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Abstract Given a homological ring epimorphism from a ring R to another ring S, we show
that if the left R-module S has a finite-type resolution, then the algebraic K-group Kn(R)

of R splits as the direct sum of the algebraic K-group Kn(S) of S and the algebraic K-
group Kn(R) of a Waldhausen category R determined by the ring epimorphism. This result
is then applied to endomorphism rings, matrix subrings, rings with idempotent ideals, and
universal localizations which appear often in representation theory and algebraic topology.
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1 Introduction

A ring epimorphism R → S between rings with identity is said to be homological if the
derived module category of the ring S can be regarded as a full subcategory of the derived
module category of the ring R by restriction. This is equivalent to TorRj (S, S) = 0 for all
j ≥ 1 (see [6]). Such epimorphisms appear often in localizations of commutative rings as
well as in representation theory (see [3, 13]).
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In algebraic K-theory, the precise calculation of higher algebraic K-groups of rings is
rare and very hard, and any progress in this direction would be exciting. For a homolog-
ical universal localization λ : R → S of rings, Neeman and Ranicki have discovered a
remarkable long exact sequence of algebraic K-groups in [9]:

· · · −→ Kn+1(S) −→ Kn(R) −→ Kn(R) −→ Kn(S) −→ Kn−1(R) −→
· · · −→ K0(R) −→ K0(R) −→ K0(S)

for all n ∈ N,where R is a Waldhausen category determined by λ. This result extends many
results in the literature (see [8]). A further consideration has been given in [7] for homolog-
ical ring epimorphisms such that the chain map lifting problem has a positive solution. In
general, the long exact sequence does not have to split into a series of short exact sequences.
However, for calculation of algebraic K-groups, it is certainly of interest to know when the
above long exact sequence could split. So, it is natural to ask the following question:

Question Given an arbitrary homological ring epimorphism λ : R → S, under which
conditions on λ does the above long exact sequence of algebraic K-groups break into a
series of split short exact sequences?

In this paper, we shall give an answer to the above question, that is, we prove that under
a finite-type condition the algebraic K-groups of R can be described completely by the
ones of S and the category R. Further, we establish reduction formulas for calculation of
algebraic K-groups of universal localizations, endomorphism rings, matrix subrings and
rings with idempotent elements.

Before stating our result precisely, we first recall some definitions and introduce some
notation.

Throughout the paper, for a given small exact category E , we denote by K(E ) the K-
theory space of E , and by Kn(E ) the n-th homotopy group of K(E ) in the sense of Quillen
(see [10]). For a ring R with identity, we denote by K(R) the K-theory space of the exact
category of finitely generated projective R-modules, and by Kn(R) the n-th algebraic K-
group of R for each n ∈ N (see [10]).

For a ring homomorphism λ : R → S, we denote by W(R, λ) the complicial
biWaldhausen subcategory (see [15]) of C b(R-proj) consisting of those complexes X• in
C b(R-proj) such that S ⊗R X• is acyclic. The cofibrations ofW(R, λ) are by definition the
chain maps which are split monomorphism in each degree, and the weak equivalences are
the homotopy equivalences. Further, let K(R, λ) be the K-theory space of the Waldhausen
category W(R, λ) (see [16]), and let Kn(R, λ) := Kn(W(R, λ)), the n-th homotopy group
of K(R, λ).

An R-module M is said to have a finite-type resolution if it has a finite projective
resolution by finitely generated projective R-modules, that is, there is an exact sequence
0 → Pn → · · · → P1 → P0 → M → 0 for some n ∈ N such that all R-modules Pj are
projective and finitely generated. By add(M) we denote the category of modules which are
direct summands of direct sums of finitely many copies of M .

Now, our result on algebraic K-theory of homological ring epimorphisms can be stated
as follows:

Theorem 1.1 Let λ : R → S be a homological ring epimorphism. Suppose that RS admits
a finite-type resolution. Then

Kn(R) � Kn(S) ⊕ Kn(R, λ) for all n ∈ N.
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Observe that a special case of finite-type condition is that RS is a finitely generated
projective R-module. A lot of examples of this type can be founded in Section 3 below (see
also [17]).

As a natural consequence, we first apply Theorem 1.1 to universal localizations which
generalize the usual localizations of commutative rings ([4], [13]).

Let � be a set of homomorphisms between finitely generated projective R-modules. Let
λ� : R → R� be the universal localization of R at � (see Lemma 2.3 for definition). Note
that universal localizations are the “noncommutative localizations” in terminology of [9].
For methods to get homological universal localizations, we refer the reader to a recent paper
[3].

Associated with�, there is a small Waldhausen categoryR defined in [9, Definition 0.4].
More precisely, the category R is the smallest full subcategory of C b(R-proj) which

(i) contains all the complexes in �,

(ii) contains all acyclic complexes,
(iii) is closed under the formation of mapping cones and shifts,
(iv) contains all direct summands of any of its objects.

Note that, in the category R, the cofibrations are injective chain maps which are
degreewise split, and the weak equivalences are homotopy equivalences.

According to [8, Theorem 0.5], if all the maps in � are injective, then the K-theory space
K(R) of R in the sense of Waldhausen is homotopy equivalent to the K-theory space K(E )

of the exact category E of (R,�)-torsion modules. Recall that an R-module M is called an
(R,�)-torsion module if it is finitely presented, and of projective dimension at most 1 such
that R� ⊗R M = 0 = TorR1 (R�,M).

Applying Theorem 1.1 to universal localizations, we have the following corollary.

Corollary 1.2 Suppose that the universal localization λ� : R → R� of R at � is
homological and that the left R-module R� has a finite-type resolution. Then

Kn(R) � Kn(R�) ⊕ Kn(R) for all n ∈ N.

If in addition all the maps in � are injective, then

Kn(R) � Kn(R�) ⊕ Kn(E ) for all n ∈ N

where E is the exact category of (R,�)-torsion modules.

Note that both [9, Theorem 0.5]) and [7, Theorem 14.9] provide us only with a long
exact sequence of algebraic K-groups, while both Theorem 1.1 and Corollary 1.2 go one
step further, they describe the algebraic K-groups of R as the direct sum of algebraic K-
groups of a related ring and a category naturally determined by the ring epimorphism. In
many cases, Corollary 1.2 gives us a handy way to estimate the algebraic K-groups of R.
For example, we have the following decomposition formula for algebraic K-groups of rings
with idempotent elements, which seems to be stronger than the excision theorem (see [14]).

Corollary 1.3 Let R be a ring with identity, and let e2 = e be an idempotent element in R

such that there is an exact sequence

0 −→ Pm −→ · · · −→ P1 −→ P0 −→ RReR −→ 0
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with Pj ∈ add(Re) for 0 ≤ j ≤ m. Then

Kn(R) � Kn(R/ReR) ⊕ Kn(eRe)

for all n ≥ 0.

Next, we apply Corollary 1.3 to the endomorphism rings of objects in an additive
category.

Let us first introduce the notion of covariant morphisms in an additive category, which is
related to a wide variety of concepts, such as traces of modules, Auslander-Reiten sequences
and GV-ideals.

Let C be an additive category, and let X and Y be objects in C. A morphism λ : Y → X

in C is said to be X-covariant if the induced map HomC(X, λ) : HomC(X, Y ) →
HomC(X,X) is a split monomorphism of EndC(X)-modules; and covariant if the induced
map HomC(X, λ) : HomC(X, Y ) → HomC(X,X) is injective and the induced map
HomC(Y, λ) : HomC(Y, Y ) → HomC(Y,X) is a split epimorphism of EndC(Y )-modules.
For example, if C is the module category of a unitary ring R and if X is an R-module, then,
for every submodule Y of X with HomR(Y,X/Y ) = 0, the inclusion map is covariant. In
particular, for an idempotent ideal I in R, the inclusion from I into R is covariant.

Let EndC,Y (X) denote the quotient ring of the endomorphism ring EndC(X) of the object
X modulo the ideal generated by all those endomorphisms of X which factorize through the
object Y .

Corollary 1.4 Let C be an additive category and f : Y → X be a morphism of objects in C.
(1) If f is covariant, then Kn

(
EndC(X ⊕Y )

) � Kn

(
EndC,Y (X)

)⊕Kn

(
EndC(Y )

)
for all

n ∈ N.
(2) If f is X-covariant, then Kn

(
EndC(X ⊕Y )

) � Kn

(
EndC(X)

)⊕Kn

(
EndC,X(Y )

)
for

all n ∈ N.

As a concrete example of applications of Corollary 1.4, we have the following result.

Corollary 1.5 If I is an idempotent ideal in a ringR, thenKn(EndR(R⊕I )) � Kn(R/I)⊕
Kn(EndR(I)) for all n ≥ 0. In particular, if the idempotent ideal RI is projective and finitely
generated, then Kn(R) � Kn(R/I) ⊕ Kn(EndR(I)) for all n ≥ 0.

Our results also apply to matrix subrings. In this case, we get several reduction formulas
of algebraic K-groups for some classes of matrix subrings. For details, we refer the reader
to the last section of this paper.

The proofs of Theorem 1.1 and its Corollaries 1.2 and 1.3 will be given in the next section
where we first provide necessary materials needed in our proofs. For example, we recall the
definitions of Waldhausen categories and universal localizations. In Section 3, we construct
homological ring epimorphisms by using convariant morphisms, endomorphism rings and
matrix subrings. As a consequence of our discussions, we present a proof of Corollary 1.4,
and give reduction formulas for K-groups of matrix subrings and rings with idempotent
ideals. At the end of this section, we display a simple example of universal localizations to
illustrate the idea of Theorem 1.1.
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2 Proofs of Theorem 1.1 and Corollaries 1.2-1.3

Let R be an associative ring with identity. We denote by R-Mod the category of all left
R-modules, and by R-mod the category of all finitely presented left R-modules. For an R-
module M , we denote by add(M) the full subcategory of R-Mod consisting of all direct
summands of direct sums of finitely many copies of M . As usual, we denote by R-proj the
category add(RR), and by C (R),K (R) and D(R) the complex, homotopy and derived
categories of R-Mod, respectively.

A complex X• ∈ D(R) is said to be compact if the functor HomD(R)(X
•,−) commutes

with direct sums inD(R). It is shown thatX• is compact if and only if it is quasi-isomorphic
to a bounded chain complex of finitely generated, projective R-modules (see, for exam-
ple, [9, Corollary 4.4]). We denote by Dc(R) the full subcategory of D(R) consisting
of compact objects. Note that Dc(R) is closed under triangles and direct summands (see
[9, Remark 3.4]). It is known that the localization function K (R) → D(R) is restricted
to a triangle equivalence from K b(R-proj) to Dc(R). Moreover, the intersection of Dc(R)

with R-Mod, as a full subcategory of R-Mod, exactly consists of those R-modules with
finite-type resolutions. This category is denoted by P<∞(R).

The category R-mod with short exact sequences forms an exact category in the sense of
Quillen (see [10]), and its K-theory is denoted byG∗(R). As usual, we denote byK∗(R) the
K-theory of R-proj with split exact sequences. If R is left noetherian and has finite global
dimension, then K∗(R) � G∗(R) for all ∗ ∈ N. In general, even for finite dimensional
algebras over a field, the G-theory and K-theory are not isomorphic, though the former is
reduced to the one of the endomorphism rings of simple modules.

Now we recall some elementary notion about the K-theory of Waldhausen categories
(see [15, 16]).

By a category with cofibrations we mean a category C with a zero object 0, together with
a chosen class co(C) of morphisms in C satisfying the following three axioms:

(1) Every isomorphism in C is in co(C).
(2) For any object A in C, the unique morphism 0 → A is in co(C).
(3) If X → Y is a morphism in co(C), and X → Z is a morphism in C, then the push-out

Y ∪X Z exists in C, and the canonical morphism Z → Y ∪X Z is in co(C). In particular.
finite coproducts exist in C.

A morphism in co(C) is called a cofibration.
Following [15], a category C with cofibrations is called a Waldhausen category if C

admits a class w(C) of morphisms satisfying the following two axioms:

(1) Every isomorphism in C is in w(C).
(2) Given a commutative diagram

in C with two morphisms A → B and A′ → B ′ being cofibrations, and with B → B ′,
A → A′ and C → C′ being in w(C), then the induced morphism B ∪A C → B ′ ∪A′ C′ is
in w(C).
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The morphisms in w(C) are called weak equivalences. Thus a Waldhausen category
consists of a triple data: A category, cofibrations and weak equivalences.

A functor between Waldhausen categories is called an exact functor if it preserves zero,
cofibrations, weak equivalence classes and pushouts along the cofibrations.

A typical example of Waldhausen categories can be obtained from complexes of modules
over rings in the following manner:

Let R be a ring with identity. Let C b(R-proj) be the small category consisting of all
bounded complexes of finitely generated projective R-modules. This is a Waldhausen cate-
gory, where the weak equivalences are the homotopy equivalences, and the cofibrations are
the degreewise split monomorphisms.

For a small Waldhausen category C, a K-theory space K(C) was defined in [16]. For
each n ∈ N, the n-th homotopy group of K(C) is called the n-th algebraic K-group of C,
denoted by Kn(C). In particular, for the small Waldhausen category C b(R-proj), it is shown
by a theorem of Gillet-Waldhausen that its K-theory is the same as the K-theory of R in the
sense of Quillen. That is, Kn(R) � Kn(C b(R-proj)) for all n ≥ 0.

In this paper, we assume that all Waldhausen categories considered are small, compli-
cial biWaldhausen categories in the sense of Thomason and Trobaugh (see [15]). That is,
the Waldhausen category C is assumed to be a full subcategory of the category C (A) of
chain complexes over some abelian category A, the cofibrations are maps of complexes
which are split monomorphisms in each degree, and the weak equivalences contain the
quasi-isomorphisms. Note that if λ : R → S is a ring homomorphism, then S ⊗R − :
C b(R-proj) → C b(S-proj) is an exact functor of complicial biWaldhausen categories.

The following result can be concluded from [7, Theorem 14.9], which generalizes a result
on algebraic K-groups for homological universal localizations in [9, Theorem 0.5] to the
one of algebraic K-groups for arbitrary homological ring epimorphisms.

Lemma 2.1 Let λ : R → S be a homological ring epimorphism. Suppose that every map
f in K b(R-proj) with S ⊗R f = 0 factorizes through some X• in K b(R-proj) such
that S ⊗R X• = 0. Then the inclusion F : W(R, λ) → C b(R-proj) and the functor
S ⊗R − : C b(R-proj) → C b(S-proj) induce a long exact sequence of algebraic K-groups:

· · · −→ Kn+1(S) −→ Kn(R, λ)
Kn(F )−→ Kn(R)

Kn(S⊗R−)−→ Kn(S) −→ Kn−1(R, λ) −→
· · · −→ K0(R, λ) −→ K0(R) −→ K0(S)

for all n ∈ N.

The following classical ‘resolution theorem’ on algebraic K-theory of exact categories
is well known (see, for example, [10, Section 4]).

Lemma 2.2 Let E ′ be a full subcategory of a small exact category E . Assume that the
following two conditions hold:

(a) If X � Y � Z is a conflation in E with Z ∈ E ′, then Y ∈ E ′ if and only if X ∈ E ′.
(b) For any object M ∈ E , there is an exact sequence in E :

0 −→ Mn −→ Mn−1 −→ · · · −→ M1 −→ M0 −→ M −→ 0

such that Mi ∈ E ′ for all 0 ≤ i ≤ n.
Then the inclusion E ′ ⊆ E of exact categories induces a homotopy equivalence of K-

theory space

K(E ′) ∼−→ K(E ).
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Proof of Theorem 1.1.
We first show that the ring homomorphism λ : R → S in Theorem 1.1 satisfies the

assumptions of Lemma 2.1.
Note that the localization functor K (R) → D(R) is restricted to a triangle equivalence

K b(R-proj)
�−→ Dc(R). So, it is sufficient to show that if f : P • → Q• is a homomor-

phism in Dc(R) such that S⊗L
R f = 0, then f factorizes through some object X• ∈ Dc(R)

such that S⊗L
R X• = 0, where S⊗L

R − : D(R) → D(S) denotes the total left-derived tensor
functor of S ⊗R − : K (R) → K (S).

Let D(λ∗) : D(S) → D(R) be the restriction functor induced from λ. Then(
S⊗L

R −, D(λ∗)
)
is an adjoint pair of functors. Furthermore, let

ε : IdD(R) −→ D(λ∗)(S⊗L
R −)

be the unit adjunction. Then we have a canonical morphism εQ• : Q• → RS ⊗L
R Q• in

D(R). Now, we extend εQ• to a triangle X• −→ Q• εQ•−→ S⊗L
R Q• −→ X•[1] in D(R),

and claim that X• is a desired object.
Actually, since λ is a homological ring epimorphism, the functor D(λ∗) is fully faithful.

This implies that the counit adjunction (S⊗L
R −)D(λ∗) → IdD(S) is a natural isomorphism.

Consequently, the morphism

S⊗L
R εQ• : S⊗L

R Q• −→ S⊗L
R (S⊗L

R Q•)
is an isomorphism in D(S). Thus S⊗L

R X• = 0. Note that the unit adjunction gives rise to
the following commutative diagram in D(R):

Since S ⊗L
R f = 0, we have f εQ• = 0. Note that the functor HomD(R)(P

•,−) is
homological. Thus it follows from the triangle that f factorizes through X•.

It remains to show X• ∈ Dc(R). Indeed, by assumption, we have RS ∈ Dc(R).
Since each compact object of Dc(S) is quasi-isomorphic to a bounded complex of finitely
generated, projective S-modules, the functor D(λ∗) preserves compact objects. In other
words, D(λ∗) is restricted to a functor Dc(S) → Dc(R). Clearly, the tensor functor
S⊗L

R− always preserves compact objects. SinceQ• ∈ Dc(R), we have RS⊗L
RQ• ∈ Dc(R).

Note that Dc(R) is closed under triangles, it follows that X• ∈ Dc(R).
Thus, we have shown that λ satisfies the assumptions of Lemma 2.1. Therefore, by

Lemma 2.1, we have a long exact sequence

· · · −→ Kn+1(S) −→ Kn(R, λ)
Kn(F )−→ Kn(R)

Kn(S⊗R−)−→ Kn(S) −→ Kn−1(R, λ) −→
· · · −→ K0(R, λ) −→ K0(R) −→ K0(S)

for all n ∈ N.

To show the isomorphisms in Theorem 1.1, it is enough to verify that Kn(S ⊗R −) :
Kn(R) → Kn(S) is a split surjection for each n ∈ N.

Let
X := {M ∈ P<∞(R) | TorRn (S, M) = 0 for all n > 0}.
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Then X is a fully exact subcategory of P<∞(R). Note that both R-proj and X are closed
under isomorphisms, extensions and kernels of surjective homomorphisms in P<∞(R),
and that each module in P<∞(R) has a finite projective resolution with its terms belonging
to R-proj. By Lemma 2.2, the inclusions R-proj ⊆ X ⊆ P<∞(R) induce homotopy
equivalences

K(R)
∼−→ K(X )

∼−→ K(P<∞(R)).

Since λ is homological and RS ∈ P<∞(R), the following two functors

P<∞(S)
λ∗−→ X and X S⊗R−−→ P<∞(S)

are well defined and exact as functors of exact categories, such that the composition functor

(S ⊗R −)(λ∗) : P<∞(S) −→ P<∞(S)

is naturally isomorphic to the identity functor IdP<∞(S). By passing to K-theory spaces,
we see that the composite of the following two maps

K(λ∗) : K(P<∞(S)) −→ K(X ) and K(S ⊗R −) : K(X ) −→ K(P<∞(S))

is homotopic to the identity map IdK(P<∞(S)) of the K-theory space K(P<∞(S)). In view
of n-th algebraic K-groups, this implies that the homomorphism Kn(S ⊗R −) : Kn(X ) →
Kn(P<∞(S)) is a split surjection for all n ≥ 0. It follows from the following diagram

that Kn(S ⊗R −) : Kn(R) → Kn(S) is a split surjection for n ≥ 0. This finishes the proof
of Theorem 1.1.

Before starting with the proof of Corollary 1.2, we first recall the definition of universal
localizations and collect some of their basic properties in the following lemma.

Lemma 2.3 ([4], [13, Theorem 4.1]) Let R be a ring and � a set of homomorphisms
between finitely generated projective R-modules. Then there is a ring R� and a homomor-
phism λ : R → R� of rings with the following properties:

(1) λ is �-inverting, that is, if α : P → Q belongs to �, then R� ⊗R α : R� ⊗R P →
R� ⊗R Q is an isomorphism of R�-modules, and

(2) λ is universal �-inverting, that is, if S is a ring such that there exists a �-inverting
homomorphism ϕ : R → S, then there exists a unique homomorphism ψ : R� → S of
rings such that ϕ = λψ .

(3) The homomorphism λ : R → R� is a ring epimorphism with TorR1 (R�, R�) = 0.

The map λ : R → R� in Lemma 2.3 is called the universal localization of R at �.
Clearly, if the left R-module R� is flat,or has projective dimension at most 1, then λ is
homological. But it is not always the case (see [9]).

By abuse of notation, we always identify a homomorphism α : P → Q in � with the
two-term complex 0 → P

α−→ Q → 0 in C b(R-proj), where P and Q are in degrees −1
and 0, respectively.
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Proof of Corollary 1.2.
By Theorem 1.1, to show the first part of Corollary 1.2, it suffices to show R =

W(R, λ�) as Waldhausen categories. Since cofibrations and weak equivalences in the two
categories are defined in the same way, it is sufficient to show R = W(R, λ�) as full
subcategories of C b(R-proj).

In fact, since λ� : R → R� is the universal localization of R at �, we see from
Lemma 2.3 that R� ⊗R f is an isomorphism for any f : P1 → P0 in �. This implies that
� ⊆ W(R, λ�). Note that W(R, λ�) is the same as the full subcategory of C b(R-proj)
consisting of all those complexes X• such that R� ⊗L

R X• = 0 in D(R�), where R� ⊗L
R − :

D(R) → D(R�) is the total left-derived functor of R� ⊗R −. This implies thatW(R, λ�)

satisfies the conditions (i)-(iv), and therefore R ⊆ W(R, λ�). In the following, we show
the converse inclusion: W(R, λ�) ⊆ R.

Observe that R has the following additional properties:
(v) The category R is closed under finite direct sums in C b(R-proj).
(vi) IfN• ∈ R andM• ∈ C b(R-proj) such that, inK b(R-proj),M• is a direct summand

of N•, then M• ∈ R. In particular, R is closed under isomorphisms in K b(R-proj).
Actually, these two properties can be deduced from (ii)-(iv) with the help of the following

two general facts:
Let X•, Y • ∈ C b(R-proj). Then

(1) X• ⊕ Y • is exactly the mapping cone of the zero map from X•[−1] to Y •.
(2) X• � Y • in K b(R-proj) if and only if there are two acyclic complexes U•, V • ∈

C b(R-proj) such that X• ⊕ U• � Y • ⊕ V • in C b(R-proj).

Let P be the full subcategory of K b(R-proj) consisting of all objects of W(R, λ�),
and let R be the full subcategory of K b(R-proj) consisting of all objects of R. Recall that
both W(R, λ�) and R are full subcategories of C b(R-proj). Here, both P and R are full
subcategories of K b(R-proj). Then P is the kernel of the triangle functor R� ⊗R − :
K b(R-proj) → K b(R�-proj), and thus a full triangulated subcategory of K b(R-proj)
closed under direct summands. Moreover, due to (i)-(vi), we see that R is a full triangulated
subcategory of K b(R-proj) containing � and being closed under direct summands. It fol-
lows from (vi) that W(R, λ�) ⊆ R if and only if P ⊆ R. To check the latter, it is enough
to show that P is exactly the smallest full triangulated subcategory of K b(R-proj) which
contains � and is closed under direct summands. Actually, this was shown in [8, Theorem
0.11]. HenceW(R, λ�) ⊆ R.

ThusR = W(R, λ�). Now, Theorem 1.1 implies the first part of Corollary 1.2. Note that
if all the maps in � are injective, then Kn(R) � Kn(E ) for each n ∈ N due to [8, Theorem
0.5]. Hence the second part of Corollary 1.2 follows.

Proof of Corollary 1.3.
We show that Corollary 1.3 is a consequence of Corollary 1.2. First, we note that the

universal localization of R at the injective map 0 → Re is exactly the canonical surjective
map λ : R → R/ReR. In the following, we first prove that λ is homological. For this
purpose, we point out the following general fact.

Lemma 2.4 Let R be a ring with identity, and let J = ReR for e2 = e ∈ R. Suppose that
M is an R-module with the following two properties:
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(1) TorRj (R/J,M) = 0 for all j ≥ 0, and

(2) M has a finite-type resolution, that is, there is an exact sequence 0 −→ P ′
n

ε′
n−→

· · · −→ P ′
1

ε′
1−→ P ′

0

ε′
0−→ M → 0 with all P ′

j finitely generated projective R-modules.

Then there is an exact sequence of R-modules:

0 → Pn −→ · · · −→ P1 −→ P0 −→ M −→ 0

such that all Pj lie in add(Re).

Proof This result is known for modules over Artin algebras, where one may use minimal
projective resolutions (see [1]). For general rings, projective covers of modules may not
exist. For convenience of the reader, we include here a proof.

Given such a sequence in (2), we define N ′
i = Ker(ε′

i−1) for 1 ≤ i ≤ n. Then N ′
i is

finitely generated.
It follows from TorR0 (R/J,M) = 0 that JM = M . Since the trace of Re in the module

M is just JM and since M is finitely generated, there is a finite index set I0 and a surjective

homomorphism P0 := ⊕
i∈I0

Re
ε0−→ M . We define N1 = Ker(ε0). Then, by Schanuel’s

Lemma, we have N1 ⊕ P ′
0 � N ′

1 ⊕ P0, and therefore N1 is finitely generated. It follows
from TorR1 (R/J,M) = 0 that the sequence

0 −→ N1/JN1 −→ P0/JP0 −→ M/JM −→ 0

is exact. This means that JN1 = N1 because JP0 = P0. Observe that TorR1 (R/J,N1) =
TorR2 (R/J,M) = 0. So, for N1, we can do the same procedure as we did above and get a

surjective homomorphism P1 := ⊕
j∈I1

Re
ε1−→ N1 with I1 a finite set, such that N2 :=

Ker(ε1) is finitely generated and that JN2 = N2 and TorR1 (R/J,N2) = 0. Hence, by
using the generalized Schanuel’s Lemma, we can iterate this procedure. Since the projective
dimension of M is at most n, we must stop after n steps and reach at a desired sequence
mentioned in the lemma.

Remark 2.5 The above proof shows that for an R-module M , the condition (1) is equivalent
to

(2’) There is a projective resolution · · · → Pn → · · · → P1 → P0 → M → 0 such
that Pj ∈ Add(Re), where Add(Re) is the full subcategory of R-Mod consisting of all those
R-modules which are direct summands of direct sums of copies of Re.

Thus the canonical surjection R → R/J is homological if and only if such a sequence
(2’) for RJ exists. So, under the assumption of Corollary 1.3, all conditions of Corollary 1.2
are fulfilled. By Corollary 1.2, we have

Kn(R) � Kn(R/J ) ⊕ Kn(E ) for n ≥ 0,

where E is the exact category of (R,�)-torsion modules with � := {0 → Re}.
To finish the proof of Corollary 1.3, we have to show Kn(E ) � Kn(eRe). However, this

follows from the following lemma.

Lemma 2.6 Suppose that R is a ring with identity and that e is an idempotent element in R.
Let E be the exact category of (R,�)-torsion modules with � := {0 → Re}. Then K(E )

and K(eRe) are homotopy equivalent.
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Proof Let J := ReR. Note that the universal localization of R at � is exactly the canonical
surjection R → R/J . Thus an R-module M is (R,�)-torsion if and only if it is finitely pre-
sented, and of projective dimension at most 1 such that R/J ⊗R M = 0 = TorR1 (R/J,M).
By Lemma 2.4, the latter is also equivalent to saying that there is an exact sequence of
R-modules:

0 → P1 −→ P0 −→ M → 0

such that P0 and P1 lie in add(Re). Now, we regard add(Re) as a full subcategory of the
exact category E . Clearly, the pair (add(Re),E ) satisfies the conditions in Lemma 2.2. It
follows that the inclusion add(Re) ⊆ E induces a homotopy equivalence K(add(Re))

∼−→
K(E ). Since the exact functor eR ⊗R − : add(Re) → add(eRe) is an equivalence, we
know that K

(
add(Re)

)
is homotopy equivalent to K(eRe). Thus K(E ) and K(eRe) are

homotopy equivalent.

This completes the proof of Corollary 1.3.

3 Examples: Proof of Corollary 1.4

In this section, we demonstrate methods of producing homological ring epimorphisms of
the form R → R/J with J an idempotent ideal. Here, forming endomorphism rings and
matrix subrings will enter into our play. As a consequence of our discussions, we have a
proof of Corollary 1.4.

3.1 Endomorphism rings

Let R be a ring with identity and X be an R-module. A submodule Y of X is called a
trace in X if HomR(Y,X/Y ) = 0; and a weak trace in X if the inclusion from Y to X

induces an isomorphism HomR(Y, Y ) → HomR(Y,X) of abelian groups. For example,
every idempotent ideal of R is a trace in the regular R-module RR, and every GV-ideal J

of R is a weak trace in RR (see [17, Section 7] for definition). Also, the socle of any finite-
dimensional algebra A over a field is a weak trace in AA. In particular, the socle of the ring
R := Q[X]/(X2) is a weak trace in R, but not a trace in R.

In general, for any R-modules X and Y , there is a recipe for getting weak trace sub-
modules of X. Let tY (X) be the sum of all images of homomorphisms from Y to X of
R-modules. Then tY (X) is a weak trace of X.

Motivated by weak trace submodules, we introduce the following notion.

Definition 3.1 Let C be an additive category. A morphism λ : Y → X of objects in C is
said to be covariant if

(1) the induced map HomC(X, λ) : HomC(X, Y ) → HomC(X,X) is injective, and
(2) the induced map HomC(Y, λ) : HomC(Y, Y ) → HomC(Y,X) is a split epimorphism

of EndC(Y )-modules.

Dually, a morphism β : N → M in C is said to be contravariant if

(1’) HomC(β, N) : HomC(M,N) → HomC(N,N) is injective, and
(2’) HomC(β, M) : HomC(M,M) → HomC(N,M) is a split epimorphism of right

EndC(M)-modules
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Clearly, if Y is a weak trace submodule of an R-module X, then the inclusion map is
covariant. Another example of covariant homomorphisms is the following: If 0 → Z →
Y

g−→ X → 0 is an Auslander-Reiten sequence in R-mod with HomR(Y,Z) = 0, then the
homomorphism g is covariant.

For covariant morphisms, we have the following properties.

Lemma 3.2 Let C be an additive category, and let λ : Y → X be a covariant morphism
of objects in C. We define 
 := EndC(X ⊕ Y ), and let eY be the idempotent element of 


corresponding to the projection onto Y . Then

(1) 

eY 
 is a finitely generated projective 
-module.
(2) The composition mapμ : HomC(X, Y )⊗EndC(Y )HomC(Y,X) → EndC(X) is injective,

and the cokernel of μ is isomorphic to EndC,Y (X).

To prove this lemma, we use the following observation.

Lemma 3.3 Let S be a ring with identity, and let e be an idempotent element in S. Then
SSeS (respectively, SeSS) is projective and finitely generated if and only if eS(1−e) (respec-
tively, (1−e)Se) is projective and finitely generated as an eSe-module (respectively, a right
eSe-module), and the multiplication map μ : (1− e)Se ⊗eSe eS(1− e) → (1− e)S(1− e)

is injective.

Proof Suppose that eS(1 − e) is a finitely generated projective eSe-module and that the

multiplication map (1−e)Se⊗eSe eS(1−e)
μ−→ (1−e)S(1−e) is injective. Then it is easy

to see that the multiplication map Se ⊗eSe eS → SeS is an isomorphism of S-S-bimodules.
Since eS = eSe ⊕ eS(1 − e), we know that SSeS is projective and finitely generated.

Conversely, suppose that SSeS is projective and finitely generated. One the one hand,
since SSeS is projective, we can show that the multiplication map μ : Se ⊗eSe eS → SeS

is injective (see [5, Statement 7]). This implies that the map μ : (1 − e)Se ⊗eSe eS(1 −
e) → (1 − e)S(1 − e) is injective. On the other hand, since SSeS is finitely generated,
there is a finite subset {xi | i ∈ I } of S such that the map

⊕
i∈I Se → SeS, defined by

(ai)i∈I �→ ∑
i∈I aixi , is surjective. This shows that SSeS is a direct summand of a direct

sum of finitely many copies of Se. Thus eS is a direct summand of a free eSe-module of
finite rank. This implies that the eSe-module eS(1− e) is projective and finitely generated.

The same arguments applies to the right module SeSS .

Proof of Lemma 3.2. Clearly, 
 =
(

EndC(X) HomC(X, Y )

HomC(Y,X) EndC(Y )

)
. Let e :=

(
0 0
0 1

)
and

f := 1 − e. Thus e = eY , e
e � EndC(Y ), f 
f � EndC(X), f 
e � HomC(X, Y ) and
e
f � HomC(Y,X), where the left EndC(Y )-module structure of HomC(Y,X) is induced
from the right EndC(Y )-module structure of Y . In the following we will often use these iden-
tifications without further references. Since λ is a covariant homomorphism, the induced
map

λ∗ = HomC(Y, λ) : HomC(Y, Y ) −→ HomC(Y,X)

is a split epimorphism of EndC(Y )-modules. Thus there is a homomorphism γ :
HomC(Y,X) → HomC(Y, Y ) such that γ λ∗ = id . This means that HomC(Y,X) is a
direct summand of the regular EndC(Y )-module. Thus e
f is a finitely generated projective
e
e-module since a direct summand of a finitely generated module is finitely generated.
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Now we show that the multiplication map f 
e ⊗e
e e
f → f 
f is injective. This is
equivalent to showing that the composition map

μ : HomC(X, Y ) ⊗EndC(Y ) HomC(Y,X) −→ EndC(X),

given by x⊗f �→ xf for x ∈ HomC(X, Y ) and f ∈ HomC(Y,X), is injective. However, the
injectivity of μ follows from the injectivity of HomC(X, λ) : HomC(X, Y ) → HomC(X,X)

together with the following commutative diagram

since the bottom μ is a composite of three injective maps, that is, μ = (
HomC(X, Y ) ⊗

γ
)
μ′ HomC(X, λ). Here, we use the identity γ λ∗ = id . Thus, by Lemma 3.3, we see that



e
 is a finitely generated projective 
-module.
Now, the second statement of Lemma 3.2 also becomes clear.

Dually, for contravariant morphisms, we have the following statement.

Lemma 3.4 Let C be an additive category, and let λ : Y → X be a contravariant morphism
of objects in C. We define 
 := EndC(X ⊕ Y ), and let eX be the idempotent element of 


corresponding to the projection onto X. Then

(1) 
eX

 is a finitely generated projective right 
-module.
(2) The composition mapμ : HomC(Y,X)⊗EndC(X)HomC(X, Y ) → EndC(Y ) is injective.

Thus the cokernel of μ is isomorphic to EndC,X(Y ).

For convenience, we introduce the following definition of X-covariant morphisms.
Observe that the condition in this definition strengthens only the first and does not involve
the second condition in the definition of covariant or contravariant morphisms.

Definition 3.5 A morphism f : Y → X in an additive category C is said to be

(1) X-covariant if the induced map HomC(X, f ) is a split monomorphism of EndC(X)-
modules.

(2) Y -contravariant if the induced map HomC(f, Y ) is a split monomorphism of right
EndC(Y )-modules.

Clearly, if f : Y → X is covariant, then the inclusion from Ker(f ) into Y is Y -covariant.
Dually, if f : Y → X is contravariant, then the canonical surjection from X to Coker(f )

is X-contravariant. For X-covariant and Y -contravariant morphisms, we have the following
properties.

Lemma 3.6 Let C be an additive category, and let λ : Y → X be a morphism of objects
in C. We define 
 := EndC(X ⊕ Y ), and let eX and eY be the idempotent elements of 


corresponding to the projection onto X and Y , respectively.

(1) If λ is X-covariant, then 

eX
 is a finitely generated projective 
-module. In this
case, 
/
eX
 � EndC,X(Y ).
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(2) If λ is Y -contravariant, then 
eY 

 is a finitely generated projective 
-module. In
this case, 
/
eY 
 � EndC,Y (X).

Proof (1) The proof is similar to that of Lemma 3.2. Here, we only outline its main points.
Since λ∗ = HomC(X, λ) : HomC(X, Y ) → HomC(X,X) is a split monomorphism of

EndC(X)-modules, we see that

(a) eX
eY is a finitely generated projective eX
eX-module, and
(b) HomC(Y,X) ⊗ λ∗ : HomC(Y,X) ⊗EndC(X) HomC(X, Y ) → HomC(Y,X) ⊗EndC(X)

HomC(X,X) is a split monomorphism.

To see that the multiplication map μ : eY 
eX ⊗eX
eX
eX
eY → eY 
eY is injective, we

consider the following commutative diagram:

where the horizontal maps are composition maps. This implies that μ is injective, and
therefore 
/
eX
 � EndC,X(Y ). Now (1) follows immediately from Lemma 3.3.

(2) The proof is left to the reader.

Proof of Corollary 1.4.

(1) Assume that λ : Y → X is a covariant morphism of objects in C. Set 
 := EndC(X ⊕
Y ), and let J be the ideal of 
 generated by the projection e from X ⊕ Y onto Y .
Then e
e � EndC(Y ) and 
/J is isomorphic to the quotient ring of EndC(X) modulo
the ideal generated by those endomorphisms of X which factorize through the object
Y , that is, 
/J � EndC,Y (X) by Lemma 3.2(2). Since 
J is projective and finitely
generated by Lemma 3.2(1), we can apply Corollary 1.3 to 
 and J . In this case, we
see that

Kn(
) � Kn

(
EndC,Y (X)

) ⊕ Kn

(
EndC(Y )

)

for all n ∈ N.
(2) Similarly, we can use Lemma 3.6 and Corollary 1.3 to show (2).

The dual of Corollary 1.4 can be stated as follows. We leave its proof to the interested
reader.

Corollary 3.7 Let C be an additive category and f : Y → X a morphism of objects in C.
(1) If f is contravariant, then K∗

(
EndC(X ⊕Y )

) � K∗
(
EndC(X)

)⊕K∗
(
EndC,X(Y )

)
for

all ∗ ∈ N.
(2) If f is Y -contravariant, then K∗

(
EndC(X ⊕ Y )

) � K∗
(
EndC,Y (X)

) ⊕ K∗
(
EndC(Y )

)

for all ∗ ∈ N.

Let us now mention a few consequences of Corollary 1.4.
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Corollary 3.8 Let R be a ring with identity and let I be an idempotent ideal of R. Then

Kn

(
EndR(R ⊕ I )

) � Kn(R/I) ⊕ Kn

(
EndR(I)

)
for all n ∈ N.

In particular, if the idempotent ideal I is projective and finitely generated as a left R-
module, then Kn(R) � Kn(R/I) ⊕ Kn

(
EndR(I)

)
for all n ∈ N.

Proof Since I 2 = I , we have HomR(I, R/I) = 0. This implies that I is a trace in RR. So
the inclusion I ↪→ R is covariant. Note that EndR,I (R) � R/I . Thus the first statement of
Corollary 3.8 follows from Corollary 1.4.

Now assume further that RI is projective and finitely generated. Then the R-module
R ⊕ I is a progenerator for R-Mod, and therefore R and 
 := EndR(R ⊕ I ) are Morita
equivalent. Thus Kn(R) � Kn(
) � Kn

(
EndR(I)

) ⊕ Kn(R/I) for all n ∈ N.

At this point, let us give some comments on the conditions in Corollaries 1.3 and 3.8.
(1) The assumption on projective resolution in Corollary 1.3 cannot be weakened to a

finite-type resolution. For example, let k be a field and let R be the quotient algebra of the
path algebra of the quiver

modulo the ideal generated by βα. Note that the global dimension of this algebra is 2.
By applying Corollary 1.3 to the idempotent element corresponding to the vertex 2, we
see that Kn(R) � Kn(k) ⊕ Kn(k). Let e1 be the idempotent element of R corresponding
to the vertex 1. Since K1(k[x]/(x2)) � k ⊕ k× and K1(k) = k×, we have K1(R) ��
K1(e1Re1)⊕K1(R/Re1R). It is easy to check that RRe1R does not admit a finite projective
resolution with all terms in add(RRe1). This implies that the assumption on the projective
resolution of RReR in Corollary 1.3 cannot be weakened to a finite-type resolution.

(2) The projectivity on the idempotent ideal I in the second statement of Corollary 3.8
cannot be dropped.

In the above example, the ideal I := Re1R is finitely generated but not projective. In
fact, we have RI � Re1 ⊕S1, where S1 is the simple R-module corresponding to the vertex
1. Moreover, e1Re1 � k[x]/(x2), R/I � k and EndR(I) � R as rings. It follows that
Kn(R) � Kn

(
EndA(I)

)
. Thus the second statement of Corollary 3.8 may fail if the ideal I

is not projective.
(3) The projectivity of I in Corollary 3.8 cannot be relaxed to that the canonical surjection

R → R/I is homological.
If we modify the above example slightly and just consider the algebra S given by the

above quiver but with the relation βαβ = 0, then the ideal J1 := Se1S, as a left S-module,
admits a projective resolution of infinite length with each term belonging to add(SSe1). Thus
the canonical surjection S → S/J1 is homological. However, since S/J1 � k and EndS(J1)

is isomorphic to the ring R in (1), we see that K0(S) �� K0(S/J1) ⊕ K0(EndS(J1)). In fact,
Kn(S) � Kn(k) ⊕ Kn(k[x]/(x2)) for all n. This follows from Corollary 1.3 since the ideal
J2 := Se2S is projective and finitely generated and since S/J2 � k and e2Se2 � k[x]/(x2)

as rings.
(4) The assumption that I is idempotent in Corollary 3.8 cannot be removed. We consider

the triangular matrix ring R =
(

k k

0 k

)
over a field k. Then Kn(R) � Kn(k) ⊕ Kn(k). If we
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take I =
(
0 k

0 0

)
, then R/I � k ⊕ k and EndR(I) � k as rings. Moreover, the module RI is

projective and finitely generated. It follows that

Kn(R/I) ⊕ Kn(EndR(I)) � Kn(k) ⊕ Kn(k) ⊕ Kn(k) �� Kn(R) � Kn(EndR(R ⊕ I )).

In fact, in this example, we have I 2 = 0. Thus Corollary 3.8 may fail if I 2 �= I .

Corollary 3.9 Let R be a ring with identity, and let soc(R) be the socle of RR. Then

Kn

(
EndR(R ⊕ soc(R))

) � Kn

(
EndR(soc(R))

) ⊕ Kn

(
R/soc(R)

)

for all n ∈ N.

Proof Recall that for an R-module M , the socle of M is the sum of all simple submodules
of M . Thus soc(R) is a direct sum of minimal left ideals of R, and therefore it is actually
an ideal in R. Since soc(R) is a weak trace submodule of RR by the definition of socles, we
can apply Corollary 1.4 and get

Kn

(
EndR(R ⊕ soc(R))

) � Kn

(
EndR(soc(R))

) ⊕ Kn(R/soc(R))

for all n ∈ N.

For Auslander-Reiten sequences, we have the following result.

Corollary 3.10 Let A be an Artin algebra, and let 0 → Z
g−→ Y

f−→ X → 0 be an
Auslander-Reiten sequence in A-mod. If HomA(Y,Z) = 0, then

Kn

(
EndA(Y ⊕X)

) � Kn

(
EndA(Y )

)⊕Kn

(
EndA(X)/rad(EndA(X))

) � Kn

(
EndA(Y )

)⊕Kn

(
EndA(Z)/rad(EndA(Z))

)

for all n ∈ N,where rad stands for the Jacobson radical of rings.

Proof Note that HomA(Y,Z) = 0 if and only if the induced surjective map HomA(Y, Y ) →
HomA(Y,X) is an isomorphism of EndA(Y )-modules. Since f is surjective, it follows
also from HomA(Y,Z) = 0 that HomA(X,Z) = 0. Thus f : Y → X is a covariant
homomorphism and, by Corollary 1.4, we have Kn

(
EndA(Y ⊕ X)

) � Kn

(
EndA(Y )

) ⊕
Kn

(
EndA,Y (X)

)
for all n ∈ N.

For an Auslander-Reiten sequence, we know that rad(EndA(X)) is the image of the
map HomA(X, f ) : HomA(X, Y ) → HomA(X,X). Thus EndA,Y (X) � EndA(X)/

rad(EndA(X)) which is a division ring and isomorphic to EndA(Z)/rad(EndA(Z)). Hence

Kn

(
EndA(Y ⊕ X)

) � Kn

(
EndA(Y )) ⊕ Kn(EndA(X)/rad(EndA(X)

) � Kn

(
EndA(Y )

) ⊕ Kn

(
EndA(Z)/rad(End(Z))

)

for all n ∈ N.

3.2 Matrix subrings

In the following, we apply our results in the previous sections to establish formulas for
algebraic K-groups of certain matrix subrings which have been used in universal algebraic
geometry (see [2]) and representation theory (see [11, Chapter 39]).
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The following result extends the result [17, Proposition 5.3] for K1 to a result for higher
algebraic K-groups.

Corollary 3.11 Let R be a ring with identity, and let J and Iij , with 1 ≤ i < j ≤ n, be
arbitrary ideals ofR such that Iij+1J ⊆ Ii j , J Ii j ⊆ Ii+1 j and Ii j Ijk ⊆ Iik for j < k ≤ n.
Define a ring

S :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

R I12 · · · · · · I1n

J R
. . .

. . .
...

J 2 J
. . .

. . .
...

...
. . .

. . . R In−1 n

J n−1 · · · J 2 J R

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

n×n

If RJ is projective and finitely generated, then K∗(S) � K∗(R) ⊕ ⊕n−1
j=1 K∗(R/Ij j+1J ).

Proof We use induction on n to prove this corollary.
Now let ei be the idempotent element of S with 1R at the (i, i)-entry and zero at all other

entries, and e := e2 + · · · + en. As J is a projective R-module, we have Iij ⊗R J � Iij J .
Thus

SeS =

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎝

I12J I12 · · · · · · I1n

J R
. . . · · · I2n

J 2 J
. . .

. . .
...

...
...

. . . R In−1n

J n−1 J n−2 · · · J R

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎠

� Se ⊕ Se2 ⊗e2Se2 J.

Here, we identify R with e2Se2. Since RJ is projective and finitely generated, we infer that
the S-module SeS is also projective and finitely generated. Clearly, S/SeS is isomorphic to
R/I12J . It follows from Corollary 1.3 that K∗(S) � K∗(R/I12J )⊕K∗(eSe). By induction,
we know that K∗(eSe) � K∗(R) ⊕ ⊕n−1

j=2 K∗
(
R/Ij j+1J

)
. Thus

K∗(S) � K∗(R) ⊕
n−1⊕

j=1

K∗(R/Ij j+1J ).

This finishes the proof.

As a consequence of Corollary 3.11, we can prove the following corollary.

Corollary 3.12 Let R be a ring with identity, and let r be a regular element of R with
Rr = rR. If Iij is an ideal of R for 1 ≤ i < j ≤ n such that Iij+1r ⊆ Ii j , rIij ⊆ Ii+1 j

and Iij Ijk ⊆ Iik for j < k ≤ n, then, for the matrix ring

T :=

⎛

⎜⎜⎜
⎜⎜
⎝

R I12 I13 · · · I1 n

Rr R I23 · · · I2 n

...
. . .

. . .
. . .

...

Rrn−2 · · · Rr R In−1 n

Rrn−1 · · · Rr2 Rr R

⎞

⎟⎟⎟
⎟⎟
⎠

,

we have K∗(T ) � K∗(R) ⊕ ⊕n−1
j=1 K∗(R/Ij j+1r) for all n ∈ N.
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By a regular element we mean an element of R, which is not a zero-divisor of R.
Now, we point out the following result.

Proposition 3.13 Let R be a commutative ring with identity, and let x, y ∈ R such that
Rx + Ry = R and Rx ∩ Ry = Rxy (for example, R is a principle integral domain with x

and y coprime in R). Suppose that y is invertible in an extension ring R′ of R. Then, for the
ring

S :=

⎛

⎜
⎜
⎜
⎜
⎝

R Rx · · · Rx

Ry
. . .

. . .
...

...
. . . R Rx

Ry · · · Ry R

⎞

⎟
⎟
⎟
⎟
⎠

,

n×n

we have Kn(S) � Kn(R) ⊕ (n − 1)Kn(R/Rx) ⊕ (n − 1)Kn(R/Ry) for all n ∈ N.

Proof Let σ be the diagonal matrix with the (1, 1)-entry y and all other diagonal entries 1.
Then σ is invertible in Mn(R

′), the n by n full matrix ring of R′. Let B := σSσ−1. Thus
S � B and B is of the form

B :=

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

R Rxy Rxy · · · Rxy

R R Rx · · · Rx

R Ry R
. . .

...
...

...
. . . R Rx

R Ry · · · Ry R

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

.

n×n

Define A := Mn(R). Then B is a subring of A with the same identity. Moreover, BA

is isomorphic to the direct sum of n copies of Be1 where e1 is the diagonal matrix
diag(1, 0, · · · , 0) of B. Thus BA is a finitely generated projective B-module. Hence, by
[17, Lemma 3.1], B is derived equivalent to EndB(B ⊕ A/B). Clearly, the latter is Morita
equivalent to EndB(Be1 ⊕ Q2 ⊕ · · · ⊕ Qn), where Qj is given by the exact sequence

0 −→ Bej −→ Be1 −→ Qj −→ 0, 2 ≤ j ≤ n.

As in [17, Section 3], we can show that EndB(Be1 ⊕ Q2 ⊕ · · · ⊕ Qn) is isomorphic to the
following ring

C :=

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

R R/Rxy R/Rxy · · · R/Rxy

0 R/Rxy Rx/Rxy · · · Rx/Rxy

0 Ry/Rxy R/Rxy
. . .

...
...

...
. . .

. . . Rx/Rxy

0 Ry/Rxy · · · Ry/Rxy R/Rxy

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

.

From the Chinese remainder theorem we know that R/Rxy � R/Rx ⊕ R/Ry as
rings. Moreover, it follows from the assumptions that the R/Rxy-bimodules Rx/Rxy and
Ry/Rxy are isomorphic to R/Ry and R/Rx, respectively. Let D be the lower right corner
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(n − 1) × (n − 1)-submatrix of C. Then the ring D is actually a direct sum of the following
two rings:

D =

⎛

⎜
⎜
⎜
⎜
⎝

R/Ry R/Ry · · · R/Ry

0 R/Ry
. . .

...
...

. . . R/Ry R/Ry

0 · · · 0 R/Ry

⎞

⎟
⎟
⎟
⎟
⎠

n−1

⊕

⎛

⎜
⎜
⎜
⎜
⎝

R/Rx 0 · · · 0

R/Rx R/Rx
. . .

...
...

. . . R/Ry 0
R/Rx · · · R/Rx R/Rx

⎞

⎟
⎟
⎟
⎟
⎠

.

n−1

Since derived equivalences preserve algebraicKn-groups, it follows thatKn(S) � Kn(C) �
Kn(R) ⊕ Kn(D) � Kn(R) ⊕ (n − 1)Kn(R/Rx) ⊕ (n − 1)Kn(R/Ry) for all n ∈ N.

Remark For n = 2, we can remove the conditions “Rx + Ry = R and Rx ∩ Ry = Rxy” in
Proposition 3.13, and get K∗(S) � K∗(R) ⊕ K∗(R/Rxy) for all ∗ ∈ N.

Related to calculation of algebraicK-groups of the rings in the proof of Proposition 3.13,
the following result may be of interest.

Corollary 3.14 Let R be a ring with identity, and let I and J be ideals in R with J I = 0.
If RI (or JR) is projective and finitely generated, then, for the ring

S :=

⎛

⎜
⎜⎜⎜
⎝

R I · · · I

J R
. . .

...
...

. . .
. . . I

J · · · J R

⎞

⎟
⎟⎟⎟
⎠

,

n×n

we have K∗(S) � nK∗(R) for all ∗ ∈ N.

Proof We assume that the R-module RI is projective and finitely generated. Let e := e1 ∈
S. Then

SeS :=

⎛

⎜⎜⎜
⎝

R I · · · I

J 0 · · · 0
...

...
. . .

...

J 0 · · · 0

⎞

⎟⎟⎟
⎠

.

Since RI is projective, we have J ⊗R I � J I = 0 and Se ⊗R I � SeSej for 2 ≤ j ≤ n.
Here we identify eSe with R. Since RI is projective and finitely generated, we know that
SSeSej is projective and finitely generated for j = 2, · · · , n, and therefore the S-module
SSeS � Se ⊕ SeSe2 ⊕ · · · ⊕ SeSen is a finitely generated projective module. Thus, by
Corollary 1.3 and induction on n, we have K∗(S) � nK∗(R) for all ∗ ∈ N.

The proof for the case that JR is projective and finitely generated can be done similarly.

Remark If R is an arbitrary ring with I, J ideals in R such that IJ = J I = 0, then the ring
S in Corollary 3.14 is the trivial extension of R × R × · · · × R by the bimodule L, where

L :=

⎛

⎜
⎜⎜⎜
⎝

0 I · · · I

J 0
. . .

...
...

. . .
. . . I

J · · · J 0

⎞

⎟
⎟⎟⎟
⎠

.
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Thus we always have Kn(S) � nKn(R) ⊕ Kn(S,L) for all n ∈ N, where Kn(S,L) is the
n-th relative K-group of S with respect to the ideal L (see [12] for definition). This is due
to the split epimorphism Kn(S) → Kn(S/L) of abelian groups, which is induced from the
split surjection S → S/L.

Observe that rings of the form in Corollaries 3.12 or Proposition 3.13 occur in terminal
orders over smooth projective surfaces. For example, if we take R to be the power series
ring k[[z]] over a field k in one variable z, x = z and y = 1, then the ring S in Proposition
3.13 is related to the completion of a closed point in a quasi-projective surface (see [2]).

Finally, we give an example of universal localizations to illustrate Theorem 1.1.
Let k be a field, and let R be a k-algebra with the 2 × 2 matrix ring M2(k) over k as its

vector space, and with the multiplication given by
(

a b

c d

)(
a′ b′
c′ d ′

)
=

(
aa′ ab′ + bd ′

ca′ + dc′ dd ′
)

for a, a′, b, b′, c, c′, d, d ′ ∈ k. Note that R can be depicted as the following quiver algebra
with relations

Let ei be the idempotent element of R corresponding to the vertex i for i = 1, 2. We
consider the universal localization λ : R → S of R at the homomorphism ϕ : Re2 → Re1
induced by α. This means that, to work out the new algebra S, we need to add a new arrow
α−1 : 2 → 1 and two new relations αα−1 = e1 and α−1α = e2 to the quiver (�). Thus
β = e2β = α−1αβ = 0 in S since αβ = 0. In other words, S can be expressed as the
following quiver algebra with relations:

which is isomorphic to the usual matrix ring M2(k) over k. Moreover, the ring homomor-
phism λ : R → S can be given explicitly by

e1 �→ e1, e2 �→ e2, α �→ α, β �→ 0.

It is easy to see that Se2 � Se1 � Re1 and S � Se1 ⊕ Se2 � Re1 ⊕ Re1 as R-modules. In
particular, RS is finitely generated and projective. Thus λ is a homological ring epimorphism
with RS ∈ P<∞(R). For more examples of homological ring epimorphisms, we refer the
reader to [3, 17].

Let W(R, λ) be the complicial biWaldhausen subcategory of C b(R-proj) consisting of
those complexes X• in C b(R-proj) such that S ⊗R X• is acyclic, and set Kn(R, λ) :=
Kn

(
W(R, λ)

)
. It follows from Theorem 1.1 that

Kn(R) � Kn(S) ⊕ Kn(R, λ) for each n ∈ N.

Now, we point out thatW(R, λ) is equal to the full subcategory ofC b(R-proj) consisting
of those complexes X• such that Hi(X•) ∈ add(S1) for all i ∈ Z, where S1 is the simple
R-module corresponding to the vertex 1.

In fact, since SR � e1S ⊕ e2S � e2R ⊕ e2R as right R-modules, we have

Hi
(
S ⊗R X•) � S ⊗R Hi(X•) � e2R ⊗R Hi(X•) ⊕ e2R ⊗R Hi(X•) � e2H

i(X•) ⊕ e2H
i(X•).
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Thus Hi
(
S ⊗R X•) = 0 if and only if e2H

i(X•) = 0. This is also equivalent to Hi(X•) ∈
add(S1) since R/Re2R � k as algebras.

In this example, K0(R) � Z ⊕ Z, K0(S) � Z, K1(R) = k× ⊕ k× and K1(S) = k×.
Thus K0(R, λ) � Z and K1(R, λ) = k×.

Related to the results in this note, we mention the following open questions.

Questions (1) Let R be a ring with identity, and let e be an idempotent element in R.
Suppose that there is an infinite exact sequence

· · · −→ Pm −→ · · · −→ P1 −→ P0 −→ RReR −→ 0

such that Pj ∈ add(Re) for all j . Then we conjecture that Kn(R) � Kn(R/ReR) ⊕
Kn(eRe) for every n ∈ N. (Compare this with Corollary 1.3, Corollary 3.8 and its comment
(3)).

(2) Let R be a ring with identity and I be an ideal of R with I 2 = 0. We define a ring

S :=
(

R I

I R

)
. How is the algebraic K-group Kn(S) of S related to the Kn-groups of rings

produced from R and I for n ≥ 2?
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