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ABSTRACT. Using the Nakayama functor, we construct an equiva-
lence from a Serre quotient category of a category of finitely gener-
ated modules to a category of finite-dimensional modules. We then
apply this result to the categories FIG and VIq, and answer positively
an open question of Nagpal on representation stability theory.

1. INTRODUCTION

In recent years, the representation theory of several infinite categories has been
studied in relation to representation stability theory (see, e.g., [2, 11, 16]). One of
the main examples is the category FI whose objects are finite sets and morphisms
are injections. Over a field of characteristic zero, representations of the category
FI have been related to modules of a certain twisted commutative algebra (see
[12, 13]); and its finite-dimensional representations are equivalent to the category
of polynomial representations of the infinite general affine group (see [12, Theo-
rem 5.3.1]). Also, several variants of the category FI have been studied in [12].
For example, it is shown in [12, Corollary 4.2.7] that the category of algebraic
representations of the infinite orthogonal group is equivalent to the category of
finite-dimensional modules over the upward Brauer category.

In [9], Nagpal has proved that quite a few representation-theoretic and ho-
mological properties of the category FI hold for the category VIq, whose objects
are finite-dimensional vector spaces over a finite field Fq, and whose morphisms
are linear injections. In that paper, he also asked a question of whether one can
establish an equivalence

VIq-mod/VIq-fdmod
∼
---------------------------------------------------------------------------→ VIq-fdmod,
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where VIq-mod is the category of finitely generated VIq-modules over a field of
characteristic zero, and VIq-fdmod is its full subcategory of finite-dimensional
VIq-modules (see [9, Question 1.11]). An analogue of this equivalence for FI-
modules was proved by Sam and Snowden in [13, Theorem 3.2.1].

The purpose of the present paper is to prove a general result in an abstract set-
ting from which this kind of equivalences can be deduced. In particular, applying
our general result, the above equivalence can be obtained for both FIG and VIq

with G an arbitrary finite group (see Section 4 for definition). Therefore, we give
not only an affirmative answer to the above-mentioned open question in [9, Ques-
tion 1.11], but also a new proof for the case of the category FI when taking G to be
trivial in FIG. Our approach only relies on several abstract homological properties
of representations, and hence works for a wider class of categories including FIG

and VIq as specific examples. Furthermore, via the Nakayama functor, the above
equivalence for FI becomes transparent in our approach, compared with the one
in [13].

We briefly describe the essential idea of our approach. Let C be a small EI-
category (EI means that every endomorphism is an isomorphism) satisfying certain
finiteness conditions. More precisely, we assume that C is hom-finite, inwards
finite, and locally Noetherian; see Subsection 2.2 for definitions. One can define
the Nakayama functor ν and inverse Nakayama functor ν−1

C-mod
ν // C-fdmod
ν−1

oo

between the category C-mod of finitely generated C-modules and the category
C-fdmod of finite-dimensional C-modules. Note that ν and ν−1 form a pair
of adjoint functors, and furthermore, they give rise to an equivalence between
the category of finitely generated projective C-modules and the category of finite-
dimensional injective modules. Under the assumption that C is locally self-injective
(i.e., every finitely generated projective C-module is also injective), ν is an exact
functor, and ν ◦ ν−1 is isomorphic to the identity functor on C-fdmod. There-
fore, by a classical result of Gabriel ([4, Proposition III.2.5]), the kernel of ν is a
localizing subcategory of C-mod, and one obtains the following commutative di-
agram in which ν̄ and ν̄−1 are quasi-inverse to each other, “loc” is the localization
functor, and “sec” is a section functor:

Ker(ν)

inc

��
C-mod

ν //

loc

��

C-fdmod
ν−1

oo

ν̄−1

xxq q

q

q

q

q

q

q

q

C-mod/Ker(ν)

sec

OO

ν̄

88
q

q

q

q

q

q

q

q

q
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We then consider Ker(ν). If every morphism in C is a monomorphism, then
C-fdmod ⊆ Ker(ν). We also give two equivalent characterizations such that
Ker(ν) ⊆ C-fdmod. When the category C satisfies these conditions (e.g., C is
a skeleton of FIG or VIq), the above commutative diagram becomes

C-fdmod

inc

��
C-mod

ν //

loc

��

C-fdmod
ν−1

oo

ν̄−1

ww♣ ♣

♣

♣

♣

♣

♣

♣

♣

C-mod/C-fdmod

sec

OO

ν̄ .

77
♣

♣

♣

♣

♣

♣

♣

♣

♣

Thus, we get what we want.
The paper is organized as follows. In Section 2, we collect basic results on

the Nakayama functor. In Section 3 and Section 4, we prove our main result and
consider its application to both FIG and VIq in representation stability theory,
respectively.

2. PRELIMINARIES

The Nakayama functor is quite well known in the representation theory of finite-
dimensional algebras (see, e.g., [1], [15]). Most of the proofs in this section are
standard, so we leave the details to the reader.

2.1. Notation. An EI-category is a small category in which every endomor-
phism is an isomorphism. Let C be a skeletal EI-category, and I be the set of
objects of C. For any i, j ∈ I, we write C(i, j) for the set of morphisms in C from
i to j. Recall there is a partial order on I defined by i à j if C(i, j) is nonempty.

We fix a field k. A left (respectively, right) C-module is a covariant (respec-
tively, contravariant) functor W from C to the category of k-vector spaces.

For any i, j ∈ I, denote by kC(i, j) the vector space with basis C(i, j). De-
note by A =

⊕

i,j∈I kC(i, j) the category algebra of C. The associative algebra
A is non-unital if I is an infinite set. Denote by ei ∈ C(i, i) the identity endo-
morphism of i. We say that a left (respectively, right) A-module V is graded if
V =

⊕

i∈I eiV (respectively, V =
⊕

i∈I Vei). If W is a left (respectively, right)
C-module, then

⊕

i∈IW(i) has a natural structure of a graded left (respectively,
right) A-module. Conversely, any graded left (respectively, right) A-module nat-
urally defines a left (respectively, right) C-module. Thus, we shall not distin-
guish left (respectively, right) C-modules from graded left (respectively, right) A-
modules.
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A (left or right) C-module is finitely generated (respectively, finite-dimen-
sional) if it is finitely generated (respectively, finite-dimensional) as a graded A-
module. We write C-mod (respectively, Cop-mod) for the category of finitely gen-
erated left (respectively, right) C-modules; and C-fdmod (respectively,
Cop-fdmod) for the full subcategory of C-mod (respectively, Cop-mod) whose
objects are the finite-dimensional left (respectively, right) C-modules. On cat-
egories of finite-dimensional modules, there exists the standard duality functor
D := Homk(−,k):

C-fdmod
D // Cop-fdmod
D

oo .

2.2. Finiteness conditions and Nakayama functor. We first recall from
[12, Section 2] that the category C is said to be inwards finite if, for each j ∈ I,
there are only finitely many i ∈ I such that C(i, j) is nonempty; and hom-finite
if C(i, j) is a finite set for every i, j ∈ I. Further, the category C is called locally
Noetherian if every C-submodule of each finitely generated left C-module is also
finitely generated.

From now on, we always assume that C is an inwards finite, hom-finite, and
locally Noetherian EI-category.

Since C is inwards finite and hom-finite, the right projective C-module ejA is
finite dimensional for each j ∈ I. Hence, every finitely generated right C-module
is finite dimensional.

Next, we introduce the Nakayama functor on C-modules.
The category algebra A of C is an A-bimodule which is graded as both a left

A-module and a right A-module. If V (respectively, W ) is a left (respectively,
right) C-module, then HomC(V,A) (respectively, HomCop(W,A)) is a right (re-
spectively, left) A-module. If, moreover, V (respectively, W ) is finitely generated,
then HomC(V,A) (respectively, HomCop(W,A)) is graded, that is,

HomC(V,A) ≅
⊕

i∈I

HomC(V,Aei),(2.1)

respectively,

HomCop(W,A) ≅
⊕

j∈I

HomCop(W, ejA)

(see [8, VIII.1.15]). (The proof of the claim below in [8, VIII.1.15 (1)] remains
valid for our algebra A even though A might be non-unital.)

Without any reference, we shall use the following well-known fact: for any
idempotent e ∈ A, there hold the following:

(2.2)
HomC(Ae,A)A ≅ eAA,

A HomCop(eA,A) ≅ AAe.

Lemma 2.1. If V is a finitely generated left C-module, then HomC(V,A) is a
finite-dimensional right C-module.
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Proof. Suppose V is generated by v1, . . . , vs where v1∈V(j1), . . . , vs∈V(js).
Then, HomC(V,Aei) = 0 if C(i, j1), . . . ,C(i, js) are all empty sets. Since C is
inwards finite, there are only finitely many i ∈ I such that HomC(V,Aei) 6= 0.
Since C is hom-finite, each HomC(V,Aei) is finite dimensional. ❐

Lemma 2.2. If W is a finite-dimensional right C-module, then HomCop(W,A)

is a finitely generated left C-module.

Proof. There exists a surjective homomorphism ej1A ⊕ · · · ⊕ ejsA → W for
some j1, . . . , js ∈ I. Applying the functor HomCop(−, A) and using (2.2), we
obtain an injective homomorphism

HomCop(W,A)→ Aej1 ⊕ · · · ⊕Aejs .

Since C is locally Noetherian, it follows that HomCop(W,A) is finitely generated.

❐

By Lemmas 2.1 and 2.2, we have a pair of contravariant functors

C-mod
HomC(−,A) // Cop-fdmod

Hom
C
op (−,A)

oo .

Definition 2.3. The Nakayama functor ν of C (or A) is defined to be the
composition

D ◦HomC(−, A) : C-mod -→ C-fdmod.

The inverse Nakayama functor ν−1 is defined to be the composition

HomCop(−, A) ◦D : C-fdmod -→ C-mod.

Let us comment that the functor ν is a right exact covariant functor, while the
functor ν−1 is a left exact covariant functor. But we should warn the reader that
the functor ν−1 is, in general, neither the inverse nor a quasi-inverse of ν.

Lemma 2.4. The pair (ν, ν−1) is an adjoint pair of functors:

C-mod
ν // C-fdmod
ν−1

oo .

Proof. Let V ∈ Ob(C-mod) and U ∈ Ob(C-fdmod). Since V is a left A-
module and DU is a right A-module, the tensor product V ⊗k DU is an A-
bimodule. One has the following canonical isomorphisms:

HomC(DHomC(V,A),U) ≅ HomCop(DU,HomC(V,A))

≅ HomA-bimod(V ⊗kDU,A)

≅ HomC(V,HomCop(DU,A))

(see [7, Exercise XI.6.6]). ❐
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2.3. Projectives and finite-dimensional injectives. Denote by C-proj the
full subcategory of C-mod whose objects are the finitely generated projective left
C-modules. Denote by C-fdinj the full subcategory of C-fdmod whose objects are
the finite-dimensional injective left C-modules.

Lemma 2.5.

(1) Every finitely generated projective left C-module is a finite-direct sum of inde-
composable projective left C-modules.

(2) Let V be a finitely generated left C-module. Then, V is an indecomposable
projective left C-module if and only if V is isomorphic toAe for some primitive
idempotent e ∈ eiAei with i ∈ I.

Proof. The two statements follow from Theorem I.11.18 of [3] and Proposi-
tion I.8.2 of [15], respectively. ❐

Definition 2.6.

(1) A full subcategory C′ of C is said to be inwards closed if, for any
i, j ∈ Ob(C), we have i ∈Ob(C′) whenever i à j for some j ∈ Ob(C′).

(2) The support of a (left or right) C-module V is the set of all i ∈ I such that
V(i) is nonzero, where V(i) is the image of i under the functor V .

By definition, we have the following trivial observation.

Lemma 2.7. Let C′ be an inwards closed subcategory of C. If V is an injective
left C-module whose support is contained in Ob(C′), then restricting V to C′ gives an
injective left C′-module. If V ′ is an injective left C′-module, then extending V ′ to C
by zero on Ob(C) \Ob(C′) gives an injective left C-module.

Lemma 2.8. Let U be a finite-dimensional left C-module. Then, U is an inde-
composable injective left C-module if and only if U is isomorphic to D(eA) for some
primitive idempotent e ∈ eiAei with i ∈ I.

Proof. This follows from Lemma 2.7 and [15, Proposition I.8.19]. ❐

Corollary 2.9. The functor ν gives an equivalence of categories

C-proj
∼
---------------------------------------------------------------------------→ C-fdinj

with a quasi-inverse given by the functor ν−1.

Proof. This follows immediately from (2.2), Lemmas 2.5, and 2.8. ❐

Corollary 2.9 generalizes the classification of torsion injectives in [9].

Definition 2.10. We say that C is locally self-injective if Aei is an injective left
C-module for every i ∈ I.

Clearly, C is locally self-injective if and only if every finitely generated projec-
tive left C-module is injective.

Lemma 2.11. Suppose that C is locally self-injective. Then, the Nakayama func-
tor ν : C-mod -→ C-fdmod is exact.
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Proof. Since Aei is an injective left C-module for each i ∈ I, the functor
⊕

i∈I HomC(−, Aei) is exact. It follows from (2.1) and the exactness of D that
ν : C-mod -→ C-fdmod is exact. ❐

3. MAIN RESULT

3.1. Injective resolutions of finite-dimensional modules. The partial order
on I induces a partial order on the set of objects of any full subcategory of C.

Lemma 3.1. Suppose that the characteristic of k is zero. Let C′ be an inwards
closed subcategory of C such that Ob(C′) is a finite set. Let C′′ be the full subcategory
of C′ on the objects which are not maximal in Ob(C′). LetW be a finite-dimensional
right C-module whose support is contained in Ob(C′). Then, we have the following:

(1) The subcategory C′′ of C is inwards closed.
(2) There exists a short exact sequence

0 → W ′ → P → W → 0

where P is a finite direct sum of right C-modules of the form eA with e2 = e ∈ eiAei
and i ∈ Ob(C′), and whereW ′ is a finite-dimensional right C-module whose support
is contained in Ob(C′′).

Proof. (1) Suppose i ∈ Ob(C) and i à j for some j ∈ Ob(C′′). Then,
j ∈ Ob(C′), and j is not a maximal object in Ob(C′). Hence, i ∈ Ob(C′), and
i is not a maximal object in Ob(C′).

(2) Let
P =

⊕

i∈Ob(C′)

Wei ⊗eiAei eiA.

The algebra eiAei is the group algebra of the finite group AutC(i) for every
i ∈ I. Since k has characteristic zero, the algebra eiAei is semisimple. It fol-
lows that Wei is a finite direct sum of irreducible right eiAei-modules, each of
which is isomorphic to eAei for some primitive idempotent e ∈ eiAei. One has
a canonical isomorphism of right C-modules: eAei ⊗eiAei eiA ≅ eA. We see that
P is of the required form.

The multiplication map ρ : P → W is a homomorphism of right A-modules.
LetW ′ be the kernel of ρ. Since P is finite dimensional and has support contained
in Ob(C′), the same is true for W ′.

For each i ∈ Ob(C′), since ρ maps Wei ⊗eiAei eiAei bijectively to Wei, we
see that ρ is surjective. Also, if i is maximal in Ob(C′), thenWej⊗ejAej ejAei = 0
if j ∈ Ob(C′) and j ≠ i. Therefore, if i is maximal in Ob(C′), then ρ maps Pei
bijectively to Wei. It follows that W ′ has support contained in Ob(C′′). ❐

Lemma 3.2. Suppose that the characteristic of k is zero. Let U be a finite-
dimensional left C-module. Then, there exists an exact sequence

0 → U → I0 → I1 → ·· · → In → 0
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of left C-modules such that I0, I1, . . . , In are finite-dimensional injective left C-modules.

Proof. Let W be the right C-module DU . Let C0 be the full subcategory of C
on the objects i such that i à j for some j in the support of W . It is clear that
C0 is inwards closed. Since the support of W is a finite set and C is inwards finite,
the set Ob(C0) is finite. Let C1 be the full subcategory of C0 on the objects which
are not maximal in C0. Then, C1 is also an inwards closed subcategory of C with
Ob(C1) finite. By Lemma 3.1, there is a short exact sequence

0 → W1 → P0 → W → 0

of right C-modules such that the following hold:

• P0 is a finite direct sum of right C-modules of the form eA for some
idempotent e ∈ eiAei with i ∈Ob(C0).
• W1 is finite dimensional and its support is contained in Ob(C1).

Let C2 be the full subcategory of C1 on the objects which are not maximal in C1.
We now apply Lemma 3.1 again to obtain a short exact sequence

0 → W2 → P1 → W1 → 0

of right C-modules such that the following hold:

• P1 is a finite direct sum of right C-modules of the form eA for some
idempotent e ∈ eiAei with i ∈Ob(C1).
• W2 is finite dimensional and its support is contained in Ob(C2).

Recursively, we obtain the subcategories C0,C1,C2, . . . and a projective resolution

(3.1) · · · → Pn → ·· · → P1 → P0 → W → 0

where each Ps is a finite direct sum of right C-modules of the form eA for some
idempotent e ∈ eiAei with i ∈ Ob(Cs). Since

|Ob(C0)| > |Ob(C1)| > |Ob(C2)| > · · · ,

the projective resolution (3.1) is of finite length. By Lemma 2.8, we see that
applying the functor D to (3.1) gives the required exact sequence. ❐

3.2. An equivalence of categories. For the adjoint pair (ν, ν−1) found in
Lemma 2.4, we have the following result.

Proposition 3.3. Suppose that the characteristic of k is zero and C is locally
self-injective. Then, the counit ν ◦ ν−1 → id is a functorial isomorphism.

Proof. We need to prove that the homomorphism ν(ν−1(U)) → U is an iso-
morphism for each object U of C-fdmod. By Lemma 3.2, there is a finite injective
resolution of U by finite-dimensional injective left C-modules; we shall use in-
duction on the minimal length n among all such resolutions. For n = 0, the
proposition follows from Corollary 2.9.
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Let 0 → U → I0 → I1 → ·· · → In → 0 be a resolution of U by finite-
dimensional injective left C-modules, and n be the minimal length with this prop-
erty. Let U ′ be the cokernel of U → I0. One gets a short exact sequence

0 → U → I0 → U ′ → 0.

Since ν−1 is left exact and ν is exact by Lemma 2.11, the following diagram
commutes and has exact rows:

0 // ν(ν−1(U)) //

��

ν(ν−1(I0)) //

��

ν(ν−1(U ′))

��
0 // U // I0 // U ′

.

Observe that the middle vertical map is an isomorphism by Corollary 2.9 and the
right vertical map is an isomorphism by induction hypothesis. Therefore, the left
vertical map is also an isomorphism. ❐

The kernel Ker(ν) of the functor ν : C-mod → C-fdmod is the full sub-
category of C-mod consisting of the objects V such that ν(V) = 0. When ν is
an exact functor, Ker(ν) is a Serre subcategory of C-mod (i.e., closed under sub-
modules, quotients, and extensions), and its Serre quotient category is denoted by
C-mod/Ker(ν).

To establish the main result of this paper, we recall the definition of section
functors and a classical result of Gabriel.

Definition 3.4. We say an exact functor F : A → B between two abelian
categories admits a section functor if F has a right adjoint S : B →A such that the
co-unit F ◦ S → idB is an isomorphism.

Lemma 3.5 ([4, Proposition III.2.5]). Let F : A → B be an exact functor
between abelian categories which admits a section functor. Then, the kernel Ker(F) is
a localizing subcategory of A, and F induces an equivalence

F̄ : A/Ker(F)→ B.

Now, we can prove the following main theorem.

Theorem 3.6. Suppose that the characteristic of k is zero, and suppose that C is
locally self-injective. Then, the functor ν induces an equivalence of categories

ν̄ : C-mod/Ker(ν)
∼
---------------------------------------------------------------------------→ C-fdmod.

Proof. Lemma 2.11 and Proposition 3.3 tell us that the Nakayama functor
ν is exact and admits a section functor ν−1. The conclusion now follows from
Lemma 3.5. ❐
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3.3. Observations on Ker(ν). In this subsection we compare the subcate-
gory C-fdmod with the subcategory Ker(ν), and prove that they coincide under
certain conditions. In this case, Theorem 3.6 says that the Serre quotient cate-
gory C-mod/C-fdmod is equivalent to C-fdmod. Therefore, the Serre quotient
category has enough injective objects, and its finitely generated objects have finite
length and finite injective dimension. Moreover, C-mod can be regarded as an
extension of C-fdmod by itself.

First, we give a sufficient condition such that C-fdmod ⊆ Ker(ν), which
should be easy to check in practice.

Definition 3.7. We say that a left C-module V is torsion-free if, for every
morphism f in C, say f ∈ C(i, j), the induced map f∗ : V(i)→ V(j) is injective.

Lemma 3.8. The following statements are equivalent:

(1) Every morphism in C is a monomorphism, that is, if f ∈ C(j, k) and if
g,h ∈ C(i, j) such that fg = fh, then g = h.

(2) Every finitely generated projective left C-module is torsion-free.

Proof. (1) =⇒ (2) It suffices to prove that Aei is torsion-free for each i ∈ I.
Suppose f ∈ C(j, k). Since f is a monomorphism, the map f∗ : ejAei → ekAei
sends the basis C(i, j) of ejAei bijectively onto a subset of the basis C(i, k) of
ekAei.

(2) =⇒ (1) Suppose f ∈ C(j, k) and g,h ∈ C(i, j) such that fg = fh. Since
Aei is torsion-free, the map f∗ : ejAei → ekAei is injective. But f∗(g − h) = 0,
so g = h. ❐

Corollary 3.9. Suppose that the partially ordered set I has no maximal element.
If every morphism in C is a monomorphism, then C-fdmod ⊆ Ker(ν).

Proof. Let V be a finite-dimensional left C-module. We need to show

HomC(V,Aei) = 0 for every i ∈ I.

By Lemma 3.8, the C-module Aei is torsion-free, so it does not contain any
nonzero finite-dimensional C-submodules. Hence, the image of any homomor-
phism from V to Aei is zero. ❐

The following proposition gives two equivalent characterizations such that
the reverse inclusion Ker(ν) ⊆ C-fdmod holds. Surprisingly, the answer to this
question is closely related to classification of injective modules in C-mod.

Proposition 3.10. Suppose that the characteristic of k is zero and C is locally
self-injective. Then, the following statements are equivalent:

(1) Ker(ν) ⊆ C-fdmod.
(2) If V is a finitely generated, infinite-dimensional left C-module, then there

exists i ∈ I such that HomC(V,Aei) ≠ 0.
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(3) The category C-mod has enough injectives, and every finitely generated in-
jective left C-module is isomorphic to a direct sum of a finite-dimensional
injective left C-module and a finitely generated projective left C-module.

Proof. The equivalence between (1) and (2) is clear. Note that if C has only
finitely many objects, then C-fdmod = C-mod, and there do not exist finitely
generated, infinite-dimensional left C-modules. Therefore, in this case both (1)
and (2) hold trivially.

(3) =⇒ (2) Let V be a finitely generated, infinite-dimensional left C-module.
By the assumption, there exists an injection V → P ⊕ T , where P is a finitely
generated projective C-module, and T is a finite-dimensional injective C-module.
Since V is infinite-dimensional, the composition V → P ⊕ T → P cannot be 0,
where P ⊕ T → P is the projection. This implies (2).

(2) =⇒ (3) Suppose that (2) (and hence (1)) holds. Let us first prove the
following statement:

(⋆)

∥

∥

∥

∥

∥

∥

∥

∥

∥

If F is a finitely generated left C-module which has no
nonzero finite-dimensional C-submodules, then there is an
injective homomorphism F → P , where P is a finitely gener-
ated projective left C-module.

As was done in [6, Proposition 7.5], we use induction on the dimension of ν(F).
If ν(F) = 0, then, by (1), F is finite-dimensional and so F = 0. Now, suppose
ν(F) 6= 0. By assumption, F is infinite-dimensional. It then follows from (2)
that there exist i ∈ I and a nonzero homomorphism f : F → Aei. Let W be the
image of F under f . Then, we get a short exact sequence of finitely generated left
C-modules

0 → U → F → W → 0,

which induces another short exact sequence of finite-dimensional left C-modules:

0 → ν(U) → ν(F)→ ν(W)→ 0.

Note that HomC(W,Aei) 6= 0 since there is an inclusion from W into Aei. In
particular, ν(W) ≠ 0. Thus, the dimension of ν(U) is strictly less than that of
ν(F). By induction hypothesis, (⋆) holds for U . Hence, (⋆) holds for F by using
the Horseshoe Lemma and noting that every projective C-module is also injective
since we have assumed that C is locally self-injective.

Now let V be any finitely generated left C-module. Let E be the maximal
finite-dimensional C-submodule of V . By Lemma 3.2, there is an injection E → T
where T is a finite-dimensional injective left C-module. Let F = V/E. Then, F
is a finitely generated left C-module which has no nonzero finite-dimensional C-
submodules, so by (⋆), there is an injection F → P where P is a finitely generated
projective left C-module. It follows that there is an injection V → T ⊕ P . Since C
is locally self-injective, the projective left C-module P is injective. Therefore, the
category C-mod has enough injectives.
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As in the proof of [9, Lemma 2.4], we suppose that the module V is injective
and E′ is a maximal essential extension of E in V . Then, E′ is injective by [7,
Proposition X.5.4]. Moreover, E′ must be finite dimensional, for otherwise it
cannot be an essential extension of E. Hence, E = E′, and so E is injective.
Therefore, V is isomorphic to E ⊕ F . Hence, F is also injective. By (⋆), it follows
that F is projective. ❐

4. ON AN OPEN QUESTION OF NAGPAL

We now discuss an application of Theorem 3.6 to the categories FIG and VIq

studied in representation stability theory. In particular, we affirmatively answer
the following open question of Nagpal [9, Question 1.11].

Question. Can one establish an equivalence

VIq-mod/VIq-fdmod
∼
---------------------------------------------------------------------------→ VIq-fdmod?

We recall the definition of the category VIq. Let Fq be a finite field with q
elements. The objects of VIq are finite-dimensional vector spaces over Fq, and
morphisms are the injective linear maps. The composite of morphisms in VIq is
just the usual composition of maps. The category VIq has been studied by many
authors (see, e.g., [9] and the references therein).

Now, we recall the definition of the category FIG. Let G be a finite group.
The category FIG was defined independently in [5, Example 3.8] and [14]; let us
first recall its definition. The objects of FIG are the finite sets. The morphisms in
FIG from a finite set X to a finite set Y are the pairs (f , c) where f : X → Y is an
injection and c : X → G is an arbitrary map. If (f , c) is a morphism from X to Y ,
and (f ′, c′) is a morphism from Y to Z, then their composite is defined to be the
morphism (f ′′, c′′), where

f ′′(x) = f ′(f (x)), c′′(x) = c′(f (x))c(x), for each x ∈ X.

When G is the trivial group, the category FIG is the category FI of finite sets and
injections.

In the following lemma we collect some important results on FIG and VIq,
which will be used to establish an equivalence between the Serre quotient category
and the category of finite-dimensional modules.

Lemma 4.1. Suppose that k is of characteristic zero and C is a skeleton of FIG

or VIq. Then, the following hold:

(1) C is locally Noetherian over k.
(2) Every finitely generated projective left C-module is injective.
(3) Every morphism in C is a monomorphism.
(4) If V is a finitely generated, infinite-dimensional left C-module, then there

exists some i ∈ I such that HomA(V,Aei) ≠ 0.
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Proof. Note that (1) is established in [5, Theorem 3.7, Example 3.8, Exam-
ple 3.10], and (2) is verified in [6, Theorem 1.5]. Also, (3) follows from the
definitions of FIG and VIq, while (4) follows from both [6, Lemma 7.2, Lemma
7.3] for FIG and from Theorem 4.34 of [9] for VIq. ❐

Now, we are ready to prove the following result for FIG and VIq, which an-
swers positively the aforementioned question.

Theorem 4.2. Suppose the characteristic of k is zero and C is a skeleton of FIG

or VIq. Then, the Nakayama functor ν induces an equivalence of categories

C-mod/C-fdmod
∼
---------------------------------------------------------------------------→ C-fdmod.

Proof. It is clear that C is an EI-category which is inwards finite and hom-
finite, and Lemma 4.1 (1) tells us that C is a locally Noetherian category. Clearly,
the set of objects of C has no maximal element. By Lemma 4.1 (2) and The-
orem 3.6, the Nakayama functor ν induces an equivalence of categories from
C-mod/Ker(ν) to C-fdmod. We claim Ker(ν) = C-fdmod. Indeed, by Corol-
lary 3.9 and Lemma 4.1 (3), one has C-fdmod ⊆ Ker(ν); and by Lemma 4.1 (4)
and Proposition 3.10, one gets Ker(ν) ⊆ C-fdmod. ❐

Theorem 4.2 can be used to classify irreducible objects of the Serre quotient
category in characteristic zero (see [10]). We point out that it is necessary to
assume the characteristic of k is zero in Theorem 4.2 (see [10]).
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