ON A CLASS OF BCI-ALGEBRAS

CHANGCHANG XI

(Received August 8, 1988)

Abstract. In this paper, we discuss the BCI-algebras satisfying $(x * y) * z \le x * (y * z)$ and give some properties of such algebras.

In 1966, K. Iséki introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra, let us recall the definition:

Definition. A BCI-algebra is an algebra (X, *, 0) of type (2, 0) with the following conditions:

- (1) ((x*y)*(x*z))*(z*y) = 0,
- (2) (x * (x * y)) * y = 0,
- (3) x * x = 0,
- (4) x * y = 0 = y * x implies x = y.

In a BCI-alegebra X, the following was shown to be true:

- (5) x * 0 = x,
- (6) (x * y) * z = (x * z) * y,
- (7) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

We will use the standard terminology and the facts mentioned in our joint paper [1].

In [2], Q. P. Hu and K. Iséki discussed the BCI-algebra satisfying (x*y)*z=x*(y*z), which is called an associative BCI-algebra. In this note, we want to study the BCI-algebra satisfying $(x*y)*z \le x*(y*z)$ for all x, y, z in the algebra, which is called a quasi-associative BCI-algebra.

First of all, we give some examples to show that quasi-associative BCI-algebras do exist.

Example.

- 1. Ang associative BCI-algebra is quasi-associative.
- 2. Ang BCK-algebra is quasi-associative.
- 3. Let $X = \{0, a, b\}$ and * be given by the table:

*	0	a	b
0	0	0	\overline{b}
a	a	0	b
b	b	b	0

14 C. C. XI

Then X is quasi-associative, but not associative.

Theorem 1. Let X be a BCI-algebra and P(X) the p-radical of X (see [1]). Then the following conditions are equivalent:

- (i) X is quasi-associative,
- (ii) 0 * x = 0 * (0 * x) for each x in X,
- (iii) X/P(x) is associative.

Proof. (i) implies (ii). Assume X is quasi-associative, we have

$$(0*0)*z < 0*(0*z),$$

that is, $0 * z \le 0 * (0 * z)$. On the other hand, we also have

$$(0*(0*z))*(0*z) \le 0*((0*z)*(0*z)) = 0$$

this means $0 * (0 * z) \le 0 * z$, thus we have 0 * z = 0 * (0 * z).

(ii) implies (i). Assume that 0 * x = 0 * (0 * x) holds for all x in X. By (6), we have (0 * x) * x = (0 * (0 * x)) * x = (0 * x) * (0 * x) = 0. Thus

$$((x*y)*z)*(x*(y*z)) = ((x*y)*(x*(y*z)))*z$$
 (by (6))

$$\leq ((y*z)*y)*z$$
 (by (1) and (7))

$$= ((y*y)*z)*z$$
 (by (6))

$$= (0*z)*z = 0,$$

therefore X is quasi-associative.

(ii) implies (iii). According to a theorem in [2], we only need to show that $C_0 * C_x = C_x$ holds in X/P(X). From [1] it follows that X/P(X) is p-semisimple. By the theorem 1 in [1], we have

$$C_0 * C_x = C_0 * (C_0 * C_x) = C_x,$$

thus the condition (iii) holds.

(iii) implies (ii). First, we prove the following lemma.

Lemma 1. For ang BCI-algebra (X, *, 0) we have

$$0 * (x * y) = (0 * x) * (0 * y).$$

Proof. Since

we have $(0*x)*(0*y) \le 0*(x*y)$. On the other hand, since $(0*y)*(x*y) \le 0*x$, we have $0*(x*y) = ((0*y)*(x*y))*(0*y) \le (0*y)*(0*y)$. Hence we now get 0*(x*y) = (0*x)*(0*y) by the definition of a BCI-algebra.

Now assume that X/P(X) is associative, according to [2], we have $C_0 * C_x = C_{0*x} = C_x$, that is, $(0*x)*x \in P(X)$ and $x*(0*x) \in P(X)$, and therefore it follows from lemma 1 that (0*(0*x))*(0*x) = 0*((0*x)*x) = 0 = 0*(x*(0*x)) = (0*x)*(0*(0*x)) holds, which means 0*x = 0*(0*x). Thus we have finished the proof of the theorem 1.

From the theorem 1 we have

Theorem 2. Let X and Y be quasi-associative BCI-algebras and I an ideal of X, then

- (i) X/I is also quasi-associative,
- (ii) the product $X \times Y$ of X and Y is quasi-associative. (see [1])

Theorem 3. Let X be a BCI-algebra, then the following conditions are equivalent:

- (i) X is quasi-associative,
- (ii) $0 * x \le x$ for all x in X,
- (iii) 0*(x*y) = 0*(y*x) for all x, y in X,
- (iv) (0 * x) * y = 0 * (x * y),
- (v) $(x*y)*(y*x) \in P(X)$ for all x, y in X.

Proof. We first prove that

(8) 0 * x < x if and only if 0 * x = 0 * (0 * x).

If $0*x \le x$, then we have $x*(0*x) \ge 0$ and (0*x)*x = 0, by the lemma 1, we get 0 = 0*((0*x)*x) = (0*(0*x))*(0*x) and (0*x)*(0*(0*x)) = 0*(x*(0*x)) = 0, thus 0*x = 0*(0*x) holds. The other direction is trivial.

From theorem 1 we have that (i) is equivalent to (ii). By [3, lemma 3.2] (or direct to check), (ii) implies (iii)-(v). It is easy to see that (iii) resp. (iv) implies 0 * x = 0 * (0 * x).

16 C. C. XI

(v) implies (8). Let x = 0 in (v) we get $(0*y)*y \in P(X)$ and let y be 0 we get $x*(0*x) \in P(X)$ for all x, y in X, using the lemma 1 we see that 0*x = 0*(0*x) holds in X. Thus we have completed the proof.

Lemma 2. For any BCI-algebra X we have

$$0*(0*(0*x)) = 0*x$$
 for each x in X .

Proof. From (2) it follows that $0 * (0 * (0 * x)) \le 0 * x$; If we replace x by 0 and z by 0 * (0 * y) in (1), we get

$$(0*y)*(0*(0*(0*y))) \le (0*(0*y))*y = (0*y)*(0*y) = 0$$

for all y in X, this means that $0 * x \le 0 * (0 * (0 * x))$ for all x in X. Therefore we have proved the lemma 2.

Theorem 4. Every quasi-associative BCI-algebra contains an associative BCI-subalgebra A(X) such that $X/P(X) \cong A(X)$.

Every BCI-algebra X contains a p-semisimple subalgebra S(X) such that $X/P(X) \cong S(X)$.

Proof. Put $A(X) = \{x \in X | 0 * x = x\}$, by lemma 1, it is an associative subalgebra. Define a homomorphism by

$$\Phi: A(X) \longrightarrow X/P(X), \quad x \longmapsto C_x.$$

Let $\Phi(x) = C_0$ for some x in A(X), this means $C_x = C_0$ and $x \in P(X)$. Hence x = 0 * x = 0, and Φ is mono. From theorem 1 we know that X/P(X) is associative, therefore $C_x = C_0 * C_x = C_{0*x}$ holds for each x in A(X), which shows that Φ is an epimorphism, because $0 * x \in A(X)$.

Put $S(X) = \{x \in X | 0 * (0 * x) = x\}$, by lemma 1, lemma 2 and a theorem in [1], we know that S(X) is a p-semisimple subalgebra of X. Define

$$\Phi: S(X) \longrightarrow X/P(X), \quad x \longmapsto C_x.$$

Then Φ is mono, and moreover, Φ is also epimorphism, in fact, X/P(X) is p-semisimple, thus we have $C_x = C_0 * (C_0 * C_x) = C_{0*(0*x)}$ in X/P(X), which means Φ is epimorphism, because $0 * (0 * x) \in S(X)$ by the lemma 2.

Definition. An ideal I is called quasi-associative if for each x in I we have 0 * x = 0 * (0 * x).

Theorem 5. Every BCI-algebra X contains a maximal quasi-associative ideal, which is also a subalgebra of X.

Proof. Put $Q(X) = \{x \in X | 0 * x = 0 * (0 * x)\}$, then it is a subalgebra. We show that it is also an ideal of X. Assume that $y, x * y \in Q(X)$. Note that

 $Q(X) = \{x \in X | 0 * x \le x\}$ holds, thus we have $(0 * x) * (0 * y) = 0 * (x * y) \le x * y$ and $(0 * x) * (x * y) \le 0 * y$. By (6) we get $(0 * (x * y)) * x \le 0 * y$, this also means

$$0 * x = ((0 * (x * y)) * x) * ((0 * (x * y))) \le (0 * y) * (0 * (x * y))$$

$$\le (x * y) * y.$$
 (by (1))

Hence $(0*x)*x \le ((x*y)*y)*x = ((x*y)*x)*y = (0*y)*y = 0$, because $y \in Q(X)$ and $0*y \le y$. This implies that $0*x \le x$ and $x \in Q(X)$ hold. The proof is finished.

Remark. There is a BCI-algebra X such that $Q(X/Q(X)) \neq 0$, for example, let X be the adjoint algebra of a 2-Prüfer group, then X is a desired example.

References

- [1] Lei Tiande & Xi Changchang, p-radical in BCI-algebra, Math. Japonica, 30 (1985), 511–517.
- [2] Q. P. Hu & K. Iséki, On BCI-algebra satisfying (x*y)*z = x*(y*z), Math. Seminar Notes Kobe Univ., 8 (1980), 553-555.
- [3] C. S. Hoo, Quasicommutative BCI-algebra, Math. Japonica, 33 (1988), 49-56.

Fakultät für Math., Universität Bielefeld, Postfach 8640, 4800 Bielefeld 1, W. Germany.