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1. INTRODUCTION

Textbooks on representation theory of finite groups or related topics
often use the following hierarchy of finite-dimensional algebras:

� 4semisimple
F

� 4symmetric
F

� 4weakly symmetric
F

� 4quasi-Frobenius s self-injectï e

Here ‘‘self-injective’’ means that each projective module is injective as
well, whereas ‘‘weakly symmetric’’ says that the projective cover of any
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given simple module is the injective envelope of the same simple module.
Ž . Ž . ŽThat is, the permutation top P ¬ soc P for P indecomposable projec-

.tive]injective is the identity. It is well known that in general all these
inclusions are proper.

The main result of this note states that inside the class of cellular
Žalgebras which contains group algebras of symmetric groups, various kinds

w x.of Hecke algebras, Brauer algebras, Temperley]Lieb algebras, etc.; see 2
the third one of these inclusions is an identity.

THEOREM 1.1. Let A be a cellular algebra o¨er a field. If A is self-injec-
tï e, then it is weakly symmetric.

We show by examples that the other inclusions given above still are
proper, if one restricts one’s attention to cellular algebras.

As a consequence of the theorem we obtain

COROLLARY 1.2. Let A be a self-injectï e cellular algebra o¨er a field. Let
P be an indecomposable projectï e A-module. Then either P is simple or it has

Ž .a cell filtration of length at least two. If a cell s standard module D is
projectï e, then it must be simple.

In Section 2 we recall the definition of cellular algebras, and then we
prove Theorem 1.1. Moreover, we show by examples that the other
inclusions given above are proper. In Section 3 we discuss some other
properties of self-injective cellular algebras. This includes a proof of
Corollary 1.2.

2. PROOF OF THEOREM AND SOME EXAMPLES

We first have to recall the two equivalent definitions of cellular algebras
w x Ž . w xgiven in 2 and later in 3 .

Ž .For simplicity we stick to the ground ring being an arbitrary field k. By
algebra we always mean a finite-dimensional associative algebra with unit.

Ž w x.DEFINITION 2.1 Graham and Lehrer, 2 . An associative k-algebra A
Ž .is called a cellular algebra with cell datum I, M, C, i if the following

conditions are satisfied:

Ž .C1 The finite set I is partially ordered. Associated with each l g I
Ž . l Ž .there is a finite set M l . The algebra A has a k-basis C where S, TS, T

Ž . Ž .runs through all elements of M l = M l for all l g I.
Ž . 2C2 The map i is a k-linear antiautomorphism of A with i s id,

which sends C l to C l .S, T T , S
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Ž . Ž .C3 For each l g I and S, T g M l and each a g A the product
l Ž Ž . l .aC can be written as Ý r U, S C q r 9, where r 9 is a linearS, T U g M Žl. a U, T

combination of basis elements with upper index m strictly smaller than l,
Ž .and where the coefficients r U, S g k do not depend on T.a

In the following we shall call a k-linear antiautomorphism i of A with
2 w xi s id an in¨olution of A. In 3 it has been shown that the previous

definition is equivalent to the following one.

Žw x.DEFINITION 2.2 3 . Let A be a k-algebra. Assume there is an
antiautomorphism i on A with i2 s id. A two-sided ideal J in A is called

Ž .a cell ideal if and only if i J s J and there exists a left ideal D ; J such
that D has finite k-dimension and that there is an isomorphism of

Ž . Ž Ž . .A-bimodules a : J , D m i D where i D ; J is the i-image of D ,k
making the following diagram commutative:

a 6 Ž .J D m i Dk

6 6 Ž . Ž .xmy¬ i y mi xi

a 6 Ž .J D m i Dk

Ž .The algebra A with the involution i is called cellular if and only if
X X X Ž .there is a vector space decomposition A s J [ J [ ??? [ J for some n1 2 n

Ž X. X j Xwith i J s J for each j and such that setting J s [ J gives a chainj j j ls1 l
Žof two-sided ideals of A: 0 s J ; J ; J ; ??? ; J s A each of them0 1 2 n

. Ž . Xfixed by i and for each j j s 1, . . . , n the quotient J s J rJ is a cellj j jy1
Ž .ideal with respect to the involution induced by i on the quotient of

ArJ .jy1

Ž .The modules D j , 1 F j F n, are called standard modules of the
cellular algebra A, and the above chain in A is called a cell chain.
Ž w x .Standard modules are called cell modules in 2 .

Before we can prove Theorem 1.1 we have to demonstrate a lemma.

Ž . ŽLEMMA 2.1. Let A be an algebra o¨er a field with cell ideal J with
.respect to some in¨olution i . Then all indecomposable projectï e]injectï e left

A-ideals intersecting nontrï ially with J are isomorphic.

Proof. Let P be an indecomposable projective]injective left A-ideala
which intersects J nontrivially. We can write P as Ae for some idempo-

2 Ž .tent e s e g A. By definition, J has the form J , D m i D . Hence thek
Ž .intersection Ae l J is isomorphic to D m i D e, which is a direct sum ofk



KONIG AND XI¨54

copies of D. But the socle L of P is simple. Hence J l Ae has precisely
one direct summand D, and this module must have a simple socle which is
isomorphic to L as well. Thus if D is a submodule of an injective module,
say I, then I must be isomorphic to P.

Proof of 1.1. We fix a self-injective cellular algebra A over a field k.
We fix a cell chain 0 s J ; J ; ??? ; J s A, and we fix the involution i.0 1 n
We write the identity as a complete sum 1 s Ý e of pairwise orthogonalj j
nonequivalent idempotents, and we decompose the algebra into A s

Ž[ e Ae . Note that the idempotents e are not required to be primitive.j l jj, l
We only have to separate the equivalence classes of idempotents from

.each other.
We denote the indecomposable projective left A-ideals by P , . . . , P ,1 n

where the ordering is compatible with the partial order in the cell struc-
ture in the following way: let P and P be two projective left ideals, anda b
let J be the smallest ideal in the cell chain intersecting P nontrivially.a
Then if J intersects P nontrivially, we must have b F a. In fact, let J s Jb s
be the smallest ideal in the cell chain with the property that J l P / 0a

Žand consider the factor algebra A [ ArJ . We denote by J respec-sy1
. Ž .tively, a the image of J respectively, a g A under the canonical surjec-

tive mapping from A to ArJ . Thus J is a cell ideal in A, and it gives ussy1
a standard module D. Since P l J s 0, the projective A-modulea sy1
P s Ae is also a projective-injective A-module, where e is a primitivea a a
idempotent element in A. Thus we are in the situation of Lemma 2.1,
which implies D cannot be a submodule of any other injective A-module.
This implies that if P , b / a, is another indecomposable projective]injec-b
tive A-module with P l J / 0, then P l J / 0, and hence the re-b b sy1
quired compatibility is possible.

By assumption, each P is injective, i.e., P , I , where the indexa a s Ža.
Ž .s a is given by some permutation s and I is the injective hull of thes Ža.

Ž . Ž .simple module top P . We want to show that a s s a for every a. Wea
proceed inductively.

Induction start: a s 1. By assumption J s J intersects P nontrivially.1 1
Thus D has a simple socle L , and this socle is generated by an element1 s Ž1.

Ž .x which is a path from 1 to s 1 . This means that x can be written as a1 1
product y ??? y ??? y , where each element y is ins Ž1., l l , l l , 1 l , l1 j jq1 m j jq1

e ? rad A y rad2 A ? e .Ž . Ž .Ž .l lj jq1

ŽNote that the ‘‘arrows’’ y in such a path start and end at equivalencel , lj jq1

classes of primitive idempotents, not at primitive idempotents. Note,
moreover, that the order in the product is chosen in such a way that the
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Ž .starting point 1 is at the very right and the ending point s 1 is at the very
. Žw x .left. It is known 3 , Proposition 5.1 that the involution i sends an

idempotent to an idempotent in the same equivalence class. Thus the
Ž . Ž .i-image i x is a path from s 1 to 1 in the same sense. But J intersects1

Ž .all other projective left or right ideals trivially; hence fJ s Jf s 0 for all
primitive idempotents f with Af ` P , since, for example, fJ / 0 would1

Ž .imply J l fA / 0, a contradiction. Since J is fixed by i, the element i x1

must be in J again. This shows that the socle of J has a direct summand
isomorphic to L , the simple quotient of P . But we know already that the1 1

socle of J is a direct sum of copies of L since P , I . This impliess Ž1. 1 s Ž1.
Ž .1 s s 1 .

Induction step: We have to consider the case of P . We know alreadyj
Ž . Ž .that top P s soc P for 1 F i - j. Hence s j must be greater than ori i

equal to j. Let J be the smallest ideal in the cell chain with P l J / 0.s j s

Let A s ArJ . As above we get that the standard module D correspond-sy1

ing to the cell ideal J s J rJ can be considered as a submodule of Ps sy1 j

Ž .with a simple socle L and that J intersects the projective]injectives Ž j.
Žmodules P , . . . , P trivially. Note that all the P , with t G j q 1, havejq1 n t

.trivial intersection with J , so they are A-modules as well. The socle L ofs
Ž .P is generated by an element x which is a path as defined above from jj

Ž .to s j .
We claim that multiplying x on the right by any radical element gives

zero. In fact, such a right multiplication defines a homomorphism w from
Ž .P to A, which has an image in rad A . If w is an injective map, then itsj

Ž .image being isomorphic to the injective module P splits off. Thisj

contradicts the choice of w. Hence w cannot be injective, and its kernel
Žmust contain the socle of P , which proves the claim. Of course, multipli-j

.cation on the left also gives zero, since x is in the socle.
Ž .Hence multiplying i x on the left by any radical element of A also

gives zero, which means that it must be in the socle of A. Since J is fixed
Ž .by i, the element i x stays inside J, the socle of which is a direct sum of

Ž . Ž .copies of L. But this implies that i x is a path ending at s j , whereas by
Ž .construction the path should end at j. Therefore j equals s j .

The following examples show that the theorem is optimal. More pre-
cisely, the other two inclusions discussed in the Introduction are proper.
Furthermore, the class of self-injective cellular algebras, which are not
semisimple, is properly contained in the class of cellular algebras of
infinite global dimension.

Group algebras of symmetric groups provide examples of cellular alge-
bras, which are self-injective but not semisimple.
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² :EXAMPLE 1. Let k be a field and let l g k. Let A s k a, b, c, d rI,
where I is generated by a2, b2, c2, d2, ab, ac, ba, bd, ca, cd, db, dc, cb y
lbc, ad y bc, da y bc. As a left module over itself this algebra looks as
follows:

1

a b c d

bc

Then this algebra is symmetric if and only if l s 1. Indeed, suppose f :
A ª k is a nonzero symmetric linear from whose kernel does not contain
any nonzero left ideal in A. Since the socle of A is one-dimensional and is

Ž . Ž . Ž .spanned by bc, we have 0 / f bc s f cb s l f bc and l s 1. Con-
versely, if l s 1, then we define a nondegenerate linear form f by
Ž . Ž . Ž . Ž . Ž . Ž .f 1 s f a s f b s f c s f d s 0 and f bc s 1, and this makes A a

symmetric algebra for l s 1.
Moreover, there is an involution i on A, namely, i fixes a and d, but

interchanges b and c. With respect to this involution the algebra A is a
cellular algebra. Let us exhibit a cell chain J : J : J s A of A by giving1 2 3
a basis in square form:

a, b ,J : bc; J rJ : J rJ : 1.1 2 1 3 2c, d;
w xNote that we can use a result in 4 to verify that this chain is really a cell

chain of A.
If we choose l different from 1, then we get a cellular algebra which is

weakly symmetric but not symmetric.

EXAMPLE 2. Now, we give an example of a cellular algebra that has
infinite global dimension but is not self-injective.

Consider the algebra A, which is given by the quiver

with relations g 2 s ab , ba s 0, ga s 0, bg s 0.
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Thus A has the following decomposition as a left module over itself:

1
A s 1 2 [ 2.A

1 1

Clearly, this algebra has infinite global dimension and is cellular, but it is
not a self-injective algebra.

3. PROPERTIES OF SELF-INJECTIVE CELLULAR
ALGEBRAS

Let us first prove Corollary 1.2.

ŽPROPOSITION 3.1. Let A be a cellular algebra o¨er a field k with respect
.to an in¨olution i , let P be an indecomposable projectï e]injectï e A-ideal

with simple top L, and let J be a cell ideal with associated standard module D.
Suppose the intersection J l P is not zero. Then the composition multiplicity
w x Ž .D : L equals one and End L s k.A

Ž .Proof. We can write the bimodule J as J , D m i D and P s Ae fork
some primitive idempotent e g A. Then J l P equals Je, which is isomor-

Ž . Ž .phic as left module to D m i D e. Denote by l the k-dimension of eD,k
Ž . Ž w x .which equals that of i D e by 3 , Proposition 5.1 . Then J l P is a direct

sum of l copies of D. But being contained in the injective module P, it
must have a simple socle. Hence l equals one. By definition l also equals
w x Ž Ž ..D : L ? dim End L .k A

Proof of Corollary 1.2. Let A and P be as in the statement of Corollary
1.2. Denote by L the simple top of P. By Theorem 1.1, L is isomorphic to
the socle of P. Since A is cellular, its projective module P has a cell
filtration. Assume this filtration has length one, that is, P equals a
standard module, say D. Then by Proposition 3.1, the composition multi-

w xplicity D : L equals one. But L occurs both as top and as socle; thus P
must be simple.

For a cellular self-injective algebra, we also have the following property.

� l < Ž .4PROPOSITION 3.2. Let C s, t g M l be a cell basis of a cellulars, t
algebra A. If A is self-injectï e, then AC l is indecomposable for a minimals, t

Ž .element l and s, t g M l .

Ž .Proof. Since A is self-injective, we have that Hom Ax, I s xA l IA
Ž l .for any left ideal I in A and x g A. In particular, End AC ,A s, s

C l A l AC l , kC l , since l is minimal. This shows that AC l iss, s s, s s, s s, s
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indecomposable. Now our proposition follows immediately from the fol-
lowing fact, which holds true for all cell ideals.

LEMMA 3.3. Let A be a k-algebra with an in¨olution i. Suppose J is a cell
� < 4ideal in A, with a cell basis C 1 F s, t F n . Then AC , AC for all j, s,s, t j, s j, t

and t.

Here, a cell basis of J is that subset of the basis C l given by Definitions, t
2.1, which spans J. That is, l g I is chosen minimal.

Ž . t rProof. We define r s C , C , . . . , C , the column vector of thej j, 1 j, 2 j, n
elements C , C , . . . , C . Then for any element a g A we havej, 1 j, 2 j, n

aCj , 1

aCj , 2
ar s s r 1, j r q r 2, j r q ??? qr n , j r ,Ž . Ž . Ž ..j a 1 a 2 a n..� 0aCj , n

Ž .where r j, l is an element in k for all j, l. Now we define a mappinga

w : AC ª AC , r l , j C ¬ r l , j C .Ž . Ž .Ý Ýj , s j , t a l , s a j , t
l l

Since J is a cell ideal, this mapping is well defined. Clearly, it is injective
and surjective. Moreover, w is also an A-homomorphism by the definition
of a cell ideal.

Under the assumption of A being self-injective, we can say more about
this situation.

PROPOSITION 3.4. If A is a self-injectï e algebra with an in¨olution i and J
� 4 Ž .is a cell ideal with a cell basis C such that i C s C , then eachs, t s, t t, s

nonzero homomorphism from AC to AC is an isomorphism.s, s t, t

Ž .Proof. Since A is self-injective, we have that Hom AC , AC (A s, s t, t
C A l AC ; kC . Let f be a nonzero homomorphism from ACs, s t, t s, t 0 s, s
to AC . Then C A l AC s kC and there are two elements a, b g At, t s, s t, t s, t
such that C a s C s bC . We define an A-homomorphism f : ACs, s s, t t, t s, s
ª AC by xC ¬ xC a. It is clear that f is an A-homomorphism andt, t s, s s, s
that f is a scalar multiple of f. Thus it is sufficient to show that f is an0

Ž .isomorphism. Now we define g : AC ª AC by yC ¬ yC i b . Onet, t s, s t, t t, t
can check that g is well defined and is obviously an A-homomorphism.

Ž . Ž . Ž .Since C s bC s Ý r l, t C , we have that r s, t s 1, r l, t s 0 fors, t t, t l b l, t b b
Ž . Ž . Ž . Ž .l / s and bC i b s C i b s Ý r j, t C s r s, t C . This impliest, t s, t j b s, j b s, s
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that the composition of f and g is a nonzero endomorphism of AC .s, s
Ž .Thus the statement follows from End AC ( k.A s, s

Many known examples of quasi-hereditary algebras arise as endomor-
phism rings of sums of modules satisfying certain ordering conditions. This
leads us to the following problem.

Question. Let A be a weakly symmetric cellular algebra. When is the
Ž l .endomorphism algebra End [ AC a quasi-hereditary alge-S, Slg L , S g M Žl.

bra?
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