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EXACT CONTEXTS,

NONCOMMUTATIVE TENSOR PRODUCTS,

AND UNIVERSAL LOCALIZATIONS

HONGXING CHEN AND CHANGCHANG XI

Abstract. Exact contexts and their noncommutative tensor products are
introduced which generalize the notions of Milnor squares and usual tensor
products over commutative rings, respectively. Exact contexts are character-
ized by rigid morphisms which exist abundantly, while noncommutative tensor
products not only capture some useful constructions in ring theory (such as
coproducts of rings and trivially twisted extensions) but also provide a new
method to construct universal localizations with rich homological and struc-
tural information. Moreover, sufficient and necessary conditions in terms of the
data of exact contexts are presented to ensure that the universal localizations
constructed are homological ring epimorphisms.
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1. Introduction

Recollements of triangulated categories were introduced by Beilinson, Bernstein,
and Deligne in 1982 in the context of derived categories of perverse sheaves over
singular spaces, providing a categorical framework for Grothendieck’s six functors
(see [5,17]). They are used in different aspects spreading from algebraic geometry to
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algebraic topology and K-theory and recently to representation theory, particularly
in the contexts of homological invariants and tilting theory (see [1, 4, 9–12,18]).

There are many methods known to get recollements of triangulated categories,
for example, taking stable categories of Frobenius categories, or Verdier quotients of
triangulated categories. But little is known about constructing recollements with all
three terms being derived module categories of rings. Notably, such a recollement of
rings (or algebras) will provide a reduction method to study derived or homological
invariants (for instance, finitistic dimension and algebraic K-theory) of one of the
three rings through those of the other two rings (see, for example, [8, 9, 18]).

Motivated by creating methods to construct recollements of derived categories
of rings, we first introduce the concept of exact contexts in this paper, which is a
generalization of Milnor squares of rings in [20]. We show that exact contexts can
be obtained from rigid morphisms in any additive category. This covers a large
variety of morphisms in categories such as all precovers and pre-envelopes in ring
theory or equivalently all left and right approximations in representation theory
(see [3]), extensions of rings, and the canonical projections to their quotients. Fur-
ther, using the data of an exact context, we then construct a unique new ring, called
the noncommutative tensor product of the given exact context. Surprisingly, these
noncommutative tensor products not only generalize the usual tensor products over
commutative rings but also capture many known constructions in ring theory: co-
products of rings, trivially twisted extensions, and endomorphism rings of tensor
products of modules. Moreover, for each exact context, we can also construct a
ring homomorphism θ from a two-by-two triangular matrix ring (with entries in
rings and bimodules) to the two-by-two full matrix ring over the noncommutative
tensor product of the exact context. We prove that this ring homomorphism θ is
actually a universal localization in the sense of Cohn and Schofield (see [15,26]). In
general, a universal localization does not have to be homological (see [23]). But it
is of significant importance to know when it is homological because a homological
universal localization can provide a recollement of triangulated categories and also
a Mayer–Vietoris sequence in algebraic K-theory [8,10,22,25]. However, little was
known about answers to this question. In this paper, with our description of non-
commutative tensor products, we can present a sufficient and necessary condition
for the localization θ to be homological in terms of the data of exact contexts. This
shows that the interpretation of universal localizations as noncommutative tensor
products has an advantage: some homological and structural properties of these
localizations can be formulated and verified in a convenient way by the data of
exact contexts, while the description by generators and relations in [27] seems not
to work well for homological aspects.

To state our results precisely, let us briefly introduce some terminology.
Let R, S, and T be rings with identity, and let λ : R → S and μ : R → T be

ring homomorphisms. Suppose that M is an S-T -bimodule with a fixed element
m ∈ M . The quadruple (λ, μ,M,m) is called an exact context if the sequence

0 −→ R
(λ, μ)−→ S ⊕ T

( · m
−m · )−→ M −→ 0

is an exact sequence of abelian groups, where ·m and m· denote the right and left
multiplication maps by m, respectively.

Theorem 1.1. Let (λ, μ,M,m) be an exact context.
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(1) There exists a ring T �R S, with two ring homomorphisms ρ : S → T �R S
and φ : T → T �R S, and a homomorphism β : M → T �R S of S-T -
bimodules such that the ring homomorphism

θ :=

(
ρ β
0 φ

)
:

(
S M
0 T

)
−→

(
T �R S T �R S
T �R S T �R S

)

is a universal localization. This ring is uniquely determined by (λ, μ,M,m)
and is called the noncommutative tensor product of (λ, μ,M,m).

(2) The homomorphism θ in (1) is homological if and only if TorRi (T, S) = 0
for all i ≥ 1.

The contents of this paper are outlined as follows. In Section 2, we fix notation
and recall some definitions and basic facts used throughout the paper. In par-
ticular, we recall the definitions of homological ring epimorphisms and universal
localizations. In Section 3, we introduce exact contexts and their noncommutative
tensor products. Moreover, we show that exact contexts can be described by rigid
morphisms, which exist almost everywhere in representation theory. For exam-
ple, all kinds of approximations are rigid morphisms. Also, we demonstrate that
noncommutative tensor products capture usual tensor products over commutative
rings. This section contributes an ingredient to the proof of the main theorem. In
Section 4, we give explicit constructions of the noncommutative tensor products
of a few classes of exact contexts. In Section 5, we present a categorical descrip-
tion of noncommutative tensor products and prove Theorem 1.1. Consequently, we
show that noncommutative tensor products cover coproducts in ring theory and
the endomorphism rings of tensor products of modules (see Corollary 5.4).

In a series of papers [7–9], we apply exact contexts and results in this paper to
construct recollements of derived module categories and to establish both additive
formula forKn-groups and relations among homological dimensions for recollements
of derived module categories.

2. Preliminaries

In this section, we shall recall some definitions, notation, and basic results needed
in our proofs.

2.1. Notation and basic facts on derived categories. Let C be an additive
category.

Throughout the paper, a full subcategory B of C is always assumed to be closed
under isomorphisms; that is, if X ∈ B and Y ∈ C with Y � X, then Y ∈ B.

Given two morphisms f : X → Y and g : Y → Z in the category C, we denote
the composition of f and g by fg : X → Z. The induced morphisms HomC(Z, f) :
HomC(Z,X) → HomC(Z, Y ) and HomC(f, Z) : HomC(Y, Z) → HomC(X,Z) are
denoted by f∗ and f∗, respectively. The composition of a functor F : C → D
between categories C and D with a functor G : D → E between categories D and E
is denoted by GF , which is a functor from C to E . The kernel and the image of the
functor F are denoted by Ker(F ) and Im(F ), respectively.

Let C (C) be the category of all complexes over C with chain maps, and let K (C)
be the homotopy category of C (C). When C is abelian, the derived category of
C is denoted by D(C). Both K (C) and D(C) are triangulated categories. For a
triangulated category, its shift functor is denoted by [1] universally.
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If T is a triangulated category with small coproducts (that is, coproducts indexed
over sets existing in T ), then, for each object U in T , we denote by Tria(U) the
smallest full triangulated subcategory of T containing U and being closed under
small coproducts. We mention the following properties related to Tria(U).

Let F : T → T ′ be a triangle functor of triangulated categories, and let Y be a
full subcategory of T ′. We define F−1Y := {X ∈ T | F (X) ∈ Y}.

(1) If Y is a triangulated subcategory, then F−1Y is a full triangulated subcat-
egory of T .

(2) Suppose that T and T ′ admit small coproducts and that F commutes with
coproducts. If Y is closed under small coproducts in T ′, then F−1Y is
closed under small coproducts in T . In particular, for an object U ∈ T , we
have F (Tria(U)) ⊆ Tria(F (U)).

In this paper, all rings are associative and with identity, and all ring homomor-
phisms preserve identity. Unless stated otherwise, all modules are left modules.

Let R be a ring. We denote by R-Mod the category of all unitary R-modules.
By our convention of the composition of two morphisms, if f : M → N is a
homomorphism of R-modules, then the image of x ∈ M under f is denoted by (x)f
instead of f(x).

As usual, we shall simply write C (R), K (R), and D(R) for C (R-Mod),
K (R-Mod), and D(R-Mod), respectively, and identify R-Mod with the subcat-
egory of D(R) consisting of all stalk complexes concentrated in degree 0.

Let (X•, d•X) and (Y •, d•Y ) be two chain complexes over R-Mod. The mapping
cone of a chain map h• : X• → Y • is usually denoted by Con (h•). In particu-

lar, there is a distinguished triangle X• h•
−→ Y • → Con(h•) → X•[1] in K (R).

For each n ∈ Z, the nth cohomology functor from D(R) to R-Mod is denoted
by Hn(−). Certainly, this functor is naturally isomorphic to the Hom-functor
HomD(R)(R,−[n]).

Now we shall recall some basic facts about derived functors of derived module
categories of rings. For details and proofs, we refer to [6, 19].

Let K (R)P (resp., K (R)I) be the smallest full triangulated subcategory of
K (R) which

(i) contains all bounded above (resp., bounded below) complexes of projective
(resp., injective) R-modules, and

(ii) is closed under arbitrary direct sums (resp., direct products).

It is known that K (R)P is contained in K (R-Proj), where R-Proj is the full
subcategory of R-Mod consisting of all projective R-modules. Moreover, the com-
position functors

K (R)P ↪→ K (R) −→ D(R) and K (R)I ↪→ K (R) −→ D(R)

are equivalences of triangulated categories. Thus, for each complex X• in D(R),
there exists a complex pX

• ∈ K (R)P together with a quasi-isomorphism pX
• →

X•, and a complex iX
• ∈ K (R)I together with a quasi-isomorphism X• → iX

•.
The complex pX

• is called the projective resolution of X• in K (R). For example,
if X is an R-module, then we can take pX to be a deleted projective resolution of

RX.
If either X• ∈ K (R)P or Y • ∈ K (R)I , then the canonical localization func-

tor from K (R) to D(R) induces an isomorphism: HomK (R)(X
•, Y •) �

HomD(R)(X
•, Y •).
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For any triangle functor H : K (R) → K (S), there is a left derived functor
LH : D(R) → D(S) defined by X• �→ H(pX

•), and a right derived functor RH :
D(R) → D(S) defined by X• �→ H(iX

•). We say that H preserves acyclicity if
H(X•) is acyclic whenever X• is acyclic. So, if H preserves acyclicity, then H
induces a triangle functor D(H) : D(R) → D(S) defined by X• �→ H(X•). In this
case, LH = RH = D(H) up to natural isomorphism. As usual, D(H) is called the
derived functor of H.

Let M• be a complex of R-S-bimodules. Then the tensor and Hom-functors

M• ⊗•
S − : K (S) −→ K (R) and Hom•

R(M
•,−) : K (R) −→ K (S)

form an adjoint pair of triangle functors. Denote byM•⊗L

S− the left derived functor
of M• ⊗•

S −, and by RHomR(M
•,−) the right derived functor of Hom•

R(M
•,−).

Then
(
M• ⊗L

S −,RHomR(M
•,−)

)
is an adjoint pair of triangle functors.

2.2. Homological ring epimorphisms and universal localizations. Let λ :
R → S be a homomorphism of rings. We denote by λ∗ : S-Mod → R-Mod the
restriction functor induced by λ, and by D(λ∗) : D(S) → D(R) the derived functor
of the exact functor λ∗. Recall that a ring epimorphism λ : R → S is homological
if and only if TorRj (S, S) = 0 for all j ≥ 1 if and only if S ⊗L

R S � S in D(S). Note
that λ∗ is fully faithful if and only if λ is a ring epimorphism, and that D(λ∗) is fully
faithful if and only if λ is a homological ring epimorphism. For a homological ring
epimorphism λ, TorRi (X,Y ) � TorSi (X,Y ), and ExtiS(Y, Z) � ExtiR(Y, Z) for all
i ≥ 0, all right S-modules X, and all S-modules Y and Z (see [16, Theorem 4.4]).

Ring epimorphisms appear typically in localizations of commutative rings but
also come up in a more general context of universal localizations of arbitrary rings.

Lemma 2.1 (see [15, 26]). Let R be a ring, and let Σ be a set of homomorphisms
between finitely generated projective R-modules. Then there is a ring RΣ and a
homomorphism λΣ : R → RΣ of rings such that the following apply.

(1) λΣ is Σ-inverting; that is, if α : P → Q belongs to Σ, then RΣ ⊗R α :
RΣ ⊗R P → RΣ ⊗R Q is an isomorphism of RΣ-modules.

(2) λΣ is universally Σ-inverting; that is, if S is a ring such that there ex-
ists a Σ-inverting homomorphism ϕ : R → S, then there exists a unique
homomorphism ψ : RΣ → S of rings such that ϕ = λΣψ.

(3) λΣ : R → RΣ is a ring epimorphism with TorR1 (RΣ, RΣ) = 0.

Following [15], λΣ : R → RΣ in Lemma 2.1 is called the universal localization of
R at Σ. One should be aware that RΣ may not be flat as a right or left R-module.
In general, λΣ is not even homological (see [23]), and little is known about when it
is homological.

Next, we recall the definition of coproducts of rings defined by Cohn in [14].
Let R0 be a ring. An R0-ring is a ring R with a ring homomorphism λR :

R0 → R. An R0-homomorphism from an R0-ring R to another R0-ring S is a ring
homomorphism f : R → S such that λS = λRf . Observe that epimorphisms in the
category of R0-rings are exactly ring epimorphisms starting from R0.

The coproduct of two R0-rings R1 and R2, denoted by R1

⊔
R0

R2, is an R0-ring R
together with R0-homomorphisms ρ1 : R1 → R and ρ2 : R2 → R such that, for any
R0-ring S with R0-homomorphisms τ1 : R1 → S and τ2 : R2 → S, there is a unique
R0-homomorphism δ : R → S such that τ1 = ρ1δ and τ2 = ρ2δ. In other words,
the coproduct of two R0-rings R1 and R2 is the pushout in the category of R0-rings
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with R0-homomorphisms. This coproduct always exists (see [14]). Moreover, if
λR1

: R0 → R1 is a ring epimorphism, then so is the associated ring homomorphism
R2 → R1

⊔
R0

R2.
Finally, we recall the notion of recollements of triangulated categories, which

was first defined in [5] to study “exact sequences” of derived categories of perverse
sheaves over geometric objects.

Definition 2.2. Let D, D′, and D′′ be triangulated categories. We say that D is
a recollement of D′ and D′′ (or there is a recollement (D′′,D,D′)) if there are six
triangle functors among the three categories

D′′ i∗=i! �� D j!=j∗ ��
i!

��

i∗

��
D′

j∗
��

j!

��

such that

(1) (i∗, i∗), (i!, i
!), (j!, j

!), and (j∗, j∗) are adjoint pairs;
(2) i∗, j∗, and j! are fully faithful functors;
(3) i!j∗ = 0 (and thus also j!i! = 0 and i∗j! = 0); and
(4) for each object X ∈ D, there are two triangles in D:

i!i
!(X) −→ X −→ j∗j

∗(X) −→ i!i
!(X)[1],

j!j
!(X) −→ X −→ i∗i

∗(X) −→ j!j
!(X)[1].

If a ring epimorphism λ : R → S is homological, then there is a recollement(
D(S),D(R),Tria(Q•)

)
of triangulated categories (see [24, Section 4]), where Q•

is the mapping cone of λ. In general, Tria(Q•) does not have to be equivalent to
a derived module category. But if S is of the form R/ReR with e2 = e ∈ R, then
λ induces a recollement

(
D(S),D(R),D(eRe)

)
of derived module categories, and

ReR is a stratifying ideal of R. Recall that ReR is called a stratifying ideal if the
multiplication map Re⊗eRe eR → ReR is injective and ToreRe

n (Re, eR) = 0 for all
n ≥ 1 (see [13]).

3. Exact contexts and their noncommutative tensor products

In this section, we introduce the notion of exact contexts and characterize them
by rigid morphisms. Further, we construct a unique ring from the data of an
exact context. This ring is called the noncommutative tensor product of the exact
context. It generalizes the notion of tensor products of algebras over commutative
rings and covers the notions of coproducts of rings, trivially twisted extensions, and
endomorphism rings of tensor products of modules.

Definition 3.1. Let R,S, and T be rings with identity, let λ : R → S and μ :
R → T be ring homomorphisms, and let M be an S-T -bimodule with m ∈ M . The
quadruple (λ, μ,M,m) is called an exact context if

(∗) 0 −→ R
(λ, μ)−→ S ⊕ T

( · m
−m · )−→ M −→ 0

is an exact sequence of abelian groups, where ·m and m· stand for the right and
left multiplication maps by m, respectively. In this case, (M,m) is called an exact
complement of (λ, μ).
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If (λ, μ, S ⊗R T, 1 ⊗ 1) is an exact context, then we say simply that (λ, μ) is an
exact pair.

Let (λ, μ,M,m) be an exact context. Then it follows from (∗) that, for an S-T -
bimodule N with an element n ∈ N , the pair (N,n) is an exact complement of (λ, μ)
if and only if there exists a unique isomorphism ω : M → N of R-R-bimodules such
that (sm)ω = sn and (mt)ω = nt for all s ∈ S and t ∈ T . In particular, (m)ω = n.
In general, ω does not have to be an isomorphism of S-T -bimodules; that is, M
and N may not be isomorphic as S-T -bimodules.

Now, we present a general method to construct exact contexts. Let C be an
additive category.

Definition 3.2.

(1) An object X• in C (C) is rigid if HomK (C)(X
•, X•[1]) = 0.

(2) A morphism f• : Y • → X• in C (C) is rigid if the object Z• in a distin-

guished triangle Y • f•

−→ X• → Z• → Y •[1] in K (C) is rigid, or equiva-
lently, the mapping cone Con(f•) of f• is rigid in C (C).

(3) A morphism f : Y → X in C is rigid if f , considered as a morphism
between the stalk complexes Y and X, is rigid, or equivalently, the complex

Con(f) : 0 → Y
f−→ X → 0 is rigid in C (C).

The rigidity of a morphism f• does not depend on the choice of the triangle
which extends f•. By definition, a morphism f : Y → X in C is rigid if and only if
HomC(Y,X) = EndC(Y )f + f EndC(X).

Proposition 3.3. Every rigid morphism f in an additive category C gives rise to
an exact context. Conversely, every exact context arises in this way.

Proof. If f : Y → X is a rigid morphism in C, then there exists an exact sequence
of R-R-bimodules,

0 −→ R
(λ,μ)−→ EndC(Y )⊕ EndC(X)

( · f
−f · )−→ HomC(Y,X) −→ 0,

where R := {(s, t) ∈ EndC(Y ) ⊕ EndC(X) | sf = ft} is a subring of the ring
EndC(Y ) × EndC(X), and where λ and μ are defined by sending (s, t) to s and t,
respectively. Thus (λ, μ,HomC(Y,X), f) is an exact context.

Conversely, every exact context appears in this form. In fact, for a given ex-
act context (λ, μ,M,m), we may define B = ( S M

0 T ), e1 = ( 1 0
0 0 ), e2 = ( 0 0

0 1 ) and
consider the canonical map ϕ from Be1 to Be2 defined by ·m. If we identify
HomB(Be1, Be2), EndB(Be1), and EndB(Be2) with M , S, and T , respectively,
then it follows from the given exact sequence (∗) that each element of M can be
expressed as sm+mt with s ∈ S and t ∈ T . This means that ϕ is rigid in B-Mod,
and the induced exact context is precisely the given one. �

Example 3.4.
(1) If f : Y → X is a morphism in C such that the induced map HomC(Y, f) :

HomC(Y, Y ) → HomC(Y,X) (resp., HomC(f,X) : HomC(X,X) → HomC(Y,X)) is
surjective, then HomC(Y,X) = EndC(Y )f (resp., HomC(Y,X) = f EndC(X)), and
therefore f is rigid. Thus all kinds of precovers and pre-envelopes in ring theory or
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all left and right approximations in the sense of Auslander and Smalø (see [3]) are
rigid morphisms. This type of rigid morphism includes the following two cases:

(a) Let A be an Artin algebra, and let 0 → Z
f−→ Y

g−→ X → 0 be an almost
split sequence in A-mod, that is, a nonsplit sequence such that any homo-
mophism Y ′ → X, which is not a split epimorphism, factorizes through g
and any homomorphism Z → Z ′, which is not a monomorphism, factor-
izes through f . Then both f and g are rigid since both HomA(Y, g) and
HomA(f, Y ) are surjective. This is due to the fact that Y does not contain
the outer terms X and Z as direct summands. For further information on
almost split sequences, we refer the reader to [2].

(b) Let S be a ring. If Y is a quasi-projective S-module (that is, for any surjec-
tive homomorphism Y → X of S-modules, the induced map HomS(Y, Y ) →
HomS(Y,X) is surjective), then, for any submodule Z of Y , the canonical
map f : Y → X := Y/Z is rigid since HomS(Y,X) = EndS(Y )f . Dually, if
X is a quasi-injective S-module (that is, for any injective homomorphism
g : Y → X, the induced map HomS(X,X) → HomS(Y,X) is surjective),
then, for any submodule Y of X, the inclusion g of Y into X is rigid because
HomS(Y,X) = g EndS(X). In particular, every surjective homomorphism
from a projective module to an arbitrary module is rigid, and every in-
jective homomorphism from an arbitrary module to an injective module is
rigid.

(2) Let λ : R → S be a homomorphism of rings. Then λ : R → S itself and the
canonical surjection π : S → S/ Im(λ) are rigid morphisms in R-Mod which induce
two exact contexts.

Clearly, every homomorphism from RR to RS is uniquely determined by an
element s ∈ S. By the right multiplication of s, we have a homomorphism RS → RS
of R-modules. This implies that λ is rigid. To see the rigidity of π, we take an
f ∈ HomR(S, S/ Im(λ)), choose an s ∈ S such that (s)π = (1)f , and denote by
·s : S → S the right multiplication map by s. Then the map λ(f − (·s)π) = 0.
Thus there exists a unique homomorphism g ∈ EndR(S/ Im(λ)) such that f =
(·s)π+π g. This implies that HomR(S, S/ Im(λ)) = EndS(S)π+πEndR(S/ Im(λ)).
Since EndS(S) ⊆ EndR(S), HomR(S, S/ Im(λ)) = EndR(S)π + πEndR(S/ Im(λ)).
Thus π is rigid.

If λ is injective, then a third exact context can be constructed: Let S′ :=
EndR(S/ Im(λ)) and

λ′ : R −→ S′ : r �→
(
x �→ x(r)λ

)
for r ∈ R and x ∈ S/ Im(λ).

Then HomR(S, S/ Im(λ)) is an S-S′-bimodule and
(
λ, λ′,HomR(S, S/ Im(λ)), π

)
is

an exact context since the diagram

0 �� R

λ′

��

λ �� S

·π
��

π �� S/ Im(λ)

�
��

�� 0

0 �� S′ π · �� HomR(S, S/ Im(λ))
λ · �� HomR(R,S/ Im(λ)) �� 0

is commutative and the sequence of R-R-bimodules

0 �� R
(λ, λ′) �� S ⊕ S′ (

·π
−π· ) �� HomR(S, S/ Im(λ)) �� 0
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is exact. In general, the exact context just obtained is different from the one
induced by π, and (λ, λ′) may not be an exact pair because one of the isomorphisms
S � EndR(S) as rings and S ⊗R S′ � HomR(S, S/ Im(λ)) as S-S′-bimodules may
fail.

For more examples of exact contexts, we refer the reader to Section 4.
Having seen the ubiquity of exact contexts, we now construct the noncommu-

tative tensor product for each exact context. Such a tensor product captures the
notion of both coproducts and usual tensor products in ring theory. Examples of
noncommutative tensor products are described in detail for Milnor squares, Morita
contexts, and strictly pure extensions in the next section.

Lemma 3.5. For an exact context (λ, μ,M,m), we have the pullback and pushout
square of R-R-bimodules

R

μ

��

λ �� S

·m
��

T
m· �� M

and homomorphisms of R-R-bimodules: for s ∈ S and t ∈ t,

λ′ = λ⊗RT : T −→ S⊗RT, t �→ 1⊗t and μ′ = S⊗Rμ : S −→ S⊗RT, s �→ s⊗1,

ρ = μ⊗S : S −→ T ⊗R S, s �→ 1⊗ s and φ = T ⊗λ : T −→ T ⊗R S, t �→ t⊗ 1.

According to (∗), there exist two unique homomorphisms,

α : M −→ S⊗RT, x �→ sx⊗1+1⊗tx and β : M −→ T⊗RS, x �→ 1⊗sx+tx⊗1,

where x ∈ M and (sx, tx) ∈ S⊕T with x = sxm+mtx such that the following two
diagrams commute:

(†) R
(λ, μ) �� S ⊕ T

( ·m
−m· ) �� M

α

��
R

(λ, μ) �� S ⊕ T

(
μ ′
−λ ′

)
�� S ⊗R T

and (‡) R
(λ, μ) �� S ⊕ T

( ·m
−m· ) �� M

β

��
R

(λ, μ) �� S ⊕ T
( ρ

−φ ) �� T ⊗R S

Observe that (x)α and (x)β are independent of the choice of (sx, tx) in S ⊕ T . Let

γ : S ⊗R T −→ M, s⊗ t �→ smt.

Then α and β are homomorphisms of R-R-bimodules, γ is a homomorphism of
S-T -bimodules, and α γ = IdM . In particular, α is injective and γ is surjective.
Further, let

δ := γ β : S ⊗R T −→ T ⊗R S, s⊗ t �→ 1⊗ ssmt + tsmt ⊗ 1

for s ∈ S and t ∈ T , where the pair (ssmt, tsmt) ∈ S ⊕ T is chosen such that
smt = ssmtm + mtsmt. Then δ is a homomorphism of R-R-bimodules such that
(s⊗ 1)δ = 1⊗ s and (1⊗ t)δ = t⊗ 1.

Now, we shall define a new ring T �R S for (λ, μ,M,m). Here T �R S has the
underlying abelian group T⊗RS. Its multiplication ◦ : (T⊗RS)×(T⊗RS) → T⊗RS
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is given by the homomorphisms

(T ⊗R S)⊗R (T ⊗R S)
�−→ T ⊗R (S ⊗R T )⊗R S

T⊗δ⊗S−→ T ⊗R (T ⊗R S)⊗R S

�−→ (T ⊗R T )⊗R (S ⊗R S)
μT⊗μS−→ T ⊗R S,

where μT : T ⊗R T → T and μS : S ⊗R S → S are the multiplication maps.
Explicitly, for (ti, si) ∈ T ⊗R S with i = 1, 2, we have

(t1 ⊗ s1) ◦ (t2 ⊗ s2) := t1(s1 ⊗ t2)δ s2 = t1
(
1⊗ ss1mt2 + ts1mt2 ⊗ 1

)
s2.

The following lemma asserts the associativity of this multiplication ◦.

Lemma 3.6.

(1) (T ⊗R S, ◦) is an associative ring with identity 1⊗ 1.
(2) The maps ρ : S → T ⊗R S and φ : T → T ⊗R S are ring homomorphisms.

In particular, T ⊗R S can be regarded as an S-T -bimodule via ρ and φ.
(3) The map β : M → T ⊗R S is a homomorphism of S-T -bimodules such that

(m)β = 1⊗ 1.

Proof.

(1) It suffices to show that the multiplication ◦ is associative and 1 ⊗ 1 is the
identity of T ⊗R S.

We take elements ti ∈ T and si ∈ S for 1 ≤ i ≤ 3 and choose two pairs
(x, y) and (u, v) in S⊕T such that s1mt2 = xm+my and s2mt3 = um+mv.

It can be checked that
(
(t1⊗ s1)◦ (t2⊗ s2)

)
◦ (t3⊗ s3) = t1

(
(xs2⊗ t3)δ+

y(s2 ⊗ t3)δ
)
s3 and (t1 ⊗ s1) ◦

(
(t2 ⊗ s2) ◦ (t3 ⊗ s3)

)
= t1

(
(s1 ⊗ t2)δ u +

(s1 ⊗ t2v)δ
)
s3. So, to prove(

(t1 ⊗ s1) ◦ (t2 ⊗ s2)
)
◦ (t3 ⊗ s3) = (t1 ⊗ s1) ◦

(
(t2 ⊗ s2) ◦ (t3 ⊗ s3)

)
,

it suffices to verify (xs2 ⊗ t3)δ + y(s2 ⊗ t3)δ = (s1 ⊗ t2)δ u+ (s1 ⊗ t2v)δ.
Since xs2mt3 = x(um + mv) = xum + xmv and xu ∈ S, we have

(xs2 ⊗ t3)δ = (xum+ xmv)β = 1⊗ xu+ (xmv)β. Similarly, (s1 ⊗ t2v)δ =
yv ⊗ 1 + (xmv)β. It follows from a simple calculation that (xs2 ⊗ t3)δ +
y(s2⊗ t3)δ = (s1⊗ t2)δ u+(s1⊗ t2v)δ. This shows that the multiplication ◦
is associative. Also, it is easy to show that 1⊗1 is the identity with respect
to ◦.

(2) Since (s1)ρ ◦ (s2)ρ = (1 ⊗ s1) ◦ (1 ⊗ s2) = (s1 ⊗ 1)δ s2 = (1 ⊗ s1)s2 =
1 ⊗ s1s2 = (s1s2)ρ, the map ρ : S → T ⊗R S is a ring homomorphism.
Similarly, φ : T → T ⊗R S is also a ring homomorphism.

(3) By the definition of β, (m)β = 1 ⊗ 1. It remains to check that β is a
homomorphism of S-T -bimodules, or equivalently, (sat)β = (s)ρ◦(a)β◦(t)φ
for s ∈ S, a ∈ M , and t ∈ T . We leave the verification of this equation to
the reader. �

The ring (T ⊗R S, ◦) in Lemma 3.6 is called the noncommutative tensor product
of (λ, μ,M,m), denoted simply by T �R S if the exact context (λ, μ,M,m) is clear.

In general, T �R S may not be the usual tensor product of two R-algebras T
and S because R is not assumed to be commutative and the tensor product of
R-algebras does not make sense. But it does generalize the usual tensor product of
R-algebras in the following sense.
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Lemma 3.7. Let R be a commutative ring, and let S and T be R-algebras via λ
and μ, respectively. If (λ, μ) is an exact pair, then T �R S coincides with the usual
tensor product T ⊗R S of R-algebras T and S.

Proof. If (λ, μ) is an exact pair, then M = S ⊗R T , γ = IdS⊗RT , and δ = β :
S ⊗R T → T ⊗R S, where β is determined uniquely by the diagram (‡). However,
the switch map ω : S ⊗R T → T ⊗R S, defined by s ⊗ t �→ t ⊗ s for s ∈ S and

t ∈ T , also makes the diagram (‡) commutative, that is,
(

μ ′

−λ ′

)
ω =

(
ρ
−φ

)
. This

implies β = ω. Thus the multiplication ◦ in T �R S coincides with the usual tensor
product of R-algebras T and S over R. �

Next, we give some characterizations of exact pairs.

Lemma 3.8. The following are equivalent:

(1) The pair (λ, μ) is exact.
(2) The map γ is an isomorphism.
(3) Coker(λ)⊗R Coker(μ) = 0.

Proof. Recall that γ is a homomorphism of S-T -bimodules, (s ⊗ 1)γ = sm and
(1⊗ t)γ = mt for s ∈ S and t ∈ T . This implies that the diagram

R
(λ, μ) �� S ⊕ T

(
μ ′

−λ ′
)
�� S ⊗R T

γ

��
0 �� R

(λ, μ) �� S ⊕ T
( ·m

−m· ) �� M �� 0

is commutative, where the bottom row is assumed to be exact. Consequently, (1)
and (2) are equivalent.

Now, we verify the equivalence of (2) and (3).
In fact, it follows from α γ = IdM that the map γ is an isomorphism if and

only if α is surjective. However, the latter is equivalent to the map ξ :=
(

μ ′

−λ ′

)
:

S ⊕ T −→ S ⊗R T being surjective by (†). Therefore, it is enough to show that ξ
is surjective if and only if Coker(λ)⊗R Coker(μ) = 0. To check this condition, we
consider the following two complexes of R-R-bimodules,

Con(λ) : 0 → R
λ−→ S → 0 and Con(μ) : 0 → R

μ−→ T → 0,

with both S and T in degree 0, and calculate their tensor complex over R:

Con(λ)⊗•
R Con(μ) :

0 �� R⊗R R

(
λ⊗R, −R⊗μ

)
�� S ⊗R R⊕R⊗R T

(S⊗μ
λ⊗T )

�� S ⊗R T �� 0 ,

where R ⊗R R is of degree −2. If we identify R ⊗R R, S ⊗R R, and R ⊗R T with
R, S, and T , respectively, then Con(λ)⊗•

R Con(μ) is precisely the complex

0 �� R

(
λ, −μ

)
�� S ⊕ T

(
μ ′
λ ′

)
�� S ⊗R T �� 0 ,

which is isomorphic to the following complex 0 → R
(λ, μ)−→ S ⊕ T

ξ−→ S ⊗R T → 0.
It follows that ξ is surjective if and only if H0

(
Con(λ)⊗•

R Con(μ)
)
= 0. Since

H0
(
Con(λ)⊗•

R Con(μ)
)
� H0(Con(λ))⊗R H0(Con(μ)) � Coker(λ)⊗R Coker(μ),
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the map ξ is surjective if and only if Coker(λ) ⊗R Coker(μ) = 0. Thus γ is an
isomorphism if and only if Coker(λ)⊗R Coker(μ) = 0. �

Remark 3.9. By the equivalence of (1) and (2) in Lemma 3.8, if the pair (λ, μ)
is exact, then it admits a unique complement (S ⊗R T, 1 ⊗ 1) up to isomorphism
(preserving 1⊗ 1) of S-T -bimodules.

Corollary 3.10. If either λ : R → S or μ : R → T is a ring epimorphism, then
γ : S ⊗R T → M, s ⊗ t �→ smt is an isomorphism of S-T -bimodules, and (λ, μ) is
an exact pair.

Proof. Suppose that λ is a ring epimorphism. Then, for any S-module X, the map
λ⊗X : R ⊗R X → S ⊗R X is an isomorphism, and therefore Coker(λ)⊗R X = 0.
Since Coker(μ) � M/Sm as R-modules by Lemma 3.5 and since M/Sm is an S-
module, Coker(λ)⊗R Coker(μ) � Coker(λ)⊗R (M/Sm) = 0. By Lemma 3.8, γ is
an isomorphism.

Similarly, if μ is a ring epimorphism, then γ is an isomorphism. �

Finally, we mention further examples of exact pairs.

Proposition 3.11. The morphisms f and g in an almost split sequence 0 → Z
f−→

Y
g−→ X → 0 always provide two exact pairs.

Proof. By Example 3.4(1), f and g are rigid morphisms and there exist two short
exact sequences:

0 → R
(λ,μ)−→ EndA(Y )⊕ EndA(X)

( ·g
−g· )−→ HomA(Y,X) → 0,

0 → R′ (p,q)−→ EndA(Z)⊕ EndA(Y )
( ·f

−f·)−→ HomA(Z, Y ) → 0.

By the factorization property of almost split sequences, the multiplication maps
·g and f · are surjective. Now it follows from a standard fact on pushout-pullback
diagrams that μ and p are surjective. Hence the exact contexts provided by f and
g are exact pairs by Corollary 3.10. �

4. Examples of noncommutative tensor products

In this section, we describe explicitly noncommutative tensor products of exact
contexts induced from Milnor squares, Morita contexts, and ring extensions.

4.1. Milnor squares. Recall that a Milnor square defined by Milnor in [20, Sec-
tions 2 and 3] is a commutative diagram of ring homomorphisms

(††) R

i2

��

i1 �� R1

j1

��
R2

j2 �� R′

such that j2 is surjective and R is the pullback of R1 and R2 over R′; that is, given
a pair (r1, r2) ∈ R1 ⊕ R2 with (r1)j1 = (r2)j2 ∈ R′, there is one and only one
element r ∈ R such that (r)i1 = r1 and (r)i2 = r2.

Proposition 4.1. Every Milnor square (††) provides an exact pair whose noncom-
mutative tensor product is the ring R′.
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Proof. The ring R′ can be regarded as an R1-R2-bimodule via j1 and j2. Let 1 be
the identity of R′. Then j1 and j2 are precisely the multiplication maps · 1 and 1 ·,
respectively. This is because r1 · 1 = (r1)j1 and 1 · r2 = (r2)j2 for r1 ∈ R1 and
r2 ∈ R2.

The quadruple (i1, i2, R
′, 1) is an exact context because, by the definition of

Milnor squares, we have the exact sequence of R-R-bimodules

0 −→ R
(i1, i2)−→ R1 ⊕R2

(
j1
−j2

)
−→ R′ −→ 0.

Since j2 is surjective, i1 is also surjective and i2 induces an isomorphism Ker(i1) �
Ker(j2) of R-R-bimodules. By Lemma 3.8, (i1, i2) is an exact pair. Moreover, we
show that the noncommutative tensor product of (i1, i2) is isomorphic to R′.

Let f : R2 �R R1 → R′ be the map defined by r2 ⊗ r1 �→ (r2)j2 (r1)j1 for
r1 ∈ R1 and r2 ∈ R2. Then f is an isomorphism of R2-R1-bimodules because of
the canonical isomorphisms

R2 �R R1=R2 ⊗R R1�R2 ⊗R (R/Ker(i1))�R2/(R2 ·Ker(i1))=R2/Ker(j2) � R′

of R2-R1-bimodules. As i1 is surjective, there is an r ∈ R such that r1 = (r)i1,
while the twisting δ : R1 ⊗R R2 → R2 ⊗R R1, which defines the ring structure on
R2 �R R1, is given by r1 ⊗ r2 �→ (r)i2r2 ⊗ 1. This implies that f is an isomorphism
of rings. Thus R2 �R R1 � R′ as rings. �

Compared with Milnor squares, exact contexts (λ, μ,M,m) do not require that
one of ·m or m· be surjective, nor that M have a ring structure. In this sense, exact
contexts are a generalization of Milnor squares, but also of different constructions,
as illustrated by the following subsections.

4.2. Morita contexts. Let (A,C,X, Y, f, g) be a Morita context; that is, A and
C are rings, X is an A-C-bimodule, Y is a C-A-bimodule, and f : X ⊗C Y → A
and g : Y ⊗A X → C are homomorphisms of A-A-bimodules and C-C-bimodules,
respectively, such that (x1⊗y1)fx2 = x1(y1⊗x2)g and (y1⊗x1)gy2 = y1(x1⊗y2)f
for xi ∈ X and yi ∈ Y , with i = 1, 2. For simplicity, (x1 ⊗ y1)f and (y1 ⊗ x1)g are
denoted by x1y1 and y1x1, respectively.

Any ringR with a nontrivial idempotent e gives rise to a Morita context (eRe, (1−
e)R(1− e), eR(1− e), (1− e)Re, f, g), with f, g being multiplication maps.

Proposition 4.2. Every Morita context gives rise to an exact context, and its
noncommutative tensor product is of matrix form with the multiplication described
explicitly (see (�) below).

Proof. The Morita context ring M := ( A X
Y C ) has the matrix addition, while its

multiplication is given by(
a1 x1

y1 c1

)(
a2 x2

y2 c2

)
=

(
a1a2 + x1y2 a1x2 + x1c2
y1a2 + c1y2 c1c2 + y1x2

)
for ai ∈ A, ci ∈ C, xi ∈ X, and yi ∈ Y . Consider the subrings of M ,

R :=

(
A 0
0 C

)
, S :=

(
A X
0 C

)
, T :=

(
A 0
Y C

)
,

and denote the inclusions by λ : R → S and μ : R → T . Then M is an S-T -
bimodule. Since R = S ∩ T and M = S + T , the quadruple (λ, μ,M, 1M ) is an
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exact context. So, the noncommutative tensor product T �RS of this exact context
is defined and can be described explicitly as follows.

We identify R-Mod with A-Mod × C-Mod. Then RS = (A ⊕ X) × C, TR =
(A⊕ Y )× C, and the map

T ⊗R S −→
(

A X
Y C ⊕ (Y ⊗A X)

)
=: B,

defined by (
a1 0
y1 c1

)
⊗
(

a2 x2

0 c2

)
�→

(
a1a2 a1x2

y1a2 (c1c2, y1 ⊗ x2)

)
,

is an isomorphism of abelian groups. Hence we identify T ⊗R S with B, translate
the multiplication of T �R S into the one of B, and get the formula

(�)

(
a1 x1

y1 (c1, y ⊗ x)

)
◦
(

a2 x2

y2 (c2, y
′ ⊗ x′)

)

=

(
a1a2 + x1y2 a1x2 + x1c2 + x1(y

′x′)
y1a2 + c1y2 + (yx)y2

(
c1c2, y1 ⊗ x2 + (c1y

′)⊗ x′ + y ⊗ (xc2) + y ⊗ (xy′)x′)
)
,

where x, x′ ∈ X and y, y′ ∈ Y . Thus T�RS is described by B with the usual matrix
addition and the above multiplication. The maps ρ : S → T �R S, φ : T → T �R S,
and β : M → T ⊗R S are given by(

a1 x1

0 c1

)
ρ�→

(
a1 x1

0 (c1, 0)

)
,

(
a1 0
y1 c1

)
φ�→

(
a1 0
y1 (c1, 0)

)
,

(
a1 x1

y1 c1

)
β�→

(
a1 x1

y1 (c1, 0)

)
,

respectively. Observe that β may not be a ring homomorphism. Actually, it is a
ring homomorphism if and only if Y ⊗A X = 0. �

Let e := ( 1 0
0 (0,0) ) ∈ B. Then e = e2, A = eBe, and B/(BeB) = C. More-

over, Be = A ⊕ Y , eB = A ⊕ X, and BeB = A ⊕ X ⊕ Y ⊕ Y ⊗A X as abelian
groups. This implies that the multiplication map Be ⊗A eB → BeB is an isomor-
phism. So, if TorAi (Y,X) = 0 for all i > 0, then ToreBe

i (Be, eB) = 0 for all i > 0,
the canonical surjection B → B/BeB is homological, and there is a recollement
(D(C),D(B),D(A)) of derived module categories (see [13, 16]).

For each i ≥ 1, TorRi (T, S) � TorAi (Y,X). Thus TorRi (T, S) = 0 if and only if

TorAi (Y,X) = 0.

4.3. Strictly pure extensions. Recall that an extension D ⊆ C of rings is called
pure if there exists a D-D-bimodule X such that C = D ⊕ X as D-D-bimodules
(see [28]). If X is an ideal of C, then such an extension is called strictly pure. Note
that pure extensions were used by Waldhausen to compute the algebraic K-theory
of generalized free products (or coproducts of rings) in [28].

Let λ : R → S and μ : R → T be two strictly pure extensions. Then we are going
to construct an exact context (λ, μ,M,m) from this pair (λ, μ). By definition, we
have two split decompositions of R-R-bimodules:

S = R⊕X and T = R⊕ Y,
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where X and Y are ideals of S and T , respectively. Now we define M := R⊕X⊕Y
as the direct sum of abelian groups and endow M with a ring structure such that
S and T are its subrings:

(r1 + x1 + y1)(r2 + x2 + y2):=r1r2+(r1x2 + x1r2 + x1x2)+(r1y2 + y1r2 + y1y2)

for ri ∈ R, xi ∈ X, and yi ∈ Y with i = 1, 2. Since S ∩ T = R, (λ, μ,M, 1) is an

exact context. For each j ≥ 1, TorRj (T, S) = 0 if and only if TorRj (YR,RX) = 0.
In the following, we describe explicitly the multiplication of T �R S of the exact

cotext (λ, μ,M, 1).
AsR-R-bimodules, T�RS = T⊗RS = R⊕X⊕Y⊕Y⊗RX. Thus γ : S⊗RT → M

is given by s ⊗ t �→ st for s ∈ S and t ∈ T , and β : M → T ⊗R S is the canonical
inclusion. Thus δ : S ⊗R T → T ⊗R S is given by

(r + x)⊗ (r′ + y) �→ rr′ + xr′ + ry

for r, r′ ∈ R, x ∈ X, and y ∈ Y . This implies that (x ⊗ y)δ = 0 for x ∈ X and
y ∈ Y . By the definition of the multiplication ◦, both S and T can be regarded as
subrings of T �R S. Particularly, we have

X ◦ Y = X ◦ (Y ⊗R X) = (Y ⊗R X) ◦ Y = (Y ⊗R X) ◦ (Y ⊗R X) = 0,

and for x, x′ ∈ X, y, y′ ∈ Y,

y ◦ x = y ⊗ x, y′ ◦ (y ⊗ x) = y′y ⊗ x, (y ⊗ x) ◦ x′ = y ⊗ xx′ ∈ Y ⊗R X.

Certainly, M is the quotient ring of T �R S modulo the ideal Y ⊗R X.

4.4. Trivially twisted extensions. In this subsection, we show that noncommu-
tative tensor products described in Section 4.3 cover trivially twisted extensions
in [29, 30].

Let A be an Artin algebra, and let A0, A1, and A2 be three Artin subalgebras
of A with the same identity. We say that A is a twisted tensor product of A1 and
A2 over A0 (see [30]) if the following hold:

(a) A0 is a semisimple algebra such that A1 ∩ A2 = A0 and A = A0 ⊕ rad(A)
as a direct sum of A0-A0-bimodules, where rad(A) denotes the Jacobson
radical of A.

(b) The multiplication map σ : A2 ⊗A0
A1 → A is an isomorphism of A2-A1-

bimodules.
(c) rad(A1) rad(A2) ⊆ rad(A2) rad(A1).

If A is a twisted tensor product of A1 and A2 over A0, then there are decomposi-
tions of A0-A0-bimodules A1 = A0⊕rad(A1) and A2 = A0⊕rad(A2), where A0 is a
maximal common semisimple subalgebra of A, A1, and A2. If rad(A1) rad(A2) = 0,
then A is called the trivially twisted extension of A1 and A2 over A0 (see [29]).

For a trivially twisted extension A of A1 and A2 over A0, we may take

R := A0, S := A1, T := A2, X := rad(A1), Y := rad(A2),

and we let λ : R → S and μ : R → T be the inclusions. Clearly, both λ and μ are
strictly pure. Thus M := R⊕X ⊕ Y is a ring and (λ, μ,M, 1) is an exact context.
Since XY = rad(A1) rad(A2) = 0 in A, the multiplication in the noncommutative
tensor product T �R S implies that the multiplication map σ : T �R S → A is an
isomorphism of rings. Thus A � T �R S as rings.

If algebras are given by quivers with relations, trivially twisted extensions can
be described as follows.
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Suppose that A1 and A2 are k-algebras given by quivers Γ = (Γ0,Γ1) with
relations {σi | i ∈ I0} and Δ = (Δ0 := Γ0,Δ1) with relations {τj | j ∈ J0},
respectively. Then the trivially twisted extension A of A1 and A2 over A0 := kQ0

is given by the quiver Q = (Q0, Q1), where Q0 := Γ0 and Q1 := Γ1

.
∪ Δ1, with the

relations {σi | i ∈ I0} ∪ {τj |j ∈ J0} ∪ {αβ | α ∈ Γ1, β ∈ Δ1}. Here αβ means that
α comes first and then β follows.

Thus, by definition, A is isomorphic to the noncommutative tensor product of
the exact context (λ, μ,M, 1), where M = A0 ⊕ rad(A1)⊕ rad(A2) is the quotient
of A by the ideal generated by {βα | α ∈ Γ1, β ∈ Δ1}. Since A0 is semisimple,

TorA0
i (A2, A1) = 0 for all i ≥ 1. Therefore, Theorem 1.1 says that the canonical

inclusion

(
A1 M
0 A2

)
→

(
A A
A A

)
is just a homological universal localization.

5. Universal localizations and homological ring epimorphisms

In this section, we shall prove the main result, Theorem 1.1, present a categorical
interpretation (see Proposition 5.3) of noncommutative tensor products, and show
that noncommutative tensor products cover coproducts in ring theory.

In this section, (λ, μ,M,m) denotes an exact context, and all notation introduced
in Section 3 will be kept.

Let

Λ :=

(
S M
0 T

)
, Γ :=

(
T �R S T �R S
T �R S T �R S

)
, θ :=

(
ρ β
0 φ

)
: Λ −→ Γ.

Furthermore, let

e1 :=

(
1 0
0 0

)
, e2 :=

(
0 0
0 1

)
∈ Λ, and

ϕ : Λe1 −→ Λe2,

(
s
0

)
�→

(
sm
0

)
for s ∈ S.

Then ϕ is a homomorphism of finitely generated projective Λ-modules. If we iden-
tify HomΛ(Λe1,Λe2) with M , then ϕ corresponds to m ∈ M .

5.1. Proof of Theorem 1.1(1). In this section, we first prove Theorem 1.1(1)
and then use it to give a categorical description of noncommutative tensor products.
Consequently, we show that noncommutative tensor products cover coproducts in
ring theory and the endomorphism rings of tensor products of modules.

Theorem 1.1(1). The map θ : Λ → Γ is the universal localization of Λ at ϕ.

Indeed, let A := T �RS. By Lemma 3.6, (m)β = 1⊗1 is the identity of A. Thus
Γ⊗Λ ϕ : Γ⊗Λ Λe1 → Γ⊗Λ Λe2 is an isomorphism. So, θ is {ϕ}-inverting. We shall
prove that θ is universally {ϕ}-inverting.

Let Φ be a ring, and let ω : Λ → Φ be a {ϕ}-inverting ring homomorphism.
Define di := (ei)ω ∈ Φ with i = 1, 2. Then Φ = Φd1 ⊕ Φd2 as Φ-modules and
Φ ⊗Λ ϕ : Φ ⊗Λ Λe1 → Φ ⊗Λ Λe2 is an isomorphism. Further, the multiplication
maps μi : Φ ⊗Λ Λei → Φdi, induced from ω, are isomorphisms of Φ-modules. Let
η := μ−1

1 (Φ ⊗Λ ϕ)μ2, which is an isomorphism from Φd1 to Φd2. Then η induces
an isomorphism

τ : EndΦ(Φd1⊕Φd2)
�−→ EndΦ(Φd1⊕Φd1) :

(
f11 f12
f21 f22

)
�→

(
f11 f12η

−1

ηf21 ηf22η
−1

)
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of rings, where fij ∈ HomΦ(Φdi,Φdj) for 1 ≤ i, j ≤ 2. We identify Φ with

EndΦ(Φd1 ⊕ Φd2) and define B := EndΦ(Φd1). Then τ : Φ
�−→ M2(B), where

M2(B) denotes the 2 × 2 matrix ring over B. Moreover, under the identification
of M2(B) ⊗Λ Λei with B, the homomorphism M2(B) ⊗Λ ϕ : M2(B) ⊗Λ Λe1 →
M2(B)⊗Λ Λe2 corresponds to the identity of B.

Without loss of generality, assume Φ = M2(B) and ω =

(
f h
0 g

)
: Λ → Φ,

where f : S → B and g : T → B are ring homomorphisms, and h : M → B is a
homomorphism of S-T -bimodules with (m)h = 1. Particularly, h has the following
property:

(�) (sxt)h = (s)f(x)h(t)g for any s ∈ S, t ∈ T, x ∈ M.

Since (m)h = 1, (smt)h = (s)f(t)g. This implies that (sm)h = (s)f and (mt)h =
(t)g; that is, (·m)h = f and (m·)h = g. We shall show that ω factorizes through θ
uniquely. Observe that Lemma 3.5 shows that λf = μg : R → B. This guarantees
that the map

σ : A −→ B, t⊗ s �→ (t)g (s)f

is a well-defined homomorphism of abelian groups. By definition, σ preserves the
identity of rings. We shall show that σ also preserves multiplication.

Let ti ⊗ si ∈ A with i = 1, 2. Then we can check
(
(t1 ⊗ s1) ◦ (t2 ⊗ s2)

)
σ =(

t1(1⊗ss1mt2+ts1mt2⊗1)s2
)
σ =

(
t1⊗ss1mt2s2+t1ts1mt2⊗s2

)
σ = (t1)g

(
(ss1mt2)f+

(ts1mt2)g
)
(s2)f and (t1 ⊗ s1)σ(t2 ⊗ s2)σ = (t1)g(s1)f(t2)g(s2)f . Further, applying

h to both sides of the equality s1mt2 = ss1mt2m+ts1mt2 (see Section 3 for notation)
in M leads to another equality, (ss1mt2)f+(ts1mt2)g = (s1)f(t2)g in B. This forces(
(t1 ⊗ s1) ◦ (t2 ⊗ s2)

)
σ = (t1 ⊗ s1)σ(t2 ⊗ s2)σ. Thus σ preserves the multiplication

◦. Moreover, by (�), we have (f, g, h) = (ρσ, φσ, βσ). Set ψ :=

(
σ σ
σ σ

)
. Then

ψ : Γ → Φ is a ring homomorphism with ω = θψ.
It remains to show that such a ψ is unique. Suppose that ψ′ : Γ → Φ is another

ring homomorphism with ω = θψ′. Let 1A and 1B be the identities of A and B,
respectively. Then ψ′ sends the matrix units ( 1A 0

0 0 ), (
0 0
0 1A ), and ( 0 1A

0 0 ) in Γ to the

matrix units ( 1B 0
0 0 ), ( 0 0

0 1B ), and ( 0 1B
0 0 ) in Φ, respectively. It follows that ψ′ is of

the form ( ξ ξ
ξ ξ ), where ξ : A → B is a ring homomorphism. Since ω = θψ′, we have

ρξ = f and φξ = g. As the equality t⊗ s = (t⊗ 1) ◦ (1⊗ s) holds in A for any s ∈ S
and t ∈ T , it follows that

(t⊗ s)ξ = (t⊗ 1)ξ(1⊗ s)ξ = ((t)φξ) ((s)ρξ) = (t)g(s)f = (t⊗ s)σ.

This shows that ξ = σ and ψ = ψ′. Thus θ is universally {ϕ}-inverting.

Remark 5.1. In [27], the universal localization of Λ at ϕ was described as the matrix
ringM2(C) of a ring C where C is given in terms of generators and relations. By the
uniqueness of universal localizations, C and T �R S are isomorphic. Compared to
the description in [27], noncommutative tensor products contain richer homological
and structural information. In this paper, we will not use the description in [27].

Now we give a categorical characterization of T �R S. It is a relative version of
coproducts with respect to exact contexts and shows the uniqueness of noncommu-
tative tensor product for each exact context.
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Definition 5.2. The coproduct of an exact context (λ, μ,M,m) is a quadruple
(A, u, v, w) consisting of a ring A, two ring homomorphisms u : S → A and v : T →
A, and a homomorphism w : M → A of abelian groups, satisfying

(1) λu = μv and (smt)w = (s)u (t)v for all s ∈ S and t ∈ T , and
(2) if (B, f, g, h) is another quadruple with B a ring, f : S → B and g : T → B

two ring homomorphisms, and h : M → B a homomorphism of abelian groups such
that (1) is satisfied, then there is a unique ring homomorphism σ : A → B such
that (f, g, h) = (uσ, vσ, wσ).

By Lemma 3.5, given a ring B and two ring homomorphisms f : S → B and
g : T → B with λf = μg, there is a unique homomorphism hf,g : M → B of
R-R-bimodules such that (sm)hf,g = (s)f and (mt)hf,g = (t)g for s ∈ S and t ∈ T .
In general, hf,g does not satisfy (smt)hf,g = (s)f(t)g. If a quadruple (B, f, g, h)
satisfies Definition 5.2(1), then h = hf,g.

Proposition 5.3. The quadruple (T �R S, ρ, φ, β) is the coproduct of the exact
context (λ, μ,M,m).

Proof. By definition, λρ = μφ. Since β is a homomorphism of S-T -bimodules with
(m)β = 1⊗1 by Lemma 3.6(3), (smt)β = s · (m)β · t = (s)ρ◦ (t)φ for any s ∈ S and
t ∈ T . Thus (T �R S, ρ, φ, β) satisfies Definition 5.2(1). The universal property of
(T �R S, ρ, φ, β) follows from the proof of Theorem 1.1(1) and the following result:

If a quadruple (B, f, g, h) satisfies Definition 5.2(1), then h : M → B is a
homomorphism of S-T -bimodules; that is, (sxt)h = (s)f(x)h(t)g for s ∈ S,
x ∈ M , and t ∈ T .

In fact, since (B, f, g, h) satisfies Definition 5.2(1), (smt)h = (s)f(t)g. For x ∈
M , there exists an element (sx, tx) ∈ S⊕T such that x = sxm+mtx. Then (sxt)h =
(ssxmt + smtxt)h = (ssx)f(t)g + (s)f(txt)g = (s)f

(
(sx)f + (tx)g

)
(t)g. Moreover,

due to (1)f = 1 and (1)g = 1, we obtain (sx)f + (tx)g = (sxm)h+ (mtx)h = (x)h.
This implies that (sxt)h = (s)f (x)h (t)g. �

Corollary 5.4.
(1) If (λ, μ) is an exact pair, then the ring T �R S, together with the ring homo-

morphisms ρ : S → T �R S and φ : T → T �R S, is the coproduct S
⊔

R T of the
R-rings S and T (via λ and μ) over R.

(2) If λ : R → S is a ring epimorphism, then T �R S � EndT (T ⊗R S) as rings.

Proof.
(1) Assume that (λ, μ) is an exact pair. Then M = S⊗R T and m = 1⊗ 1 ∈ M .

Let B be a ring, and let f : S → B and g : T → B be ring homomorphisms. On
the one hand, if λf = μg, then the map h′ : M → B, given by s ⊗ t �→ (s)f (t)g
for s ∈ S and t ∈ T , is well defined, and thus (B, f, g, h′) satisfies Definition 5.2(1).
On the other hand, if h : M → B is a homomorphism of abelian groups such
that (E, f, g, h) satisfies Definition 5.2(1), then h = h′ due to the equality s⊗ t =
s(1 ⊗ 1)t = smt ∈ M . By the definitions of coproducts of both rings and exact
contexts, (1) is now a consequence of Proposition 5.3.

(2) Since λ is a ring epimorphism, the pair (λ, μ) is exact by Corollary 3.10. It
follows from (1) that T �R S = S

⊔
R T , and thus that φ : T → T �R S is a ring

epimorphism. Since T�RS = T⊗RS as T -modules, T�RS = EndT�RS(T�RS) �
EndT (T �R S) = EndT (T ⊗R S). �
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5.2. Proof of Theorem 1.1(2). The proof of Theorem 1.1(2) is divided into four
lemmas. We start by introducing a few notation.

Let P • be the complex 0 → Λe1
ϕ−→ Λe2 → 0 in C (Λ) with Λe1 and Λe2 in

degrees −1 and 0, respectively; that is P • = Con(ϕ). Note that Λe1 and Λe2 can
be regarded as right R-modules via λ : R → S and μ : R → T , respectively. Then
the map ·m : S → M is a homomorphism of S-R-bimodules. Thus P • is a complex
over Λ⊗Z Rop, and there is a distinguished triangle in K (Λ⊗Z Rop):

Λe1
ϕ−→ Λe2 −→ P • −→ Λe1[1].

By Theorem 1.1(1), θ : Λ → Γ is a ring epimorphism. Thus the restriction functor
θ∗ : Γ-Mod → Λ-Mod is fully faithful. So we can regard Γ-Mod as a full subcategory
of Λ-Mod and define a full subcategory

D(Λ)Γ := {X• ∈ D(Λ) | Hn(X•) ∈ Γ-Mod for all n ∈ Z}
of D(Λ). The importance of D(Λ)Γ relies on the following result.

Lemma 5.5.
(1) EndD(Λ)(P

•) � R as rings.

(2) The complex P • is self-orthogonal in D(Λ); that is, HomD(Λ)

(
P •, P •[n]

)
= 0

for any n �= 0.
(3) There exists a recollement of triangulated categories

(��) D(Λ)Γ
i∗ �� D(Λ)

��
j! ��

��

i∗

��
D(R)

				

j!




,

where i∗ is the embedding, j! := ΛP
• ⊗L

R − and j! := Hom•
Λ(P

•,−).
(4) The map θ : Λ → Γ is homological if and only if Hn

(
i∗i

∗(Λ)
)
= 0 for all

n �= 0. In this case, D(Γ) is equivalent to D(Λ)Γ as triangulated categories.

Proof.
(1) Since P • is a bounded complex of finitely generated projective Λ-modules,

EndD(Λ)(P
•) � EndK (Λ)(P

•) as rings. Due to HomΛ(Λe2,Λe1) = 0, we have
EndK (Λ)(P

•) = EndC (Λ)(P
•). Moreover, if EndΛ(Λe1) and EndΛ(Λe2) are iden-

tified with S and T , respectively, then EndC (Λ)(P
•) can be identified with K :=

{(s, t) ∈ S ⊕ T | sm = mt}, a subring of S ⊕ T . Since (λ, μ,M,m) is an exact
context, R � K as rings. Thus EndD(Λ)(P

•) � R as rings.

(2) Clearly, HomD(Λ)

(
P •, P •[n]

)
� HomK (Λ)

(
P •, P •[n]

)
= 0 for all n ∈ Z

with |n| ≥ 2. It follows from HomΛ(Λe2,Λe1) = 0 that HomD(Λ)

(
P •, P •[−1]

)
=

0. Observe that HomK (Λ)

(
P •, P •[1]

)
= 0 if and only if HomΛ(Λe1,Λe2) =

ϕEndΛ(Λe2) + EndΛ(Λe1)ϕ. This is equivalent to saying that the map ( ·m
−m· ) :

S⊕T → M is surjective by identifying HomΛ(Λe1,Λe2), EndΛ(Λe1), and EndΛ(Λe2)
with M , S, and T , respectively. Hence (2) follows now from the definition of exact
contexts.

(3) If Λ is a k-algebra over a commutative ring k such that kΛ is projective, then
(3) follows from [21, Theorem 2.8]. Since we deal with arbitrary rings, the proof
there seems not to work well. Hence we include a proof here.

By [10, Proposition 3.6(a)], the embeddings D(Λ)Γ ↪→ D(Λ) and Tria(ΛP
•) ↪→

D(Λ) induce a recollement
(
D(Λ)Γ,D(Λ),Tria(ΛP

•)
)
of triangulated categories. In
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the following, we show that P • ⊗L

R − : D(R) → D(Λ) is fully faithful and induces
a triangle equivalence from D(R) to Tria(ΛP

•).
Since P • is a complex of Λ-R-bimodules, P • ⊗L

R − : D(R) → D(Λ) and
RHomΛ(P

•,−) : D(Λ) → D(R) are well-defined functors. Moreover, since P •

is a bounded complex of finitely generated projective Λ-modules, Hom•
Λ(P

•,−) :
K (Λ) → K (R) preserves acyclicity; that is, Hom•

Λ(P
•,W •) is acyclic whenever

W • ∈ C (Λ) is acyclic. This automatically induces a derived functor D(Λ) → D(R),
defined by W • �→ Hom•

Λ(P
•,W •). Therefore, we can replace RHomΛ(P

•,−) with
Hom•

Λ(P
•,−) up to natural isomorphism.

Let

Y := {Y • ∈ D(R) | P • ⊗L

R − : HomD(R)(R, Y •[n])
�−→ HomD(Λ)(P

• ⊗L

R R,P • ⊗L

R Y •[n]) for all n ∈ Z}.

Then Y is a full triangulated subcategory of D(R). Since P •⊗L

R− commutes with
arbitrary direct sums and since P • is compact in D(Λ), Y is closed under arbitrary
direct sums in D(R).

To prove RR ∈ Y , it is sufficient to prove that

(a) P • ⊗L

R − induces an isomorphism of rings from EndD(R)(R) to

EndD(Λ)(P
• ⊗L

R R), and

(b) HomD(Λ)(P
• ⊗L

R R,P • ⊗L

R R[n]) = 0 for any n �= 0.

Since P • ⊗L

R R � P • in D(Λ), (a) is equivalent to saying that the right mul-
tiplication map R → EndD(Λ)(P

•) is an isomorphism, while (b) is equivalent to
HomD(Λ)(P

•, P •[n]) = 0 for any n �= 0. Thus (a) and (b) follow directly from (1)
and (2), respectively. This shows that R ∈ Y .

Thus Y = D(R) since D(R) = Tria(R). Consequently, for any Y • ∈ D(R),
there is an isomorphism

P •⊗L

R− : HomD(R)(R, Y •[n])
�−→ HomD(Λ)(P

•⊗L

RR,P •⊗L

R Y •[n]) for all n ∈ Z.

Now, we take a complex N• ∈ D(R) and consider

XN• := {X• ∈ D(R) | P • ⊗L

R − : HomD(R)(X
•, N•[n])

�−→ HomD(Λ)(P
• ⊗L

R X•, P • ⊗L

R N•[n]) for all n ∈ Z}.

Then XN• is a full triangulated subcategory of D(R) and closed under arbitrary
direct sums in D(R). It follows from R ∈ XN• and D(R) = Tria(R) that XN• =
D(R). Consequently, for M• ∈ D(R), there is an isomorphism

P • ⊗L

R − : HomD(R)

(
M•, N•[n]

) �−→ HomD(Λ)

(
P • ⊗L

R M•, P • ⊗L

R N•[n]
)

for all n ∈ Z. Hence P • ⊗L

R − : D(R) → D(Λ) is fully faithful.
Recall that Tria(P •) is the smallest full triangulated subcategory of D(Λ), con-

taining P • and being closed under arbitrary direct sums in D(Λ). Hence the image
of D(R) under P •⊗L

R − is Tria(P •) (see property (2) in Section 2.1), and P •⊗L

R −
induces a triangle equivalence from D(R) to Tria(P •). Since Hom•

Λ(P
•,−) is a

right adjoint of P • ⊗L

R −, the restriction of the functor Hom•
Λ(P

•,−) to Tria(P •)
is the quasi-inverse of the functor P • ⊗L

R − : D(R) → Tria(P •). In particu-

lar, Hom•
Λ(P

•,−) induces an equivalence of triangulated categories: Tria(P •)
�−→

D(R). Thus we obtain recollement (��) in (3).
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(4) is a consequence of [10, Proposition 3.6(b)]. See also [1, Proposition 1.7]
or [22, Theorem 0.7 and Proposition 5.6]. �

From now on, we keep the notation in Lemma 5.5 and let ε : j!j
! → IdD(Λ) and

η : IdD(Λ) → i∗i
∗ be the counit and unit with respect to the adjoint pairs (j!, j

!)
and (i∗, i∗) in recollement (��), respectively.

Lemma 5.6.

(1) i∗i
∗(Λe1) � i∗i

∗(Λe2) in D(Λ).

(2) Hn
(
i∗i

∗(Λe1)
)
�

{
0 if n ≥ 1,

TorR−n (T, S)⊕ TorR−n (T, S) if n ≤ −2.

Proof.

(1) Applying i∗i
∗ : D(Λ) → D(Λ) to the triangle P •[−1] → Λe1

ϕ−→ Λe2 → P •

in D(Λ), we obtain another triangle in D(Λ):

i∗i
∗(P •)[−1] −→ i∗i

∗(Λe1)
i∗i

∗(ϕ)−→ i∗i
∗(Λe2) −→ i∗i

∗(P •).

From i∗j! = 0 in (��), we have i∗(P •) � i∗j!(R) = 0. Thus i∗i
∗(ϕ) :

i∗i
∗(Λe1) → i∗i

∗(Λe2) is an isomorphism.
(2) By the definition of recollements, there is the triangle in D(Λ):

(�) j!j
!(Λe1)

εΛe1−→ Λe1
ηΛe1−→ i∗i

∗(Λe1) −→ j!j
!(Λe1)[1].

Certainly, j!(Λe1) = HomΛ(P
•,Λe1) � S[−1] as complexes of R-modules.

So, in the following, we identify HomΛ(P
•,Λe1) with S[−1] and rewrite (�)

as the following triangle in D(Λ):

P • ⊗L

R S[−1]
εΛe1−→ Λe1

ηΛe1−→ i∗i
∗(Λe1) −→ P • ⊗L

R S.

For n ∈ Z, we take the nth cohomology of this triangle and can conclude
that Hn(i∗i

∗(Λe1)) � Hn(P • ⊗L

R S) for n ≥ 1 or n ≤ −2. Moreover,

P • = T ⊕ (0 → S
·m−→ M → 0) = T ⊕ Con(·m) ∈ D(Rop).

Since (λ, μ,M,m) is an exact context, it follows from Lemma 3.5 that
the chain map (λ,m·) : Con(μ) → Con(·m) is a quasi-isomorphism. This
implies that Con(·m) � Con(μ) in D(Rop). Thus P • � T ⊕ Con(μ) in
D(Rop) and P • ⊗L

R S � (T ⊗L

R S)⊕ (Con(μ)⊗L

R S) in D(Z). In particular,
Hn(P • ⊗L

R S) � Hn(T ⊗L

R S)⊕Hn(Con(μ)⊗L

R S) for all n ∈ Z. Applying

the functor −⊗L

R S to the canonical triangle R
μ−→ T → Con(μ) → R[1] in

D(Rop), we obtain another triangle S → T ⊗L

R S → Con(μ)⊗L

R S → S[1] in
D(Z). Thus, if n ≥ 1 or n ≤ −2, then Hn(T ⊗L

R S) � Hn(Con(μ) ⊗L

R S),
and therefore

Hn(i∗i
∗(Λe1)) � Hn(P • ⊗L

R S) � Hn(T ⊗L

R S)⊕Hn(T ⊗L

R S)

� TorR−n (T, S)⊕ TorR−n (T, S),

where TorR−n (T, S) := 0 for any n ≥ 1. This shows (2). �

For the calculation of Hn
(
i∗i

∗(Λe1)
)
for n = 0,−1, the following result will be

used.

Lemma 5.7. Let μS : S⊗S → S be the multiplication map, and let (·m) : S → M
be the right multiplication map by m.
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(1) The restriction σ of the map (·m) ⊗R S to Ker(μS) is injective and
Coker(σ) � T ⊗R S as R-S-bimodules.

(2) The cokernel of the map TorR1 (·m,S) : TorR1 (S, S) → TorR1 (M,S) is iso-

morphic to TorR1 (T, S).

Proof.

(1) The sequence 0 → Ker(μS) → S ⊗R S
μS−→ S → 0 always splits in the

category of R-S-bimodules since the composition of λ ⊗R S : R ⊗R S →
S ⊗R S with μS is an isomorphism. Consequently, λ ⊗R S is injective,
Im(λ ⊗R S) ∩ Ker(μS) = 0, and S ⊗R S = Ker(μS) ⊕ Im(λ ⊗R S). Recall
that the diagram in Lemma 3.5 is a pushout and pullback diagram in the
category of R-R-bimodules. Applying the functor − ⊗R S to Lemma 3.5
yields the commutative diagram

R⊗R S

μ⊗RS

��

λ⊗RS �� S ⊗R S

(·m)⊗RS

��
T ⊗R S

(m·)⊗RS�� M ⊗R S

which is again a pushout and pullback diagram in the category of R-S-
bimodules. Let ϕ1 := (·m) ⊗R S. Then λ ⊗R S induces an isomorphism
from Ker(μ ⊗R S) to Ker(ϕ1). In particular, Ker(ϕ1) ⊆ Im(λ ⊗R S). It
follows from Im(λ⊗R S)∩Ker(μS) = 0 that Ker(ϕ1) ∩Ker(μS) = 0. Thus
σ is injective.

It is clear that Coker(σ) is the pushout of the pair (μS , ϕ1) in the category
of S-S-bimodules. As the composition of λ⊗RS with μS is an isomorphism
of R-S-bimodules, we have Coker(σ) � T ⊗R S as R-S-bimodules.

(2) Applying TorRi (−, S) to (∗) (see Definition 3.1), we obtain a long exact
sequence of abelian groups:

0 = TorR1 (R,S) −→ TorR1 (S, S)⊕ TorR1 (T, S)

(
TorR1 (·m,S)

− TorR1 (m·, S)

)

−→ TorR1 (M,S)

−→ R⊗R S

(
λ⊗RS, μ⊗RS

)
−→ S ⊗R S ⊕ S ⊗R T.

Since λ⊗R S : R⊗R S → S ⊗R S is injective, the map (λ⊗R S, μ⊗R S) is
injective. Thus(

TorR1 (·m, S)

−TorR1 (m·, S)

)
: TorR1 (S, S)⊕ TorR1 (T, S)

�−→ TorR1 (M,S).

This implies (2). �

Lemma 5.8. H−1
(
i∗i

∗(Λe1)
)
� TorR1 (T, S) ⊕ TorR1 (T, S) and H0

(
i∗i

∗(Λe1)
)
�

T ⊗R S ⊕ T ⊗R S.

Proof. We have two homomorphisms of S-S-bimodules:

μS : S⊗RS −→ S, s1⊗s2 �→ s1s2, ϕ1 : S⊗RS −→ M⊗RS, s1⊗s2 �→ s1m⊗s2



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

EXACT CONTEXTS AND NONCOMMUTATIVE TENSOR PRODUCTS 3669

for s1, s2 ∈ S. By identifying the Λ-modules Λe1 ⊗R S and Λe2 ⊗R S with ( S⊗RS
0 )

and (M⊗RS
T⊗RS ), respectively, we get a chain map in C (Λ):

P • ⊗R (S[−1]) :

g•

��

0 ��
(

S⊗RS
0

)
(μS

0 )
��

(ϕ1
0 )

��
(

M⊗RS
T⊗RS

)
0

��

�� 0

Λe1 : 0 ��
(

S
0

)
0 �� 0 �� 0

Let τ : pS → S be a deleted projective resolution of RS. Recall that j!(Λe1) =
HomΛ(P

•,Λe1) = S[−1]. Then the counit εΛe1 : j!j
!(Λe1) → Λe1 is the composition

of the homomorphisms

j!j
!(Λe1)=P • ⊗L

R Hom•
Λ(P

•,Λe1)=P • ⊗•
R (pS)[−1]

1⊗τ [−1]−→ P • ⊗•
R S[−1]

g•

−→ Λe1.

Further, let h• be the chain map (1, 0) : P • → Λe1[1]. Then we have a commutative
diagram

P • ⊗R (pS)[−1]
1⊗τ [−1] ��

h•⊗1

��

P • ⊗R S[−1]
g•

��

h•⊗1

��

Λe1

Λe1[1]⊗R (pS)[−1]
1⊗τ [−1]�� Λe1[1]⊗R S[−1]

(μS
0 )

�� Λe1

This implies that the diagram

(∗∗) P • ⊗L

R HomΛ(P
•,Λe1)

h•⊗L1 �� Λe1[1]⊗L

R HomΛ(P
•,Λe1)(

1⊗τ [−1]
)
(μS

0 )
��

P • ⊗L

R HomΛ(P
•,Λe1)

εΛe1 �� Λe1 =
(

S
0

)

is commutative in D(Λ). Since Λe2 → P • h•
−→ Λe1[1]

ϕ[1]−→ Λe2[1] is a distin-
guished triangle in D(Λ⊗Z R

op

), there exists a unique homomorphism ξ : Λe2 ⊗L

R

HomΛ(P
•,Λe1)[1] → i∗i

∗(Λe1) and a complex W • in D(Λ) such that (∗∗) is com-
pleted by the commutative diagram

W •

ζ

��

W •

ψ

��
P • ⊗L

R HomΛ(P
•,Λe1)

h•⊗L1 �� Λe1[1]⊗L

R HomΛ(P
•,Λe1)

ϕ[1]⊗L1��

(1⊗τ [−1]) (μS
0 )

��

Λe2[1]⊗L

R HomΛ(P
•,Λe1)

ξ

���
�
�

�� P •[1]⊗L

R HomΛ(P
•,Λe1)

P • ⊗L

R HomΛ(P
•,Λe1)

εΛe1 �� Λe1 =
(

S
0

) ηΛe1 ��

��

i∗i∗(Λe1) ��

��

P •[1]⊗L

R HomΛ(P
•,Λe1)

W •[1] W •[1]

with rows and columns being distinguished triangles in D(Λ), where ψ =
ζ(ϕ[1]⊗L 1). The uniqueness of ξ is due to the equalities

HomD(Λ)(P
•[1]⊗L

R HomΛ(P
•,Λe1), i∗i

∗(Λe1)) = HomD(Λ)(j!(S), i∗i
∗(Λe1)) = 0.
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In particular, we obtain a triangle W • ψ−→ Λe2 ⊗L

R S
ξ−→ i∗i

∗(Λe1) → W •[1] in
D(Λ). This yields an exact sequence of abelian groups

H−1(W •)
H−1(ψ)−→ H−1(Λe2 ⊗L

R S)
H−1(ξ)−→ H−1(i∗i

∗(Λe1))

−→ H0(W •)
H0(ψ)−→ H0(Λe2 ⊗L

R S).

We claim that H0(ψ) : H0(W •) → H0(Λe2 ⊗L

R S) is always injective.
Indeed, by definition, the map H0(ψ) is the composition of H0(ζ) : H0(W •) →

H0(Λe1 ⊗L

R S) with H0(ϕ[1]⊗L 1) : H0(Λe1 ⊗L

R S) → H0(Λe2 ⊗L

R S). Moreover,

H0(Λe1 ⊗L

R S) = Λe1 ⊗R S = S ⊗R S and H0(Λe2 ⊗L

R S) = Λe2 ⊗R S.

So we can identify H0(ϕ[1] ⊗L 1) with the map ϕ ⊗R S : Λe1 ⊗R S → Λe2 ⊗R S.
Applying the functor H0 to the triangle

W • ζ−→ Λe1 ⊗L

R S
(1⊗τ [−1]) (μS

0 )
−−−−−−−−−−→ Λe1 −→ W •[1],

we obtain a short exact sequence 0 → H0(W •)
H0(ζ)−→ S⊗R S

μS−→ S → 0, where Λe1
is identified with S. Thus H0(ζ) induces an isomorphism H0(W •)

�−→ Ker(μS).
It follows from H0(ψ) = H0(ζ)(ϕ⊗R S) that H0(ψ) is injective if and only if the
restriction of ϕ ⊗R S to Ker(μS) is also. As Im(ϕ ⊗R S) ⊆ M ⊗R S, the latter is
further equivalent to the restriction σ of ϕ1 to Ker(μS) being injective. But, by
Lemma 5.7(1), σ is indeed injective, which proves the claim.

Consequently, H−1(ξ) is surjective andH−1(i∗i
∗(Λe1)) � Coker(H−1(ψ)). Since

H−1(ψ) is the composition of the isomorphism H−1(ζ) : H−1(W •)
�−→

H−1(Λe1 ⊗L

R S) with the map

H−1(ϕ[1]⊗L 1) : H−1(Λe1 ⊗L

R S) −→ H−1(Λe2 ⊗L

R S),

H−1(i∗i
∗(Λe1)) � Coker(H−1(ψ)) � Coker

(
H−1(ϕ[1]⊗L 1)

)
. Recall that Λe1 = S,

Λe2 = M ⊕T , and ϕ = (·m, 0) : S → M ⊕T . Moreover, we have H−1(Λe1⊗L

R S) =

TorR1 (S, S), H−1(Λe2 ⊗L

R S) = TorR1 (M ⊕ T, S), and H−1(ϕ[1]⊗L 1) is given by(
TorR1 (·m,S), 0

)
: TorR1 (S, S) −→ TorR1 (M,S)⊕ TorR1 (T, S).

Thus Coker
(
H−1(ϕ[1] ⊗L 1)

)
� Coker(TorR1 (·m, S)) ⊕ TorR1 (T, S). Since Coker

(TorR1 (·m,S)) � TorR1 (T, S) by Lemma 5.7(2), H−1(i∗i
∗(Λe1)) � TorR1 (T, S) ⊕

TorR1 (T, S). This shows the first isomorphism in (2).

Now, applying H0 and H1 to the triangle W • ψ−→ Λe2 ⊗L

R S
ξ−→ i∗i

∗(Λe1) →
W •[1], we have the exact sequence:

H0(W •)
H0(ψ)−→ H0(Λe2 ⊗L

R S)
H0(ξ)−→ H0(i∗i

∗(Λe1)) −→ H1(W •).

The triangle W • ζ−→ S ⊗L

R S → S → W •[1] implies that H1(W •) = 0. Since
H0(ψ) is injective and since Coker(σ) � T ⊗RS by Lemma 5.7(1), H0(i∗i

∗(Λe1)) �
Coker(H0(ψ)) � T ⊗R S ⊕ Coker(σ) � T ⊗R S ⊕ T ⊗R S. This shows the second
isomorphism. �

Proof of Theorem 1.1(2). By Lemma 5.5(4), the map θ is homological if and only
if Hn

(
i∗i

∗(Λ)
)

= 0 for all n �= 0. By Lemmas 5.6 and 5.8, Hn
(
i∗i

∗(Λ)
)

�
Hn

(
i∗i

∗(Λe1)
)
⊕ Hn

(
i∗i

∗(Λe1)
)
�

⊕4
i=1 Tor

R
−n(T, S) for each n ∈ Z. Thus (2)

holds. �
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