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CELLULAR ALGEBRAS AND QUASI-HEREDITARY ALGEBRAS:
A COMPARISON

STEFFEN KÖNIG AND CHANGCHANG XI

(Communicated by Dave Benson)

Abstract. Cellular algebras have been defined in a computational way by the
existence of a special kind of basis. We compare them with quasi-hereditary
algebras, which are known to carry much homological and categorical struc-
ture. Among the properties to be discussed here are characterizations of quasi-
hereditary algebras inside the class of cellular algebras in terms of vanishing
of cohomology and in terms of positivity of the Cartan determinant.

1. Introduction

To a large extent, algebraic representation theory of Lie algebras, algebraic
groups and related finite groups deals with finite-dimensional algebras which are
cellular [6] or quasi-hereditary [3]. Group algebras of symmetric groups and their
Hecke algebras are known to be cellular as well as various generalizations (e.g.
Brauer algebras, cyclotomic Hecke algebras, Temperley–Lieb algebras, partition
algebras). Several of these algebras also have been used in other contexts like
topology (invariants of knots or manifolds) or statistical mechanics. Schur alge-
bras associated with semisimple algebraic groups in any characteristic and blocks
of the Bernstein–Gelfand–Gelfand category O associated with semisimple complex
Lie algebras are cellular as well, but they also satisfy the stronger condition to be
quasi-hereditary. A quasi-hereditary structure comes both with desirable numerical
properties (decomposition matrices are square matrices, the number of simple mod-
ules can be read off from a defining chain of ideals) and with homological structure
(finite global dimension, vanishing results on certain cohomology groups, strati-
fication of derived module categories, existence of ‘tilting modules’ and derived
equivalences, possibility to define ‘Kazhdan–Lusztig’ theory), and also there is a
categorical definition (which cannot exist for cellular algebras; see below). Many
cellular algebras, in particular Brauer algebras and partition algebras, are known
to be quasi-hereditary for some choice of parameters and not quasi-hereditary for
some other choice (typically ‘at zero’).

In contrast to quasi-hereditary algebras, whose definition already comes with a
lot of structure, cellular algebras have been defined first in a purely computational
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way, by requiring the existence of a basis with nice multiplicative properties. How-
ever, recently a theory has emerged which discusses homological and categorical
structures in this class of algebras. In particular, this theory clarifies the relation
with quasi-hereditary algebras both from the abstract point of view and from that
of checking examples in practice. The aim of this note is to survey this development.

2. Definitions

From now on, by an algebra we always mean an associative algebra, which is
finite dimensional over a field k.

The original definition of cellular algebras is as follows.

Definition 2.1 (Graham and Lehrer, [6]). An associative k-algebra A is called a
cellular algebra with cell datum (I, M, C, i) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a
finite set M(λ). The algebra A has a k-basis Cλ

S,T , where (S, T ) runs through all
elements of M(λ)×M(λ) for all λ ∈ I.

(C2) The map i is a k-linear anti-automorphism of A with i2 = id which sends
Cλ

S,T to Cλ
T,S .

(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A the product aCλ
S,T can

be written as (
∑

U∈M(λ) ra(U, S)Cλ
U,T ) + r′, where r′ is a linear combination of

basis elements with upper index µ strictly less than λ, and where the coefficients
ra(U, S) ∈ k do not depend on T .

In the following we shall call a k-linear anti-automorphism i of A with i2 = id
an involution of A. In [7] it has been shown that this definition is equivalent to the
following one.

Definition 2.2 ([7]). Let A be a k-algebra. Assume there is an anti-automorphism
i on A with i2 = id. A two-sided ideal J in A is called a cell ideal if and only if
i(J) = J and there exists a left ideal ∆ ⊂ J such that ∆ has finite k-dimension and
that there is an isomorphism of A-bimodules α : J ' ∆ ⊗k i(∆) (where i(∆) ⊂ J
is the i-image of ∆) making the following diagram commutative:

J
α

//

i

��

∆⊗k i(∆)

x⊗y 7→i(y)⊗i(x)

��

J
α

// ∆⊗k i(∆)

The algebra A (with the involution i) is called cellular if and only if there is a
vector space decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i(J ′j) = J ′j
for each j and such that setting Jj =

⊕j
l=1 J ′l gives a chain of two-sided ideals of

A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A (each of them fixed by i) and for each
j (j = 1, . . . , n), the quotient J ′j = Jj/Jj−1 is a cell ideal (with respect to the
involution induced by i on the quotient) of A/Jj−1.

The first definition can be used to check concrete examples. The second defini-
tion, however, is often more handy for theoretical and structural purposes.

Typical examples of cellular algebras are the following: Group algebras of sym-
metric groups, or more general Hecke algebras of type A or even of Ariki–Koike type
(i.e. cyclotomic Hecke algebras) [6], Brauer algebras of types B and C [6] (see also
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[10] for another proof), partition algebras [16] and various kinds of Temperley–Lieb
algebras [6].

Let us also recall the definition of quasi-hereditary algebras introduced in [3].

Definition 2.3 (Cline, Parshall, and Scott [3]). Let A be a k-algebra. An ideal
J in A is called a heredity ideal if J is idempotent, J(rad(A))J = 0 and J is
a projective left (or right) A-module. The algebra A is called quasi-hereditary
provided there is a finite chain 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A of ideals in A
such that Jj/Jj−1 is a heredity ideal in A/Jj−1 for all j. Such a chain is then called
a heredity chain of the quasi-hereditary algebra A.

Examples of quasi-hereditary algebras are blocks of category O [1] and Schur
algebras [14, 5]. The precise relation to highest weight categories is described in
[3].

3. Results

Being interested in structural results, the first question one has to ask is that
of Morita invariance. In the case of quasi-hereditary algebras, Cline, Parshall, and
Scott [3] proved the equivalence of the definition of quasi-hereditary algebras given
above with another one, which is in terms of ‘highest weight categories’ and hence
categorical. Thus Morita invariance follows immediately. For cellular algebras the
situation is more delicate.

Theorem 3.1 ([8]). Let k be a field of characteristic different from two. Then the
notion of ‘cellular algebra’ over k is Morita invariant. This is not true over fields
of characteristic two.

Often, cellular structures can be defined in a characteristic free way, e.g. for
integral group rings of symmetric groups. The second part of the theorem says that,
in general, it is impossible to transfer a cellular structure to a Morita equivalent
algebra (unless two is invertible in the ground ring). In particular, there cannot
exist a purely categorical definition of cellular algebras.

For a quasi-hereditary algebra A, the length of a longest heredity chain equals
the number of isomorphism classes of simple A-modules. Conversely, a cellular
algebra with a cell chain of this length must be quasi-hereditary. However, if the
algebra is cellular, but not quasi-hereditary, then the length of a cell chain is not
an invariant of the algebra any more. An example (of a local algebra of dimension
fourteen) is given in [9].

In the representation theory of finite groups or related topics one often uses the
following hierarchy of finite-dimensional algebras:

{semisimple}
∩

{symmetric}
∩

{weakly symmetric}
∩

{quasi-Frobenius = self -injective}
Here self-injective means that each projective module is injective as well, whereas

weakly symmetric says that the projective cover of any given simple module is the
injective envelope of the same simple module. That is, the permutation top(P ) 7→
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soc(P ) (for P indecomposable projective–injective) is the identity. It is well known
that in general all these inclusions are proper. Within the class of cellular algebras,
however, one inclusion is the identity.

Theorem 3.2 ([12]). Let A be a cellular algebra. If A is self-injective, then it is
weakly symmetric.

The main results we have obtained deal with the question when a cellular algebra
is quasi-hereditary. This question splits into the following problems.

Problem 1. How to characterize the quasi-hereditary algebras among the cellular
ones by a structural property?

Problem 2. How to characterize the quasi-hereditary algebras among the cellular
ones by a numerical property?

Problem 3. Given a cellular algebra with a cell chain of ideals, how to decide
whether it is quasi-hereditary?

The equivalence of (a) and (c) in the following theorem answers the first problem.
Problem 2 is solved by the equivalence between (a) and (d). And the equivalence
between non-(a) and non-(b) tells us how to prove that a cellular algebra is not
quasi-hereditary, i.e. how to solve Problem 3.

Theorem 3.3 ([11]). Let k be a field and A a cellular k-algebra (with respect to
an involution i). Then the following are equivalent:

(a) Some cell chain of A (with respect to some involution, possibly different from
i) is a heredity chain as well, i.e. it makes A into a quasi-hereditary algebra.

(a′) There is a cell chain of A (with respect to some involution, possibly different
from i) whose length equals the number of isomorphism classes of simple A-modules.

(b) Any cell chain of A (with respect to any involution) is a heredity chain.
(c) The algebra A has finite global dimension; i.e., there exists an N ∈ N such

that ExtiA(X, Y ) = 0 for all i ≥ N and for all A-modules X and Y .
(d) The Cartan matrix (recording the composition multiplicities of simple mod-

ules in indecomposable projective modules) of A has determinant one.

The determinant of the Cartan matrix of a cellular algebra always is a positive
integer [11].

The main open cases of cellular algebras to be checked for quasi-heredity were
Brauer algebras [15, 6] and partition algebras [13].

Problem 4. Determine precisely for which choice of parameters a Brauer algebra
or a partition algebra is quasi-hereditary.

Problem 4 is answered by the next two results which apply the equivalence of
(a) and (b) in Theorem 3.3.

Theorem 3.4 ([11]). Let k be any field, fix δ ∈ k, and denote by B(r, δ) the Brauer
algebra on 2r vertices and with parameter δ.

Then B(r, δ) is quasi-hereditary if and only if
(1) δ is not zero or r is odd; and
(2) the characteristic of k is either zero or strictly greater than r.

This extends previous results by Graham and Lehrer [6]; they proved the ‘if’-part
in [6], 4.16. and 4.17.

For partition algebras we have
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Theorem 3.5 ([11]). Let k be any field, fix δ ∈ k, and denote by P (r, δ) the parti-
tion algebra on 2r vertices and with parameter δ.

Then P (r, δ) is quasi-hereditary if and only if δ is not zero and the characteristic
of k is either zero or strictly greater than r.

Martin [13] had shown this in case of characteristic zero and δ 6= 0. In [16], the
‘if’-part of Theorem 3.5 is proved.
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[15] H. Wenzl, On the structure of Brauer’s centralizer algebras. Annals of Math. 128, 173–193
(1988). MR 89h:20059

[16] C. C. Xi, Partition algebras are cellular. To appear in Compos. Math.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Biele-
feld, Germany

E-mail address: koenig@mathematik.uni-bielefeld.de

Department of Mathematics, Beijing Normal University, 100875 Beijing, P. R. China
E-mail address: xicc@bnu.edu.cn


