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Introduction

Motivated by the study of quasi-hereditary algebras introduced by Cline, Par-
shall and Scott in [CPS], a class of finite—dimensional algebras is constructed in
{X], namely the class of dual extension algebras (for the definition see 1.7 below).
Some nice properties of these algebras have been developed in [DX1] and [DX2].
In the present paper we are going to investigate the relationship of homological
dimensions between a given algebra and its dual extension, here we do not assume
that the resulting dual extension algebra is quasi-hereditary. The main result is
the following

Theorem. Let C be a finite—dimensional basic k-algebra and A its dual ex-
tension. Then gldim (A) = 2 gl.dim (C), where gl.dim (A) denote the global
dimension of the algebra A.

Thus, comparing with the construction of a family of algebras with large global
dimensions in [Y] (see also [G]), the dual extension provides us a more convenient
way to obtain families of algebras with a fixed number of simple modules and large
global dimensions.

To prove this result, we need some preparations which are done in section one
under a more general setting. Section two is devoted to the proof of the main
result.

Throughout this paper, algebras mean always finite-dimensional k-algebras over
a fixed field k and modules mean finitely generated (left) modules.

This note is stimulated by the preprint [K2], and I would like to thank the
author for sending me the preprint.

1. Basic properties and definitions

In this section, we assume that we are given a basic algebra 4 with 1 = }" ¢;,
where {e;} is a complete set of orthogonal primitive idempotents of 4 and that
A has two subalgebras C and B such that S = @ke; is 2 maximal semisimple
subalgebra of A,B and C and BN C = §. Throughout the section we suppose
that we have an isomorphism of bimodules ¢ : ¢C s Bp %¢ Ap given by
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multiplication, and we denote by 9 the inverse of ¢. We shall develop some
properties of the algebra A.

1.1 Proposition. (1) Ap is a projective right B-module.
(2) c A is a projective C—module

Proof. We prove only the first statement. Since B = @e¢; B and Ap = CQ®sBp,
we have

Ap 2 C®s (@e,-B) = @C ®s ;B = @Ce; ®se; B @e,-Ce; ®s e,B
[ i iJ

If ejaye;, ..., ejame; are a k-basis of ¢;Ce;, then from eje; @s e;B & ejae; B =
e; B we see that ejaje; @ se; B is projective right B-module. Hence 4 p is projective.
1.2 Lemma. (1) 4e¢; & C ®s Be; as C-modules.
(2) cA®p E(i) 2 Ce;, where E(s) is the simple B-module Be,;/rad(B)e;.
Proof. (1) is clear. It follows from 1.1 that AQ g E(i) & Ae; /(A®prad(B)e;) &
(C ®s Be;)/(C @5 rad(B)e;). Since S is semisimple, Cs is projective. Thus
(C®s Be,')/(C ®s rad(B) e,-) = C @s E(1) 2 Ce;.
1.3 Lemma. If rad(B)C C Crad(B), then A/ < rad(B) > C, where <
rad(B) > stands for the ideal of A generated by rad(B) in 4.

Proof. Note that A = CB = C(S @ rad(B)) = C® C rad(B) since CQs (S &
rad(B)) is mapped under ¢ to C @ C rad(B). Thus each element a € A has the
expression

a=c¢; + Zc,»b.', ¢ € C,c; € C,b; € rad(B).
Define o : Af <rad(B)>— C by a+ <rad(B)>— ¢,. It is clear, that o is a
well-defined k-linear map. Let a' = cor + J ¢} be another element of A. Then
a + a' is mapped to ¢, + c,. Moreover, since

aa' = cpcqr + Zc;b,»c,. + Zc,c;b; + Zc;b‘-c;b;

and rad(B) C C C rad(B), one has o(a + ') = c,¢q» = o(a)o(a’). Thus o is an
algebra homomorphism. It is easy to see that o is bijective. Hence the lemma 1.3
follows.

Similarly, we have A/ <rad(C)>% B if B rad(C) C rad(C)B.

1.4 Lemma. Suppose rad(B)C C Crad(B). Then every C-module can be
regarded as A-module by ¢ in 1.3 and the isomorphism in 1.2 (2) is an A-module
isomorphism.

The following lemma gives a condition to guarantee the truth of rad(B)C C
Crad(B) and Brad(C) C rad(C)B, and this condition is satisfied by dual exten-
sions and other interesting algebras (see [D]).

1.5 Lemma. If rad(B)rad(C) C rad(C)rad(B), then
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(1) rad(B)C C C rad(B) and Brad(C) C rad(C)B.
(2) rad(A) = rad(C)B + Crad(B)

The proof of this lemma is straightout, we omit it.

1.6 Lemma. Let C(A) denote the Cartan—matrix of the algebra A. Then
C(4)= c(C)C(B).

Proof. Since cAp & C®s B, it follows that e; Aej = ¢;CRsBe; = @), iCe1 @4
eiBej and dimpe; Aej = 3, (dimee; Cey)(dimiey Bej). Thus we have the lemma 1.6.

1.7 In the rest of this section we shall present a class of algebras which satisfy
all conditions that we have assumed. This special class of algebras is constructed
in [X] (see also [K1]). Let us now recall the construction.

Let C and B be two finite-dimensional basic algebras over a field k. As usual,
we suppose that C and B are given by a quiver Q = (Qo, @1) with relations
{pil i € Ic} and a quiver I’ = (T, 'y) with relations {p;| ¢ € I}, respectively, that
is, we consider the algebras kQ*/ < {p! |t € Ic} > and kT*/ < {p! |1 € Iz} >,
where Q* is the opposite quiver of @ and the multiplication af of two arrows
a and B means that a comes first and then B follows (for the notation see [R,
Chapt.2] for details).

Now_we assume that Qo = I'o and define a new k-algebra A given by the
quiver @ = (Qo, @:UI'1) with relations {o; |i € Ic} U {p; |j € Is}U{afla€
Q; and B € I';}. Then 4 is a finite-dimensional k-algebra with the maximal
semisimple subalgebra § = kQp. It is clear that B and C are subalgebras of A
with CNB = §. We call A the dual extension of C and B, denoted by A(C,B). In
case B is the opposite algebra C°? of C, we simply say that A is the dual extension
of C, denoted by A(C).

The following lemma collects some properties of the algebra A. (For the defi-
nition of quasi-hereditary algebras and BGG-algebras we refer to [CPS] and {I}).

Lemma. (1) rad(B)rad(C) = 0.

(2) cAB = cC Qs Bp.

(3) If C is a quasi-hereditary algebra with the weight poset (Qo, <) and B has
no oriented cycle in its quiver, then A = A(C, B) is quasi- hereditary. Moreover,
the dual extension of B is always a BGG-algebra.

Proof. (1) and (2) follow from the definiton of the algebra A. (3) is proved in
[X, 1.6] and [K1].
2. Global dimension

In this section we shall use the properties in section one to estimate the global
dimension of the algebra A of the form ¢ Ap & -C @s Bp and give a formula to
compute the global dimension of dual extensions.

Throughout this section we keep the assumptions on 4,B,C and S at the
beginning in section one.

2.1 Theorem. Suppose rad(B)C C Crad(B). Then
maz{gl.dim(B), gl.dim(C)} < gldim(4) < gl.dim(B) + gl.dim(C).
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Proof. The first inequality follows immediately from [CE, Chap. VI, Prop.
4.1.3] since simple A-modules and simple B-modules (or simple C-modules) co-
incide. To prove the second inequality we may assume that gl.dim (C) and gl.dim
(B) are finite. Let E(i) be a simple A-module. As a C-module E(7) has the pro-
jective dimension at most gl.dim(C). By 1.2 and 1.4, we have Ce; £ A®p E(i) as
A-modules. This means that proj.dim 4Ce; < gl.dim (B). Thus proj.dim 4C <
gl.dim (B). By 1.3 and the change of rings, we have

proj.dim 4 E(3) < proj.dim¢ E(i) + proj.dimsC £ gl.dim(C) + gl.dim(B)
for each simple A-module E(3). Thus Theorem 2.1 follows.

2.2 Lemma. Suppose rad(B)C C Crad(B). Let M be a C-module. Then
M can be regarded as an A-module via the canonical surjective map 4 —
A[Crad(B) & C and there is an exact sequence of A-modules

0 —— Crad(B)®c M —— AQcM ——— M —— 0

where p: AQc M — M is given by Y_a; ® 7; — Y a;z;.

Proof. Since Crad(B) is the ideal in A generated by rad(B) and there is the
following exact sequence

0 —— Crad(B) A C 0,

the lemma follows evidently from tensoring the sequence by ¢ M.

2.3 Lemma. Suppose that rad(B)rad(C) = 0. Let M be a C-module and
g : Pc(M) — oM a projective cover of the C-module M. We denote by
f2c(M) the kernel of g. Then the composition map ug: A ®c Pc(M) — M of

4 :A8®c Pc(M) — Pc(M) and g is a projective cover of the A—module M and
Qc(M) is a direct summand of the kernel of ug.

Proof. Since Ae; & A Q¢ Ce;, we know that A @ Po(M) has the same top as
the A-module Pc(M). Thus the composition map ug is a projective cover of the
A-module M. To prove the last statement, we consider the following commutative
diagram of A-modules:

0

!

0 —— Crad(B) 8¢ Qc(M) —— 4 8¢ Qe(M) —— Qc(M) — 0

| b

0 —— Crad(B)®c Po(M) —— 4 8¢ Pe(M) —— Po(M) — 0

l ! L

0 —— Crad(B)@c M —— A@cM —— M ——0

l l l

0 0 0
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where 1 is the inclusion map Q¢ (M) — Pc(M).
A diagram chase shows that we have the following exact sequence

0

Im(aB) —— Ker(pg) —— Q¢c(M) @ Crad(B)@c M —— 0.

Nete that Im(af) = Im(a'(1 ® i) and o is the inclusion map in 2.2. Since
(M) C rad(C)Pc(M), the map i is a composition of the canonical inclusion
maps 1y : Q¢(M) — rad(C)Pc(M) and i3 : rad(C)Pc(M) — Pc(M). Thus
191 =(1Q141)(1® i2). Suppose z € Qc(M), then ¢ = ry with r € rad(C) and
y € Pc(M). This implies that for each a € Crad(B),

(a®z)a'(184) =(a®7z)(1®14) =(a@ry)(1®1)(1® 1)
=(a@®@ry)(1Q@ix)=a@ry=ary=0Qy=0

since rad(B)rad(C)=0. Thus Im{afB)=0 and the lemma follows.

2.4 Lemma. For any (finitely generated) A-module M and any simple A-
module E, the following two numbers coincide: the multiplicity of the projective
cover of E in the n-th term of the minimal projective resolution of M; the dimen-
sion of Ext’ (M, E) over the skewfield End4 (E).

Now we can prove our main result.

2.5 Theorem. Let C be a basic algebra with gl.dim {C)= m. Then the global
dimension of the dual extension of C is 2m.

Proof. By 2.1, we may assume that gl.dim (C)=m < co. Suppose proj.dim¢ E(3)
= m. Then there exists a simple module E(j) such that ExtZ(E(¢), E(J)) # 0.
This implies that inj.dimc E(j) = m and proj.dimg.»E(j) = m. Suppose we are
given a minimal projective resolution of the C-module E(i):

0 — P! (E@)) — ... = PYE(i)) = E(i) — 0.

Then Pc(5) := Pc(E(J)), the projective cover of the C-moddule E(7), is a direct
summand of P, (E(:)) by 2.4.
Consider a minimal projective resolution of the A-module E(s):

0—=Pyy— .. =P, —..— P — Py — E(1) = 0.

We have to show that P,,, # 0. According to 2.3, we know that P} (E(7)) is a
direct summand of the kernel of the map P,,_.; — Pp,.3. Thus Pc(j) is a direct
summand of the Kernel. But it follows from 1.1, 1.2 and 1.4 that Pc(j) & A @cer
E(j) and proj.dim 4Pc(j) = m. This means that the A-projective resolution of
E(4) contains the A-projective resolution of Pc(7), and this resolution begins at
the step m + 1. Thus Py, # 0.

2.6 Recently, K. Yamagata gives in {Y] a construction of algebras with large
global dimensions, which generalizes an example of Green in [G], his construction
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depends upon the decomposition of the starting algebra into a direct sum of in-
decomposable projective modules. In fact, the dual extension provides us another
construction of algebras with a fixed number of simple modules and large global
dimensions. In our case, the global dimensions increase exponentially.

Let A be a basic algebra. We define 49 = A, 4; = A(4o) and inductively,
An = A(An-1). Then we have the follwing

Proposition. (1) gl.dim (4,)=2"- gl.dim (4).

(2) Let C(A,) be the Cartan-matrix of A,, then C(4,) = (C(4)C(4)T)*""™"
is symmetric for n > 1, where T denote the transpos e of a matrix.

(3) det C(4,) = (det C(4))*".

Proof. (1) follows from 2.5 and, (2) and (3) follows from 1.6.

2.7 Remark. (1) Theorem 2.5 shows that the upper bound in 2.1 can be
attained. If one takes C or B to be the semisimple algebra S in 1.7 then the lower
bound in 2.1 can be obtained. However, one can not hope gl.dim (4) = gl.dim (B)
+ gl.dim (C) in general as the following counterexample shows: If we take in 1.8
the algebras B and C to be the path algebra of the quiver o «— o, respectively,
then the extension algebra of C and B is just the Kronecker algebra. Thus the
global dimensions of A, B and C are 1 and gl.dim (4)# gl.dim (B) + gl.dim (C).

(2) Let us finally remark that if C has no oriented cycle in its quiver then the
dual extension algebra A is quasi-hereditary. In this case, Theorem 2.5 can be
deduced from [K2], using the quasi-heredity of A.
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