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Abstract

A class of associative algebras called cyclotomic Temperley-Lieb algebras is introduced in
terms of generators and relations. They are closely related to the group algebras of complex
reflection groups on the one hand and generalizations of the usual Temperley-Lieb algebras on
the other hand. It is shown that the cyclotomic Temperley-Lieb algebras can be defined by
means of labelled Temperley-Lieb diagrams and are cellular in the sense of Graham and Lehrer.
One thus obtains not only a description of the irreducible representations, but also a criterion
for their quasi-heredity in the sense of Cline, Parshall and Scott. The branching rule for cell
modules and the determinants of Gram matrices for certain cell modules are calculated, they can
be expressed in terms of generalized Tchebychev polynomials, which therefore play an important
role for semisimplicity.

1 Introduction

The Temperley-Lieb algebras were first introduced in 1971 in the paper [15] where they were
used to study the single bond transfer matrices for the Ising model. Later they were indepen-
dently found by Jones when he characterized the algebras arising from the tower construction of
semisimple algebras in the study of subfactors. Their relationship with knot theory comes from
their role in the definition of the Jones polynomial. The theory of quantum invariants of links
nowadays involves many of research fields. Thus, many important kinds of algebras related to
the invariants of braids or links, such as Birman-Wenzl algebras[3], Hecke algebras and Brauer
algebras, have been of great interest in mathematics and physics. They are all deformations of
certain group algebras or other well-known algebras. Recently, several interesting type of such
algebras have emerged: the cyclotomic Birman-Murakami-Wenzl algebras are introduced in [6]
and cyclotomic Brauer algebras are investigated in [14] (see also [6]), while the cyclotomic Hecke
algebras were already introduced by Broué and Malle in [4], and independently by Ariki and
Koike for type G(m, 1, n) in [1]. They are deformations of the unitary reflection groups.

In the present paper, we focus our attention on the study of cyclotomic Temperley-Lieb
algebras, which are generalizations of the classical Temperley-Lieb algebras. They are also subal-
gebras of cyclotomic Brauer algebras, which are closely related to complex reflection groups. We
first present the ring theoretic definition of the cyclotomic Temperley-Lieb algebras in terms of
generators and relations. Then we show that our definition can be reformulated geometrically by
means of labelled Temperley-Lieb diagrams. Using this description we are able to prove that the
cyclotomic Temperley-Lieb algebras are cellular, a notion introduced in [7]. As a consequence,
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we obtain both, the classification of the irreducible representations of the cyclotomic Temperley-
Lieb algebras, and a criterion for a cyclotomic Temperley-Lieb algebra to be quasi-hereditary.
For cell modules, the branching rule is discussed, and also the discriminants of certain bilinear
forms are calculated. This leads us to introduce the n-th generalized Tchebychev polynomials.
It turns out that a necessary condition for a cyclotomic Temperley-Lieb algebra to be semisimple
is that certain generalized Tchebychev polynomials do not vanish on its defining parameters.

2 The ring theoretic definition of cyclotomic Temperley-
Lieb algebras

Throughout the paper, let R be a commutative ring containing an identity 1 and elements
δ0, δ1, . . . , δm−1. Let n,m ∈ N be two positive integers. In this section, we introduce the cyclo-
tomic Temperley-Lieb algebra TLn,m(δ0, . . . , δm−1) of type G(m, 1, n) over R. We shall prove
that the R-rank of TLn,m(δ0, . . . , δm−1) is at most mn

n+1

(
2n
n

)
.

Definition 2.1 The cyclotomic Temperley-Lieb algebra TLn,m(δ0, . . . , δm−1) (or TLn,m

for simplicity) is the associative algebra over R with generators 1 (the identity), e1, . . . ,
en−1, t1, . . . , tn subject to the following conditions:

(1) eiejei = ei if |j − i| = 1,

(2) eiej = ejei if |j − i| > 1,

(3) e2
i = δ0ei for 1 6 i 6 n− 1,

(4) tmi = 1 for 1 6 i 6 n,

(5) titj = tjti for 1 6 i, j 6 n,

(6) eit
k
i ei = δkei for 1 6 k 6 m− 1, 1 6 i 6 n− 1,

(7) titi+1ei = ei, eititi+1 = ei for 1 6 i 6 n− 1,

(8) eitj = tjei if j 6∈ {i, i + 1}.
If m = 1, then TLn,m is the usual Temperley-Lieb algebra, which is denoted by TLn(δ0) or

TLn for simplicity. This algebra was first introduced in [15] to describe the transfer matrices for
the Ising model and for the Potts model in statistical mechanics (see also [12]). It is known that

dimR TLn =
1

n + 1
(
2n
n

)
if R is a field.

The following lemma is due to Jones [8]. Recall that an expression of a monomial w ∈ TLn(δ0)
(in the variables e1, e2, ..., en−1) is called reduced if the number of ei in the expression is minimal.

Lemma 2.2 (1) Any monomial w ∈ TLn(δ0) has a reduced expression

(ej1ej1−1 · · · ek1)(ej2ej2−1 · · · ek2) · · · (ejpejp−1 · · · ekp),

where ji+1 > ji ≥ ki, ki+1 > ki for any 1 6 i 6 p− 1.
(2) For any n, there is an isomorphism of TLn−1-modules

TLn(δ0) ∼= TLn−1(δ0)⊕ TLn−1(δ0)en−1TLn−1(δ0),

where TLn−1(δ0) is the subalgebra of TLn(δ0) generated by 1, e1, . . . , en−2.

To obtain an upper bound on the rank of a cyclotomic Temperley-Lieb algebra, we need the
following lemma.

Lemma 2.3 For any n, the cyclotomic Temperley-Lieb algebra TLn,m(δ0, . . . , δm−1) is spanned
over R by the set

Mn = {tk1
1 tk2

2 · · · tkn
n xtl11 tl22 · · · tlnn | 0 6 ki, li 6 m− 1, 1 6 i 6 n, x ∈ TLn(δ0)}.
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Proof. We claim that the R-module T̃Ln,m spanned by Mn is a left TLn,m-module. This
claim implies T̃Ln,m = TLn,m(δ0, . . . , δm−1) since 1 ∈ Mn.

By the definition of Mn, we see that T̃Ln,m is stable under the left multiplication of ti,
1 6 i 6 n. So we have to prove that for 1 6 j 6 n− 1,

(∗) ejt
k1
1 tk2

2 · · · tkn
n xtl11 tl22 · · · tlnn ∈ T̃Ln,m

Without loss of generality, we may assume that x is a monomial in e1, e2, . . . , en−1. First, we
consider the case j = n− 1. By Lemma 2.2,

x = (ej1ej1−1 · · · ek1)(ej2ej2−1 · · · ek2) · · · (ejp
ejp−1 · · · ekp

).

By 2.1(8), xtn = tnx if jp 6= n− 1. It follows from 2.1(7) that

en−1(
n∏

i=1

tki
i )x(

n∏

i=1

tlii ) = (
n−2∏

i=1

tki
i )en−1x(

n−1∏

i=1

tlii )tln+kn−kn−1
n ∈ T̃Ln,m.

Suppose jp = n− 1. If en−2 does not occur in the expression ej1 · · · ek1 · · · ejp−1 · · · ekp−1 , then
(∗) follows from the following equality

en−1t
kn−1−kn

n−1 x = en−1t
kn−1−kn

n−1 en−1(ej1 · · · ekp−1)(en−2 · · · ekp) = δkx,

where kn−1 − kn ≡ k (mod m). If en−2 occurs in the expression of ej1 · · · ejp−1 · · · ekp−1 , then
ejp−1 = en−2. In this case , we have

en−1t
kn−1−kn

n−1 x

=(ej1 · · · ekp−2)(en−1t
kn−kn−1
n en−2en−1)(en−3 · · · ekp−1)(en−2 · · · ekp)

=(ej1 · · · ekp−2)t
kn−kn−1
n−2 (en−3 · · · ekp−1)(en−1en−2 · · · ekp)

If en−3 does not occur in ej1 · · · ekp−2 , then (ej1 · · · ekp−2)t
kn−kn−1
n−2 = t

kn−kn−1
n−2 (ej1 · · · ekp−2), and

(∗) follows. If en−3 occurs in the expression of ej1 · · · ejp−2 · · · ekp−2 , then ejp−2 = en−3. In this
case, (∗) follows from the argument similar to the case ejp−1 = en−2 together with an induction.
Thus we have proved (∗) in the case j = n− 1.

For 1 6 j 6 n− 2, we use induction on n. In this case, ejtn = tnej . If en−1 does not occur in
the expression of x, then (∗) follows from the induction assumption on n− 1. Now suppose that
x = y(en−1en−2 · · · ek) for some y ∈ TLn−1 and k ∈ N. Note that ej+1ejt

l
j+2 = (ej+1t

l
j+2)ej =

ej+1t
−l
j+1ej = ej+1(t−l

j+1ej) = ej+1t
l
jej = tljej+1ej for all l and j. By a direct computation, we

have
(∗∗) en−1 · · · ektl11 · · · tlnn = tl11 · · · tlk−1

k−1 t
lk+2
k · · · tlnn−2en−1 · · · ekt

lk−lk+1
k .

Again by the induction hypothesis on n − 1, we see that ej(
∏n−1

i=1 tki
i )ytl11 · · · tlk−1

k−1 t
lk+2
k · · · tlnn−2

can be expressed as a linear combination of the elements in Mn−1. Now, (∗∗) together with the
2.1(7)-(8) yields the desired form (∗). This completes the proof of the result.

The following lemma gives more explicit information on the elements in Mn, which leads to
an upper bound on the rank of TLn,m.

Lemma 2.4 For any x ∈ TLn, the element w = (
∏n

i=1 tki
i )x(

∏n
j=1 t

lj
j ) ∈ Mn with 0 6 ki, lj 6

m− 1 can be written as (
∏p

i=1 t
k′i
ji

)x(
∏n

i=p+1 t
l′i
ji

) with 0 6 k′i, l
′
j 6 m− 1.

Proof. Without loss of generality, we may assume that

x = (ej1ej1−1 · · · ek1)(ej2ej2−1 · · · ek2) · · · (ejpejp−1 · · · ekp).

Suppose jp 6= n− 1. Then x ∈ TLn−1,m and hence tnx = xtn. Therefore,

(
n∏

i=1

tki
i )x

n∏

j=1

t
lj
j = (

n−1∏

i=1

tki
i )x(

n−1∏

j=1

t
lj
j )tkn+ln

n .
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By induction on n, the element (
∏n−1

i=1 tki
i )x

∏n−1
j=1 t

lj
j can be written as (

∏p
i=1 t

k′i
ji

)x
∏n−1

i=p+1 t
l′i
ji

with 0 6 k′i, l
′
j 6 m− 1. This proves the result.

Suppose jp = n− 1. By (∗∗),

w =
n∏

i=1

tki
i

p−1∏

i=1

(ejieji−1 · · · eki)
k−1∏

i=1

tlii

n−2∏

i=k

t
li+2
i · (en−1 · · · ek)tlk−lk+1

k

=
n−1∏

i=1

tki
i

p−1∏

i=1

(ejieji−1 · · · eki)
k−1∏

i=1

tlii

n−2∏

i=k

t
li+2
i · tm−kn

n−1 (en−1 · · · ej)t
lk−lk+1
k .

Now the result follows immediately from the induction assumption, 2.1(8) and (∗∗). This com-
pletes the proof of Lemma 2.4.

Let us remark that the proof of this lemma also shows that for a fixed x ∈ TLn, when we write
w as the form (

∏p
i=1 t

k′i
ji

)x(
∏n

i=p+1 t
l′i
ji

) with 0 6 k′i, l
′
j 6 m − 1, the lower index sets {j1, ..., jp}

and {jp+1, ..., jn} depend only on x.

Corollary 2.5 If R is a field, then

dimRTLn,m 6 mn dimR TLn =
mn

n + 1
(
2n
n

)
.

In the next section, we shall show that over a commutative ring R the rank of TLn,m is equal
to mn

n+1

(
2n
n

)
.

Finally, let us point out that the notion of B-type Temperley-Lieb algebras was introduced
by tom Dieck [16], whose approach was based on the knot theoretic point of view and root
systems. In fact, these algebras are completely different from our cyclotomic Temperley-Lieb
algebras since the dimension of the B-type Temperley-Lieb algebra over a field is always of the
form

(
2n
n

)
(see [16]). However, the algebra TLn,m is closely related to the complex reflection

groups Wn,m of type G(m, 1, n). Recall that Wn,m is generated by s0, s1, ..., sn−1 satisfying the
relations (1) s2

i = 1 for i ≥ 1 and the braid relations for s1, ..., sn−1; (2) sm
0 = 1, and (3)

s0s1s0s1 = s1s0s1s0, s0si = sis0 for i ≥ 2. If we define t1 = s0, ti = si−1ti−1si−1, then tmi = 1.
Thus, a deformation of the group algebra of Wn,m is the cyclotomic Brauer algebra, which is
clearly related to cyclotomic Birman-Wenzl algebra as mentioned in [6]. TLn,m is a subalgebra
of the cyclotomic Brauer algebra. Thus it is related in this way to both, the complex reflection
group Wn,m, and the cyclotomic Brauer algebra.

As we know, Ariki-Koike algebras are deformations of the unitary reflection groups. But
these algebras can also be viewed as deformations of certain products of cyclic groups and Hecke
algebras. In this same way, the cyclotomic Temperley-Lieb algebras are deformations of certain
products of cyclic groups and Temperley-Lieb algebras. On the other hand, it is known that
there are nice relationships between Temperley-Lieb algebra and the quantum group Uq(sl2) (see
[12]).

3 The graphical definition of cyclotomic Temperley-Lieb
algebras

In this section, we shall redefine the cyclotomic Temperley-Lieb algebra in a geometrical way. This
is motivated by knot theory. Let us denote by T̃Ln,m the graphical cyclotomic Temperley-Lieb
algebra. The main result in this section is that the ring theoretic and the graphical definitions of
cyclotomic Temperley-Lieb algebras are equivalent, namely, TLn,m

∼= T̃Ln,m for any n and m.
First, we introduce labelled Temperley-Lieb diagrams. These are special cases of dotted

Brauer graphs introduced in [6]( see also [14]).

Definition 3.1 A labelled Temperley-Lieb diagram D of type G(m, 1, n) is a Temperley-
Lieb diagram with 2n vertices in which the arcs are labelled by the elements of Zm := Z/mZ.
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In the following a labelled Temperley-Lieb diagram D will simply be called a labelled TL-
diagram; if i and j are the endpoints of an arc in D, we shall simply write {i, j} ∈ D.

Graphically, we may represent a labelled TL-diagram D of type G(m, 1, n) in a rectangle of
the plane, where there are n numbers {1, 2, .., n} on the top row from left to right, and there are
another n numbers {1, 2, ..., n} on the bottom row again from left to right. To indicate the label
i ∈ Zm on an arc, we mark the arc with a dot and write the label i in parentheses above or below
the dot. Sometimes we draw i dots directly on the arc. For example, the following is a labelled
TL-diagram of type G(m, 1, 6) with m ≥ 4.

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦
® © ® ©

­ ª ­ ªZ
Z

Z
Z

ZZ

•
• • • •

• (m− 1)•

1 2 3 4 5 6

1 2 3 4 5 6

An arc in a labelled TL-diagram is said to be horizontal if its endpoints both lie in the top
row or in the bottom row; and otherwise it said to be vertical.

In order to have a graphical version of cyclotomic Temperley-Lieb algebras, we need to define
the multiplication of two labelled TL-diagrams. Here we follow the definition in [6] (see also
[14]).

From here onward, we make the following convention : Given a horizontal arc {i, j} with
i < j, we call i (resp. j) the left (resp. right) endpoint of the arc {i, j}, and always assume that
all dots in a labelled TL-diagram are marked at the left endpoints of the arcs. A dot marked at
the left (or right) endpoint of an arc will be called a left (or right) dot of the arc. For a vertical
arc we do not define its left endpoint and its right endpoint.

The rule for movements of dots. We allow dots to move along an arc from left to right. They
may also move to another arc.

(1) A left dot of a horizontal arc {i, j} is equal to m − 1 right dots of the arc {i, j}, and
conversely, a right dot of an horizontal arc is equal to m− 1 left dots.

(2) A dot on a vertical arc can move freely to the endpoints of the arc.
(3) Given two distinct arcs {i, j} and {j, k}, we allow that a dot at the endpoint j of the arc

{i, j} can be replaced by a dot at the endpoint j of the arc {j, k}.
The rule for compositions. Given two labelled TL-diagrams D1 and D2 of type G(m, 1, n), we

define a new labelled TL- diagram D1 ◦D2, called the composition of D1 and D2, in the following
way: First, we compose D1 and D2 in the same way as was done for Temperley-Lieb algebras.
Thus we have a new Temperley-Lieb diagram P (which is possibly not a labelled TL-diagram).
Second, we apply the rule for movements to relabel each arc in P , and thus obtain a labelled
TL-diagram graph, denoted by D1 ◦D2.

The rule for counting closed cycles. For each closed cycle appearing in the above natural
concatenation of D1 and D2 we apply the rule for movements of dots to relabel the cycle.

Note that the number of dots in each cycle lies in Z/(m). We denote by n(̄i,D1, D2) the
number of relabelled closed cycles in which there are i dots.

The following lemma can be proved easily.

Lemma 3.2 Given two labelled TL-diagrams D1 and D2, we define D1 · D2 =∏m−1
i=0 δ

n(̄i,D1,D2)
i D1 ◦D2. Then (D1 ·D2) ·D3 = D1 · (D2 ·D3) for arbitrary labelled TL-diagrams

D1, D2 and D3.

Definition 3.3 Let R be a commutative ring containing 1 and δ0, . . . , δm−1. A graphical cy-
clotomic Temperley-Lieb algebra (T̃Ln,m, ·) is an associative algebra over R with a ba-
sis consisting of all labelled TL-diagrams of type G(m, 1, n). The multiplication is given by
D1 ·D2 =

∏m−1
i=0 δ

n(̄i,D1,D2)
i D1 ◦D2.
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It is easy to see that T̃Ln,m is the usual Temperley-Lieb algebra if m = 1 and that T̃Ln,m is
a subalgebra of the cyclotomic Brauer algebra of type G(m, 1, n) (see [6]).

Now let us illustrate this definition by an example. If

D1

=

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

, D2 =

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
•
•

•±°±°@
@

@
@

±°
•
•
•' $

²¯²¯
•

•••
•

HHHHHHHH
¾ »²¯• • •

•
± °£ ¢• •• ±°±°

²¯ ²¯

•

•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

,

then we have a diagram

D =

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

•
•

•
•

±°±°@
@

@
@

±°
•
••' $

²¯²¯
•

•••
HHHHHHHH
¾ »²¯• • •

•
± °£ ¢• •• ±°±°

²¯²¯

•

•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Thus the composition D1 ◦D2 of D1 and D2 is as follows:

D1 ◦D2 =

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦HHHHHHHH

±°±°

²¯

±°¹ ¸
(m− 3)¾ »²¯• • •

•
•

•
••

²¯•
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Now we relabel the closed cycles in D. By definition,

◦ ◦ ◦ ◦ ◦ ◦

' $
²¯²¯

•
•••

•

¹ ¸
§ ¦
• •• •±°

= ◦ ◦ ◦ ◦
¾ »

½ ¼

²¯
±°
• •

•
•

•
= ◦ ◦ ◦ ◦

¾ »

½ ¼

²¯
±°
• •

• •

•

In this case, n(0̄, D1, D2) = n(1̄, D1, D2) = 0 and n(2̄, D1, D2) = n(3̄, D1, D2) = 1 for m ≥ 4.
Thus D1 ·D2 = δ1

1δ1
3D1 ◦D2 for m ≥ 4.

Now let us prove that the graphical definition and the ring theoretic definition of cyclotomic
Temperley-Lieb algebras coincide.

Theorem 3.4 Suppose that R is a commutative ring containing 1, δ0, . . . , δm−1. Then TLn,m
∼=

T̃Ln,m for any m and n. Therefore, TLn,m is a free R-module of rank mn

n+1

(
2n
n

)
. In particular,

if R is a field, then

dimR TLm,n =
mn

n + 1
(
2n
n

)
.

Proof. Let Ei be the labelled TL-diagram in which {i, i+1} is an arc in the top row and also
an arc in the bottom row, and the other vertex j ( 6= i, i + 1) in the top row connects with the
vertex j in the bottom row. Let Ti be the labelled TL-diagram in which the j-th vertex in the
top row connects with the j-th vertex in the bottom row for j = 1, 2, ..., n, and the i-th vertical
arc carries one dot. If we replace ei with Ei and ti with Ti and apply the three rules above,
then we know that all Ei and Ti satisfy the relations in Definition 2.1. This induces an algebra
homomorphism φ : TLn,m → T̃Ln,m with φ(ti) = Ti and φ(ei) = Ei. Since T̃Ln,m is generated
as an R-algebra by Ei and Tj with 1 6 i 6 n− 1, 1 6 j 6 n, the map φ is surjective.

We show that TLn,m is a free R-module. Put r = mn

n+1

(
2n
n

)
. By Lemma 2.4, there is a

surjective R-module homomorphism f : Rr −→ TLn,m. Thus, we have a surjective R-module
homomorphism φf from the free R-module Rr to the free R-module T̃Ln,m of rank r. Let K be
the kernel of φf . Then we have a split exact sequence of R-modules:

0 −→ K −→ Rr −→ Rr −→ 0.
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Here we identify the R-module T̃Ln,m with Rr. This sequence also shows that K is a finitely
generated projective R-module. We claim K = 0.

Let p be a maximal ideal in R. Since localization preserves (split) exact sequences, we have
a split exact sequence

0 −→ Kp −→ (Rp)r −→ (Rp)r −→ 0,

where Mp stands for the localization of an R-module M at p. Thus (Rp)r ' (Rp)r ⊕ Kp as
Rp-modules. Since Rp is a local ring and every finitely generated projective module over a local
ring is free, we see that the Rp-module Kp is free. Note that any commutative ring with identity
has the invariant dimension property. It follows from (Rp)r ' (Rp)r ⊕ Kp that Kp = 0, and
therefore K = 0. (All facts on localization used in the above argument can be found in standard
text books on commutative rings, for example [2].)

If K = 0, then φf is an isomorphism of R-modules and f must be injective. Thus TLn,m is
a free R-module of rank r and φ is an isomorphism of R-modules. This also implies that φ is an
isomorphism of R-algebras. The proof is complete.

Finally, let us remark that in [13] the so called blob algebras are considered, but those alge-
bras have different defining relations and are therefore completely different from our cyclotomic
Temperley-Lieb algebras.

4 Cellular algebras

Now let us recall the definition of cellular algebras due to Graham and Lehrer.

Definition 4.1 (Graham and Lehrer [7]) An associative R–algebra A is called a cellular alge-
bra with cell datum (I,M,C, i) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a finite set M(λ).
The algebra A has an R–basis Cλ

S,T where (S, T ) runs through all elements of M(λ)×M(λ) for
all λ ∈ I.

(C2) The map i is an R–linear anti–automorphism of A with i2 = id which sends Cλ
S,T to

Cλ
T,S.

(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A, the product aCλ
S,T can be written as

aCλ
S,T =

∑

U∈M(λ)

ra(U, S)Cλ
U,T + r′,

where r′ belongs to A<λ consisting of all R- linear combination of basis elements with upper index
µ strictly smaller than λ, and the coefficients ra(U, S) ∈ R do not depend on T .

In this paper, we call an R–linear anti–automorphism i of A with i2 = id an involution of
A. The following is a basis-free definition of cellular algebras in [9] which is equivalent to that
given by Graham and Lehrer.

Definition 4.2 Let A be an R–algebra. Assume there is an anti-automorphism i on A with
i2 = id. A two–sided ideal J in A is called a cell ideal if and only if i(J) = J and there
exists a left ideal ∆ ⊂ J such that ∆ is finitely generated and free over R and that there is an
isomorphism of A-bimodules α : J ' ∆ ⊗R i(∆) (where i(∆) ⊂ J is the i–image of ∆) making
the following diagram commutative:

J
α−→ ∆⊗R i(∆)

i
y

yx⊗ y 7→ i(y)⊗ i(x)

J
α−→ ∆⊗R i(∆)

The algebra A (with the involution i) is called cellular if and only if there is an R-module
decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i(J ′j) = J ′j for each j and such that
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setting Jj = ⊕j
l=1J

′
l gives a chain of two sided ideals of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A

(each of them fixed by i) and for each j (j = 1, . . . , n) the quotient J ′j = Jj/Jj−1 is a cell ideal
(with respect to the involution induced by i on the quotient) of A/Jj−1. (We call this chain a cell
chain for the cellular algebra A.)

Cellular algebras include a large variety of important algebras related to links in knot theory
such as cyclotomic Hecke algebras, Temperley-Lieb algebras [7] and cyclotomic Brauer algebras
[14] as well as Birman-Wenzl algebras [18].

Given a cellular algebra A with the cell datum (I,M,C, i), for each λ ∈ I, one can define
a cell module ∆(λ) and a symmetric, associative bilinear form Φλ : ∆(λ) ⊗R ∆(λ) → R in the
following way (see [7]): As an R-module, ∆(λ) has an R-basis {Cλ

S | S ∈ M(λ)} and the module
structure is given by

aCλ
S =

∑

U∈M(λ)

ra(U, S)Cλ
U ,

where the coefficients ra(U, S) are determined by (C3) in Definition 4.1.
The bilinear form Φλ is defined by

Φλ(Cλ
S , Cλ

T )Cλ
U,V ≡ Cλ

U,SCλ
T,V (mod A<λ),

where U and V are arbitrary elements in M(λ).
Let rad∆(λ)= {c ∈ ∆(λ) | Φλ(c, c′) = 0 for all c′ ∈ ∆(λ)}. Then rad∆(λ) is a submodule of

∆(λ). Put L(λ) = ∆(λ)/rad∆(λ). Then a complete set of irreducible representations of A can
be described as follows:

Lemma 4.3 (Graham and Lehrer [7]) Suppose R is a field. Then
(1) {L(λ) | Φλ 6= 0} is a complete set of non-isomorphic irreducible A-modules.
(2) The algebra A is semisimple if and only if all cell modules are simple and pairwise non-

isomorphic.

In the following, we shall see an easy example of cellular algebras, which will be used later
on.

Let Gm,n be the R-subalgebra of TLn,m generated by t1, t2, · · · , tn. Note that Gm,n is iso-
morphic to the group algebra of the abelian group

⊕n
i=1 Z/(m).

Suppose that R is a splitting field of xm − 1. Therefore the relation tmi = 1 implies that
tmi − 1 =

∏m
j=1(ti − uj) = 0 for some u1, · · · , um ∈ R. Let Λ(m, n) = {(i1, i2, · · · , in) | 1 6

ij 6 m}. We assume that in case n = 0 the set Λ(m,n) consists of only one element ∅. Now
we define (i1, i2, · · · , in) 6 (j1, j2, · · · , jn) if and only if ik 6 jk for all 1 6 k 6 n. For each
i = (i1, i2, · · · , in), define

Ci
1,1 =

n∏

j=1

m∏

l=ij+1

(tj − ul).

(Here the product over the empty set is 1.) Note that {Ci
1,1 | i ∈ Λ(m,n)} is a cellular basis

for the algebra Gm,n with respect to the identity involution. Let us remark that in this case
each cell Gm,n-module ∆(i) is one-dimensional. In fact, this cell Gm,n-module corresponds to
the subquotient G6i

m,n/G<i
m,n. The simple Gm,n-modules are parametrized by the following set.

Lemma 4.4 Suppose R is a splitting field of xm − 1 with characteristic p.
(1) If p divides m, say m = pts with (p, s) = 1, then a complete set of non-isomorphic simple

Gm,n-modules can be chosen as

{L(i) | i = (i1, i2, ..., in) with pt divides ij for all j}
its cardinality is sn.

(2) If p does not divide m (for example, p = 0), then a complete set of non-isomorphic simple
Gm,n-modules is {L(i) | i ∈ Λ(m,n)}. In this case, the algebra Gm,n is semisimple.
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Proof. It is easy to check that

(tj − ul)
m∏

k>i

(tj − uk) = (ui − ul)
m∏

k>i

(tj − uk) +
m∏

k>i−1

(tj − uk).

It follows from the above equality that

Ci
1,1C

i
1,1 ≡ (

n∏

j=1

m∏

k>ij

(uij − uk))Ci
1,1 (mod G<i

m,n).

If p divides m, then we see that each root of the polynomial xs − 1 is a root of xm − 1
with multiplicity pt. But all roots of xs − 1 are simple roots. Hence we may assume that
(u1, u2, ..., um) = (1, .., 1, ξ, ..., ξ, ..., ξs−1, ..., ξs−1), where ξ is a primitive s-th root of xs − 1.
Thus (1) follows.

If p does not divide m, then the algebra Gm,n is semisimple, and therefore (2) follows.

5 Irreducible representations of TLn,m

In this section, we assume that R is a splitting field of xm − 1 . We shall prove that TLn,m is
a cellular algebra in the sense of [7]. Using the standard results on cellular algebras, we classify
the irreducible representations of TLn,m over the field R. Let us first introduce some auxiliary
notions.

An (n, k)-labelled parenthesized graph is a graph consisting of n vertices {1, 2, ..., n} and k
horizontal arcs (hence 2k 6 n and there are n − 2k “free” vertices which do not belong to any
arc), and satisfying the following conditions:

(1) there are at most m− 1 dots on an arc,
(2) there are no arcs {i, j} and {q, l} satisfying i < q < j < l, and
(3) there is no arc {i, j} and free vertex q such that i < q < j. (Given an (n, k)-labelled

parenthesized graph, the vertices which do not belong to any arc are called free vertices.)

Let P (n, k) be the set of all (n, k)-labelled parenthesized graphs and let V (n, k) be the free
R-module with P (n, k) as its basis. Recall that Gm,n is the R-subalgebra of TLn,m generated
by t1, t2, · · · , tn.

Lemma 5.1 There is an R-module isomorphism V (n, k)⊗R V (n, k)⊗R Gm,n−2k
∼= Mn,k, where

Mn,k is the free R-module spanned by all labelled TL-diagrams with 2n vertices and 2k horizontal
arcs.

Proof. Given a labelled TL-diagram D, we can write it uniquely as D1⊗D2⊗ x, where Di is
obtained from D in the following manner: After cutting all vertical arcs and forgetting all dots
on the vertical arcs, the top row is defined to be the D1 and the bottom is the D2. Suppose that
in D1 the free vertices are {i1, i2, ..., in−2k} and that in D2 the free vertices are {j1, j2, ..., jn−2k}.
Then in D the vertical arcs are {i1, j1},..., {in−2k, jn−2k}. Suppose there are ms dots on the arc
{is, js}. Then we define x = tm1

1 tm2
2 ...t

mn−2k

n−2k ∈ Gm,n−2k. Conversely, given such an expression
D1 ⊗D2 ⊗ x, we have a unique labelled TL-diagram D in Mn,k. Hence the result follows.

Thus we have the following equivalent description of the graphical basis of TLn,m. Usually,
this basis is not a cellular basis.

Corollary 5.2 The set {v1 ⊗ v2 ⊗ x | 0 6 k 6 [n/2], v1, v2 ∈ P (n, k), x ∈ Gm,n−2k} is a basis of
TLn,m.

In the following, we shall construct a cellular basis for TLn,m. Here we keep the notation
introduced in the previous section.

Let Λm,n = {(k, i) | 0 6 k 6 [n/2], i ∈ Λ(m,n − 2k)}. We define a partial order on Λm,n by
saying that (k, i) 6 (l, j) if k > l; or if k = l and i 6 j. Then (Λm,n,6) is a finite poset. For each
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(k, i) ∈ Λn,m, let I(k, i) = {(v, i) | v ∈ P (n, k)}. In the following, we shall show that this datum
defines a cellular algebra.

Theorem 5.3 Let R be a splitting field of xm−1. Then TLn,m is a cellular algebra with respect
to the involution σ which sends v1⊗v2⊗x to v2⊗v1⊗x for all v1, v2 ∈ P (n, k) and x ∈ Gm,n−2k,
0 6 k 6 [n/2].

Proof. For any (k, i) ∈ Λm,n and v1, v2 ∈ P (n, k), we define C
(k,i)
v1,v2 = v1 ⊗ v2 ⊗ Ci

1,1. By 5.2,

the set {C(k,i)
v1,v2 | (k, i) ∈ Λn,m, v1, v2 ∈ P (n, k)} is a basis of TLn,m. We show that it is a cellular

basis. Let us verify the conditions in Definition 4.1. By definition, 4.1(C1)-(C2) follow. It remains
to check the condition 4.1(C3). Take a labelled TL-diagram D1 ⊗D2 ⊗ x with D1, D2 ∈ P (n, k)
and x = tm1

1 tm2
2 ...t

mn−2k

n−2k ∈ Gm,n−2k. Suppose that i1, i2, ..., in−2k are the free vertices in D1

and that j1, j2, ..., jn−2k are the free vertices of D2, where 1 6 is 6 n and 1 6 js 6 n for all
s = 1, 2, ..., n− 2k. Then D1⊗D2⊗ x = X · (D1⊗D2⊗ idn−2k) = (D1⊗D2⊗ idn−2k) · Y, where
X = Tm1

i1
Tm2

i2
· · ·Tmn−2k

in−2k
and Y = Tm1

j1
Tm2

j2
· · ·Tmn−2k

jn−2k
(see 3.4 for the definition of Ti). Thus,

for any labelled TL-diagram D1 ⊗D2 ⊗ x,

(D1 ⊗D2 ⊗ x) · C(k,i)
v1,v2

∈ TL6(k,i)
n,m

where TL
6(k,i)
n,m is the free R-submodule spanned by C

(k′,i′)
v1,v2 with (k′, i′) 6 (k, i) and v1, v2 ∈

P (n, k′). Suppose that (D1 ⊗D2 ⊗ x) · C(k,i)
v1,v2 ∈ TL

(k,i)
n,m , where TL

(k,i)
n,m is the free R-submodule

spanned by C
(k,i)
v1,v2 with v1, v2 ∈ P (n, k). Then

(D1 ⊗D2 ⊗ x) · C(k,i)
v1,v2

= D′
1 ⊗ v2 ⊗ x′Ci

1,1

for some D′
1 in P (n, k) and some x′ ∈ Gm,n−2k, here x′ does not depend on v2. Write x′ =∏n−2k

j=1 t
kj

j for some 0 6 kj 6 m− 1, 1 6 j 6 n− 2k. By an easy calculation, we know that

x′Ci
1,1 ≡

n−2k∏

j=1

u
kj

ij
Ci

1,1 (mod G<i
m,n−2k),

where G<i
m,n−2k is the free R-submodule spanned by Cj

1,1 with j < i. Note also that the coefficient∏n−2k
j=1 u

kj

ij
is independent of v2. This implies that 4.1 (C3) is true.

As a corollary of Theorem 5.3, we classify the irreducible representations of cycolotomic
Temperley-Lieb algebras.

Corollary 5.4 Suppose R is a splitting field of xm − 1. Let p be the characteristic of R. Then :
(i) suppose n is odd.

If m = pts with (p, s) = 1 and t ≥ 0, then the set

{L(k, i) | 0 6 k 6 [n/2], i = (i1, i2, ..., in−2k) ∈ Λ(m, n− 2k) with all ij divisible by pt}

is a complete set of pairwise non-isomorphic simple TLn,m-modules.
(ii) Suppose n is even.

1) If not all δi are zero and if m = pts with (p, s) = 1 and t ≥ 0, then the set

{L(k, i) | 0 6 k 6 [n/2], i = (i1, i2, ..., in−2k) ∈ Λ(m, n− 2k) with all ij divisible by pt}

is a complete set of pairwise non-isomorphic simple TLn,m-modules.
2) Suppose all δi are zero. If m = pts with (p, s) = 1 and t ≥ 0, then a complete set of

pairwise non-isomorphic simple TLn,m-modules can be parametrized by {(k, i) | 0 6 k < [n/2], i =
(i1, i2, .., in−2k) with all ij divisible by pt}}.
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Proof. For any D1, D2 ∈ P (n, k) and i ∈ Λ(m,n− 2k), we have

(D1 ⊗D2 ⊗ Ci
1,1)(D1 ⊗D2 ⊗ Ci

1,1) = D1 ⊗D2 ⊗ xCi
1,1C

i
1,1, x ∈ Gm,n−2k.

If this product is not equal to zero, then Ci
1,1C

i
1,1 6= 0. Now suppose that n is odd. If D1 =

E1E3 · · ·E2k−1 and D2 = E2E4 · · ·E2k, then x = id. Hence statement (i) follows from 4.4.
Assume that n is even. First case: there is some δj 6= 0 and p does not divide m. Then

for k = n/2 and i = ∅, the bilinear form Φ(k,i) 6= 0. For the other (k, i), we take D1 and D2

as above. This implies Φ(k,i) 6= 0. Hence the index set of non-isomorphic simple modules is
Λm,n. Second case: there is some δj 6= 0 and p divides m. By arguments similar to the above,
we have that a complete set of non-isomorphic simple modules is {(k, i) | 0 6 k 6 [n/2], i =
(i1, i2, ..., in−2k) with all ij divisible by pt}.

Assume δj = 0, 0 ≤ j ≤ m − 1. In this case, Φ(k,i) = 0 for k = n/2 and i = ∅. For k 6= n/2,
our discussion will be the same as above, namely, if m = pts, then index set of simple modules
is {(k, i) | 0 6 k < [n/2], i = (i1, i2, .., in−2k) with all ij divisible by pt}; if p does not divide m,
then the index set of simple modules is Λm,n \ {(n/2, ∅)}.

The following result follows from the proof of Theorem 5.3.

Corollary 5.5 Let ∆(k, i) be the cell module corresponding to (k, i) ∈ Λn,m. Then

dimR∆(k, i) = mk[
(
n
k

)− (
n

k−1

)
].

6 Quasi-heredity of TLn,m

In this section, we shall characterize the parameters for which the cyclotomic Temperley-Lieb
algebras are quasi-hereditary in the sense of [5]. First, we recall the definition of quasi-hereditary
algebras.

Definition 6.1 (Cline, Parshall and Scott [5]) Let R be a field and let A be an R-algebra. An
ideal J in A is called a heredity ideal if J is idempotent, J(rad(A))J = 0 and J is a projective
left (or, right) A-module, where rad(A) is the Jacobson radical of A. The algebra A is called
quasi-hereditary provided there is a finite chain 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A of ideals in
A such that Jj/Jj−1 is a heredity ideal in A/Jj−1 for all j. Such a chain is then called a heredity
chain of the quasi-hereditary algebra A.

From the ring theoretic definition of cellular algebras, we see immediately that there is a
large intersection of the class of cellular algebras with that of quasi-hereditary algebras. Typical
examples of quasi-hereditary cellular algebras include Temperley-Lieb algebras with non-zero
parameters [17] and Birman-Wenzl algebras for most choices of parameters [18] as well as certain
cyclotomic Brauer algebras [14].

The main result in this section is the following theorem.

Theorem 6.2 Suppose R is a splitting field of the polynomial xm − 1. Then the cyclotomic
Temperley-Lieb algebra TLn,m is quasi-hereditary if and only if the characteristic of R does not
divide m and one of the following is true:

(1) n is odd;
(2) n is even and δj 6= 0 for some 0 ≤ j ≤ m− 1.

Proof. In [7, Remark 3.10] it is shown that A is quasi-hereditary if the index set of the non-
isomorphic simple modules over a cellular algebra A with cell datum (I, M, C, i) is I. Conversely,
A is not quasi-hereditary if there is a cell datum (I, M,C, i) of A such that the index set of the
non-isomorphic simple modules is not I [10, Theorem 3.1]. In other words, every chain of ideals
in A is not a heredity chain. Thus Theorem 6.2 follows immediately from Corollary 5.4.

For the cases which are not included in Theorem 6.2, we can get a quasi-hereditary quotient of
TLn,m. In order to make TLn,m quasi-hereditary, we need first to ensure that the group algebra
Gm,n is semisimple. The following result follows from the above fact and the definition 4.1.
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Proposition 6.3 Suppose that R is a splitting field of xm − 1 and p 6 |m, 2|n and δj = 0 for
all 0 ≤ j ≤ m − 1. Suppose J is the two-sided ideal of TLn,m generated by all (n, n/2)-labelled
TL-diagrams. Then the quotient TLn,m/J is quasi-hereditary.

7 Restriction and Induction of the cell modules

In this section, we assume that R is a splitting field of xm − 1. The main result of this section is
the branching rule for the cell modules of TLn,m.

Recall that V (n, k) is the R-space spanned by all labelled parenthesized graphs with k arcs.
Let Ji :=

⊕[n/2]
j=i V (n, j)⊗R V (n, j)⊗R Gm,n−2j . Then we have a chain

0 ⊂ J[n/2] ⊂ · · · ⊂ Ji+1 ⊂ Ji ⊂ · · · ⊂ Jε = TLn,m

of ideals in TLm,n, where ε is zero if n is even, and 1 if n is odd. For any (k, i) ∈ Λn,m, the cell
module

∆(k, i) = V (n, k)⊗R v0 ⊗R ∆(i),

where v0 ∈ P (n, k) is a fixed diagram and ∆(i) is the cell module of the algebra Gm,n with
respect to i. In the sequel, we choose v0 to be the (n, k)-labelled parenthesized graph with arcs
{1, 2}, ..., {2k− 1, 2k} and free vertices 2k +1, 2k +2, ..., n. Note that the subquotient V (n, j)⊗R

V (n, j)⊗R Gm,n−2j is a TLn,m-module and the cell module structure on V (n, k)⊗R v0 ⊗R ∆(i)
is induced from this subquotient. We make the following convention:

Throughout this section we fix an m and the parameters δ0, δ1, ..., δm−1 and consider the
algebra TLn−1,m canonically as a subalgebra of TLn,m by adding the vertical arc {n, n′} to the
right side of each labelled TL-diagram in TLn−1,m. This embedding can be visualized as follows:

TLn−1,m 7→ TLn−1,m

◦ n

◦ n′

Note that the identity in TLn−1,m is sent to the identity of TLn,m. Thus every TLn,m-module is
also a TLn−1,m-module via this embedding. The cell modules V (n, k)⊗R v0⊗R ∆(i) over TLn,m

will be denoted by ∆(n, k; i1, i2, ..., in−2k). Then we have

Proposition 7.1 (a) For all n and 0 6 k 6 [n/2], there is an exact sequence

0 −→ ∆(n− 1, k; i1, i2, ..., in−2k−1)
α−→ ∆(n, k; i1, i2, ..., in−2k) ↓

β−→ ⊕m−1
j=0 V (n− 1, k − 1)⊗R v0 ⊗R ∆(i1, i2, ..., in−2k)tjn−2k+1 −→ 0,

where M ↓ is the restriction of a TLn,m-module M to a TLn−1,m-module, and
∆(i1, i2, .., in−2k)tjn−2k+1 stands for ∆(i1, i2, ..., in−2k)⊗R Rtjn−2k+1.

(b) If I0 = 0 ⊂ I1 ⊂ . . . ⊂ Im = R〈tn−2k+1〉 is a cell chain of the group algebra R〈tn−2k+1〉 =
Gm,1, that is, Ij is the free R-module generated by {∏m

l>s(tn−2k+1 − ul) | 1 ≤ s ≤ j}, then there
are m− 1 short exact sequences

0 → V (n− 1, k − 1) ⊗Rv0 ⊗R ∆(i1, i2 . . . , in−2k)⊗ Ij−1
γ−→ V (n− 1, k − 1)⊗R v0 ⊗R ∆(i1, i2 . . . , in−2k)⊗ Ij
δ−→ ∆(n− 1, k − 1; i1, i2, . . . , in−2k, j) → 0.

(c) If TLn−1,m is semisimple, then

∆(n, k; i1, i2, ..., in−2k) ↓∼=∆(n− 1, k; i1, i2, ..., in−2k−1)⊕
m⊕

j=1

∆(n− 1, k − 1; i1, i2, ..., in−2k, j).
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Proof. If TLn−1,m is semisimple, then every TLn−1,m-module is projective. Therefore, each
short exact sequence in (a) and (b) splits. Now the statement (c) follows immediately from (a)
and (b). The map γ in (b) is the canonical injective map and the map δ in (b) comes from the
canonical projection Ii → Ii/Ii−1. One can easily prove that (b) is a short exact sequence of
vector spaces. Obviously, both γ and δ in (b) are TLn−1,m-module homomorphisms. Now let us
prove the statement (a).

Since we may consider ∆(n−1, k; i1, i2, ..., in−2k−1) as a subset of TLn−1,m, the map α is just
the restriction of the above embedding. It is obvious that α is an injective map. Note that TLn,m

is generated as an algebra by {ei, tj | 1 6 i 6 n − 1, 1 6 j 6 n}. To show that α is a TLn−1,m-
module homomorphism, it suffices to prove that for D ∈ {ei, tj | 1 6 i 6 n− 2, 1 6 j 6 n− 1},

α(Dv ⊗ v0 ⊗ C(i1,i2,...,in−2k)) = Dα(v ⊗ v0 ⊗ C(i1,i2,...,in−2k)).

However, a vertex ( 6= n) in v is free if and only if it is free in v′, and {i, j} is an arc in v if and
only if it is an arc in v′, where v′ is the (n, k− 1)-labelled parenthesis obtained from v by adding
the vertex n. By the multiplication of labelled TL-diagrams in 3.2, we can see immediately that
the above equation holds. Hence α is a TLn−1,m-module homomorphism.

Now let us define the map β. Given an (n, k)-labelled parenthesis v ∈ P (n, k), we denote by v̄
the labelled parenthesis obtained from v by deleting the vertex n and removing the arc connected
with n if it exists.

Let v be in P (n, k). If the vertex n in v is a free vertex, then β sends v⊗ v0⊗C
(i1,i2,...,in−2k)
1,1

to zero. If the vertex n in v is connected by an arc in which there are l dots, then β sends
v⊗ v0 ⊗C

(i1,i2,...,in−2k)
1,1 to v̄⊗ v0 ⊗C

(i1,i2,...,in−2k)
1,1 tln−2k+1, where v0 is the (n− 1, k− 1)-labelled

parenthesis with arcs {1, 2}, {3, 4}, ..., {2k − 3, 2k − 2} and n− 2k + 1 free vertices.
In fact, we can extend β to a map from V (n, k) ⊗ v0 ⊗ Gm,n−2k to V (n − 1, k − 1) ⊗ v0 ⊗

Gm,n−2k+1. This map β can be illustrated as follows:

◦ · · · ◦ · · · ◦ · · · ◦
j n1

1
◦ ◦ · · · ◦ ◦ ◦ · · · ◦

2k n

HHHHHHHHH

HHHHHHHHH
® © ® ©

µ ´
(l)
•

◦ · · · ◦ · · · ◦ · · ·
j1

1
◦ ◦ · · · ◦ ◦ ◦ · · · ◦ ◦

2k − 2 n− 1
b

b
b

b
b

b
bb

Z
Z

Z
Z

ZZ J
J

J
JJ

® © ® © •(l)• •β7−→

(The image of an (n, k)-labelled TL-diagram under the map β is obtained from the given (n,
k)-labelled TL-diagram by deleting both the arc {2k− 1, 2k} and its endpoints from the bottom
row, and then shifting the vertex n from the top row to the bottom row, and finally renaming
the vertices at the bottom from left to right.)

It is trivial that the sequence is an exact sequence of vector spaces. To finish the proof, it
remains to show that β is also a TLn−1,m-module homomorphism. Since β restricted to the image
of α preserves the module structure, we need only to prove that β preserves the TLn−1,m-module
structure on the elements of the form a(v ⊗ v0 ⊗ C

(i1,i2,...,in−2k)
1,1 ), where a ∈ {ei, tj | 1 6 i 6

n− 2, 1 6 j 6 n− 1} and the vertex n in v is not free. In the following, we show more generally
that the extended map β is a TLn−1,m-module homomorphism.

Let v ⊗ v0 ⊗ x with v ∈ P (n, k) such that n is connected to j by an arc in v. Suppose a = ts
or a = er with r 6∈ {j − 1, j}. In this case, by inspecting the picture , it is easy to see that β
preserves the module structure on the element a(v⊗ v0⊗x). Now suppose a = es with s = j− 1
or s = j. In the latter case, since there are no free vertices between j and n in v, the labelled
TL-diagram β(ej(v⊗v0⊗x)) is just the graph ejβ(v⊗v0⊗x). This is what we wanted to prove.
In the former case, if j − 1 is a free vertex in v, then ej−1(v ⊗ v0 ⊗ x) lies in the image of α,
which is mapped to zero under β. Moreover, the element ej−1β(v ⊗ v0 ⊗ x) is also zero since it
contains one more arc. Now assume that j − 1 is adjacent to a vertex s in v. Then s < j − 1.
In this case, there are no free vertices between s and n in v. Again by inspecting picture we see
that β(ej(v ⊗ v0 ⊗ x)) = ejβ(v ⊗ v0 ⊗ x). This completes the proof.

The following result follows from Proposition 7.1 and Frobenius reciprocity.
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Proposition 7.2 If TLn,m is semisimple, then ∆(n − 1, k; i1, . . . , in−2k−1) ↑ ' ∆(n, k +
1; i1, i2, . . . , in−2k−2)⊕

⊕m
j=1 ∆(n, k; i1, . . . , in−2k−1, j), where ∆(n−1, k; i1, . . . , in−2k−1) ↑ stands

for the TLn,m-module induced from the TLn−1,m-module ∆(n− 1, k; i1, . . . , in−2k−1).

8 Gram matrices and their determinants

In this section, we assume that the field R contains a primitive m-th root of unity (for example,
if R is algebraically closed and of characteristic p which does not divide m, then our assumptions
are satisfied). The goal in this section is to calculate the discriminant of the bilinear form Φ(k,i)

for certain (k, i), where 0 6 k 6 [n
2 ] and i = (i1, i2, ..., in−2k).

Recall that Φ(k,i) is defined on the cell module ∆(k, i) in the following way.

(v1 ⊗ v1 ⊗ Ci
1,1)(v2 ⊗ v2 ⊗ Ci

1,1) ≡ Φ(k,i)(v1, v2)v1 ⊗ v2 ⊗ Ci
1,1 (mod TL<(k,i)

n,m ),

where TL
<(k,i)
n,m is a free R-submodule spanned by C

(k′,i′)
v1,v2 with (k′, i′) < (k, i) and v1, v2 ∈ P (n, k′).

According to a general construction in [11], there is a bilinear form φ(n,k) from V (n, k) ⊗R

V (n, k) to Gm,n−2k such that the product can be written as

(v1 ⊗ v1 ⊗ Ci
1,1)(v2 ⊗ v2 ⊗ Ci

1,1) ≡ v1 ⊗ v2 ⊗ φ(n,k)
v1,v2

(t1, t2, ..., tn−2k)(Ci
1,1)

2, (mod TL<(k,i)
n,m ),

where φ
(n,k)
v1,v2(t1, t2, ..., tn−2k) is an element in Gm,n−2k.

Define a(k, i) =
∏n−2k

j=1

∏m
l>ij

(uij − ul). It follows that

Φ(k,i)(v1, v2) = a(k, i)φ(n,k)
v1,v2

(ui1 , ui2 , ..., uin−2k
),

where u1, u2, ..., um are the roots of xm − 1.

Now let us compute the matrix Ψ(n, k) := (φ(n,k)
v1,v2) for the case k = 1. Let vi be the element

in P (n, 1) whose unique arc is {i, i + 1} and let v
(j)
i be the (n, 1)-labelled parenthesis in which

there are j dots on the arc {i, i + 1} . The elements in P (n, 1) can be ordered as follows:
v
(0)
1 := v1, v

(1)
1 , ..., v

(m−1)
1 , v

(0)
2 := v2, v

(1)
2 , ..., v

(m−1)
2 , ..., v

(0)
n−1 := vn−1, v

(1)
n−1, ..., v

(m−1)
n−1 . Thus:

Ψ(n, 1) =




A B1

BT
1 A B2

BT
2 A B3

. . . . . . . . .
. . . A Bn−2

BT
n−2 A




,

where Bi is the matrix with the (s, t)-entry ts−t
i for 1 6 s, t 6 m, the matrix BT

i stands for the
transpose of Bi, and

A =




δ0 δ1 · · · δm−1

δ1 δ2 · · · δ0

...
... · · · ...

δm−1 δ0 · · · δm−2


 .

Let us look at a simple example. We consider the algebra TL(4,3)(δ0, δ1, δ2), that is, n = 4
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and m = 3. In this case we have t3i = 1 for i = 1, 2. Thus

Ψ(n, 1) =




δ0 δ1 δ2 1 t21 t1 0 0 0
δ1 δ2 δ0 t1 1 t21 0 0 0
δ2 δ0 δ1 t21 t1 1 0 0 0
1 t1 t21 δ0 δ1 δ2 1 t22 t2
t21 1 t1 δ1 δ2 δ0 t2 1 t22
t1 t21 1 δ2 δ0 δ1 t22 t2 1
0 0 0 1 t2 t22 δ0 δ1 δ2

0 0 0 t22 1 t2 δ1 δ2 δ0

0 0 0 t2 t22 1 δ2 δ0 δ1




.

Suppose u1 is a primitive m-th root of unity. Define uj = uj
1 for j = 2, ..., m and um = u0 = 1.

Then u−1
k = um−k. Let V = Vm(1, u1, ..., um−1) be the Vandermonde matrix of order m:

Vm(1, u1, ..., um−1) =




1 1 · · · 1
u1 u2 · · · um

u2
1 u2

2 · · · u2
m

...
...

...
...

um−1
1 um−1

2 · · · um−1
m




.

Since we shall evaluate each tj as some uij , when we calculate the value of Φ(k,i)(v1, v2), we may
suppose that tj = uij for all 1 6 j 6 n− 2. Thus the matrix Bj is of the form

Bj =




1
uij

...
um−1

ij


 (1, u−1

ij
, ..., u

−(m−1)
ij

) =




1
uij

...
um−1

ij


 (1, um−ij , ..., u

m−1
m−ij

).

Now we define Yj to be the matrix of order m with 1 at the (ij ,m− ij)-position and 0 otherwise.
For ij = m, we define Yj to be the matrix with (m,m)-entry 1 and all other entries 0. Then
Bj = V YjV

T .
Let p(x) = δ0x

m−1 + δ1x
m−2 + ... + δm−1 ∈ R[x]. We write

p(x)
xm − 1

=
δ̄1

x− u1
+

δ̄2

x− u2
+ · · ·+ δ̄m

x− um
.

Since u1 is a primitive m-th root of unity and ui 6= uj for i 6= j, we have δ̄j = p(uj)/
∏

i 6=j(uj−ui)
for all j = 1, 2, ...,m. Now we can rewrite δk =

∑m
j=1 δ̄ju

k
j . Note that the index k can be an

arbitrary natural numbers and that δl = δk if l ≡ k (mod m). Thus the matrix A can be
written as (δk+l)06k,l6m−1. Furthermore, we have A = V ĀV T , where Ā = diag(δ̄1, δ̄2, ..., δ̄m) is
the diagonal matrix.

Since xm − 1 = (x − u1)(x − u2) · · · (x − um), we know that the k-th elementary symmetric
polynomial in u1, u2, ..., um is zero for 1 6 k 6 m− 1. Hence Newton’s identities imply that

σk(u1, u2, ..., um) :=
m∑

j=1

uk
j =

{
m, if k = m,
0, if 1 6 k 6 m− 1.

Thus we have

V V T =




m 0 · · · 0 0
0 0 · · · 0 m
0 0 · · · m 0
...

...
...

...
...

0 m · · · 0 0




.
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This implies that (det(V ))2 = (−1)(m−1)(m−2)/2mm. Thus det(Ψ(n, 1)) =
(−1)

1
2 (m−1)(m−2)(n−1)mm(n−1)det(Ψ(n, 1)), where

Ψ(n, 1) =




Ā Y1

Y T
1 Ā Y2

Y T
2 Ā Y3

. . . . . . . . .
. . . Ā Yn−2

Y T
n−2 Ā




.

Now let us calculate the determinant of Ψ(n, 1). Since each matrix Yj is of special form, we
partition (i1, i2, ..., in−2) into (i1,1, i1,2, ..., i1,j1 , i2,1, i2,2, ..., i2,j2 , ..., ir,jr

) with j1 + j2 + ... + jr =
n − 2 such that m divides ip,q + ip,q+1 for all p with 1 6 q < jp and that m does not divide
ip,jp

+ ip+1,1 for all 1 6 p < r. Thus

det(Ψ(n, 1)) =
(δ̄1δ̄2...δ̄m)n−1

∏r
p=1(δ̄m−ip,jp

∏jp

q=1 δ̄ip,q )

r∏
p=1

det




δ̄ip,1 1
1 δ̄ip,2 1

1 δ̄ip,3 1
. . . . . . . . .

. . . δ̄ip,jp−1 1
1 δ̄ip,jp




.

Let

P (x1, ..., xn) = det




x1 1
1 x2 1

1 x3 1
. . . . . . . . .

. . . xn−1 1
1 xn




.

Then

det(Ψ(n, 1)) = (−1)
1
2 m(m−1)(n−1)mm(n−1) (δ̄1δ̄2...δ̄m)n−1

∏r
p=1(δ̄m−ip,jp

∏jp

q=1 δ̄ip,q )

r∏
p=1

P (δ̄ip,1 , δ̄ip,2 , ..., δ̄ip,jp
).

We have proved the following proposition.

Proposition 8.1 Let R be a field containing a primitive m-th root of unity. Then the determi-
nant of the Gram matrix of the bilinear form Φ(1,i) is

detΦ(1,i) = (−1)
1
2 m(m−1)(n−1)a(1, i)m(n−1) mm(n−1)(δ̄1δ̄2...δ̄m)n−1

∏r
p=1(δ̄m−ip,jp

∏jp

q=1 δ̄ip,q )

r∏
p=1

P (δ̄ip,1 , δ̄ip,2 , ..., δ̄ip,jp
).

As a consequence of 8.1, we know that under the above assumption, a necessary condition
for TLn,m to be semisimple is that all the polynomials P (δ̄ip,1 , δ̄ip,2 , ..., δ̄ip,jp

) are non zero.

The following is a description of the polynomial P (x1, ..., xn).
Let I(n) := {n, n− 2, n− 4, ...} ⊂ {0} ∪N and define Γ(n, r) := {(i1, i2, ..., ir) | 1 6 i1 < i2 <

.. < ir 6 n, ir ≡ n (mod 2); ij+1 ≡ ij + 1 (mod 2) for all 1 6 j 6 r − 1} for all r ∈ I(n). If
α = (i1, i2, ..., ir) ∈ Γ(n, r) we write xα for xi1xi2 ...xir . Then

P (x1, x2, ..., xn) =
∑

r∈I(n)

∑

α∈Γ(n,r)

(−1)(n−r)/2xα.
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This can be proved by induction on n and the recursive formula P (x1, x2, ..., xn) =
xnP (x1, x2, . . . , xn−1) − P (x1, x2, . . . , xn−2). In fact, the set Γ(n, r) is a disjoint union of
{(i1, i2, ..., ir−1, n) | 1 6 i1 < i2 < ... < ir 6 n − 1, ir−1 ≡ n − 1 (mod 2); ij+1 ≡
ij + 1 (mod 2) for all 1 6 j 6 r − 2} and Γ(n − 2, r). Thus this decomposition of Γ(n, r)
corresponds just to the two summands in the recursive formula of P (x1, x2, .., xn).

Note that if m = 1 or if x1 = x2 = · · · = xn, then both detΦ(1,i) and P (x, x, ..., x) are
Tchebychev-type polynomials which play an important role in the study of Temperley-Lieb alge-
bras (see [7] and [17]). Hence we call P (x1, x2, ..., xn) the n-th generalized Tchebychev polyno-
mial. It follows from the recursive formula that P (x1, x2, ..., xn) is irreducible in the polynomial
ring R[x1, x2, ..., xn] with n variables x1, x2, ..., xn.
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