Endomorphism Algebras of $\mathcal{F}(\Delta)$ over Quasi-hereditary Algebras

Changchang Xi*

Department of Mathematics, Beijing Normal, University, 100875 Beijing, People's Republic of China

Communicated by A. Fröhlich

Received November 17, 1993

Let A be a finite-dimensional algebra over an algebraically closed field. If A is an $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra, then the endomorphism algebra of the direct sum of all non-isomorphic indecomposable Δ -good modules over A is quasi-hereditary. Moreover, this endomorphism algebra is left QF-3 if and only if the injective direct summand of the characteristic module T cogenerates T. © 1995 Academic Press, Inc.

1. INTRODUCTION AND THE RESULTS

Quasi-hereditary algebras have been defined by E. Cline, B. Parshall, and L. Scott to build the relationship between the representation theory of semisimple complex Lie-algebras and algebraic groups on the one hand and the representation theory of finite-dimensional associative algebras on the other hand [CPS]. Many important algebras such as algebras of global dimension two, algebras of the category \mathcal{O} , which is defined by Bernstein, Gelfand, and Gelfand in [BGG], and Schur algebras [G] are quasi-hereditary algebras. Recently, Ringel, Dlab and Ringel have conducted many remarkable investigations into quasi-hereditary algebras (see [DR1] [R2]). Ringel proved in [R2] that the full subcategory of the category of all finitely generated A-modules consisting of all Δ -good modules over a quasi-hereditary algebra has almost split sequences and has a characteristic module which is a minimal Ext-injective cogenerator for the Δ -good module category. In [DR2] one may find further study of this full subcategory. In the present paper we study the algebraic properties of this category $\mathcal{F}(\Delta)$, namely, the endomorphism algebra of this full subcategory

*Supported partially by the National Education Committee of China and the National Natural Science Foundation of China.

966

0021-8693/95 \$12.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

in the case in which there are only finitely many non-isomorphic indecomposable objects. Usually this algebra is no longer an algebra of global dimension two (see Section 4). However, our study shows that this endomorphism algebra is again quasi-hereditary.

To state our result more precisely, let us first introduce some notation. Let A be a finite-dimensional k-algebra over an algebraically closed field k, and we denote by A-mod the category of all finitely generated left A-modules and by A-ind a full subcategory of A-mod formed by choosing representatives of isomorphism classes of indecomposable modules in A-mod. If Θ is a class of A-modules (closed under isomorphisms), $\mathcal{F}(\Theta)$ stands for the class of all A-modules M which have a Θ -filtration, i.e., a filtration $M = M_0 \supset M_1 \supset \cdots \supset M_r \supset \cdots \supset M_m = 0$ such that all factor modules M_{r-1}/M_r , $1 \le t \le m$, belong to Θ . Also, we use add Θ to denote the full subcategory of A-mod whose objects are direct sums of modules in Θ .

Let $E(1),\ldots,E(n)$ be the simple A-modules (one from each isomorphism class), and note that we fix here a particular ordering of simple modules. Let P(i) be the projective cover of E(i), and Q(i) denote the injective envelope of E(i). By $\Delta(i)$ we denote the maximal factor module of P(i) with composition factors of the form E(j), where $j \leq i$; the modules $\Delta(i)$ are called the standard modules, and we set $\Delta = \{\Delta(i) \mid 1 \leq i \leq n\}$ and call the modules in $\mathcal{F}(\Delta)$ Δ -good modules. Similarly, we denote by $\nabla(i)$ the maximal submodule of Q(i) with composition factors of the form E(j) with $j \leq i$; in this way, we get a set $\nabla = \{\nabla(i) \mid 1 \leq i \leq n\}$ of costandard modules.

The algebra A, or, better, the pair (A, E) is called quasi-hereditary provided

- (1) End_A($\Delta(i)$) $\cong k$ for all i, and
- (2) every projective module belongs to $\mathcal{S}(\Delta)$.

For each quasi-hereditary algebra A with standard modules $\Delta(i)$, $i = 1, \ldots, n$, C. M. Ringel proved in [R2] that for each $i \in \{1, \ldots, n\}$, there is a unique indecomposable module T(i) which lies in $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla)$ and that the direct sum T of all T(i) cogenerates $\mathcal{F}(\Delta)$ and the endomorphism algebra of T is quasi-hereditary. The module T is called the characteristic module of (A, E).

A quasi-hereditary algebra A is said to be $\mathcal{I}(\Delta)$ -finite if there are only finitely many non-isomorphism indecomposable Δ -good modules over A. In this case, we denote by $\operatorname{End} \mathcal{I}(\Delta)$ the endomorphism algebra of the module $\bigoplus X_i$, where X_i ranges over all non-isomorphic indecomposable modules in $\mathcal{I}(\Delta)$. Our main results are the following theorems.

THEOREM A. Let A be a quasi-hereditary algebra. If A is $\mathcal{F}(\Delta)$ -finite then End $\mathcal{F}(\Delta)$ is quasi-hereditary. In particular, the global dimension of End $\mathcal{F}(\Delta)$ is finite.

We remark that a special case of this theorem is discussed in [LX].

THEOREM B. Let A be an $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra with the characteristic module $T=\bigoplus_{i=1}^n T(i)$. Suppose $T=T_0\bigoplus T_1$ with T_0 an injective module and T_1 having no injective direct summand. Then End $\mathcal{F}(\Delta)$ is a left QF-3 algebra if and only if T_0 cogenerates T_1 .

The proofs of the theorems are given in Sections 2 and 3, and the last section contains some examples related to the main results.

Throughout the paper algebras always mean finite dimensional algebras over a fixed algebraically closed field k and modules mean finitely generated left modules. The composition of two homomorphisms $f: M \to N$ and $g: N \to L$ is denoted by fg.

2. PROOF OF THEOREM A

This section is devoted to the proof of the Theorem A. We need some preparations.

Let A be a quasi-hereditary algebra. Define $\mathscr{F}(\Delta)$ -ind $=: \{X \in A\text{-ind} \mid X \in \mathscr{F}(\Delta)\}$, and $\mathscr{F}(\Delta)_0 = \varnothing$ and $\mathscr{F}(\Delta)_i =: \{X \in \mathscr{F}(\Delta)\text{-ind} \mid X \in \mathscr{F}(\Delta(n), \ldots, \Delta(n-i+1))\}$. The following lemma is easy to prove by the definition of quasi-hereditary algebras (cf. [R2]).

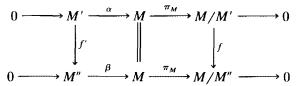
2.1. LEMMA.

- (1) $\mathscr{F}(\Delta)_{i+1} \supset \mathscr{F}(\Delta)_i$ for all i.
- (2) For any module $M \in \mathcal{F}(\Delta)_{i+1}$, there is a unique largest submodule M' of M such that $M' \in \operatorname{add} \mathcal{F}(\Delta)_i$ and $M/M' \in \operatorname{add} \Delta(n-i)$.
 - (3) $\operatorname{Hom}_{A}(\mathscr{F}(\Delta(n),\ldots,\Delta(n-i+1)),\mathscr{F}(\Delta(n-i),\ldots,\Delta(1)))=0.$
 - (4) Ext₄($\mathscr{F}(\Delta(n),\ldots,\Delta(n-i+1)),\mathscr{F}(\Delta(n-i+1),\ldots,\Delta(1)))=0.$

Proof. Parts (1), (3), and (4) are obvious from [R2].

(2) The existence of such a submodule M' of M follows from the definition of a quasi-hereditary algebra. Now let M'' be another sub-

module of M with the property that $M' \in \operatorname{add} \mathcal{F}(\Delta)_i$ and $M/M' \in \operatorname{add} \Delta(n-i)$. Then we may form the commutative diagram



where α and β are the inclusion homomorphisms. Clearly, f' is injective. This implies $\dim_k M' \leq \dim_k M''$. Similarly, we can show that $\dim_k M'' \leq \dim_k M'$. Hence we deduce that M' = M''.

The following lemma will be used often in what follows.

2.2. LEMMA. For each i, the full subcategory add $\Delta(i)$ is an abelian category. In particular, for any homomorphism $f: X \to Y$ with $X, Y \in$ add $\Delta(i)$, the kernel Ker(f) and the cokernel Cok(f) of f belong to add $\Delta(i)$.

Proof. Since $\operatorname{Ext}_{\mathcal{A}}^{1}(\Delta(i), \Delta(i)) = 0$, we have $\mathscr{F}(\Delta(i)) = \operatorname{add} \Delta(i)$. Thus the lemma follows directly from $\operatorname{End}_{\mathcal{A}}(\Delta(i)) \cong k$.

For a module $M \in \mathcal{F}(\Delta)$ we denote by $[M : \Delta(i)]$ the number of factors isomorphic to $\Delta(i)$ in a Δ -filtration of M.

2.3. DEFINITION. Define $\mathscr{C}_i := \mathscr{F}(\Delta)_i \setminus \mathscr{F}(\Delta)_{i-1}$. Then $\mathscr{F}(\Delta)$ -ind is a disjoint union of \mathscr{C}_i , $1 \le i \le n$. We define a relation \le' on \mathscr{C}_i for $i = 1, \ldots, n$ as follows:

Suppose X, Y are in \mathscr{C}_i . We say $X \leq 'Y$ if and only if there is a homomorphism $f \colon Y \to X$ such that f cannot factor through a module in $\mathscr{T}_X' := \operatorname{add}(\mathscr{F}(\Delta)_{i-1} \cup \{Z \in \mathscr{C}_i \mid [Z : \Delta(n-i+1)] < [X : \Delta(n-i+1)]\})$, and we say $X \leq Y$ if there are modules $X_0 = X, X_1, \ldots, X_m = Y$ in \mathscr{C}_i such that $X_{j-1} \leq 'X_j$ for all j. We shall prove that with this relation \leq the set \mathscr{C}_i is a partially ordered set.

2.4. LEMMA. Suppose X and Y are two modules in \mathscr{C}_i . Let X' be the largest submodule of X such that $X' \in \mathscr{F}(\Delta)_{i-1}$ and $X/X' \in \mathscr{F}(\Delta(n-i+1))$. If $f\colon X\to Y$ is a homomorphism which cannot factor through a module in \mathscr{F}_Y then we have the commutative diagram

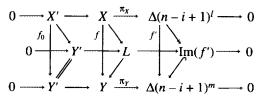
$$0 \longrightarrow X' \longrightarrow X \xrightarrow{\pi_X} \Delta(n-i+1)^{[X:\Delta(n-i+1)]} \longrightarrow 0$$

$$\downarrow f_0 \qquad \qquad \downarrow f'$$

$$0 \longrightarrow Y' \longrightarrow Y \xrightarrow{\pi_Y} \Delta(n-i+1)^{[Y:\Delta(n-i+1)]} \longrightarrow 0$$

with f' surjective.

Proof. The existence of f_0 follows from $\operatorname{Hom}_A(X', \Delta(n-i+1)) = 0$ by 2.1. Note that the image $\operatorname{Im}(f')$ of f' belongs to add $\Delta(n-i+1)$ according to 2.2. Thus if $\operatorname{Im}(f') \neq \Delta(n-i+1)^{[Y:\Delta(n-i+1)]}$ then we have the commutative diagram



where L is the pullback of π_Y and the canonical inclusion, and $l = [X : \Delta(n-i+1)]$ and $m = [Y : \Delta(n-i+1)]$. This means that f factors through the module L in \mathcal{F}_Y since $\mathcal{F}(\Delta)$ is closed under extensions and $[\operatorname{Im}(f') : \Delta(n-i+1)] < m$, a contradiction. Hence $\operatorname{Im}(f') = \Delta(n-i+1)^m$ and the map f' is surjective.

2.5. Lemma. (\mathscr{C}_i, \leq) is a partially ordered set.

Proof.

- (1) If $X \in \mathcal{C}_i$, then $X \leq X$. This follows from the fact that the identity map 1_X cannot factor through a module T in $\mathrm{add}(\mathcal{F}(\Delta)_{i-1} \cup \{Z \in \mathcal{C}_i \mid [Z : \Delta(n-i+1)] < [X : \Delta(n-i+1)]\}$ because for each indecomposable summand T' of T there holds $[T' : \Delta(n-i+1)] < [X : \Delta(n-i+1)]$.
- (2) Suppose X, Y belong to \mathscr{C}_i with $X \leq Y$ and $Y \leq X$. We want to show $X \cong Y$. By definition, we have modules $X = X_0, X_1, \ldots, X_m = Y$, $Y = Y_0, Y_1, \ldots, Y_t = X \in \mathscr{C}_i$ such that $X_{i+1} \leq {}'X_i$ and $Y_{j+1} \leq {}'Y_j$ for all i and j. Thus we have homomorphisms $f_i \colon X_i \to X_{i+1}$ and $g_{j+1} \colon Y_j \to Y_{j+1}$ such that f_i' and g_j' are surjective by 2.4. Since $\pi_X(f_0' \cdots f_{m-1}' g_0' \cdots g_{i-1}') = (f_0 \cdots f_{m-1} g_0 \cdots g_{i-1}) \pi_X$ and $\pi_X(f_0' \cdots f_{m-1}' g_0' \cdots g_{i-1}')$ is surjective, we know that $f_0 \cdots f_{m-1} g_0 \cdots g_{m-1} \in \operatorname{End}_A(X)$ is not nilpotent. Here, π_X is defined by 2.4. Therefore it follows from the fact that $\operatorname{End}_A(X)$ is a local algebra that $f_0 \cdots f_{m-1} g_0 \cdots g_{t-1}$ is an isomorphism. Thus f_i , $0 \leq i \leq m-1$, are isomorphisms and $X \cong Y$, as desired.
 - (3) The transitivity of \leq is obvious.
- 2.6. DEFINITION. Suppose A is an $\mathscr{F}(\Delta)$ -finite quasi-hereditary algebra. Then (\mathscr{C}_i, \leq) is a finite poset. Now we enumerate the elements in \mathscr{C}_i as

$$X_{i1},\ldots,X_{il}$$

so that if $X_{ij} \leq X_{ij'}$ then j < j', where $l_i = |\mathscr{C}_i|$.

In order to prove the theorem, we use the following equivalent definition of quasi-hereditary algebras (for the proof of this fact see [CPS, R2]).

Let A be a finite-dimensional algebra. An ideal J of an algebra A is said to be a heredity ideal in A provided J is idempotent, $J(\operatorname{rad}(A))J = 0$ and $_AJ$ is a projective A-module. The algebra A is called quasi-hereditary if there is a finite chain

$$0 = J_0 \subseteq J_1 \subseteq \cdots \subseteq J_m = A$$

of ideals in A such that J_{i+1}/J_i , $0 \le i \le m-1$, are heredity ideals in A/J_i . Such a chain is called a heredity chain for A.

Proof of Theorem A. Let E be the endomorphism algebra of the module $\bigoplus_{i=1}^n \bigoplus_{j=1}^{l_i} X_{ij}$ and let J_{it} be the ideal of E consisting of all endomorphisms f in E which factor through a module in $\mathcal{F}_{it} := \operatorname{add}(\bigoplus_{j=1}^{i-1} \bigoplus_{k=1}^{l_j} X_{jk} \oplus \bigoplus_{j=1}^{t} X_{ij}) = \operatorname{add}(\mathcal{F}(\Delta)_{i-1} \cup \{X_{i1}, \ldots, X_{it}\})$. We shall prove that

$$0 = J_{00} \subseteq J_{11} \subseteq J_{21} \subseteq \cdots \subseteq J_{2l}, \subseteq \cdots \subseteq J_{n1} \subseteq J_{n2} \subseteq \cdots \subseteq J_{nl_n} = E$$

is a heredity chain of E.

Let us introduce some further notation. Given a module $X \in \mathcal{F}(\Delta)$ -ind, we denote by e_X the endomorphism in E which projects canonically $\bigoplus X_{ij}$ onto X. Thus, the elements e_X , $X \in \mathcal{F}(\Delta)$ -ind, form a complete set of pairwise orthogonal primitive idempotents of E. Note that for $X, Y \in \mathcal{F}(\Delta)$ -ind, we can identify $e_X E e_Y$ with $\operatorname{Hom}_A(X, Y)$. If N is the radical of E then $e_X N e_Y$ is the set of noninvertible maps in $\operatorname{Hom}_A(X, Y)$. Put $\overline{E} = E/J_{i,i-1}$ and $J_{ii} = J_{ii}/J_{i,i-1}$. For an element $x \in E$, the residue class in \overline{E} of x is denoted by \overline{x} in what follows. For a module $X \in \mathcal{C}_i$ we define $\mathcal{T}_X := \{Z \in \mathcal{C}_i \mid [Z : \Delta(n-i+1)] < [X : \Delta(n-i+1)]\}$.

2.7. LEMMA. Every non-invertible homomorphism from X_{it} to X_{it} factors through a module in $add(\mathscr{F}(\Delta)_{i-1} \cup \{Z \in \mathscr{C}_i \mid Z < 'X_{it}\})$. In particular, $\overline{e}_{X_{it}} \overline{E} \overline{e}_{X_{it}} \cong k$.

Proof. Indeed, if we take a map $f: X_{ii} \to X_{ii}$ which is not invertible, then f is nilpotent since $\operatorname{End}_A(X_{ii})$ is a local algebra. Set $X = X_{ii}$. Let X' be the maximal submodule of X with $X' \in \operatorname{add} \mathscr{F}(\Delta)_{i-1}$. Then we consider the diagram

$$0 \longrightarrow X' \longrightarrow X \longrightarrow \Delta(n-i+1)^{[X:\Delta(n-i+1)]} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow f'$$

$$0 \longrightarrow X' \longrightarrow X \longrightarrow \Delta(n-i+1)^{[Y:\Delta(n-i+1)]} \longrightarrow 0$$

with f' nilpotent. This means that the image of f' is proper contained in $\Delta(n-i+1)^{[X:\Delta(n-i+1)]}$ and $[\operatorname{Im}(f'):\Delta(n-i+1)]<[X:\Delta(n-i+1)]$.

As in the proof of 2.4 we see that f factors through a module $L \in \operatorname{add}(\mathcal{F}(\Delta)_{i-1} \cup \{Z \in \mathcal{E}_i \mid [Z : \Delta(n-i+1)] < [X : \Delta(n-i+1)]\}$). Suppose $L = L_0 \oplus L_1 \oplus \cdots \oplus L_s$ with $L_0 \in \operatorname{add}\mathcal{F}(\Delta)_{i-1}$ and $L_j \in \mathcal{F}_X = \{Z \in \mathcal{E}_i \mid [Z : \Delta(n-i+1)] < [X : \Delta(n-i+1)]\}$, and $f = (f_0, \ldots, f_s)(g_0, \ldots, g_s)'$ with $f_j : X \to L_j$ and $g_j : L_j \to X$. Clearly, L_j is not isomorphic to X for all j. If f_j is a homomorphism such that $L_j < X$ then we have what we wanted. So we may assume that all f_j factor through a module in $\operatorname{add}(\mathcal{F}(\Delta)_{i-1} \cup \mathcal{F}_L)$, say $f_j = (f_{j0}, \ldots, f_{j,s(j)})(g_{j0}, \ldots, g_{j,s(j)})'$ with $f_{ji} : X \to L_{ji}$ and $L_{ji} \in \mathcal{F}_{L_j}$. If f_{ji} is a homomorphism such that $L_{ji} < X$ then we have what we desired. If not, we decompose f_{ji} into $f_{ji} = (f_{ji0}, \ldots, f_{ji,s(ji)})(g_{ji0}, \ldots, f_{ji,s(ji)})'$ with $f_{jik} : X \to L_{jik}$ and $L_{jik} \in \mathcal{F}_{L_{ji}}$ and repeat the above discussion. If we continue this procedure we see that after finitely many steps we must stop since

$$[L_{jik}:\Delta(n-i+1)] < [L_{ji}:\Delta(n-i+1)] < [L_{j}:\Delta(n-i+1)]$$

$$< [X:\Delta(n-i+1)].$$

this shows that f factors through a module in $\operatorname{add}(\mathscr{F}(\Delta)_{i-1} \cup \{Z \in \mathscr{C}_i \mid Z < 'X\}.$

With the same argument as that in the proof of 2.7, we have the following

2.7'. LEMMA. Suppose X,Y are modules in \mathscr{C}_i . If $X \not\leq 'Y$, then every homomorphism $f\colon Y\to X$ factors through a module in $\operatorname{add}(\mathscr{F}(\Delta)_{i-1}\cup \{Z\in\mathscr{C}_i\mid Z<'Y\})$.

Proof. Since $X \not\leq 'Y$, by definition the homomorphism f factors over a module $L_0 \oplus L_1 \oplus \cdots \oplus L_s$ with $L_0 \in \operatorname{add} \mathcal{F}(\Delta)_{i-1}$ and $L_j \in \mathcal{F}_X$ for all j > 0, say $f = (f_0, \ldots, f_s)(g_0, \ldots, g_s)^t$ with $f_j \colon Y \to L_j$. If f_j is a map such that $L_j < 'Y$, then we have done what we wanted. If $Y \cong L_j$, then f_j can be assumed to be nilpotent. (Otherwise we can omit this direct summand.) By 2.7, this f_j factors over a desired module. So we may assume that all L_j are not isomorphic to Y and all f_j factor through a module in add $(\mathcal{F}(\Delta)_{i-1} \cup \mathcal{F}_{L_j})$. Let us decompose f_j as $(f_{j0}, \ldots, f_{j,s(j)})(g_{j0}, \ldots, g_{j,s(j)})^t$ with $f_{ji} \colon Y \to L_{ji}$ and $L_{ji} \in \mathcal{F}_{L_j}$ for $j \neq 0$ and $L_{j0} \in \operatorname{add} \mathcal{F}(\Delta)_{i-1}$. As above we may assume that all L_{ji} are not isomorphic to Y and all f_{ji} for $i \neq 0$ factor through a module in add $(\mathcal{F}_{L_{ji}} \cup \mathcal{F}(\Delta)_{i-1})$, namely, $f_{ji} = (f_{ji0}, \ldots, f_{ji,s(ji)})(g_{ji0}, \ldots, g_{ji,s(ji)})^t$ for all j, i with $f_{jik} \colon Y \to L_{jik}$ and $L_{jik} \in \mathcal{F}_{L_{ji}}$. Since $[L_{jik} \colon \Delta(n-i+1)] < [L_{ji} \colon \Delta(n-i+1)] < [L_{ji} \colon \Delta(n-i+1)]$ < $[X \colon \Delta(n-i+1)]$, we see that this procedure must stop after finitely many steps, and then we have that f factors through a module in add $(\mathcal{F}(\Delta)_{i-1} \cup \{Z \in \mathcal{E}_i \mid Z < 'Y\})$.

2.8. LEMMA. $\tilde{J}_{i,t}$ is a projective left \overline{E} -module.

Proof. We use a result of [DR1] which says that an idempotent ideal AeA of a given algebra A generated by an idempotent e with e(rad(A))e = 0 is a projective left A-module if and only if the multiplication map

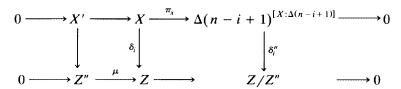
$$Ae \bigotimes_{eAe} eA \rightarrow AeA$$

is bijective. Hence it is enough to show that the multiplication map

$$\bar{e}_{Y}\bar{E}\bar{e}_{X} \underset{\bar{e}_{X}\bar{E}\bar{e}_{X}}{\otimes} \bar{e}_{X}\bar{E}\bar{e}_{Z} \to \bar{e}_{Y}\bar{E}\bar{e}_{X}\bar{E}\bar{e}_{Z} \tag{*}$$

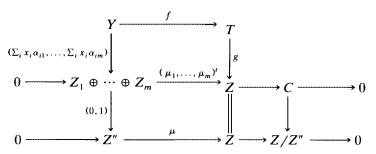
is bijective for all $Z, Y \in \mathcal{F}(\Delta)$ -ind. (Recall that here $X = X_{ii}$.)

By Lemma 2.7, $\bar{e}_X \bar{E} \bar{e}_X \cong k$, so the elements of $\bar{e}_Y \bar{E} \bar{e}_X \otimes_{\bar{e}_X \bar{E} \bar{e}_X} \bar{e}_X \bar{E} \bar{e}_Z$ are of the form $\sum_{i=1}^c \bar{x}_i \otimes_k \bar{\delta}_i$, where $x_i \in \operatorname{Hom}_A(Y,X)$ and $\delta_i \in \operatorname{Hom}_A(X,Z)$. Suppose there is an element $u = \sum_{i=1}^c \bar{x}_i \otimes \bar{\delta}_i$ such that $\sum \bar{x}_i \bar{\delta}_i = 0$. We may assume that $\bar{x}_i \neq 0 \neq \bar{\delta}_i$ for all i. Then $Z,Y \in \{X_{i,1},\ldots,X_{il_i}\} \cup \mathcal{E}_{i+1} \cup \cdots \cup \mathcal{E}_n$. Let X' be the maximal submodule of X such that $X' \in \mathcal{F}(\Delta)_{i-1}$ and $X/X' \in \operatorname{add} \Delta(n-i+1)$. Similarly, let Z'' be the maximal submodule of Z such that $Z'' \in \operatorname{add} \mathcal{F}(\Delta)_i$ and $Z/Z'' \in \mathcal{F}(\Delta(1),\ldots,\Delta(n-i))$. Since $\operatorname{Hom}_A(\mathcal{F}(\Delta(n-i+1),\Delta(n-i+1),\Delta(n-i+1),\ldots,\Delta(n-i)) = 0$, we see that there is a homomorphism from X' to Z'' and then a homomorphism δ_i'' from $\Delta(n-i+1)^{|X|+|\Delta(n-i+1)|}$ to Z/Z'' such that the following diagram commutes:



Again by Lemma 2.1, $\delta_i''=0$ holds. Thus there exists a homomorphism $\gamma_i\colon X\to Z''$ such that $\delta_i=\gamma_i\,\mu$. Now suppose $Z''=Z_0\oplus Z_1\oplus\cdots\oplus Z_m$ with $Z_0\in\operatorname{add}\mathscr{F}(\Delta)_{i-1}$ and $Z_j\in\mathscr{C}_i$ for all j>0, and $\gamma_i=(\gamma_{i0},\ldots,\gamma_{im})$ as well as $\mu=(\mu_0,\ldots,\mu_m)^t$, then $\bar{\delta}_i=\bar{\gamma}_i\,\bar{\mu}=\sum_{j=0}\bar{\gamma}_{ij}\,\bar{\mu}_j$. Since $\bar{\delta}_i\neq 0$, we may assume that $\bar{\gamma}_{ij}\neq 0$ for $j\neq 0$. If there is some Z_j such that $Z_j\nleq X$, then $Z_j\nleq 'X$. By Lemma 2.7', γ_{ij} factors through a module in $\operatorname{add}(\mathscr{F}(\Delta)_{i-1}\cup\{Z\in\mathscr{C}_i\mid Z<'X\})$; in particular, γ_{ij} factors through a module in $\operatorname{add}(\mathscr{F}(\Delta)_{i-1}\cup\{Z\in\mathscr{C}_i\mid Z<'X\})$; in particular, γ_{ij} factors through a module in $\mathscr{F}_{i,t-1}$ and we would have $\bar{\gamma}_{ij}=0$. Thus we can assume that $Z_j\leq X$ for all j>0. Hence we can identify all Z_j with X and regard γ_{ij} as an endomorphism of Z_j . According to 2.7, one can write

 $\overline{\gamma}_{ij} = \overline{\alpha}_{ij}$ for some $\alpha_{ij} \in k$. Since $\sum x_i \delta_i = \sum x_i (\gamma_i \mu) = \sum_{i=1}^c \sum_{j=1}^m x_i \gamma_{ij} \mu_j$ and $0 = \sum \overline{x}_i \overline{\gamma}_i = \sum_{i,j} \overline{x}_i \overline{\gamma}_{ij} \overline{\mu}_j = \sum_i \overline{x}_i \overline{\alpha}_i \overline{\mu}_j = \sum_{j=1} (\sum_i \overline{x}_i \alpha_{ij}) \overline{\mu}_j$, one finds that there is a module $T \in \mathcal{F}_{i,t-1}$ such that $\sum_{ij} x_i \alpha_{ij} \mu_j$ factors through the module T, say $\sum_i (\sum_i x_i \alpha_{ij}) \mu_i = fg$. Now consider the commutative diagram



where C is the cokernel of $(\mu_1,\ldots,\mu_m)'$. Since $T\in\operatorname{add}\mathscr{F}(\Delta)_i=\mathscr{F}(\Delta(n-i+1),\ldots,\Delta(n))$ and $Z/Z''\in\mathscr{F}(\Delta(1),\ldots,\Delta(n-i))$, again by $\operatorname{Hom}_A(\mathscr{F}(\Delta(n-i+1),\ldots,\Delta(n)),\mathscr{F}(\Delta(1),\ldots,\Delta(n-i)))=0$ one obtains a homomorphism $\varphi\colon T\to Z''$ such that $g=\varphi\mu$. This implies that $f\varphi=(\Sigma_ix_i\alpha_{i1},\ldots,\Sigma_ix_i\alpha_{im})(0,1)$ because μ is injective. If we decompose φ into $(\varphi_0,\varphi_1,\ldots,\varphi_m)$, then $\Sigma x_i\alpha_{ij}=f\varphi_j$ for all $j\geq 1$. This means that $\Sigma_ix_i\alpha_{ij}$ factors through the module T in $\mathscr{F}_{i,i-1}$, and therefore, $\Sigma_i\bar{x}_i\overline{\alpha}_{ij}=0$ for all j and

$$\sum \bar{x}_{i} \otimes_{k} \bar{\delta}_{i} = \sum \bar{x}_{i} \otimes_{k} \bar{\gamma}_{i} \bar{\mu} = \sum_{i=1}^{c} \bar{x}_{i} \otimes_{k} \sum_{j=1}^{m} \bar{\gamma}_{ij} \bar{\mu}_{j}$$

$$= \sum_{ij} \bar{x}_{i} \otimes_{k} \bar{\gamma}_{ij} \bar{\mu}_{j} = \sum_{ij} \bar{x}_{i} \otimes_{k} \bar{\alpha}_{ij} \bar{\mu}_{j}$$

$$= \sum_{ij} \bar{x}_{i} \alpha_{ij} \otimes_{k} \bar{\mu}_{j} = \sum_{ij} \bar{x}_{i} \bar{\alpha}_{ij} \otimes_{k} \bar{\mu}_{j}$$

$$= \sum_{j} \left(\sum_{i} \bar{x}_{i} \bar{\alpha}_{ij} \right) \otimes_{k} \bar{\mu}_{j} = \sum_{j} 0 \otimes_{k} \bar{\mu}_{j}$$

$$= 0$$

Hence u = 0 and the multiplication map (*) is bijective. This finishes the proof of the theorem.

3. PROOF OF THEOREM B

A well-known result of M. Auslander says that if an algebra is representation-finite then the endomorphism algebra of the direct sum of all

non-isomorphic indecomposable modules is always a left QF-3 algebra. In this section we study a similar question for $\mathscr{F}(\Delta)$ of quasi-hereditary algebras. As the example in Section 4 shows, for $\mathscr{F}(\Delta)$ the situation is very different, though the endomorphism algebra $\operatorname{End}_{\mathcal{A}}(\mathscr{F}(\Delta))$ is quasi-hereditary. Even if the quasi-hereditary algebra itself is a left QF-3 algebra, the endomorphism algebra may not be a left QF-3 algebra (see 4.3 below).

Let us first recall the definition of left QF-3 algebras.

3.1. DEFINITION. An algebra A is called a left QF-3 algebra if there is a faithful left projective, injective A-module.

This definition is equivalent to that in [T, pp. 40-42]: An algebra is called a left QF-algebra if it has a minimal faithful left module.

For a finite additive k-category \mathscr{X} we denote by $\operatorname{End}(\mathscr{X})$ the endomorphism algebra of the direct sum of all non-isomorphic indecomposable objects in \mathscr{X} .

3.2. THEOREM. Let A be an $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra with the characteristic module $T=\bigoplus_{i=1}^n T(i)$. Suppose $T=T_0\bigoplus T_1$ with T_0 an injective module and T_1 having no injective direct summand. Then $\operatorname{End}_A(\mathcal{F}(\Delta))$ is a left QF-3 algebra if and only if T_0 cogenerates T_1 .

The theorem follows from the following more general fact.

3.3. PROPOSITION. Let A be an algebra and $\mathscr{X} = \{X_1, \ldots, X_m\}$ a finite class of indecomposable A-modules such that $A \in \operatorname{add} \mathscr{X}$. Then $\operatorname{End}_A(\mathscr{X})$ is a left QF-3 algebra if and only if there is an injective module U in $\operatorname{add} \mathscr{X}$ such that U cogenerates \mathscr{X} .

Proof. Let $X = \bigoplus_{i=1}^m X_i$ and $X_i \not\equiv X_j$ for $i \neq j$. Suppose $E := \operatorname{End}_A(X)$ is a left QF-3 algebra. Then, by definition, there is a minimal faithful module which is of the form Ee with e an idempotent, say $Ee = \operatorname{Hom}_A(X, X_1) \oplus \cdots \oplus \operatorname{Hom}_A(X, X_s)$ with $s \leq m$. We shall show first that $U := \bigoplus_{i=1}^s X_i$ cogenerates \mathscr{Z} . In fact, given a module $X_i \in \mathscr{Z}$, there is a natural number t and an injective E-homomorphism φ such that

$$0 \to \operatorname{Hom}_{4}(X, X_{t}) \stackrel{\varphi}{\to} \operatorname{Hom}_{4}(X, U^{t})$$

is an exact sequence. Since add $\mathscr X$ and the full subcategory consisting of all projective E-modules are equivalent, φ is induced by an A-homomorphism $\alpha\colon X_I\to U'$ such that $\operatorname{Hom}_A(X,\alpha)=\varphi$. We claim that α is an injective map. Let P be the projective cover of the kernel $\ker(\alpha)$ of α . Then we have the diagram

$$\begin{array}{c}
P \\
\downarrow^{\pi'} \\
0 \longrightarrow \ker(\alpha) \xrightarrow{\mu} X \xrightarrow{\alpha} U^{t}
\end{array}$$

and apply $\operatorname{Hom}_{A}(X, -)$ to it, we get $\operatorname{Hom}_{A}(X, \pi)\varphi = 0$. Thus $\operatorname{Hom}_{A}(X, \pi) = 0$ and $\operatorname{Hom}_{A}(X, \pi') = 0$. On the other hand, since X contains a copy of each indecomposable direct summand of P, we must have $\pi' = 0$. This implies that α is injective.

To finish the proof, it suffices to show that all X_j , $1 \le j \le s$, are injective A-modules. Toward this goal we require the following lemma in [T, p. 51]:

3.4. LEMMA. Let R be a left QF-3 algebra and Re a minimal faithful left ideal with e an idempotent. If fR is a faithful projective right ideal in R with f an idempotent, then f f Re is injective.

By e_M , $M \in \{X_1, \dots, X_m\}$, we denote the endomorphism in E which projects X canonically onto M. Let ${}_AA = P_1 \oplus \dots \oplus P_n$ with P_j indecomposable and $f = e_{P_1} + \dots + e_{P_n}$ and $e = e_{X_1} + \dots + e_{X_n}$. Then

- (1) $Ee = \text{Hom}_A(X, U)$ is a minimal faithful left ideal in E, and
- (2) $fE = \text{Hom}_A(A, X)$ is a projective right ideal of E and faithful.

Hence the hypotheses of Lemma 3.4 are satisfied, and so the fEf-module fEe is injective. Since $fEf \cong A$ and $fEe \cong U$ as A-modules, we have the injectivity of the module U.

Conversely, suppose there is an injective module $U=\bigoplus_{j=1}^s X_j$ such that U cogenerates \mathscr{Z} . Put $e=\sum_{j=1}^s e_{X_j}$. We claim that Ee is a faithful projective, injective left ideal in E. It is clear that $Ee=\operatorname{Hom}_A(X,U)$ is a faithful E-module since U cogenerates \mathscr{Z} . For each X_j with $1 \le j \le s$, we may write $X_j = D(e_j'A)$ with e_j' a primitive idempotent of A and $D = \operatorname{Hom}_k(-,k)$. It follows now from

$$\operatorname{Hom}_{A}(_{A}X_{E}, X_{j}) = \operatorname{Hom}_{A}(_{A}X_{E}, D(e'_{j}A)) = \operatorname{Hom}_{A}(X, \operatorname{Hom}_{k}(e'_{j}A, k))$$

$$\cong \operatorname{Hom}_{k}(e'_{j}A \otimes_{A} X_{E}, k) = \operatorname{Hom}_{k}(e'_{j}X_{E}, k)$$

$$= \operatorname{Hom}_{k}(\operatorname{Hom}_{A}(Ae'_{j}, X_{E}), k)$$

$$= D \operatorname{Hom}_{A}(Ae'_{j}, X)$$

that Ee_{X_j} is an injective *E*-module. Hence Ee is an injective *E*-module. This finishes the proof.

3.5. COROLLARY. Suppose A is an $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra. If $\operatorname{End}_A(\mathcal{F}(\Delta))$ is a left QF-3 algebra then so is $\operatorname{End}_A(T)$.

Proof. This follows from Theorem B and 3.3.

4. EXAMPLES

In this section we give some examples related to the results in this paper. For the terminology on quivers we refer to [R1, Chap. 2].

4.1. The algebra End $\mathcal{F}(\Delta)$ may have arbitrary finite global dimension. Let A be the algebra with radical-square-zero given by the quiver

$$2 \leftarrow 1 \leftarrow 3 \leftarrow \cdots \leftarrow n - 1 \leftarrow n, \quad n \ge 4$$

Then A is quasi-hereditary and $\Delta(i) = E(i)$ for i = 1, 2 and $\Delta(i) = P(i)$ for $3 \le i \le n$. One can easily write out the Auslander-Reiten quiver of A and then see that the global dimension of $\operatorname{End}_A(\mathcal{F}(\Delta))$ is n - 2.

4.2. The converse of 3.5 is not true if one considers the quasi-hereditary algebra given by the quiver

$$\frac{2}{4}$$
 $3 \leftarrow 1$

If one computes $\operatorname{End}_{A}(T)$ then it is given by the quiver $2 \stackrel{\gamma}{\leftarrow} 4 \stackrel{\beta}{\leftarrow} 3 \stackrel{\alpha}{\leftarrow} 1$ with the relation $\alpha\beta\gamma = 0$. It is clear that $\operatorname{End}_{A}(T)$ is a left QF-3 algebra but the maximal injective direct summand of T cannot cogenerate T.

4.3. Let A be the hereditary algebra given by the quiver

$$2 \leftarrow 1 \leftarrow 3$$
.

Then A is a left QF-3 algebra and an $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra. An easy computation shows that $\operatorname{End}_A(\mathcal{F}(\Delta))$ is given by the quiver

with only one zero-relation. It is obvious that this algebra is not a left QF-3 algebra.

4.4. One can easily see that there do exist quasi-hereditary algebras that are not of the form $\operatorname{End}_{\mathcal{A}} \mathcal{F}(\Delta)$ for any $\mathcal{F}(\Delta)$ -finite quasi-hereditary algebra A. For instance, the algebra given by the quiver

$$1 \underset{\beta}{\overset{\alpha}{\rightleftharpoons}} 2$$

with relation $\alpha\beta = 0$ is clearly not of the form $\operatorname{End}_{A}(\mathscr{F}(\Delta))$ for any quasi-hereditary algebra A.

It would be interesting to determine which quasi-hereditary algebras are of this form.

ACKNOWLEDGMENT

The author thanks Professor Shaoxue Liu for help and encouragement.

REFERENCES

- [BGG] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, A category of *S*-modules, *Functional Anal. Appl.* 10 (1976), 67-72.
- [CPS] E. Cline, B. Parshall and L. Scott, Algebraic stratification in representation categories, J. Algebra 117 (1988), 504-521.
- [DR1] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Illinois J. Math. 33 (1989), 280-291.
- [DR2] V. Dlab and C. M. Ringel, The module theoretic approach to quasi-hereditary algebras, in "Representations of Algebras and Related Topics" (H. Tachikawa and S. Brenner, Eds.), pp. 200-224, London Math. Soc. Lecture Note Ser., Vol. 168, Cambridge Univ. Press, Cambridge, UK, 1992.
- [G] J. A. Green, "Polynomial representations of GL_n ," Lecture Notes in Mathematics, Vol. 830, Springer-Verlag, Berlin/New York, 1980.
- [LX] S. X. Liu and C. C. Xi, Finite Δ-good module categories of quasi-hereditary algebras, preprint, 1992.
- [R1] C. M. Ringel, "Tame algebras and integral quadratic forms," Lecture Notes in Mathematics, Vol. 1099, Springer-Verlag, Berlin/New York, 1984.
- [R2] C. M. Ringel, The category of modules with Δ-good filtrations over quasi-hereditary algebras has almost split sequences, *Math. Z.* **208** (1991), 209–223.
- [T] H. Tachikawa, "Quasi-Frobenius Rings and Generalizations," Lecture Notes in Mathematics, Vol. 351, Springer-Verlag, Berlin/New York, 1970.