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Double centralizer properties play a central role in many parts of algebraic Lie
theory. Soergel’s double centralizer theorem relates the principal block of the
Bernstein�Gelfand�Gelfand category OO of a semisimple complex Lie algebra with

Žthe coinvariant algebra i.e., the cohomology algebra of the corresponding flag
.manifold . Schur�Weyl duality relates the representation theories of general linear

Ž .and symmetric groups in defining characteristic, or via the quantized version in
nondefining characteristic. In this paper we exhibit algebraic structures behind
these double centralizer properties. We show that the finite dimensional algebras
relevant in this context have dominant dimension at least two with respect to some
projective�injective or tilting modules. General arguments which combine methods

Ž .from ring theory QF-3 rings and dominant dimension with tools from representa-
Ž .tion theory approximations, tilting modules then imply the validity of these

double centralizer properties as well as new ones. In contrast to the traditional
Ž .proofs e.g., by the fundamental theorems of invariant theory no computations are

necessary. � 2001 Academic Press
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1. INTRODUCTION

The aim of this paper is to give unified and computation-free proofs for
the following two theorems:

Ž � �.THEOREM 1.1 Soergel 21, Struktursatz 9 . Let � be a semisimple
complex Lie algebra and let A be the finite dimensional algebra of some block
of the Bernstein�Gelfand�Gelfand category OO. Then there is an indecompos-
able projecti�e�injecti�e A-module Ae with local endomorphism ring eAe such
that there is the following double centralizer property:

A � End Ae .Ž .e A e

Ž �The local algebra eAe has a combinatorial description see 21, Endo-
�.morphismensatz 7 in terms of invariant theory. In the most important

case, that of the principal block, eAe actually equals the coinvariant
algebra which is isomorphic to the cohomology algebra of the associated
flag manifold. The structure of Ae as an eAe-module is combinatorially

� �described in 21 . Therefore, the theorem states that the whole algebra A
can be recovered from combinatorial data.

ŽTHEOREM 1.2 Schur, Green, Jimbo, Dipper and James, Du et al.:
.Schur�Weyl duality . Let n and r be two natural numbers and let k be an

Ž .infinite field of any characteristic. Let the general linear group GL k actn
Ž n.�r Ž n.diagonally from the left on E � k with natural action on k and let the

symmetric group � act from the right by place permutations. Denote byr
Ž . ŽS n, r the algebra generated by the image of the GL -action the ‘‘Schurk n

.algebra’’ .

Ž .a Suppose n � r. Then there is a double centralizer property

S n , r � End EŽ . Ž .k k � r

k� � End E .Ž .r S Žn , r .k

Ž .b Suppose n � r. Denote by B the quotient of k� modulo the kernelr
of the action of k� on E. Then there is a double centralizer propertyr

S n , r � End EŽ . Ž .k B

B � End E .Ž .S Žn , r .k

Ž . Ž . Ž .c Parts a and b remain true if one replaces the Schur algebra
Ž . Ž .S n,r by the quantized Schur algebra S n, r and the group algebra k� ofk q r

Ž . Ž .the symmetric group by the Hecke algebra HH r q � 0 of type A.q
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Schur proved this result in characteristic zero in order to relate the
representation theories of the general linear and the symmetric groups.
There are various proofs available for the general assertion; in particular,
it can be seen as a reformulation of the first and the second fundamental

Ž � �theorem of invariant theory for general linear groups see 5 for a
.characteristic free approach . The quantized version is due in the ‘‘generic

� � � �case’’ independently to Jimbo 19 and Dipper and James 7 and in full
� � Ž � �.generality to Du et al. 11 and at roots of unity to Du 10 .

Our main observation is that both the blocks of category OO appearing in
Ž .Soergel’s result and the classical or quantized Schur algebras with n � r

have dominant dimension at least two. This means that such an algebra A
is the first term in an exact sequence 0 � A � T � T , where both T1 2 1
and T are projective�injective A-modules. In the case of category OO this2
follows from well-known elementary properties; in the other case, this
observation is almost trivial.

For rings of dominant dimension at least two, Tachikawa and others
developed a general theory focusing on examples rather far away from
algebraic Lie theory. However, the technology of their theory fits quite
well to the examples we are interested in, and we derive in a short and
elementary way a criterion for double centralizer properties which implies
the first theorem and the n � r part of the second one.

Ž .In the case n � r this approach cannot work; in fact, S n, r need notk
have a faithful projective�injective module. Therefore, we have to general-
ize our technology appropriately to handle this case as well. It turns out
that the right way to do that is as follows. Instead of projective�injective

Ž .modules we will use partial tilting modules, that is, self-dual modules
which are filtered by Weyl modules. Again we use an exact sequence

�
0 � A � T � T , but now T and T are tilting modules. We have to1 2 1 2

Ž .require that the map � is an add T -approximation in the sense of1
� �Auslander and Reiten 1 . This condition is automatic in the above case of

Ž .projective�injective modules, whereas it is a necessary restriction in the
more general situation.

Altogether, we have the following result:

Ž .THEOREM 1.3. a A block of category OO has dominant dimension at
least two.

Ž . Ž . Ž .b A classical or quantized Schur algebra S n, r with n � r has
dominant dimension at least two.

Ž . Ž . Ž .c For a classical or quantized Shur algebra S n, r with n � r there
Ž .is a tilting module T such that S n, r has T-dominant dimension at least two.
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In each of the situations of the theorem, our criterion 2.8 then implies
the validity of a double centralizer property. This criterion relates a
resolution from the definition of dominant dimension with an approxima-
tion property and a description of the double centralizer as a left module
which is given in Theorem 2.7.

In the case of Schur�Weyl duality we get a stronger result than just the
Žexistence of a double centralizer property with a Schur algebra on the left

.hand side and an endomorphism ring on the right hand side . In fact, the
right hand side can be identified with a quotient of the group algebra of a
symmetric group. This algebra obviously is contained in the endomorphism
ring, and the problem is to prove that the endomorphism ring cannot be
larger. Our results give an ‘‘upper bound’’ for the endomorphism ring in
question. In the case of category OO, the dimension of the endomorphism
ring is clear, and unfortunately our methods do not yield any additional
information about the endomorphism ring appearing on the right hand
side of the double centralizer property.

Our proof of the double centralizer property for category OO immediately
� �carries over to another situation studied in 13�15 . There a generalized

category OO has been investigated where generalized Verma modules are
produced by inducing infinite dimensional modules over a parabolic subal-

� �gebra of the given Lie algebra. Our method reproves Theorem B in 14
� � Žand one assertion in the more general Main Theorem in 15 both stating

.the validity of a double centralizer property . The finite dimensional
associative algebras arising in this situation are not quasi-hereditary any-
more, but our method still works.

Here is an outline of this paper. Section 2 collects definitions and facts
from ring theory, in particular on QF-3 rings, dominant dimension, and
approximations. Theorem 2.7 describes the double centralizer algebra as a
certain submodule. From this we deduce Theorem 2.8 which is our tool for
proving double centralizer properties. In the case of projective�injective
modules this specializes to Corollary 2.10; in the case of tilting modules we
get Theorem 2.15. In order to pass information from the case n � r in
Schur�Weyl duality to the case n � r we also need to compare endomor-
phisms of certain tilting modules. This is done by Theorem 2.16.

Section 3 discusses the examples. First, in 3.1 we show that blocks of
category OO have dominant dimension at least two, which implies Soergel’s

� � � �result and also Theorem B in 14 and part of Theorem 1 in 15 . Then, in
Ž .3.2 we explain how classical or quantized Schur�Weyl duality for n � r

can be demonstrated in the same way. In Section 3.3 we settle the case
n � r. Section 3.4 explains how by the same method we get in fact a large
supply of new double centralizer properties from the classical situations.
Schur�Weyl duality as stated above then becomes just an example of a
whole series of double centralizer properties.
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2. TECHNIQUES

In this section we collect the necessary definitions and results from ring
theory and from representation theory, and we derive our tools for
verifying double centralizer properties.

Throughout, our algebras are finitely generated and free over some
commutative noetherian domain k and they are associative with unit.
Modules are finitely generated, and they are left modules unless stated
otherwise. A k-space is a finitely generated free k-module of finite rank.
Ž . Ž .In the applications, k is a field. By add M of a module M we mean the
full subcategory of direct summands of finite direct sums of M.

The first and the second subsection follow quite closely the classical
theory of dominant dimension and QF-3 rings, as developed by Tachikawa

Ž � �.and others see 16, 22, 23 .

2.1. Dominant Dimension and QF-3 Rings

DEFINITION 2.1. Let A be an algebra and let T be an A-module. Let
X be an A-module. Then the dominant dimension of X relative to T ,

Ž .T 	 domdim X , is the supremum of all n 
 � such that there exists an
exact sequence

0 � X � T � T � ��� � T1 2 n

Ž .with all T in add T .i
If T is a faithful projective�injective module, then the symbol T is

dropped in the notation. The left dominant dimension of the algebra itself
Ž .is defined to be domdim A .A

DEFINITION 2.2. The algebra A is left QF-3 if and only if there exists a
faithful projective�injective A-module.

QF-3 rings have been introduced by R. M. Thrall as one of several
generalizations of quasi-Frobenius rings.

LEMMA 2.3. Let X be a faithful projecti�e�injecti�e A-module. Then e�ery
indecomposable projecti�e�injecti�e A-module P is isomorphic to a direct
summand of X. In particular, all endomorphism rings of faithful projecti�e�
injecti�e modules are Morita equi�alent.

Proof. Since X is faithful, there is an inclusion 0 � A � X n for some
n 
 � which implies the statement.

For a QF-3 algebra we do not have to distinguish between the various
kinds of dominant dimensions relative to projective�injective modules:
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� �PROPOSITION 2.4 23, 7.7 . Let A be left QF-3 with minimal faithful left
ideal Ae. Then the left dominant dimension of A coincides with its dominant
dimension relati�e to Ae. Moreo�er, the left dominant dimension coincides
with the right dominant dimension.

2.2. Approximations and Double Centralizers

DEFINITION 2.5. Let A be an algebra and let CC be a subcategory of
A-mod. Let M be an A-module. Then a homomorphism f : M � C is
called a left CC-approximation of M if and only if C is an object of CC and

Ž . Ž . Ž .the induced morphism Hom f , 	 : Hom C, D � Hom M, D is anA A
epimorphism for all objects D in CC.

Ž .We will concentrate on the special case of CC being the category add T
for a faithful module T.

Ž .If A is a finite dimensional algebra, then the existence of add T -
approximations is easy to establish in the following way. Let M be the
module to be approximated. Choose a basis f , . . . , f of the k-space1 n

Ž .f , . . . , f1 n n�Ž .Hom M, T . Then any map M � T factors through M T ,A
Ž .which thus is a left add T -approximation of M.

Note that such an argument forces us to replace T by some T n. This
does not cause a problem for the double centralizer properties since their
validity is in fact Morita invariant:

� �PROPOSITION 2.6 23, 10.1 . Let A and B be algebras and suppose there is
a Morita equi�alence F: A-mod � B-mod sending a module M to N. IfA B
there is a double centralizer property on M, i.e., the canonical map A �A

Ž .End M is surjecti�e, then there is also a double centralizer property onEnd ŽM .A

N.B

The following result is a direct generalization of a known fact for the
Ž � �.case of projective�injective modules see 16, proof of Theorem 2.29 . We

will need only a part of it, namely the claim that the double centralizer C
is contained in the module Q. That is, there is a chain of A-modules
A � Q � T.

THEOREM 2.7. Let A be an algebra and let T be an A-module. Suppose
�Ž .there exists an injecti�e left add T -approximation 0 � A � T. Denote by B

Ž .the centralizer algebra B � End T and by C the double centralizer C �A
Ž . Ž .End T . Then C can be identified as an A-module with a subspace of T asB

follows:

C � Q � ker f .Ž .�
Ž .f
B , f A �0
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ŽProof. We regard A as a subset of T via � which we notationally treat
.as an inclusion . By definition, Q is an A-submodule of T. Denote by B0

the subspace of B consisting of maps which are zero on A.
By assumption, T is a faithful A-module. Thus A is contained in the

Ž .double centralizer C. There is a left B- and right C- hence also right A-
bimodule structure on T. We write maps on appropriate sides to distin-
guish these two structures.

Ž .We define two k-linear maps, � : B � T with b � 1 b and � : C � T
Ž .with c � c 1 .

Claim. � is surjective. In fact, choose an element t 
 T. There is a
Ž .homomorphism � : A � T sending 1 to 1 � � t. Since � : A � T is an

approximation, � factors through T , thus defining an element b 
 B
which sends 1 to t.

Claim. � is injective. In fact, pick an element c 
 C with c � 0. Its
Ž .�-image is c 1 . Since c is not zero, there exists an element t 
 T such

Ž . Ž .that c t � 0. By the previous claim we can write t � � b for some
Ž . Ž Ž ..b 
 B. Using the bimodule structure of T we have: 0 � c t � c � b �

ŽŽ . . Ž Ž .. Ž .c 1 b � c 1 b; hence c 1 cannot be zero.

Claim. The image of � is contained in Q. In fact, let f 
 B . Choose0
Ž . Ž .c 
 C. We have to show � c � c 1 is in the kernel of f. Again using the

Ž Ž .. ŽŽ . .bimodule structure on T we have c 1 f � c 1 f which is zero because
of 1 
 A.

Thus � identifies C with a subspace of Q. Clearly, � preserves the left
A-module structure.

It remains to show that the image of � is all of Q. Pick an element
Ž . Ž .q 
 Q. Define a linear map � : B � T by sending b to � b � q b. By

construction, � sends B to zero. But B is the kernel of the epimorphism0 0
ŽŽ . .�. Hence there is a factorization 	: T � T with � � �	; that is, 	 1 b

Ž .� q b for all b 
 B. Clearly, 	 is an element of C. Denote by id the
Ž . Ž . ŽŽ . . Ž .identity map on T. Then � 	 � 	 1 � 	 1 id � q id � q. Therefore,

q is in the image of � .

Now the T-dominant dimension of A comes into play, in a way familiar
� �from Tachikawa’s theory 23 .

THEOREM 2.8. Let A be an algebra and let T be an A-module. Suppose
�

Ž .there exists an injecti�e left add T -approximation 0 � A � T which can be
� 
 n Žcontinued to an exact sequence 0 � A � T � T for some n 
 � this

.implies that A has T-dominant dimension at least two . Denote by B the
Ž .centralizer algebra B � End T and by C the double centralizer C �A

Ž .End T . Then C equals A.B
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Proof. This is an application of Theorem 2.7. Denote by p for i �i
1, . . . , n the projection of T n onto the ith component. Then 
 p is in Bi
and A can be written as intersection of the kernels of all the 
 p .i

Ž Ž .The two conditions in the theorem left add T -approximation and
.T-dominant dimension at least two are also necessary for the natural

morphism from A to C to be an isomorphism. This follows from results of
Ž � �.Auslander and Solberg see 2, 2.1 who also provide an alternative proof

of Theorem 2.8.
Ž .To check the property of a given � to be an add T -approximation

might be hard. In all our applications we check a stronger property,
namely that of being an approximation with respect to a much larger

Žcategory, which is either the category of all modules and then the
.approximation is just an injective hull or that of modules having a certain

filtration.
Ž .Our previous discussion at the beginning of this subsection implies the

following: Suppose we are given a faithful T and A has finite dimension.
ŽThen we can always modify the situation without losing anything with

.respect to the double centralizer property we are aiming at in such a way
that we have an approximation; i.e., the first condition in Theorem 2.8 is
satisfied. The real difficulty lies in checking the second condition, that is,

Ž .in embedding the cokernel of � into some object from add T . If T is
projective�injective, then the obstruction for doing this can be formulated
in terms of cohomology as follows.

PROPOSITION 2.9. Let T be a projecti�e�injecti�e A-module. Call a simple
Ž .A-module of the first kind if it occurs up to isomorphism in the socle of T ,

and call it of the second kind otherwise. Then there exists an exact sequence
� 
n m0 � A � T � T for some n, m 
 � if and only if the following two

conditions are satisfied:

Ž .1 All simple modules in the socle of A are of the first kind.
Ž . 1 Ž .2 For all simple modules L of the second kind, Ext L, A �anishes.A

If T is not projective�injective, the obstruction still can be formulated in
a similar way, using some relative cohomology. However, for the applica-
tions we have in mind, this does not help.

2.3. Double Centralizer Properties on Projecti�e�Injecti�e Modules

At first, we discuss the easiest case of T being a faithful projective�in-
jective module. Combining Theorem 2.8 with Lemma 2.3 and Proposition
2.4 we get back the following result equivalent to a theorem of Tachikawa.
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Ž � Ž .�.THEOREM 2.10 see 23, 7.1 . Let A be left QF-3 with minimal faithful
left ideal Ae. Then the following two assertions are equi�alent:

Ž . Ž .1 Ae 	 domdim A � 2
Ž . Ž .2 There holds a double centralizer property A � End Ae .e A e

Ž .An easier and known special case is the following:

COROLLARY 2.11. Let A be a self-injecti�e algebra, let M be a faithful
Ž .A-module, and let B � End M . Then there is a double centralizer propertyA

Ž .A � End M .B

Ž .Proof. Since A is self-injective and M is faithful we get A 
 add M .
Ž .If I is an injective A-module, then Hom M, I is projective and injectiveA

as a left B-module.
Choose an injective resolution of M, say 0 � M � I � I � ��� .A 0 1

Ž .Applying Hom M, 	 yields an exact sequence of B-modulesA

0 � Hom M , M � Hom M , I � Hom M , I ,Ž . Ž . Ž .A A 0 A 1

Ž . Ž .with Hom M, I and Hom M, I both being projective and injectiveA 0 A 1
over B. Thus B has dominant dimension at least two, and Theorem 2.10
applies.

� �Another proof of this corollary can be found in 6, 59.6 . We remark that
some of the examples considered below fit into this context. However, in
the case of category OO an application of Corollary 2.11 would not yield the
desired result, since it does not tell us anything about the algebra B.
Therefore we need the more sophisticated criterion 2.10.

2.4. Double Centralizer Properties on Tilting Modules

Now we proceed to a more general criterion. This is based on the notion
� �of tilting modules for quasi-hereditary algebras as developed by Ringel 20

Ž � �.based on earlier work of Auslander and Reiten 1 .

� �DEFINITION 2.12 4 . Let A be a finite dimensional algebra over a field,
and let � be the set of isomorphism classes of simple A-modules. Choose

Ž .representatives L � of the elements of �. Let � be a partial order on I.
Ž .Then A, � is called quasi-hereditary if and only if the following asser-

tions are true:

Ž .a For each � 
 �, there exists a finite dimensional A-module
Ž . Ž . Ž . � with an epimorphism  � � L � such that the composition factors
Ž .L 	 of the kernel satisfy 	 � �.

Ž . Ž . Ž .b For each � 
 �, a projective cover P � of L � maps onto
Ž . Ž . � such that the kernel has a finite filtration with factors  	 satisfying

	 � �.
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Ž .The module  i is called a standard module of index i. Injective
Ž . Ž . ŽA-modules are filtered by costandard modules � i which are dual to the

Ž op ..standard modules of the quasi-hereditary algebra A , � .
Ž .By FF  we denote the full subcategory of A-mod which has objects

Ž .filtered by standard modules. By FF � we denote the full subcategory of
A-mod which has objects filtered by costandard modules.

Ž . Ž .The two categories FF  and FF � are orthogonal to each other, in the
Ž . Ž . i Ž .following sense. Let X be in FF  and Y in FF � . Then Ext X, YA

vanishes for all i � 0.

Ž � �. Ž .THEOREM 2.13 Ringel 20 . Let A, � be a quasi-hereditary algebra as
Ž .abo�e. Then, for each � 
 �, there is a unique up to isomorphism

Ž .indecomposable module T � which has both a filtration with subquotients of
Ž . Ž Ž . .the form  	 for 	 � � and  � itself occurring with multiplicity one

Ž . Žand another filtration with subquotients of the form � � for 	 � � and
Ž . .� � itself occurring with multiplicity one .

Ž .The module T � is characterized by its ‘‘highest weight’’ �; that is, it is
Ž . � Ž . Ž .�unique among the T 	 with the property that T � : L � � 1 and

� Ž . Ž .�T � : L � � 0 for � � �.
In the typical applications, A-mod has always a duality fixing simple

Ž .modules. Then T � is characterized by the following three properties: it is
indecomposable, it is self-dual, and it has a filtration by standard modules
where � is the largest occurring index.

� � Ž .In 20 the direct sum T �  T � is called the characteristic tilting�
 �
Ž .module of A, � . Slightly abusing language, the indecomposable modules

Ž .T � , or any sum of those, nowadays are just called ‘‘tilting modules.’’ A
full tilting module is one which contains at least one direct summand from
each isomorphism class of indecomposable tilting modules.

Projective�injective modules are examples of tilting modules in this
sense.

A full tilting module is a ‘‘generalized tilting module’’ in the sense of
representation theory of finite dimensional algebras: it has finite projective
dimension, it admits no self-extensions, and it cogenerates the algebra.

Ž .The tilting module T � comes with two important exact sequences
Žwhich relate it to the theory of left and right approximations developed by

� �.Auslander and Reiten; see 1 ,

0 �  � � T � � C � 0,Ž . Ž .

where C has a filtration by standard modules, and

0 � K � T � � � � � 0,Ž . Ž .
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where K has a filtration by costandard modules. Each sequence can be
Ž .used as a starting point for constructing T � by iterated universal exten-

Ž � �.sions see 20 .
Ž . Ž . Ž .The module T � is the left FF � -approximation of  � and the right

Ž . Ž .FF  -approximation of � � . This follows from the exact sequences above
together with the following well-known criterion:

Ž . Ž .LEMMA 2.14. Let A, � be quasi-hereditary. Let M be in FF  and let
Ž . Ž . Ž .X be both in FF  and in FF � . Then 0 � M � X is a left FF � -approxima-

Ž .tion of M if and only if the cokernel is in FF  .

Proof. Define the cokernel of M � X by Y. Pick a module Z having a
Ž .costandard filtration. Applying Hom 	, Z to the exact sequence 0 � MA

Ž .� X � Y � 0 yields a long exact cohomology 0 � Hom Y, Z �A
Ž . Ž . 1 Ž . 1 Ž .Hom X, Z � Hom M, Z � Ext Y, Z � Ext X, Z � ��� . By or-A A A A

Ž . Ž .thogonality of FF  and FF � , the last term always is zero. Moreover, the
1 Ž . Ž .space Ext Y, Z is zero for all Z if and only if Y is in FF  . Vanishing ofA

1 Ž . Ž . Ž .Ext Y, Z is equivalent to surjectivity of Hom X, Z � Hom M, ZA A A
which is equivalent to the lifting property required in the definition of
approximation.

Combining Lemma 2.14 with Theorem 2.8 we get a general criterion:

Ž . ŽTHEOREM 2.15. Let A, � be quasi-hereditary and let T be a not
.necessarily full tilting module. Suppose there is an exact sequence 0 �

� � � Ž . Ž . Ž .A � T � T with T 
 add T and coker � 
 FF  . Then there is a
double centralizer property

A � End T .Ž .End ŽT .A

2.5. Endomorphisms of Tilting Modules

The main result of this subsection relates the endomorphism ring of an
A-tilting module T with the endomorphism ring of the eAe-tilting module
eT for a suitable idempotent e. Applying this to Schur�Weyl duality will
allow us to compare the cases n � r and n � r.

For simplicity, we assume now that k is a splitting field for A.
Let T be a tilting module; that is, T has a filtration by standard modules

and another filtration by costandard modules. Then there are two short
exact sequences

n10 �  � � T � C � � 0Ž . Ž .
m10 � K 	 � T � � 	 � 0,Ž . Ž .
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Ž . Ž .where the first cokernel C � has a -filtration with all occurring  �
Ž .satisfying � � � and the second kernel K 	 has a �-filtration with all

Ž .occurring � � satisfying � � 	. Considering the indecomposable direct
Ž .summands of T , we get � � 	. We denote the algebra End T by E.A

We denote by � � � � � � ��� � � the set of indices of all ’s of1 2 n
�’s occurring in the above filtrations of T. Note that we do not suppose
the existence of a duality; thus the index set for the ’s need not be the
same as that for the �’s. We are using here the union of the two index sets.
These filtrations can be split into series of short exact sequences

n10 �  � � T � C � � 0Ž . Ž .1 1

n20 �  � � C � � C � � 0Ž . Ž . Ž .2 1 2

n30 �  � � C � � C � � 0Ž . Ž . Ž .3 2 3

Ž .and so on which also serve as definitions of the terms occurring therein .
Ž Ž .Note that some of these sequences may be trivial, since  � need notl

.occur for some l; i.e., n can be zero. Similar sequences exist for the �’s.l
Now we apply Hom-functors to produce a filtration of E. Here we use

iŽ Ž . Ž ..that Ext FF  , FF � is zero for all i � 1; thus various extension groups
Ž Ž . Ž ..vanish. We also use that Hom  	 , � � is non-zero if 	 � � , which by

the Ext-vanishing can be generalized to a similar statement about homo-
Ž . Ž .morphisms from certain objects in FF  to objects in FF � .

Ž .Applying Hom T , 	 to the first sequence induced by the �-filtration
gives

m10 � Hom T , K � � E � Hom T , � � � 0.Ž . Ž .Ž . Ž .1 1

Ž Ž ..Applying Hom 	, K � to the first sequence induced by the -filtra-1
tion gives

0 � Hom C � , K � � Hom T , K �Ž . Ž . Ž .Ž . Ž .1 1 1

n1� Hom  � , K � � 0,Ž . Ž .Ž .1 1

Ž .where the last term is zero, since � � does not appear in the filtration of1
Ž .K � . Hence the first map must be an isomorphism. Similarly, we can1

Ž Ž .m1. Ž Ž .n1 Ž .m1. n1�m 1identify Hom T , � � with Hom  � , � � which equals k .1 1 1
Hence we have

0 � Hom C � , K � � E � k n1�m 1 � 0Ž . Ž .Ž .1 1

and the first term actually is an E-bimodule because it is isomorphic to
Ž Ž .. Ž Ž . .Hom T , K � and also to Hom C � , T . Thus we have found a maximal1 1
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ideal of E. It consists of those endomorphisms of T which can be factored
Ž . Ž .T � C � � K � � T. Now we continue inductively to filter E. The1 1

Ž .next step by analogous arguments is

0 � Hom C � , K � � Hom C � , K � � k n2�m 2 � 0,Ž . Ž . Ž . Ž .Ž . Ž .2 2 1 1

� Ž .� � Ž .� Žwhere n � T :  � and m � T : � � these multiplicities may be2 2 2 2
.zero . As before this is a sequence of E-bimodules.

Inductively, we get a filtration

Hom C � , K � � ��� � Hom C � , K � � EŽ . Ž . Ž . Ž .Ž . Ž .A n n A 1 1

of E which we use for constructing a special k-basis of E as follows. A
Ž .basis element is obtained by choosing a unique up to scalar multiple map

Ž . Ž . Ž � � � � this depends on the choice of these modules as direct
Ž .n� Ž .m� .summands of  � and � � and lifting that map along the above

Ž .filtrations. Letting � vary and choosing a full set of direct summands
yields a k-basis of E which is compatible with the filtration constructed
before. By construction, the basis element just constructed is distinguished
by � being the largest index contributing a non-zero term to the associated
map. ‘‘Lower order’’ entries in the basis element can be modified by
adding suitable linear combinations of other basis elements which are
associated with strictly bigger indices.

This description has two applications. A well-known fact is that endo-
morphism rings of tilting modules do not change dimension under change
of scalars. That is, given another commutative ring k� which is a k-module

Ž . Ž � .�we get an isomorphism End T � End k � T provided standardA k � A kk

and costandard modules are preserved.
Moreover, this description allows comparing endomorphisms of tilting

Ž .modules over A and eAe as follows. Let A, � be quasi-hereditary and
let eAe be a quasi-hereditary centralizer algebra belonging to an ideal I in

Ž .the index set �. Thus, eL � is zero for � � I and simple otherwise.
Ž . Ž .Similarly, e � for � 
 I is a standard module and e� � is a costandard

Ž � �.module over eAe cf. 4 . Thus eT is a tilting module over eAe and its -
and �-filtrations are obtained by multiplying the filtrations of T by e.

Obviously, multiplication by e is an algebra homomorphism from
Ž . Ž .End T to End eT .A e A e

Now we can state the result.

THEOREM 2.16. Multiplication by e induces a surjecti�e k-algebra homo-
Ž . Ž .morphism End T � End eT .A e A e

Ž Ž . Ž ..Proof. First we observe that Hom  � , � 	 does not vanish if andA
Ž Ž . Ž ..only if Hom e � , e� 	 does not vanish and then the elements ine A e

the second space are just restrictions of the elements in the first space.
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Ž . Ž Ž ..Suppose � equals 	. Fix a subquotient  � respectively, e � in a
Ž . Ž . Ž-filtration of T respectively, eT and a subquotient � � respectively,

Ž .. Ž Ž .e� � in a �-filtration. Pick a non-zero element � in Hom e � ,e A e
Ž .. � Ž .e� 	 and construct from it an element � 
 End eT as above.e A e

Ž Ž . Ž ..There exists an element � 
 Hom  � , � 	 such that � equals e� .A
We can perform the same construction with � as input to get an element

� Ž . � �� 
 End T . By construction, the difference � 	 e� vanishes on theA
Ž .fixed copy of e � and is then a linear combination of basis elements of

Ž .End eT which are associated with indices strictly bigger than �.e A e
Proceeding inductively we may assume that these basis elements are in the

�image of multiplication by e. Hence � is so as well.

3. APPLICATIONS

Sections 3.1 and 3.2 contain applications of the easier criterion of
Ž .Theorem 2.10 dealing with projective�injective modules or even Corol-

lary 2.11. Sections 3.3 and 3.4 use the more involved Theorem 2.15 based
on tilting modules.

3.1. Category OO

Let � be a finite dimensional semisimple complex Lie algebra. Fix a
triangular decomposition of � and decompose the corresponding category
OO into blocks. Let OO be some block. Let A be a quasi-hereditary algebra�

Žwhose module category is equivalent to OO . This algebra has been�

� �constructed in 3 . The Verma modules play the role of standard modules
.in this quasi-hereditary structure.

We recall some well-known elementary facts from Lie theory:

LEMMA 3.1. Let A be as before. Then:

Ž .1 There is a simple A-module L such that the socle of each standard
module is isomorphic to L.

Ž .2 The injecti�e en�elope of L is projecti�e as well, say of the form Ae
for some primiti�e idempotent e 
 A. E�ery indecomposable projecti�e�injec-
ti�e A-module is isomorphic to Ae.

Ž .3 Tensoring with a finite dimensional module and then projecting onto
the block OO is an exact functor which has an exact left adjoint and an exact�

right adjoint. Hence it sends projecti�e objects to projecti�e objects and
injecti�e objects to injecti�e objects.

Ž . Ž .4 There is a unique projecti�e Verma module, say  max . E�ery
indecomposable projecti�e module in OO is a direct summand of a module of�

Ž .the form  max � E for some finite dimensional �-module E.
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Ž . Ž . � �Proof. Statement 1 is part II of Proposition 7.6.3 in 8 . The module
Ae is the unique direct summand in this block of a module of the form
Ž . Ž . 	 � E, where  	 is a simple and projective Verma module and E is

Ž .finite dimensional. Thus,  	 � E is projective and self-dual and hence
injective as well. Tensoring with a finite dimensional �-module is an exact
functor. Thus it sends projective objects to projective objects. This proves
Ž . Ž . Ž .3 . The module  max occurring in 4 has as highest weight the unique
largest weight occurring in this block. In projectivity thus follows from the
universal property of highest weight modules. Weight considerations to-

Ž . Ž . Žgether with 3 yield the second statements in 4 see, e.g., Chapter 4 in
� � .18 for details .

THEOREM 3.2. Let A be as before. Then:

Ž .1 The algebra A is left QF-3 and has dominant dimension at least
two.

Ž . Ž � �.2 There is a double centralizer property Soergel 21

A � End Ae .Ž .e A e

Proof. The projective A-modules are filtered by Verma modules.
Ž .Hence, by 1 in Lemma 3.1, the socle of A is a direct sum of copies of L.

Thus the injective envelope of A is a direct sum of copies of Ae.
Consequently, Ae is faithful and A is left QF-3.

Ž .The module Ae is the injective envelope of  max . Therefore, there
exists a short exact sequence

0 �  max � Ae � C � 0,Ž .

whose cokernel C is filtered by Verma modules. In fact, Ae is filtered by
Ž Ž ..Verma modules. The composition factor L � top  max belongs to the

unique highest weight occurring in this block. Thus any Verma factor
Ž . max in a filtration of Ae must occur as a submodule by the universal

Ž .property of the highest weight module  max .
Ž Ž ..Since C has a filtration by Verma modules, its socle by 3.1 1 is a

direct sum of copies of L and we can embed C into a direct sum of copies
of Ae, thus getting an exact sequence

a
0 �  max � Ae � AeŽ . Ž . Ž .

for some natural number a. Tensoring with finite dimensional �-modules
Ž .and transporting the result back to A-mod produces short exact se-
quences of the form

0 � P � P � P ,0 1 2
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Ž Ž . .where by 4 in Lemma 3.1 the first term P is projective and the other0
two terms P and P are projective�injective and thus direct sums of1 2

Ž .copies of Ae. It follows from assertion 3 in Lemma 3.1 that any
indecomposable projective A-module is isomorphic to a direct summand
of some P . Hence A has dominant dimension at least two.0

Ž .Part b is now a consequence of Theorem 2.10.

The proof just given carries over without any changes to the situation
� � � �studied in 13�15 . Thus we also get a new proof of Theorem 1 in 14

Ž . � � Žand of one assertion in the main result Theorem 1 of 15 which is
� �. Ž � �more general than Theorem 1 of 14 . In particular we get see 15 for

.notation :

Ž Ž ..THEOREM 3.3. The algebra associated with the category OO PP, � stFFint
is left QF-3 and has dominant dimension at least two.

3.2. Schur�Weyl Duality for n � r

Let n � r be two natural numbers. Let B be either the group algebra of
the symmetric group � over a field k or the corresponding Hecke algebrar
Ž . Ž .HH r where the parameter q has to be different from zero . Then B isq

Ž n.�rwell known to be self-injective. Let M be the tensor space k . This is a
Ž .faithful B-module where the B-action is by ‘‘place permutation’’ . Let A

Ž .be the endomorphism algebra A � End M . Then A is the classical orB
Ž � �.the q-Schur algebra see 9, 17 . Thus Schur�Weyl duality follows immedi-

ately from Corollary 2.11. Moreover:

PROPOSITION 3.4. Let n � r and let A be the classical Schur algebra
Ž . Ž . Ž .S n,r o�er some field k or the quantized Schur algebra S n, r . Then A isk q

left QF-3 and has dominant dimension at least two.

3.3. Schur�Weyl Duality for n � r

In the case n � r, the Schur algebra does not always have a faithful
projective�injective module; hence it is in general not left QF-3. For

Ž .example, the Schur algebra S 2, 4 for k a field of characteristic two isk
Morita equivalent to the basic algebra A given by quiver and relations as

Ž � �.follows see 12, 5.6 :

A has quiver and relations:

�� � �

� � � � � � 0, � � � � � � 0,
� � �

� � � � � � 0, � � � � 0.3 1 2
� �
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The projective modules are as follows:

2projective module:

�

1
1

� ��
3 3 2 3

�� � �

1 1 1 1

� � �

2 2 2

Lowey length: 3 4 5

Clearly, there is no faithful projective�injective module.

Now we prepare for applying Theorem 2.15 to this situation.
We collect several auxiliary facts making use of the situation dealt with

before. Again, the classical Schur algebra and the quantized one can be
Ž .handled simultaneously. In the following a notation like S n, r always

means that both cases are covered. Schur algebras are known to be
quasi-hereditary with respect to the dominance order � on partitions
Ž .which index isomorphism classes of simple modules . We are following

Ž � �.Green’s method see Chapter 6 of 17 to relate two different Schur
algebras, one with N � r and another one with n � r.

LEMMA 3.5. Let N � r � n. Let F be a �ector space of dimension N and
Ž .let E be one of dimension n. Then S N, r contains an idempotent such that

�r �r Ž . Ž . �reF � E and eS N, r e � S n, r . The module E is a tilting module
� �r l �r mŽ . Ž . Ž . Ž .o�er S n, r . Multiplying an exact sequence 0 � S N, r � F � F

Ž Ž . Ž ..with � a left FF � -approximation of S N, r by e yields an exact sequence
� �r l �r mŽ . Ž . Ž . Ž Ž .0 � S n, r  X � E � E with � a left FF � -approximation of

Ž . .S n, r  X for some module X.

� �Proof. The first part is taken from Chapter 6 of 17 . The idempotent e
can be written as a sum of pairwise orthogonal idempotents e where ��

runs through the partitions of r into at most n parts. These partitions
form an ideal in the dominance order; that is, if 	 � � and � has at most
n parts, then 	 cannot have more than n parts. Thus the general theory of

� �quasi-hereditary algebras 4 implies that multiplication by e sends an
Ž . Ž . Ž .S N, r -standard module  � to an S n, r -standard module if � has at

most n parts. A similar statement is true for costandard modules. Conse-
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quently, multiplication by e sends tilting modules to tilting modules. The
remaining assertions follow from exactness of multiplication by e.

Since forming approximations is additive, we can cancel the summand
X. Because of the Morita invariance of double centralizer properties, we
also may forget about the exponent l.

The last part of 3.5 is enough to verify the assumptions of Theorem 2.15;
hence we get the following statement which is valid for any n and r :

Ž . �rTHEOREM 3.6. The Schur algebra S n, r has E -dominant dimension at
least two.

�r Ž .Let B be the endomorphism ring of E o�er S n, r . Then there is a double
centralizer property

S n , r � End E�r .Ž . Ž .B

It remains to determine B. Fortunately, Proposition 2.16 tells us that
Ž �r . Ž �r .End E must be a quotient of End F which we knowSŽn, r . SŽN, r .

already to coincide with k� . Moreover, the dimension of B does notr
depend on the choice of k.

3.4. From A to eAe

The method applied previously relies on several abstract properties only.
We summarize the general result as follows:

Ž . ŽCOROLLARY 3.7. Let A, � be quasi-hereditary and let T be a not
.necessarily full tilting module. Suppose there is an exact sequence

� n0 � A � T � T

Ž . Ž .for some n 
 � with � a left add T -approximation of A. Choose an
idempotent e in A which is associated with an ideal in the set of weights of A.
Then there is a double centralizer property

eAe � End eT .Ž .End Ž eT .e A e

Moreo�er, there is a surjecti�e ring homomorphism

End T � End eT � 0,Ž . Ž .A e A e

Ž .where eAe acts faithfully, but End T does not necessarily act faithfully.A

For example, this establishes many double centralizer properties be-
tween endomorphism algebras of projective modules over Schur algebras
and quotients of group algebras of symmetric groups or quotients of Hecke
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algebras. The two cases n � r and n � r in Schur�Weyl duality become
Žtwo members in a series of double centralizer properties indexed by ideals

.in the poset of partitions of r .
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