theorem is discussed in [LX].

THEOREM B. Let A be an F(A)-finite quasi-hereditary algebra with the
characteristic module T = @ |_,T(i). Suppose T =T, ® T, with T, an
injective module and T, having no injective direct summand. Then End $(A)
is a left QF-3 algebra if and only if T, cogenerates T,.

The proofs of the theorems are given in Sections 2 and 3, and the last
section contains some examples related to the main results.

Throughout the paper algebras always mean finite dimensional algebras
over a fixed algebraically closed field £ and modules mean finitely gener-
ated left modules. The composition of two homomorphisms f: M — N and
g: N — L is denoted by fz.

2. PROOF OF THEOREM A

This section is devoted to the proof of the Theorem A. We need some
preparations.

Let A be a quasi-hereditary algebra. Define #(A)-ind =: {X € A-ind |
X € #1A)}, and F(A), = J and F(A), = {X € F(A)ind | X €
F(A(n),...,Aln — i + 1)}. The following lemma is easy to prove by the
definition of quasi-hereditary algebras (cf. [R2]).

2.1. LEMMA.

(1) #AA),,, 2HFA), foralli.

(2) For any module M € $(A),, ,, there is a unique largest submodule
M’ of M such that M' € add $(A), and M/M' € add A(n — ).

(3) Hom (F(An),...,A(n —i + 1), FA(n - i),..., A1) = 0.
@) Ext (FAn),...,A(n — i+ 1), FAn — i + 1,...,A(1))) = 0.

Proof. Parts (1), (3), and (4) are obvious from [R2].
(2) The existence of such a submodule M' of M follows from the
definition of a quasi-hereditary algebra. Now let M” be another sub-
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module of M with the property that M’ € add $(A), and M/M' €
add A(n — i). Then we may form the commutative diagram

Tar

0—— M —— M >M/M' —— 0
B Ty
0 > M” M M/M" —— 0

where o and B are the inclusion homomorphisms. Clearly, f* is injective.
This implies dim, M’ < dim, M”. Similarly, we can show that dim, M" <
dim, M'. Hence we deduce that M' = M".

The following lemma will be used often in what follows.

2.2. LEMMA. For each i, the full subcategory add A(i) is an abelian
category. In particular, for any homomorphism f: X — Y with X,Y €
add A(i), the kernel Ker(f) and the cokernel Cok(f) of f belong to add A(i).

Proof. Since Ext!(A(i), A(i)) = 0, we have F(A(i)) = add A(i). Thus
the lemma follows directly from End ,(A(i)) = k.

For a module M € #(A) we denote by [M : A(i)] the number of factors
isomorphic to A(i) in a A-filtration of M.

2.3. DEFINITION. Define &, = #(A);\ #(A),_,. Then F(A)-ind is a
disjoint union of &, 1 <i <n. We define a relation <’ on & for
i=1,...,n as follows:

Suppose X,Y are in . We say X <'Y if and only if there is a
homomorphism f: Y — X such that f cannot factor through a module in
Ty =add(FA),_,u{Z e IZ:An—i+ DI <[X:A(n—i+ D,
and we say X <Y if there are modules X, = X, X,,..., X, =Y in &,
such that X, ;| <'X; for all j. We shall prove that with this relation <
the set %, is a partially ordered set.

2.4. LEMMA. Suppose X and Y are two modules in &,. Let X' be the
largest submodule of X such that X' € #(A),_, and X/X' € F(A(n —
i+ D) If 1 X - Y is a homomorphism which cannot factor through a
module in 7', then we have the commutative diagram

0 X’ X0 A(n — i + YFAC-0 g
Jfo Jf Jf’
0 Y’ Y Ty A(ﬂ — i+ 1)[Y:A(n—i+l)] >0

with f' surjective.
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Proof. The existence of f,, follows from Hom (X', A(n —i + 1)) =0
by 2.1. Note that the image Im(f’) of f’ belongs to add A(n — i + 1)
according to 2.2. Thus if Im(f") # A(n — i + DIY*4¢ =i+ DI then we have
the commutative diagram

0— X' X 2 An—i+ 1) — 0

of0 \Y' f|\L f'l \Im(f')—-*O
0 if/ £4Y A(l{ Hm—— 0

where L is the pullback of 7, and the canonical inclusion, and [ =
[X:A(n —i+ D]and m = [Y:A(n — i + 1)]. This means that f factors
through the module L in 73 since S(A) is closed under extensions and
Im(f):A(n —i + D] <m, a contradiction. Hence Im(f’) = A(n —
i + 1) and the map f’ is surjective.

2.5. LEMMA. (%, <) is a partially ordered set.
Proof.

(1) If Xe&, then X <X. This follows from the fact that the
identity map 1, cannot factor through a module 7 in add($(A),_, U
{(Ze&I[Z:An —i+ D] <[X:A(n — i+ DI]}) because for each inde-
composable summand T' of 7 there holds [T :A(n — i+ DI<[X:
Aln — i + D]

(2) Suppose X,Y belong to %, with X <Y and Y < X. We want to
show X = Y. By definition, we have modules X = X, X,,..., X,, =7,
Y=Y,Y,....Y, =X €%, such that X, , <'X; and Y, | <Y, for all |
and j. Thus we have homomorphisms f;: X; - X;, and g,.;: Y, > ¥},

such that f/ and g; are surjective by 2.4. Since 7, (f; - f,, 18, " &)

=(fo = fu 180 " 8- )Ty and wy(fy - f,._ 18, - &) is surjective,
we know that f, - f,,_ 80 " &._1 € End (X) is not nilpotent. Here,
my is defined by 2.4. Therefore it follows from the fact that End ,(X) is
a local algebra that f, -~ f,,_,8, =" &, is an isomorphism. Thus
0 <i <m — 1, are isomorphisms and X = Y, as desired.

(3) The transitivity of < is obvious.

i

2.6. DEFINITION. Suppose A is an #(A)-finite quasi-hereditary alge-
bra. Then (%), <) is a finite poset. Now we enumerate the elements in &,
as

Xigsooos Xy,

so that if X;; < X,. then j <j’, where [, = |%|.
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In order to prove the theorem, we use the following equivalent defini-
tion of quasi-hereditary algebras (for the proof of this fact see [CPS, R2)).

Let A be a finite-dimensional algebra. An ideal J of an algebra A is
said to be a heredity ideal in A provided J is idempotent, J(rad(A)J = 0
and ,J is a projective A-module. The algebra A is called quasi-hereditary
if there is a finite chain

0=J,cl,c - cl, =4

of ideals in A such that J,_,/J;, 0 <i <m — 1, are heredity ideals in
A/J.. Such a chain is called a heredity chain for A.

Proof of Theorerln A. Let E be the endomorphism algebra of the
module @ [_, @ ;. X, and let J, be the ideal of E consisting of all
endomorphisms f in E which factor through a module in 7, :=

add(@Z] @, X, ® @ ., X)) =add(F(A),_, U{X,,..., X, D). We
shall prove that
0=JypCJy Sy S cly,ccl,cl,c ¢l =E

is a heredity chain of E.

Let us introduce some further notation. Given a module X € $(A)-ind,
we denote by e, the endomorphism in E which projects canonically
@ X,; onto X. Thus, the elements ey, X € F(A)-ind, form a complete
set of pairwise orthogonal primitive idempotents of E. Note that for
X,Y € F(A)ind, we can identify e, Fe, with Hom (X,Y). If N is the
radical of E then e, Ney is the set of noninvertible maps in Hom (X, Y).
Put E=E/J , , and J, =J,/J;,_ . For an element x € E, the residue
class in E of x is denoted by ¥ in what follows. For a module X € &, we
define 7y ={Z € & [Z:An —i + DI<[X:An — i+ D).

2.7. LEMMA. Euvery non-invertible homomorphism from X, to X,, factors
through a module in add(F(A),_, U{Z € &, | Z <'X,}. In particular,
ex Eey =k

Proof. 1Indeed, if we take a map f: X, — X,, which is not invertible,
then f is nilpotent since End 4( X, ) is a local algebra. Set X = X,. Let X'
be the maximal submodule of X with X' € add #(A),_,. Then we
consider the diagram

0——X' —— X —— A(n — i+ Y!¥ 7 ——g

| i

0_—)X!___)X___________>A(n_i+1)[YIA("*II+1)] O

with f' nilpotent. This means that the image of f' is proper contained in
Aln — i + D200 gpd [Im(f):A(n —i + D] < [X:A(n — i + 1)),
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As in the proof of 2.4 we see that f factors through a module L €
add(FA), ,U{Z e & |[Z:AMn—i+ DI<[X:A(n —i+ D). Sup-
pose L=L,®L, & &L, with L, €add#(A),_, and L, €Fy ={Z
e FIIZ:An—i+ DI<[X:An - i+ D]}, and f =
(for- s fNgos-.., &) with f;: X — L, and g;: L, — X. Clearly, L; is not
isomorphic to X for all j. If f; is a homomorphism such that L; <'X then
we have what we wanted. So we may assume that all f; factor through a
module in add(F(A),_, UT,), say [ = (fi, -, f; ayX8jor--+» &)
with f;: X - L; and L 67 If f), is a homomorphism such that
L;< X then we have what we desired. If not, we decompose f; into
f Fjior -+ Fii, sinK8jios - - s i, sjiy)" With fre X = Ly and Ly €9
and repeat the above discussion. If we continue this procedure we see that
after finitely many steps we must stop since

[Lic:A(n—i+ D] <[Li:A(n—i+1)] <[L;:A(n ~i+1)]

<[X:A(n—-i+1)].

Jik -

this shows that f factors through a module in add(#(A),_, U{Z € & |
Z <'X}\

With the same argument as that in the proof of 2.7, we have the
following

2.7'. LEMMA. Suppose X,Y are modules in .. If X £'Y, then every
homomorphism f: Y = X factors through a module in add($(A),_, U
(zew |z <Y

Proof. Since X £'Y, by definition the homomorphism f factors over a
module L, ® L, ® -+ & L, with L, € add #(A), | and L; €y for all
J>0,say f=(fo,.... Xgs...,g) with f: Y — L, If f; is a map such
that L; <'Y, then we have done what we wanted If Y= L then f; can
be assumed to be nilpotent. (Otherwise we can omit this dll‘CCt summand )
By 2.7, this f; factors over a desired module. So we may assume that all L;
are not isomorphic to Y and all f; factor through a module in
add(#(A),_, U T, ) Let us decomposef as (fips - £ ()X &jos -+ > &, s
with f: Y - L, and L;eg forj+ 0 and L, € add #(A),_,. As above
we may assume that all L are not isomorphic to Y and all f; for i # 0
factor through a module in add (7 U FA),_ ), namely, fi =
(fiios---s 1 S(J,))(g],u,...,gj, s forall j,1 with fwY—> Ly and L, €
y.Since [Ly, : Aln — i + DI <[Lj;:Aln — i+ D} <[L;:Aln — i + D]
< [X A(n — i + 1)], we see that thls procedure must stop after finitely
many steps, and then we have that f factors through a module in
add(F(A),_ v{Zze&|Z<Y)D
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2.8. LEMMA. .7, , is a projective left E-module.

Proof. We use a result of [DR1] which says that an idempotent ideal
AeA of a given algebra A generated by an idempotent e with e(rad( A))e =
0 is a projective left A-module if and only if the multiplication map

Ae @ eA — AeA
eAe

is bijective. Hence it is enough to show that the multiplication map

évEey @ exEe, — éyEeyke, (%)
éxEey

is bijective for all Z,Y € #(A)-ind. (Recall that here X = X,.)

By Lemma 2.7, €, E¢, = k, so the elements of &, Eé, ®; Fz, ey Eé, are
of the form I¢_,%; ®, &, where x; € Hom (Y, X) and 8, € Hom (X, Z).
Suppose there is an element u = Y¢_, ¥ ® §; such that ©¥;5 = 0. We
may assume that ¥, # 0 # &, for all i. Then Z,Y € {X; o Xy} U
% ., U--U%,. Let X' be the maximal submodule of X such that
X' e#(A),_, and X/X' € add A(n — i + 1). Similarly, let Z" be the
maximal submodule of Z such that Z" € add$(A), and Z/Z" €
FAD, ..., A(n — §)). Since Hom ,(F(A(n — i + 1), Aln — i +
2),...,A(n)), FLAQ1),...,A(n — i))) = 0, we see that there is a homomor-
phism from X' to Z” and then a homomorphism &/ from A(n —i +
X :Am=i+ Dl 1q 7 /7" such that the following diagram commutes:

0 X 5% b A(n — i+ 1)[X:A(nfi+l)] —
[ slj 8’”
0 zn —t oz zZ/Z" — 0

Again by Lemma 2.1, § = 0 holds. Thus there exists a homomorphism v;:
X — Z" such that §, = y,u. Nowsuppose 2" =Z, & Z, & --- ® Z_ with
Z,€ add #(A);,_, and Z; € &, for all j> 0, and vy, = (y,,..., V) S
well as pu = (py,..., u,), then 8 =y u =1L _,¥,n,;. Since § # 0, we
may assume that y,; # 0 for j # 0. If there is some Z; such that Z; £ X,
then Z, «'X. By Lemma 2.7, v, factors through a module in
add(5(4),_, U{Z € €| Z <'X}); in particular, v,; factors through a
module in add(#(A),_, U{Z € &, | Z <'X}); in particular, 7, factors
through a module in &, ; and we would have ¥; = 0. Thus we can
assume that Z; < X for all j > 0. Hence we can identify all Z; with X and
regard y;; as an endomorphism of Z,. According to 2.7, one can write
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3, = @;; for some @ € k. Since Lx;§; = Z‘,x i) = {0 20 X7 1

and0 = Lxy, =%, X%,8 = Liam =L (L% ,j)p.l,onefmds that

there is a module 7 €9, ,_, such that L, x;e; p; factors through the

module 7, say X (X, x; a, ,)M, = fg. Now consider the commutative diagram
f
Y T
X xa;,..., LX) g
TITR B
0——Z,0 02, — 5 c .0
.1 J
0 A a Z——>Z)7" —

where C is the cokernel of (pu,,...,pu,). Since T € add F(A), =
FAn—i+1),...,An)) and Z/Z" € F(AQD),...,A(n — i), again by
Hom ,(F(A(n — i + 1),..., A(n), F(A(1),...,A(n — i))) = 0 one obtains
a homomorphism ¢: T — Z” such that g = ¢u. This implies that fo =
Ex;a;,...,5x;a;, X0, 1) because w is injective. If we decompose ¢ into
(@9, @155 ), then Lx,a;; = fo, for all j = 1. This means that £ x; a;;
factors through the module 7 in 7 11> and therefore, ¥ x;@;, = 0 for all j
and

= Z(inaij) 3 ﬁ_’«j = ZO & ﬁj
A j
= 0.

Hence u = 0 and the multiplication map (*) is bijective. This finishes the
proof of the theorem.

3. PROOF OF THEOREM B

A well-known result of M. Auslander says that if an algebra is represen-
tation-finite then the endomorphism algebra of the direct sum of all
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non-isomorphic indecomposable modules is always a left QF-3 algebra. In

this section we study a similar question for ${A) of quasi-hereditary

algebras. As the example in Section 4 shows, for #(A) the situation is very

different, though the endomorphism algebra End ($(A)) is quasi-heredi-

tary. Even if the quasi-hereditary algebra itself is a left QF-3 algebra, the

endomorphism algebra may not be a left QF-3 algebra (see 4.3 below).
Let us first recall the definition of left QF-3 algebras.

3.1. DEFINITION. An algebra A is called a left QF-3 algebra if there is
a faithful left projective, injective A-module.

This definition is equivalent to that in [T, pp. 40-42]: An algebra is
called a left QF-algebra if it has a minimal faithful left module.

For a finite additive k-category #” we denote by End(#) the endomor-
phism algebra of the direct sum of all non-isomorphic indecomposable
objects in Z.

3.2. THEOREM. Let A be an F(A)-finite quasi-hereditary algebra with the
characteristic module T = @ |_ T(i). Suppose T =T, ® T, with T, an
injective module and T, having no injective direct summand. Then
End ,(F(A)) is a left QF-3 algebra if and only if T, cogenerates T.

The theorem follows from the following more general fact.

3.3. PROPOSITION. Let A be an algebra and = {X,,..., X,,} a finite
class of indecomposable A-modules such that ;A € add Z. Then End (2) is
a left QF-3 algebra if and only if there is an injective module U in add & such
that U cogenerates Z.

Proof Llet X= @ X, and X, X, for i+ Suppose E ==
End ,(X) is a left QF-3 algebra. Then, by definition, there is a minimal
faithful module which is of the form Ee with e¢ an idempotent, say
Ee = Hom ,(X, X|) @ --- ® Hom ,( X, X,) with s < m. We shall show first
that U == & f:]X,- cogenerates 2. In fact, given a module X, € 2, there

is a natural number ¢ and an injective E-homomorphism ¢ such that

0 — Hom ,( X, X,) — Hom (X, U")

is an exact sequence. Since add % and the full subcategory consisting of all
projective E-modules are equivalent, ¢ is induced by an A-homomor-
phism a: X, - U’ such that Hom (X, a) = ¢. We claim that « is an
injective map. Let P be the projective cover of the kernel ker(a) of a.
Then we have the diagram

P

1,

0 —ker(a) > X = U’
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and apply Hom (X, -) to it, we get Hom (X, w)¢ = 0. Thus Hom (X, )
= 0 and Hom ,(X, 7') = 0. On the other hand, since X contains a copy of
each indecomposable direct summand of P, we must have 7’ = 0. This
implies that « is injective.

To finish the proof, it suffices to show that all X;, 1 <j<s, are
injective A-modules. Toward this goal we require the following lemma in
[T, p. 51}

3.4. LEMMA. Let R be a left QF-3 algebra and Re a minimal faithful left
ideal with e an idempotent. If fR is a faithful projective right ideal in R with f
an idempotent, then (g fRe is injective.

By ey, M €{X,,..., X,}), we denote the endomorphism in E which
projects X canonically onto M. Let ;4 = P, & - & P, with P, indecom-
posable and f=e, + - +ep and e = ey + -~ +ey. Then

(1) Ee = Hom (X, U) is a minimal faithful left ideal in E, and
(2) fE = Hom ,(, A, X) is a projective right ideal of £ and faithful.

Hence the hypotheses of Lemma 3.4 are satisfied, and so the fEf-
module fEe is injective. Since fEf = A and fEe = U as A-modules, we
have the injectivity of the module U.

Conversely, suppose there is an injective module U= @ ,1X such
that U cogenerates #. Put e = Z‘_lex We claim that Ee is a faithful
projective, injective left ideal in E. It is clear that Ee = Hom (X, U) is a
faithful E-module since U cogenerates 2. For each X; with 1 <j <5, we
may write X; = D(e;A) with ¢ a primitive idempotent of A and D =
Hom (-, k). It follows now from

Hom ,(, X, X;) = Hom ,(, X, D(¢}4)) = Hom ,(X,Hom,(¢;A, k))
= Hom, (€4 ®, X, k) = Hom,(¢; X, k)
= Hom, (Hom ,( Aej, X)), k)
= D Hom ,( Ae}, X)

that EeX is an injective E-module. Hence Ee is an injective E-module.
This finishes the proof.

3.5. COROLLARY. Suppose A is an FA)finite quasi-hereditary algebra. If
End (F(A)) is a left QF-3 algebra then so is End (T).

Proof. This follows from Theorem B and 3.3.
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4. EXAMPLES

In this section we give some examples related to the results in this
paper. For the terminology on quivers we refer to [R1, Chap. 2].
4.1. The algebra End #(A) may have arbitrary finite global dimen-
sion. Let A be the algebra with radical-square-zero given by the quiver

2«13« - «en—1en, n=4.

Then A is quasi-hereditary and A(i) = E(i) for i = 1,2 and A(i) = P(i)
for 3 < i < n. One can easily write out the Auslander—Reiten quiver of A4
and then see that the global dimension of End (#(A)) is n — 2.
4.2. The converse of 3.5 is not true if one considers the quasi-heredi-
tary algebra given by the quiver
2 ~
4

31

If one computes End (T} then it is given by the quiver 2 <y Z 381
with the relation oy = 0. It is clear that End (7) is a left QF-3 algebra
but the maximal injective direct summand of T cannot cogenerate T.

4.3. Let A be the hereditary algebra given by the quiver

2«1« 3.

Then A is a left QF-3 algebra and an ${A)-finite quasi-hereditary algebra.
An easy computation shows that End ,(#(A)) is given by the quiver

with only one zero-relation. It is obvious that this algebra is not a left QF-3
algebra.

4.4. One can easily see that there do exist quasi-hereditary algebras
that are not of the form End ,#(A) for any #(A)-finite quasi-hereditary
algebra A. For instance, the algebra given by the quiver

122
B
with relation aB =0 is clearly not of the form End ,(#{A)) for any
quasi-hereditary algebra A.
It would be interesting to determine which quasi-hereditary algebras are
of this form.
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