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Abstract In this paper, we use D-split sequences and derived equivalences to provide
formulas for calculation of higher algebraic K -groups (or mod-p K-groups) of certain matrix
subrings which occur both in commutative algebra as the endomorphism rings of direct sums
of Prüfer modules or of chains of Glaz–Vasconcelos ideals and in noncommutative geometry
as an essential ingredient of the study of singularities of orders over surfaces. In our results,
we do not assume any homological requirements on rings and ideals under investigation, and
therefore extend sharply many existing results of this type in the algebraic K -theory literature
to a more general context.

Keywords Algebraic K -theory · Derived equivalence · D-split sequence · GV-ideal ·
Mayer–Vietoris sequence · Tilting module
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1 Introduction

One of the fundamental questions in the algebraic K -theory of rings is to understand and
calculate higher algebraic K -groups Kn of rings, which were deeply developed in a very gen-
eral context by Quillen in [23] for exact categories and by Waldhausen in [33] for Waldhausen
categories. On the one hand, the usual methods for computing Kn may be the fundamen-
tal theorem, splitting morphisms, or certain long exact sequences of Kn-groups, namely,
Mayer–Vietoris sequences, localization sequences or excision. In this direction there is a lot
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1026 C. C. Xi

of literature (for example, see [11,18,31,34–36], and others). On the other hand, we know
that derived equivalent rings share many common homological and numerical features, in
particular, they have the isomorphic higher algebraic Kn-groups for all n ≥ 0 (see [9]). This
means that, in order to understand the higher K -groups Kn of a ring, one might refer to
another ring which is derived equivalent to the given one, and which may hopefully have a
simple form so that its Kn-groups can be determined easily. Here we do not assume that the
derived equivalence should be induced from an exact functor between some Waldhausen cat-
egories (compare with [32]). This idea, however, does not seem to have been of great benefit
in the study of higher algebraic K -theory of rings, especially in dealing with calculation of
Kn-groups.

In the present note, we shall use ring extensions and derived equivalences as reduction
techniques to investigate the higher algebraic Kn-groups of certain matrix subrings which
include normal orders on smooth projective surfaces and canonical singularities of orders
over surfaces (see [5]), hereditary orders and tiled orders (see [17,25,30]), and the endomor-
phism rings of chains of Glaz–Vasconcelos ideals (see Sect. 7) and the ones of direct sums
of Prüfer modules (see [7,27]). In fact, the study of K -theory of matrix subrings has had a
long history, it started with some works of Quillen, Dennis and Geller, Berrick and Keating,
and Keating in the 1970s and 1980s, and is continued recently in [11].

We use derived equivalences in the sense of Rickard [26] for unbounded derived catego-
ries. The derived invariant of algebraic K -theory of rings in [9] is much more general and
applicable than the corresponding result developed in [21,32] because derived equivalences
in [21,32] were required to be induced from exact functors between Waldhausen categories
from which the derived categories are built, while in [9] one needs only triangle equivalences
between unbounded derived module categories of given rings.

To produce such derived equivalences for unbounded derived categories of rings, we shall
employ D-split sequences defined in [13]. In this way, we reduce our calculation inductively
to that of certain triangular matrix rings. The advantage of our method is: we not only drop
all homological conditions on rings and ideals under investigation, but also extend many
existing results (see [2,11,16]) of this type in the literature to a more general context. Our
main results in this note can be stated as follows.

Theorem 1.1 Let R be a ring with identity, and let Ii j be (not necessarily projective) ideals
of R. We denote by K∗(R) the ∗th algebraic K -group of R with ∗ ∈ N.

(1) If Ik j ⊆ Ii j for k ≤ i, Iki ⊆ Ik j for j ≤ i and Iik Ik j ⊆ Ii j for i < k < j , then

S :=

⎛
⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n

R R I23 · · · I2 n
...

. . .
. . .

. . .
...

R · · · R R In−1 n

R · · · R R R

⎞
⎟⎟⎟⎟⎟⎠

is a ring, and the K -theory space of S splits as a product of the K -theory spaces of R
and R/I j−1 j with 2 ≤ j ≤ n. In particular,

K∗(S) � K∗(R) ⊕
n⊕

j=2

K∗(R/I j−1 j ).

(2) For 2 ≤ i ≤ n, suppose that Ri is a subring of R with the same identity, that Ii ⊆ Ri

is a right ideal of Ri , and that Ii is a left ideal of R. If Ii+1 ⊆ Ii for all i, I j ⊆ Ii j for
all i, j, Ii Ii j ⊆ I j for j < i , and Iik Ik j ⊆ Ii j for j < k < i , then
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Higher algebraic K -groups and D-split sequences 1027

T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In

R R2 I3 · · · In

R I32
. . .

. . .
...

...
...

. . . Rn−1 In

R In2 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎠

is a ring, and the K -theory space of T splits as a product of the K -theory spaces of R
and R/I j with 2 ≤ j ≤ n. In particular,

K∗(T ) � K∗(R) ⊕
n⊕

j=2

K∗(R j/I j ).

The proof of the following result is based on the above Theorem 1.1. Note that the assump-
tions in Theorem 1.2(2) is stronger than the ones in Theorem 1.1(2) above.

Theorem 1.2 Suppose that p ≥ 2 is a prime number and that m is a positive integer. Let R
be a Z/pm

Z-algebra with identity, and let I, Ii and Ii j be (not necessarily projective) ideals
of R. We denote by K∗(R) the ∗th algebraic K -group of R with ∗ ∈ N.

(1) If Ii j ⊆ I for all i, j, Ik j ⊆ Ii j for k ≤ i, Iki ⊆ Ik j for j ≤ i and Iik Ik j ⊆ Ii j for
i < k < j , then

S :=

⎛
⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n

I R I23 · · · I2 n
...

. . .
. . .

. . .
...

I · · · I R In−1 n

I · · · I I R

⎞
⎟⎟⎟⎟⎟⎠

is a ring, and

K∗(S) ⊗Z Z

[
1

p

]
� K∗(R) ⊗Z Z

[
1

p

]
⊕

n⊕
j=2

K∗(R/I j−1 j ) ⊗Z Z

[
1

p

]
.

(2) For 2 ≤ i ≤ n, suppose that Ri is a subalgebra of R with the same identity. If Ii+1 ⊆
Ii ⊆ Ri for all i, I j ⊆ Ii j ⊆ I for all i, j , and Iik Ik j ⊆ Ii j for j < k < i , then

T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In

I R2 I3 · · · In

I I32
. . .

. . .
...

...
...

. . . Rn−1 In

I In2 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎠

is a ring, and

K∗(T ) ⊗Z Z

[
1

p

]
� K∗(R) ⊗Z Z

[
1

p

]
⊕

n⊕
j=2

K∗(R j/I j ) ⊗Z Z

[
1

p

]
.

As pointed out in Sect. 6, Theorem 1.2 holds true for mod-p K-groups K∗(−, Z/pZ) if we
assume in Theorem 1.2 that R is a Z[ 1

p ]-algebra. That is, for Z[ 1
p ]-algebras, one can replace

K∗(−) ⊗Z Z[ 1
p ] by K∗(−, Z/pZ) in Theorem 1.2.
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The strategy of our proofs of the theorems is first to use ring extensions, which are moti-
vated from [37], and then to combine K -groups in Mayer–Vietoris sequences with K -groups
of rings which are linked by derived equivalences produced from certain D-split sequences.
We expect that the methods in this note could be applicable in other situations for calculations
of algebraic K -groups of rings.

This note is organized as follows. In Sect. 2, we recall some definitions and elemen-
tary facts on derived equivalences needed in the later proofs. In Sect. 3, we construct D-split
sequences by ring extensions and calculate the endomorphism rings of tilting modules related
to these sequences. In Sect. 4, we prove the main results and state some of its consequences.
Our proofs of the above results also give an explanation of the multiplicity factor n −1 in the
isomorphisms of Kn-groups of the rings in [11] and [16]. In Sect. 5, we calculate K0 and K1

for some matrix subrings which are not covered by the main results. In fact, for K0, we can
remove some imposed conditions and say a little bit more, see Proposition 5.1 below. In Sect.
6, we show that the main result Theorem 1.1 holds for mod-p K-theory. In Sect. 7, we give
some examples to show how our method can work. Here, GV-ideals in commutative rings
enter into our play. These examples demonstrate also that the matrix rings studied in Sect. 3
really occur, as the endomorphism rings of chains of GV-ideals, in the field of commutative
algebra.

2 Preliminaries

Let A be a ring with identity. By an A-module we mean a left A-module. Let A-Mod (respec-
tively, A-mod) denote the category of all (respectively, finitely generated) left A-modules.
Similarly, by A-Proj (respectively, A-proj) we denote the full subcategory of all (respec-
tively, finitely generated) projective A-modules in R-Mod. For an A-module M , we denote
by proj.dim(A M) the projective dimension of M . Let K b(A-proj) be the bounded homoto-
py category of the additive category A-proj. The unbounded derived category of A-Mod is
denoted by D(A), whereas the bounded derived category of A-Mod is denoted by Db(A). We
say that two rings A and B are derived equivalent if D(A) and D(B) are equivalent as trian-
gulated categories. It is well known that if Db(A) and Db(B) are equivalent as triangulated
categories then D(A) and D(B) are equivalent as triangulated categories.

For two homomorphisms f : X → Y and g : Y → Z in A-Mod, we write f g for the com-
posite of f and g. Thus the image of x ∈ X under f is then denoted by (x) f , or simply by x f if
there is no any confusion. The induced maps HomA(Z , f ) : HomA(Z , X) → HomA(Z , Y )

and HomA( f, Z) : HomA(Y, Z) → HomA(X, Z) will be denoted by f ∗ and f∗, respectively.
Given an additive category C and an object X in C, we denote by add(X) the full subcate-

gory of C consisting of all objects which are direct summands of direct sums of finitely many
copies of X .

For derived equivalences, Rickard’s Morita theory [26] is very useful.

Theorem 2.1 [26] For two rings A and B with identity, the following are equivalent:

(a) Db(A) and Db(B) are equivalent as triangulated categories.
(b) K b(A-proj) and K b(B-proj) are equivalent as triangulated categories.
(c) B � EndK b(A-proj)(T

•), where T • is a complex in K b(A-proj) satisfying

(1) Hom(T •, T •[i]) = 0 for i �= 0, and
(2) add(T •) generates K b(A-proj) as a triangulated category.
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Higher algebraic K -groups and D-split sequences 1029

For derived equivalences, it was shown in [9] that algebraic K -theory of rings is an invari-
ant. Recall that, for a ring A with identity, Kn(A) denotes the nth homotopy group of a
certain space K (A) produced by one’s favorite K -theory machine defined for each n ∈ N

(for example, see [23,29,33]).

Theorem 2.2 [9] If two rings A and B with identity are derived equivalent, then their K -the-
ory spaces are equivalent. In particular, their algebraic K -groups are isomorphic: K∗(A) �
K∗(B) for all ∗ ∈ N.

As is known, Morita equivalences are derived equivalences. Thus, if A and B are Morita
equivalent, then their algebraic K -groups are isomorphic.

Another special class of derived equivalences can be constructed by tilting modules ini-
tialled from the representation theory of finite-dimensional algebras (for example, see [3]).
Recall that a module T over a ring A is called a tilting module if the following three conditions
are satisfied:

(1) T has a finite projective resolution 0 −→ P−n −→ · · · −→ P−1 −→ P0 −→ T −→
0, where each P−i is a finitely generated projective A-module;

(2) Exti
A(T, T ) = 0 for all i > 0, and

(3) there is an exact sequence 0 −→ A −→ T0 −→ · · · −→ Tm −→ 0 of A-modules
with each Ti in add(T ).

Note that, for a tilting module T , the projective resolution P• of T satisfies (1) and (2) of
Theorem 2.1(c). Thus, if AT is a tilting A-module, then A and EndA(T ) are derived equiv-
alent. To produce tilting modules, one may use the notion of D-split sequences. Now let us
recall the definition of D-split sequences from [13].

Let C be an additive category and D a full subcategory of C. A sequence

X
f−→ M

g−→ Y

of morphisms between objects in C is called a D-split sequence if

(1) M ∈ D,
(2) f is a left D-approximation of X , that is, HomC( f, D′) : HomC(M, D′) −→

HomC(X, D′) is surjective for all D′ ∈ D, and g is a right D-approximation of Y ,
that is, HomC(D′, g) : HomC(D′, M) −→ HomC(D′, Y ) is surjective for all D′ ∈ D,
and

(3) f is a kernel of g, and g is a cokernel of f .

Examples of D-split sequences include Auslander-Reiten sequences and short exact
sequences of the form 0 → X → P → Y → 0 in A-Mod with P projective-injective.
A non-example is the sequence 0 → Z → Q → Q/Z → 0 of ablelian groups, that is, this
sequence is not an add(ZQ)-split sequence. For more examples, one may find in [13], and
also in the next section as well as in the last section of the present paper.
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1030 C. C. Xi

Given a D-split sequence X → M ′ → Y , with D = add(M) for M an object in C, it is shown
in [13] that there is a tilting module T over EndC(X ⊕ M) of projective dimension at most 1
such that End(T ) is isomorphic to EndC(M ⊕ Y ). Thus EndC(X ⊕ M) and EndC(M ⊕ Y )

are derived equivalent, and have isomorphic algebraic K -theory by Theorem 2.2.

3 Ring extensions and derived equivalences

Ring extensions were used in [37] to study the finitistic dimensions of algebras. In this sec-
tion, we shall use ring extensions to construct D-split sequences which will be applied to
calculation of the algebraic K -groups of rings in the next section.

We first establish the following general fact.

Lemma 3.1 Let B ⊆ A be an extension of rings with the same identity.

(1) If Ext1
B(B A, B B) = 0, then the sequence

(†) 0 −→ B −→ A −→ A/B −→ 0

is an add(B A)-split sequence in B-Mod. Thus EndB(B B ⊕ B A) and EndB(B A ⊕ A/B)

are derived equivalent.
(2) If B A is projective, then the above sequence is an add(B A)-split sequence.
(3) Suppose that Ext1

B(B A, B A) = 0. If B A is finitely presented with proj.dim(B A) ≤ 1 (for
instance, B A is projective and finitely generated), then A ⊕ A/B is a tilting B-module
of projective dimension at most 1. In particular, EndB(A ⊕ A/B) is derived equivalent
to B.

Proof (1) We have the following exact sequence

0 → HomB(B A, B) −→ HomB(A, A) −→ HomB(A, A/B) −→
Ext1

B(A, B) −→ Ext1
B(A, A).

The condition Ext1
B(A, B) = 0 implies that the canonical surjection A → A/B is

a right add(B A)-approximation of A/B. To see that the inclusion B → A is a left
add(B A)-approximation of B, we note that each homomorphism from B B to B A is
given by an element a in A. Thus it can be extended to a homomorphism from B A to
B A by the right multiplication of a. Clearly, one can check that this is also true for any
homomorphism from B B to a direct summands of B A. Thus we see that the inclusion
map from B to A is a left add(B A)-approximation of B. Thus (†) is an add(B A)-split
sequence in B-Mod, and therefore EndB(B B ⊕ B A) and EndB(B A ⊕ A/B) are derived
equivalent by [13, Theorem 1.1]. This finishes the proof of Lemma 3.1(1).

(2) is a special case of (1).
(3) Let T := B A ⊕ A/B. Since B A is finitely presented of projective dimension at most

1, there is an exact sequence 0 → P1 → P0 → B A → 0 such that Pi are finitely
generated projective B-modules and the following diagram is commutative:
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Higher algebraic K -groups and D-split sequences 1031

0 0⏐⏐�
⏐⏐�

P1 P1⏐⏐�
⏐⏐�

0 −−−−→ P −−−−→ P0 −−−−→ A/B −−−−→ 0⏐⏐�
⏐⏐�

∥∥∥
0 −−−−→ B −−−−→ A −−−−→ A/B −−−−→ 0⏐⏐�

⏐⏐�
0 0

From this diagram we see that T is finitely presented of projective dimension at most 1.
Thus the conditions (1) and (3) in the definition of tilting modules are satisfied. It remains
to show Ext1

B(A ⊕ A/B, A ⊕ A/B) = 0. This is equivalent to that Ext1
B(A, A/B) =

0, Ext1
B(A/B, A/B) = 0 and Ext1

B(A/B, A) = 0 since Ext1
B(A, A) = 0 by assumption.

Indeed, we have seen that the inclusion map λ from B into A is always a left add(B A)-
approximation of B B. Thus the induced map λ∗ := HomB(λ, A) is surjective. Hence, by
applying HomB(−, A) to the canonical exact sequence (†), we get an exact sequence

0 → HomB(A/B, A) −→ HomB(A, A)
λ∗−→ HomB(B, A) −→

Ext1
B(A/B, A) −→ Ext1

B(A, A),

which shows Ext1
B(A/B, A) = 0. If we apply HomB(A/B,−) to the canonical exact

sequence, then we get an exact sequence:

Ext1
B(A/B, B) −→ Ext1

B(A/B, A) −→ Ext1
B(A/B, A/B) −→ 0

since the projective dimension of A/B is at most 1. This implies Ext1
B(A/B, A/B) = 0.

Similarly, applying HomB(A,−) to the canonical exact sequence (†), we can deduce
Ext1

B(A, A/B) = 0. Thus we complete the proof of (3). �
Remark Sometimes the following observation is useful for getting D-split sequences: Sup-
pose that e and f are idempotent elements in a ring R and a ∈ eR f . Then the right multi-
plication map Re → R f , defined by x �→ xa for x ∈ Re, is a left add(R f )-approximation
of Re if and only if eR f = a f R f . Thus, if the right multiplication map is injective, then
0 → Re → R f → R f/Rea → 0 is an add(R f )-split sequence if and only if eR f = a f R f .

For instance, the sequence 0 → Z
·2−→ Z → Z/2Z → 0 is not an add(Z)-split sequence.

Let us mention an example of ring extensions which satisfy the conditions in Lemma
3.1. Recall that an extension B ⊆ A of rings is called a quasi-Frobenius extension if B A is
finitely generated and projective, and the bimodule A AB is isomorphic to a direct summand
of the direct sum of finitely many copies of the A-B-bimodule HomB(B AA, B BB). Thus
each quasi-Frobenius extension B ⊆ A provides an add(B A)-split sequence

0 −→ B −→ A −→ A/B −→ 0,

and a tilting B-module A ⊕ A/B by Lemma 3.1.
Now we consider some consequences of Lemma 3.1, which are needed in the next section.
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Let R be a ring with identity and Ii j ideals in R with 1 ≤ i < j ≤ n, such that

(1) Ik j ⊆ Ii j for k ≤ i ,
(2) Iki ⊆ Ik j for j ≤ i , and
(3) Iik Ik j ⊆ Ii j for i < k < j . Then

B :=

⎛
⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n

R R I23 · · · I2 n
...

...
. . .

. . .
...

R R · · · R In−1 n

R R · · · R R

⎞
⎟⎟⎟⎟⎟⎠

is a ring. The rings of this form include tiled triangular orders and maximal orders [25]. They
occur also both in commutative algebra as the endomorphism rings of chains of Glaz–Va-
sconcelos ideals (see Sect. 7) and in noncommutative geometry as singularities of normal
orders over surfaces [5].

The following lemma shows that we may use derived equivalences to simplify the ring B.

Lemma 3.2 Let B be the ring defined above. Then B is derived equivalent to

C :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n−1 I1 n−1/I1n

R R I23 · · · I2 n−1 I2 n−1/I2n

R R R
. . .

...
...

...
...

...
. . . In−2 n−1 In−2 n−1/In−2 n

R R R · · · R R/In−1 n

0 0 0 · · · 0 R/In−1 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof We make the following conventions on notation. Let S = Mn(R), the n × n matrix
ring over R. Let ei be the n × n matrix with 1R in (i, i)-entry and zero in other entries. Let
x ∈ R. For convenience, we denote by ei, j (x) the matrix with x in (i, j)-position, and zero
in other positions, by ei, j the matrix ei, j (1), and by Bi j the (i, j)-component of the matrix
subring B of S, that is, the set of (i, j)-entries of all matrices in B. We define

A :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I12 · · · I1 n−1 I1 n−1

R R
. . .

...
...

...
...

. . . In−2 n−1 In−2 n−1

R R · · · R R
R R · · · R R

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note that the only difference between A and B is the last column. We can verify that A is a
ring containing B as a subring.

Clearly, as a left B-module, B A � Be1 ⊕· · ·⊕ Ben−1 ⊕ Ben−1. Thus B A is finitely gener-
ated and projective. Furthermore, it follows that B is Morita equivalent to EndB(B ⊕ B A) and
that the latter is derived equivalent to EndB(B A ⊕ A/B) by Lemma 3.1. Thus B is derived
equivalent to EndB(Be1 ⊕ · · · ⊕ Ben−1 ⊕ Aen/Ben). For simplicity, we denote by Q the
B-module Aen/Ben . Note that Aen � Ben−1 as B-modules, and that we have a canonical
exact sequence:

(∗) 0 −→ Ben
λ−→ Ben−1

π−→ Q −→ 0,
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where λ is the composite of the inclusion of Ben into Aen with the right multiplication map
·en,n−1 of the matrix en,n−1, and where π is the composite of the right multiplication map
·en−1,n with the canonical surjective map Aen → Aen/Ben .

In the following, we shall prove that EndB(Be1 ⊕ · · · ⊕ Ben−1 ⊕ Q) is isomorphic to C .
First, we define a map ϕ : R −→ HomB(Q, Q) as follows: For b ∈ R, since Q can be

identified with the transpose of (I1 n−1, · · · , In−2 n−1/In−2 n, R/In−1 n, 0), the right multi-
plication of b gives rise to an endomorphism of the B-module Q. Let ·b denote this endo-
morphism of Q. Then we define the image of b under ϕ is ·b. Note that this map ϕ is well
defined by our assumptions. Clearly, ϕ is a ring homomorphism with Ker(ϕ) = In−1 n .

Now, we show that ϕ is surjective: Given an element α ∈ HomB(Q, Q), we may form
the following commutative diagram in B-Mod:

0 −−−−→ Ben
λ−−−−→ Ben−1

π−−−−→ Q −−−−→ 0

b

⏐⏐� a

⏐⏐�
⏐⏐�α

0 −−−−→ Ben
λ−−−−→ Ben−1

π−−−−→ Q −−−−→ 0

Note that, since Ben−1 is a projective B-module, the homomorphism a exists and makes
the right square of the above diagram commutative. Thus we have a homomorphism b mak-
ing the left square commutative. We may identify a with an element in Bn−1 n−1, say a =
·en−1,n−1(r) with r ∈ Bn−1 n−1, and identify b with an element in Bnn , say b = ·en,n(s)
with s ∈ Bnn . The commutativity of the left square means that r = s ∈ Bnn . Thus α is
given by the right multiplication of the element r ∈ R. This means that ϕ is surjective. Thus
EndB(Q) � R/In−1 n .

If we apply HomB(−, Be j ) to (∗) for 1 ≤ j ≤ n − 1 and use Lemma 3.1(3), then we
have the following exact commutative diagram with the left multiplication en,n−1· being an
isomorphism:

0 −−−−−→ HomB(Q, Be j )
π∗−−−−−→ HomB(Ben−1, Be j )

λ∗−−−−−→ HomB(Ben, Be j ) −−−−−→ 0

�
⏐⏐�

⏐⏐��

en−1 Be j
en,n−1·−−−−−→ en Be j .

Thus HomB(Q, Be j ) = 0 for all 1 ≤ j ≤ n − 1.
If we apply HomB(Be j ,−) to the exact sequence (∗) for 1 ≤ j ≤ n − 1, then we get an

exact sequence

0 −→ HomB(Be j , Ben) −→ HomB(Be j , Ben−1) −→ HomB(Be j , Q) −→ 0,

which shows that HomB(Be j , Q) � B j n−1/B j n = B j n−1/I j n−1.

Now we identify HomB(Be j , Bei ) with e j Bei for all 1 ≤ i, j ≤ n − 1, and
HomB(Be j , Q) with B j n−1/B j n = B j n−1/I j n−1. Then we can see that EndB(Be1 ⊕
· · · ⊕ Ben−1 ⊕ Q) is isomorphic to C . This finishes the proof of Lemma 3.2. �

A special case of Lemma 3.2 is the ring considered in [11] under certain homological
assumptions and finiteness conditions. Here, we start with a more general setting and remove
all homological conditions on ideals as well as finiteness conditions on quotients.
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Let R be a ring with identity, and I an arbitrary ideal in R. We consider the ring of the
following form

B :=

⎛
⎜⎜⎜⎜⎝

R I t12 · · · I t1n

R R
. . .

...
...

...
. . . I tn−1 n

R R · · · R

⎞
⎟⎟⎟⎟⎠

,

where ti j are positive integers. Note that the conditions for B to be a ring are

(1) ti j ≤ ti j+1, ti+1 j ≤ ti j for i < j , and
(2) ti j ≤ tik + tk j for i < k < j .

The next result follows immediately from Lemma 3.2.

Corollary 3.3 Assume that the above-defined B is a ring. Then B is derived equivalent to

C :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I t12 · · · I t1 n−1 I t1 n−1/I t1 n

R R
. . .

...
...

...
...

. . . I tn−2 n−1 I tn−2 n−1/I tn−2 n

R R · · · R R/I tn−1 n

0 0 0 0 R/I tn−1 n

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Next, we consider a variation of the ring B in Lemma 3.2, which was considered in [8,17]
and cover some tiled orders in [25], and many other cases, for example, rings in [17], and
some Auslander-regular, Cohen–Macaulay rings (not necessarily maximal orders, see [30]).

Let R be a ring with identity. Suppose that Ri is a subring of R with the same identity
for 2 ≤ i ≤ n, that Ii is a left ideal of R for 2 ≤ i ≤ n, and that Ii j is an ideal of R for
2 ≤ j < i ≤ n. We require the following conditions:

(1) Ii ⊆ Ri is a right ideal of Ri for all i ,
(2) In ⊆ In−1 ⊆ · · · ⊆ I2,

(3) I j ⊆ Ii j for all i, j ,
(4) Ii Ii j ⊆ I j for j < i , and
(5) Iik Ik j ⊆ Ii j for j < k < i .

Here, we assume neither that Ii is projective as a left R-module, nor that Ii is an ideal of R.
Nevertheless, one can check that

B : =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In−1 In

R R2 I3 · · · In−1 In

R I32 R3
. . .

.

.

. In

R I42 I43
. . . In−1

.

.

.

.

.

.
.
.
.

.

.

.
. . . Rn−1 In

R In2 In3 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R R I3 · · · In−1 In

R R I3 · · · In−1 In

R R R3
. . .

.

.

. In
.
.
.

.

.

.
.
.
.

. . . In−1

.

.

.

R R In−1 3 · · · Rn−1 In

R R In3 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C : =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R2/I2 0 0 · · · 0 0
R/I2 R I3 I4 · · · In

R/I32 R R3 I4 · · · In

R/I42 R I43 R4
. . .

.

.

.

.

.

.
.
.
.

.

.

.
. . .

. . . In

R/In2 R In3 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with the usual matrix addition and multiplication form three rings with identity. Note that
only the second column of A is different from the one of B.

We define a B-module Q as follows:

0 −→ Be2
λ−→ Be1

π−→ Q −→ 0,

where λ is the composite of the inclusion Be2 → Ae2 with the isomorphism Ae2 � Be1 as
B-modules, and where π is the cokernel of λ.

Now, we consider the endomorphism ring EndB(Q ⊕ Be1 ⊕ Be3 ⊕· · ·⊕ Ben). By a proof
similar to that of Lemma 3.2, one can show that the following lemma is true. We leave the
details of its proof to the reader.

Lemma 3.4 The above-defined rings B and C are derived equivalent.

An alternative proof of Lemma 3.4 can be found in [8, Theorem 5.1.2], where A is replaced
by the n × n matrix ring over R.

4 Higher algebraic K -theory of matrix subrings

In the algebraic K -theory of rings, the calculation of higher algebraic K -groups Kn seems
to be one of the interesting and hard problems. It is interesting because the Kn-groups of
rings are closed related to Hochschild homologies H Hn and to cyclic homologies HC−

n of
rings by Chern characters on higher K -theory (see [28, Chapter 6]), while it is hard because,
until now, only a few rings get their higher algebraic K -groups satisfactorily calculated. In
this section, we shall provide formulas for computation of the Kn-groups of certain rings by
applying the results in the previous section. Our computation is based the philosophy that
derived equivalences of rings preserve the K -theory and G-theory (see [9]), thus one can
transfer the calculation of Kn of a ring to that of another ring which is derived equivalent to
and may be much simpler than the original one. In the literature, there are many papers deal-
ing with Kn-groups by exploiting excision, Mayer–Vietoris exact sequences or localization
sequences (for example, see [11,18,31,35,36]). However, it seems that there are few papers
using derived equivalences to calculate higher algebraic K -groups.

In the present section, we shall show that sometimes our philosophy works powerfully
though it may be difficult to find derived equivalences in general. For some new advances in
constructing derived equivalences, we refer the reader to the recent papers [12,14].

4.1 Proof of Theorem 1.1

Let R be a ring with identity. We denote by K (R) the K -theory space of R, and by K∗(R)

the series of algebraic K -groups of R with ∗ ∈ {0, 1, 2, . . . , }. The algebraic K -theory of
matrix-like rings has been of interest for a long time. In [2] Berrick and Keating showed the
following result.

Lemma 4.1 [2] If Ri is a ring with identity for i = 1, 2, and if M is an R1-R2-bimodule,
then, for the triangular matrix ring

S =
(

R1 M
0 R2

)
,

the K -theory space of S splits as a product of the K -theory spaces of R1 and R2, and therefore
there is an isomorphism of K -groups: Kn(S) � Kn(R1) ⊕ Kn(R2) for all integers n ∈ Z.
Moreover, this isomorphism is induced from the canonical inclusion of R1 ⊕ R2 into S.
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1036 C. C. Xi

For n = 0, this is classical. For n = 1, 2, this was already shown by Dennis and
Geller in 1976. We remark that Lemma 4.1 can be used to calculate the higher algebraic
K -groups of algebras associated to finite E I -categories, or more generally, of “triangu-
lar” Artin algebras. Recall that an Artin algebra A over a commutative Artin ring is said
to be triangular if the set of non-isomorphic indecomposable projective A-modules can be
ordered as P1, P2, · · · , Pn such that HomA(Pj , Pi ) = 0 for all j > i . In this case, we have
K∗(A) � ⊕n

j=1 K∗(EndA(Pj )) by Lemma 4.1. In particular, if A is a finite-dimensional
hereditary algebra over an algebraically closed field k with n non-isomorphic simple modules,
then K∗(A) � nK∗(k).

For a matrix ring of the form

T =

⎛
⎜⎜⎜⎜⎝

R I · · · I

R R
. . .

...
...

...
. . . I

R R · · · R

⎞
⎟⎟⎟⎟⎠

,

n×n

where R is a ring and I is an ideal in R such that the R-modules R I and IR are projective, it
was shown by Keating in [16] that there is an isomorphism of K -theory:

K∗(T ) � K∗(R) ⊕ (n − 1)K∗(R/I ).

In [16], the author also considered the so-called trivial extension of a ring by a bimod-
ule. It was shown that if T is the trivial extension of a ring R by an R-bimodule M , then
K∗(T ) � K∗(R) provided that M has finite projective dimension as a left T -module. Here
the condition on M in this statement is necessary. See the counterexample T := k[x]/(x2)

which is the trivial extension of k by k, where k is any field.
Recently, as a kind of generalization of the above result of Keating, the authors of [11]

consider the following matrix ring: Let I be an ideal of a Zp-algebra R with identity, where
Zp is the p-adic integers, and define

S =

⎛
⎜⎜⎜⎜⎝

R I t12 · · · I t1n

R R
. . .

...
...

...
. . . I tn−1 n

R R · · · R

⎞
⎟⎟⎟⎟⎠

,

where ti j are positive integers. Assume that S is a ring and that R/I n is a finite ring for
each n ≥ 1. If both R I and IR are projective, then it is proved in [11] that the following
isomorphism of algebraic K -theory holds:

K∗(S)(1/p) � K∗(R)(1/p) ⊕ (n − 1)K∗(R/I )(1/p),

where G(1/p) denotes the group G ⊗Z Z[ 1
p ] for an abelian group G.

We shall use our results in the previous section to extend all results on matrix rings men-
tioned above without any homological conditions on rings and ideals under investigation.
Our proofs also explain the reason why the multiplicity n −1 appears in the above mentioned
isomorphisms on higher algebraic K -groups Ki for i ∈ N.
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Higher algebraic K -groups and D-split sequences 1037

Proof of Theorem 1.1. Let S be the matrix ring

S :=

⎛
⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n

R R I23 · · · I2 n
...

...
. . .

. . .
...

R R · · · R In−1 n

R R · · · R R

⎞
⎟⎟⎟⎟⎟⎠

defined in Theorem 1.1 (1).
We use induction on n to prove Theorem 1.1 (1). By Theorem 2.2 (see [9]), algebraic

K -theory spaces are invariant under derived equivalences. So, by Lemma 3.2, we know that
the K -theory spaces K (S) and K (C) are equivalent and that K∗(S) � K∗(C) (for notation
see Sect. 3). Now it follows from Lemma 4.1 that K (C) is equivalent to the product of
K (R/In−1 n) and K (Sn−1), where Sn−1 is the (n − 1) × (n − 1) left upper corner matrix
subring of S. Therefore K∗(C) � K∗(R/In−1 n) ⊕ K∗(Sn−1) for all ∗ ∈ N. By induction,
we have K∗(Sn−1) � K∗(R) ⊕ K∗(R/I12) ⊕ · · · ⊕ K∗(R/In−2 n−1). Hence

K∗(S) � K∗(R) ⊕ K∗(R/I12) ⊕ · · · ⊕ K∗(R/In−2 n−1) ⊕ K∗(R/In−1 n).

This proves Theorem 1.1(1).
Now, let

T :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In−1 In

R R2 I3 · · · In−1 In

R I32 R3
. . .

... In

R I42 I43
. . . In−1

...
...

...
...

. . . Rn−1 In

R In2 In3 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

defined in Theorem 1.1(2). Similarly, we can use Lemma 3.4 to prove that the K -theory space
of T splits as the product of the K -theory spaces of the rings R and R j/I j with 2 ≤ j ≤ n.
Thus

K∗(B) � K∗(R) ⊕
n⊕

j=2

K∗(R j/I j ).

This finishes the proof of Theorem 1.1(2). �
Theorem 1.1(2) shows that the abelian groups Kn(T ) for all n ≥ 0 of the ring T are

independent of the choice of the ideals Ii j in R.
As a consequence of Theorem 1.1(1), we can strengthen the result in [11] as the following

corollary, here we drop all assumptions on rings and ideals.

Corollary 4.2 Let R be an arbitrary ring with identity and I an arbitrary ideal in R. Then,
for a ring of the following form

S =

⎛
⎜⎜⎜⎜⎝

R I t12 · · · I t1n

R R
. . .

...
...

...
. . . I tn−1 n

R R · · · R

⎞
⎟⎟⎟⎟⎠

,
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where ti j are positive integers, we have

K∗(S) � K∗(R) ⊕
n⊕

j=2

K∗(R/I t j−1 j ).

As a special case of Corollary 4.2, we get the following result of [16] without the assump-
tion that R I and IR are projective.

Corollary 4.3 Let R be a ring with identity and I an ideal in R. Suppose that t j is a positive
integers with t j ≤ t j+1 for j = 2, . . . , n − 1. Let

T =

⎛
⎜⎜⎜⎜⎝

R I t2 · · · I tn

R R
. . .

...
...

...
. . . I tn

R R · · · R

⎞
⎟⎟⎟⎟⎠

.

Then T is a ring and

K∗(T ) � K∗(R) ⊕
n⊕

i=2

K∗(R/I ti ).

Let us remark that if I is a nilpotent ideal in a ring R with identity, then K0(R) �
K0(R/I ). In general, this is not true for higher K -groups Kn with n ≥ 1. Thus, for K0,
we may replace the direct summands K0(R/I t j ) by K0(R/I ) in Corollary 4.3, and get
K0(T ) � K0(R) ⊕ (n − 1)K0(R/I ).

As a direct consequence of Theorem 1.1(2), we have the following corollary.

Corollary 4.4 Let R be a ring with identity, and let I j be an ideal of R with 2 ≤ j ≤ n such
that I j ⊆ I j−1 for all j . Then, for the rings

S :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In

R R I3 · · · In

R I2 R
. . .

...
...

...
. . .

. . . In

R I2 · · · In−1 R

⎞
⎟⎟⎟⎟⎟⎟⎠

, T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In

R R I3 · · · In

R R R
. . .

...
...

...
...

. . . In

R R R . . . R

⎞
⎟⎟⎟⎟⎟⎟⎠

,

we have

K∗(S) � K∗(R) ⊕
n⊕

j=2

K∗(R/I j ) � K∗(T ).

Let us remark that we can also use our method in this section to calculate some corner
rings eBe, though, in general, we cannot get an add(eBeeAe)-split sequence

0 −→ eBe −→ eAe −→ eAe/eBe −→ 0,

with e an idempotent in B, from a given add(B A)-split sequence

0 −→ B −→ A −→ A/B −→ 0.
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For example, suppose that B = S is the ring defined in Theorem 1.1(1). If e is an idempotent
element in R, then, for the corner ring

B1 :=

⎛
⎜⎜⎜⎜⎜⎝

eRe eI12e eI13e · · · eI1 ne
eRe eRe eI23e · · · eI2 ne

...
...

. . .
. . .

...

eRe eRe · · · eRe eIn−1 ne
eRe eRe · · · eRe eRe

⎞
⎟⎟⎟⎟⎟⎠

of B, we have

K∗(B1) � K∗(eRe) ⊕
n−1⊕
j=1

K∗(eRe/eI j j+1e).

Also, we remark that, for any ring R, the functor HomR(−, R R) is a duality between the
category R-proj and the category R

op
-proj, where R

op
is the opposite ring of R. Thus, for

each n ≥ 0, we have Kn(R) � Kn(Rop). From this fact, or from Lemma 3.1(3) for right
modules, we can see that if S′ is a ring of the form

S′ :=

⎛
⎜⎜⎜⎜⎜⎝

R I1 I1 · · · I1

I2 R I2 · · · I2
...

. . .
. . .

. . .
...

In−1 · · · In−1 R In−1

R · · · R R R

⎞
⎟⎟⎟⎟⎟⎠

,

where R is a ring with identity and I j is an ideal of R for each 1 ≤ j < n, then

K∗(S′) � K∗(R) ⊕
n−1⊕
j=1

K∗(R/I j ).

Note that S′ is closely related to the ring S in Corollary 4.4.

4.2 Proof of Theorem 1.2

Now, recall that a pullback diagram of rings:

(�)

R
f1−−−−→ R1

h2

⏐⏐�
⏐⏐�h1

R2
f2−−−−→ R0

is called a Milnor square if one of the ring homomorphisms f2 and h1 is surjective.
An example of Milnor squares is the following case: Let R ⊆ S be an extension of rings

with the same identity. If there is an ideal J of S such that J ⊆ R, then there is a canonical
Milnor square

R −−−−→ S⏐⏐�
⏐⏐�

R/J −−−−→ S/J
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Let R be the product R1 ×· · ·× Rn of finitely many rings Ri with 1 ≤ i ≤ n. A subdirect
product of ring R is a subring S ⊆ R for which each projection S → Ri carries S onto Ri

for each i . In this case we say that the inclusion S ⊆ R is an inclusion of a subdirect product.
The following lemma is useful and well known for calculation of higher K -groups of

rings.

Lemma 4.5 For a given Milnor square (�), the following are true:

(1) (See [20, Theorem 3.3]) There is a Mayer–Vietoris exact sequence:

K1(R)
(( f1)

∗,(h2)∗)−→ K1(R1) ⊕ K1(R2)

(
(h1)∗

−( f2)∗
)

−→ K1(R0) −→

K0(R)
(( f1)

∗,(h2)∗)−→ K0(R1) ⊕ K0(R2)

(
(h1)

∗
−( f2)

∗
)

−→ K0(R0),

where f ∗ denotes the homomorphism induced by f .
(2) (See [6], [34, Theorem 5.5]) Suppose that (�) is a Milnor square of Z/pm

Z-algebras,
where p ≥ 2 is a prime number and m is a positive integer. Then there is an exact
sequence of K -groups, that is, the Mayer–Vietoris sequence:

· · · −→ K∗+1(R1) ⊗Z Z

[
1

p

]
⊕ K∗+1(R2) ⊗Z Z

[
1

p

]
(

(h1)
∗

−( f2)
∗
)

−→

K∗+1(R0) ⊗Z Z

[
1

p

]
−→ K∗(R) ⊗Z Z

[
1

p

] (
( f1)

∗,(h2)∗
)

−→ K∗(R1) ⊗Z Z

[
1

p

]
⊕

K∗(R2) ⊗Z Z

[
1

p

]
(

(h1)
∗

−( f2)
∗
)

−→ K∗(R0) ⊗Z Z

[
1

p

]
−→ · · · .

(3) Suppose that (�) is a Milnor square of Z/pm
Z-algebras, where p ≥ 2 is a prime num-

ber and m is a positive integer. If the induced homomorphism ( f2)
∗ in (2) is an split

epimorphism for all ∗ ∈ N, then there is an exact sequence for all ∗ ∈ N:

0 −→ K∗(R) ⊗Z Z

[
1

p

]
(( f1)

∗,(h2)∗)−→ K∗(R1) ⊗Z Z

[
1

p

]
⊕

K∗(R2) ⊗Z Z

[
1

p

]
(

(h1)∗
−( f2)∗

)

−→ K∗(R0) ⊗Z Z

[
1

p

]
−→ 0.

In particular, if the induced homomorphism ( f2)
∗ in (2) is an isomorphism for all ∗ ∈ N,

then so is the induced homomorphism ( f1)
∗.
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(4) (See [19, Theorem 13.33], [20]) If both h1 and f1 are surjective, or if h1 is surjective
and f1 is the inclusion of a subdirect product, then there is an exact sequence

K2(R)
(( f1)

∗,(h2)∗)−→ K2(R1) ⊕ K2(R2)

(
(h1)

∗
−( f2)

∗
)

−→ K2(R0) −→ K1(R)
(( f1)

∗,(h2)∗)−→

K1(R1) ⊕ K1(R2)

(
(h1)

∗
−( f2)

∗
)

−→ K1(R0) −→ K0(R)
(( f1)

∗,(h2)∗)−→

K0(R1) ⊕ K0(R2)

(
(h1)

∗
−( f2)

∗
)

−→ K0(R0).

Clearly, there is a dual statement of (3) for ( f1)
∗ being a split monomorphism for each

∗ ∈ N.
Now we turn to proving Theorem 1.2. Observe that the argument in our proof below is

actually a combination of the previous results with Mayer–Vietoris exact sequences, and
works also for many other cases. Here we prove only Theorem 1.2(1), and leave the details
of the proof of Theorem 1.2(2) to the reader.

Proof of Theorem 1.2 (1): Let

J :=

⎛
⎜⎜⎜⎜⎝

I I12 · · · I1n

I I
. . .

...
...

. . .
. . . In−1 n

I · · · I I

⎞
⎟⎟⎟⎟⎠

, B := S =

⎛
⎜⎜⎜⎜⎝

R I12 · · · I1n

I R
. . .

...
...

. . .
. . . In−1 n

I · · · I R

⎞
⎟⎟⎟⎟⎠

,

A :=

⎛
⎜⎜⎜⎜⎝

R I12 · · · I1n

R R
. . .

...
...

. . .
. . . In−1 n

R · · · R R

⎞
⎟⎟⎟⎟⎠

.

By the assumptions in Theorem 1.2(1), we can verify that A and B are rings and that J is
an ideal of A. Thus J is also an ideal of B. Note that B is a subalgebra of A. Let f be the
inclusion of B into A. If we define

B ′ := B/J =

⎛
⎜⎜⎜⎜⎝

R/I 0 · · · 0

0 R/I
. . .

...
...

. . .
. . . 0

0 · · · 0 R/I

⎞
⎟⎟⎟⎟⎠

, A′ := A/J =

⎛
⎜⎜⎜⎜⎝

R/I 0 · · · 0

R/I R/I
. . .

...
...

. . .
. . . 0

R/I · · · R/I R/I

⎞
⎟⎟⎟⎟⎠

,

then we have a Milnor square

B
f−−−−→ A

g′
⏐⏐�

⏐⏐�g

B ′ f ′
−−−−→ A′,

where g and g′ are the canonical surjective maps, and where f ′ is the injective map induced
from f . Since the map f ′∗ : K∗(B ′) → K∗(A′) is an isomorphism for ∗ = 0, 1, 2, . . . , it
follows that f ′∗ ⊗ Z[ 1

p ] : K∗(B ′) ⊗ Z[ 1
p ] → K∗(A′) ⊗ Z[ 1

p ] is an isomorphism. Thus we
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see from Lemma 4.5(3) that f ∗ ⊗ Z[ 1
p ] : K∗(B) ⊗Z Z[ 1

p ] −→ K∗(A) ⊗Z Z[ 1
p ] is also an

isomorphism. It then follows from Theorem 1.1(1) that

K∗(B) ⊗Z Z[ 1
p ]� K∗(A) ⊗Z Z

[
1
p

]
� K∗(R) ⊗Z Z[ 1

p ] ⊕ ⊕n−1
j=1 K∗(R/I j j+1) ⊗Z Z

[
1
p

]
.

This finishes the proof of Theorem 1.2(1).
If we define

J :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I I2 I3 · · · In

I I2 I3 · · · ...

I I32 I3
. . .

...
...

...
. . .

. . . In

I In2 · · · In n−1 In

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

then the proof of Theorem 1.2(2) can be carried out similarly as we did in the proof of
Theorem 1.2(1) since we have Theorem 1.1(2). �

Now we mention the following corollary of Theorem 1.2. Here, in its proof below, we
choose a suitable subring instead of an extension ring.

Corollary 4.6 Suppose that p is a prime number and m is a positive integer. Let R be a
Z/pm

Z-algebra with identity, and let I and J be two arbitrary ideals of R. Define

S :=

⎛
⎜⎜⎜⎜⎝

R I · · · I

J R
. . .

...
...

. . .
. . . I

J · · · J R

⎞
⎟⎟⎟⎟⎠

.

n×n

Then S is a ring, and we have

K∗(S) ⊗Z Z

[
1
p

]
� K∗(R) ⊗Z Z

[
1
p

]
⊕ (n − 1)K∗(R/(I J + J I )) ⊗Z Z

[
1
p

]

for every prime number p.

Proof We define

B :=

⎛
⎜⎜⎜⎜⎝

R IJ + JI · · · IJ + JI

J R
. . .

...
...

. . .
. . . IJ + JI

J · · · J R

⎞
⎟⎟⎟⎟⎠

,

n×n

J ′ :=

⎛
⎜⎜⎜⎜⎝

J IJ + JI · · · IJ + JI

J J
. . .

...
...

. . .
. . . IJ + JI

J · · · J J

⎞
⎟⎟⎟⎟⎠

.

n×n

Then one can verify that B is a ring and J ′ ⊆ B is an ideal in S. Note that B is a subring of
S. Now, let A := S, B ′ := B/J ′ and A′ := A/J ′. Then we may use the same argument as in
the proof of Theorem 1.1 to show K∗(B)⊗Z Z[ 1

p ] � K∗(A)⊗Z Z[ 1
p ]. But for the former, we

have K∗(B)⊗Z Z[ 1
p ] � K∗(R)⊗Z Z[ 1

p ]⊕ (n − 1)K∗(R/(I J + J I ))⊗Z Z[ 1
p ] by Theorem

1.1(1). Thus Corollary 4.6 follows. �
Remark In Corollary 4.6, if, in addition, I 2 ⊆ J (for example, I 2 = 0, or I ⊆ J ), then we
can show that

K∗(S) ⊗Z Z

[
1
p

]
� K∗(R) ⊗Z Z

[
1
p

]
⊕ (n − 1)K∗(R/I ) ⊗Z Z

[
1
p

]

for all prime number p. To see this, one just needs to consider B := S,
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A :=

⎛
⎜⎜⎜⎜⎝

R I · · · I

I + J R
. . .

...
...

. . .
. . . I

I + J · · · I + J R

⎞
⎟⎟⎟⎟⎠

,

n×n

and J ′ :=

⎛
⎜⎜⎜⎜⎝

I I · · · I

J I
. . .

...
...

. . .
. . . I

J · · · J I

⎞
⎟⎟⎟⎟⎠

.

n×n

Let us illustrate how the argument in the above proof of Theorem 1.1(1) can be applied
to other cases.

Again, suppose that p is a prime number and m is a positive integer. Let R be a Z/pm
Z-

algebra with identity and I an arbitrary ideal of R. For each finite partially ordered set P , we
associate it with a ring B := B(R, I, P) which is a subring of the matrix ring over R with
the indexing set P , and is defined as follows: Let B = (Bi j )i, j∈P with Bi j = R if i ≥ j , and
Bi j = I otherwise. We may assume that P = {a1, . . . , an} such that ai ≤ a j implies i ≤ j .
Under this assumption we see that J ′ := Mn(I ) is an ideal of B, which is also an ideal of

A :=

⎛
⎜⎜⎜⎜⎝

R I · · · I

R R
. . .

...
...

. . .
. . . I

R · · · R R

⎞
⎟⎟⎟⎟⎠

.

n×n

Note that B is a subring of A. Let B ′ := B/J ′ and A′ := A/J ′. We define C to be
the diagonal matrix ring with R/I as the principal diagonal entries. Then C is a subring of
both B ′ and A′. Using this ring C , we can see that the inclusion f ′ of B ′ into A′ induces an
isomorphism f ′∗ : K∗(B ′) → K∗(A′) for all ∗ ∈ N. Then we may use the same argument
as the above to show that, for any prime number p,

K∗(B) ⊗Z Z

[
1
p

]
� K∗(A) ⊗Z Z

[
1
p

]
� K∗(R) ⊗Z Z

[
1
p

]
⊕ (n − 1)K∗(R/I ) ⊗Z Z

[
1
p

]
.

We end this section by a couple of remarks concerning Theorem 1.2.

(1) In Theorem 1.2, if R is a Zp-algebra instead of a Z/pm
Z-algebra, and if R/I, R/Ii and

R/Ii j are finite rings for all i, j , then Theorem 1.2 still holds true. Indeed, in this case
we can use Charney’s excision at the end of the paper [6] since I ⊗Z Z[ 1

p ] has a unit.

This is due to TorZ

1 (−, Z[ 1
p ]) = 0 and to the fact that the quotient rings R/I, R/Ii and

R/Ii j are Z/pm
Z-algebras for some m > 0. Indeed, we have an exact sequence

TorZ

1

(
R/I, Z

[
1

p

])
−→ I ⊗Z Z

[
1

p

]
−→ R ⊗Z Z

[
1

p

]
−→ (R/I ) ⊗Z Z

[
1

p

]
.

Clearly, the first and last terms vanish, this implies that I ⊗Z Z[ 1
p ] � R ⊗Z Z[ 1

p ]. So,
the condition of Charney’s result in [6] is satisfied. I thank X. J. Guo for explanation of
this fact.

(2) A crucial fact of our proofs of the main results is: Given an extension B ⊆ A of
rings with the same identity such that B A is finitely generated and projective, we have
K∗(B) � K∗(EndB(A ⊕ A/B)) for all ∗ ∈ N. Moreover, we may also compare the
algebraic K -theory of B with that of A. For this purpose, we define � to be the kernel
of the multiplication map A ⊗B A → A. It follows from the Additivity Theorem (see
[23, Corollary 1, Section 3]) that the exact sequence of the exact functors

0 −→ � ⊗A − −→ A ⊗B − −→ id −→ 0
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on the category of finitely generated projective A-modules gives rise to three homo-
morphisms of abelian groups: r∗ : K∗(A) → K∗(B), t∗ : K∗(B) → K∗(A) and
ω∗ : K∗(A) → K∗(A) such that r∗t∗ = 1K∗(A) + ω∗. If, in addition, the n-fold tensor
product of � over A vanishes for some natural number n, that is, �⊗An = 0 (for exam-
ple, � = 0 in case the inclusion B ⊆ A is an injective ring epimorphism), then the map
t∗ is split surjective, and K∗(A) is a direct summand of K∗(B). In general, neither t∗
nor r∗ is an isomorphism.

5 Lower K -theory for matrix subrings

In this section we consider the algebraic K -groups K0 and K1 for matrix subrings. Our results
in this section are not covered by the main results in the previous sections.

We first consider the group K0. In this case, we have the following result in which we do
not assume that the rings considered are Z/pm

Z-algebras or Z[ 1
p ]-algebras.

Proposition 5.1 Let R be an arbitrary ring with identity, and let I, J and Ii j be ideals in R.

(1) For the rings S and T defined in Theorem 1.2, we have

K0(S) � K0(R) ⊕
n⊕

j=2

K0(R/I j−1 j ), K0(T ) � K0(R) ⊕
n⊕

j=2

K0(R j/I j ).

(2) For the ring S defined in Corollary 4.6, we have

K0(S) � K0(R) ⊕ (n − 1)K0(R/(I J + J I )).

Moreover, if I 2 ⊆ J , we have K0(S) � K0(R) ⊕ (n − 1)K0(R/I ).

The proof of this proposition is actually a combination of Corollary 4.4 and Lemma 4.5(1)
and (3), and we leave the details of the proof to the interested reader.

We mention that Proposition 5.1 may not be true for higher algebraic K -groups Kn with
n ≥ 1. See the example at the end of this section. Nevertheless, with certain conditions on
ideals we may have some positive results on K1. Before stating our results, we first prove the
following lemma.

Lemma 5.2 Let B ⊆ A be an extension of rings with the same identity. Suppose that I is
an idempotent ideal of A contained in B. If the inclusion B ⊆ A induces an isomorphism
γi : Ki (B/I ) → Ki (A/I ) for i = 1, 2, then K1(B) � K1(A).

Proof Let Ki (B, I ) denote the i-th relative K -group of the canonical surjective map B →
B/I (see [23] for definition). Then there is an exact sequence of K -groups:

· · · −→ Kn(B, I ) −→ Kn(B) −→ Kn(B/I ) −→ Kn−1(B, I ) −→
Kn−1(B) −→ Kn−1(B/I ) −→ · · · ,

and we may form the following commutative diagram of ableian groups with exact rows:

K2(B/I ) −−−−→ K1(B, I ) −−−−→ K1(B) −−−−→ K1(B/I ) −−−−→ K0(B, I )⏐⏐�γ2

⏐⏐�γ

⏐⏐�β

⏐⏐�γ1

⏐⏐��

K2(A/I ) −−−−→ K1(A, I ) −−−−→ K1(A) −−−−→ K1(A/I ) −−−−→ K0(A, I )
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Here we use the fact that K0(B, I ) is always independent of B. Thus the map β is an
isomorphism if γ is an isomorphism. However, the latter follows from a result of Vaserstein
(see [36, Chapter III, Section 2, Remark 2.2.1]), which states that if J is an ideal in a ring
R with identity, then K1(R, J ) is independent of R if and only if J 2 = J . Thus γ is an
isomorphism. �

We should notice that, in general, Kn(R, I ) depends on R for n ≥ 1. This is why the
conclusions in Theorem 1.2 are localized.

So, with Lemma 5.2 in hand, we can prove the following proposition for K1.

Proposition 5.3 Let R be a ring with identity, and let I ⊆ J be ideals in R. If I is an
idempotent ideal of R, then, for the ring

B :=

⎛
⎜⎜⎜⎜⎝

R I · · · I

J R
. . .

...
...

. . .
. . . I

J · · · J R

⎞
⎟⎟⎟⎟⎠

,

n×n

we have

K1(B) � K1(R) ⊕ (n − 1)K1(R/I ).

Proof Clearly, B is a subring of the ring

A :=

⎛
⎜⎜⎜⎜⎝

R I · · · I

R R
. . .

...
...

. . .
. . . I

R · · · R R

⎞
⎟⎟⎟⎟⎠

,

n×n

and J ′ := Mn(I ), the n × n matrices over I , is an idempotent ideal of A and B, respectively.
We know that K∗(B/J ′) and K∗(A/J ′) are isomorphic for all ∗ ∈ N. Hence Proposition 5.3
follows from Lemma 5.2 and Theorem 1.1 immediately. �

Finally, we mention another type of matrix rings: Let R and S be rings with identity, and
let R MS and S NR be bimodules. We define a ring

A :=
(

R M
N S

)
,

(
r m
n s

)
·
(

r ′ m′
n′ s′

)
=

(
rr ′ rm′ + ms′

nr ′ + sn′ ss′
)

for r, r ′ ∈ R, s, s′ ∈ S, m, m′ ∈ M and n, n′ ∈ N . Note that M ′ :=
(

0 M
0 0

)
and

N ′ :=
(

0 0
N 0

)
are two ideals in A. Thus one has a Milnor diagram

A −−−−→ A/M ′
⏐⏐�

⏐⏐�
A/N ′ −−−−→ A/(M ′ + N ′)

By Lemma 4.5(4), we can show that Ki (A) � Ki (R) ⊕ Ki (S) for i = 0, 1. This result
can be used to reduce the calculation of lower K -groups of finite-dimensional algebras with
radical-square-zero to local algebras.
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Now we give an example to show that the isomorphism on K0 or K1 in this section does

not extend to isomorphisms on Ki for all i . Let S =
(

Z/p2
Z pZ/p2

Z

pZ/p2
Z Z/p2

Z

)
. This is a matrix

ring of the above form. In this case Kn(Z/p2
Z)⊕ Kn(Z/p2

Z) is a direct summand of Kn(S)

because the obvious map Z/p2
Z × Z/p2

Z −→ S is split injective, but it is not a direct
summand of Kn(Z/p2

Z) ⊕ Kn(Z/pZ), as can be seen by considering K1. Thus Proposition
5.1 fails for K1. Moreover, this example shows also that Proposition 5.3 may fail if I is not
an idempotent ideal. I thank the referee for pointing out this example.

6 Higher mod- p K -theory

In this section, we shall point out that our main result, Theorem 1.2, holds true for the
mod-p K -theory K∗(−, Z/pZ) under the assumption that algebras considered are
Z[ 1

p ]-algebras, where p ≥ 2 is a prime number.
Let R be a ring with identity. In [4], Browder developed K -theory with coefficients Z/pZ.

This is the so-called mod-p K -theory K∗(R, Z/pZ) for ∗ ∈ Z. A simple definition for
mod-p K -theory is the following: Given a ring R and the K -theory space K (R) of R, one
takes the cofiber of the multiplication by p map: K (R) −→ K (R) and then considers ho-
motopy groups of the cofiber. This gives the mod-p K -theory groups K∗(R, Z/pZ) of R. I
thank the referee for telling me this definition.

Note that K0(R, Z/pZ) = K0(R) ⊗Z Z/pZ, and Ki (R, Z/pZ) = 0 if i < 0 (see [4, p.
45]). Later, Weibel observed in [35] that excision holds and that Mayer–Vietoris sequences
exist if the rings involved are Z[ 1

p ]-algebras. The mod-p K -theory is closely related to the
usual K -theory in the following manner.

Lemma 6.1 Universal Coefficient Theorem (see [22, pp. 3, 37], or [1, p.78]):
Let R be a ring with identity and p a prime number. For all ∗ ∈ N, there is a short exact

sequence of abelian groups

0 −→ K∗(R) ⊗Z Z/pZ −→ K∗(R, Z/pZ) −→ TorZ

1 (K∗−1(R), Z/pZ) −→ 0.

If p �= 2, then this sequence splits (not naturally), so that K∗(R, Z/pZ) is a Z/pZ-module.
If p = 2, then K∗(R, Z/pZ) is a Z/2pZ-module.

Thus it follows from Lemma 6.1 that if f : R → S is a ring homomorphism such that the
map f ∗ : K∗(R) −→ K∗(S) induced by f is an isomorphism for all ∗ ∈ N, then f induces
an isomorphism K∗(R, Z/pZ) → K∗(S, Z/pZ)) for all ∗ ∈ N. Moreover, if p �= 2, we see
that K∗(R, Z/pZ) is completely determined by the usual K -groups K∗(R). If p = 2, then
the above exact sequence may not split in general. For example, if R = Z and p = 2, then
Ki (Z) = Z/2Z for i = 1, 2, and K2(Z, Z/2Z) = Z/4Z. Clearly, Z/4Z is not the direct sum
of two copies of Z/2Z.

Another result which we need is a Mayer–Vietoris sequence for mod-p K -groups.

Lemma 6.2 [35, Corollary 1.3] For a Milnor square (�) of Z[ 1
p ]-algebras, there is a long

exact sequence of abelian groups for all integers ∗ :
· · · −→ K∗+1(R1, Z/pZ) ⊕ K∗+1(R2, Z/pZ) −→ K∗+1(R0, Z/pZ) −→ K∗(R, Z/pZ)

−→ K∗(R1, Z/pZ) ⊕ K∗(R2, Z/pZ) −→ K∗(R0, Z/pZ) −→ · · · .

For mod-p K -theory, we have the following result.
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Theorem 6.3 Suppose that p ≥ 2 is a prime number and that R is a Z[ 1
p ]-algebra with iden-

tity. Let I, Ii and Ii j be (not necessarily projective) ideals of R. We denote by K∗(R, Z/pZ)

the ∗th mod-p K -group of R with ∗ ∈ N.

(1) If Ii j ⊆ I for all i, j, Ik j ⊆ Ii j for k ≤ i, Iki ⊆ Ik j for j ≤ i and Iik Ik j ⊆ Ii j for
i < k < j , then

S :=

⎛
⎜⎜⎜⎜⎜⎝

R I12 I13 · · · I1 n

I R I23 · · · I2 n
...

. . .
. . .

. . .
...

I · · · I R In−1 n

I · · · I I R

⎞
⎟⎟⎟⎟⎟⎠

is a ring, and

K∗(S, Z/pZ) � K∗(R, Z/pZ) ⊕
n⊕

j=2

K∗(R/I j−1 j , Z/pZ)

for all ∗ ∈ N.

(2) For 2 ≤ i ≤ n, suppose that Ri is a subalgebra of R with the same identity. If Ii+1 ⊆
Ii ⊆ Ri for all i, I j ⊆ Ii j ⊆ I for all i, j , and Iik Ik j ⊆ Ii j for j < k < i , then

T :=

⎛
⎜⎜⎜⎜⎜⎜⎝

R I2 I3 · · · In

I R2 I3 · · · In

I I32
. . .

. . .
...

...
...

. . . Rn−1 In

I In2 · · · In n−1 Rn

⎞
⎟⎟⎟⎟⎟⎟⎠

is a ring, and

K∗(T, Z/pZ) � K∗(R, Z/pZ) ⊕
n⊕

j=2

K∗(R j/I j , Z/pZ)

for all ∗ ∈ N.

Proof (1) We keep the notation introduced in the proof of Theorem 1.2(1), see Sect. 4.2.
So we have a Minor square

B := S
f−−−−→ A

g′
⏐⏐�

⏐⏐�g

B ′ f ′
−−−−→ A′

where g and g′ are the canonical surjective maps. Since f ′ induces an isomorphism f ′∗ :
K∗(B ′) → K∗(A′) for ∗ ∈ N, we know from Lemma 6.1 that f ′ induces an isomor-
phism between K∗(B ′, Z/pZ) and K∗(A′, Z/pZ) for all ∗ ∈ N. By Lemma 6.2 (see also
Lemma 4.5(3)), we can show that f induces an isomorphism f ∗ : K∗(B, Z/pZ) −→
K∗(A, Z/pZ) for all ∗ ∈ N. Now we use Theorem 1.1(2) to calculate K∗(A, Z/pZ).

Since the K -theory space K (A) of A is equivalent to the product of the spaces K (R) and
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K (R/I j−1 j ) with 2 ≤ j ≤ n, it follows from the simple definition of mod-p K -theory
that

K∗(A, Z/pZ) � K∗(R, Z/pZ) ⊕
n⊕

j=2

K∗(R/I j−1 j , Z/pZ).

Thus (1) follows.
(2) can be proved similarly. �

7 Examples: GV-ideals

In this section we shall give some examples related to our results. The first one is constructed
from a D-split sequence which is induced by a surjective ring homomorphism.

Let B be a ring with identity and J an ideal of B. We define A = B/J . Then we have an
exact sequence in B-Mod:

0 → J → B
π−→ A → 0,

where π is the canonical surjection.
For this sequence to be an add(B B)-split sequence, we have to assume Ext1

B(A, B) = 0.
This happens often in commutative algebra. For example, if B is a commutative noetherian
ring, and J is an ideal of B such that J contains a regular sequence on B of length 2, then
Exti

B(A, B) = 0 for i = 0, 1 (see [15, p. 101]). Another example is the so-called GV-ideals
in integral domains. Here we will state the following general definition of GV-ideals.

Let R be an arbitrary ring with identity. Recall that an ideal I of R is called a GV-ideal (after
the names Glaz and Vasconcelos, see [10,38]) if the induced map μI : R −→ HomR(I, R),
given by r �→ (x �→ xr) for x ∈ I , is an isomorphism of R-bimodules. This is equivalent to
Exti

R(R/I, R) = 0 for i = 0, 1. Thus R is a GV-ideal of R. Note that pZ is not a GV-ideal
of Z for any p ∈ Z with |p| �= 1, even though we have Z � HomZ(pZ, Z). We remark that
the above definition of GV-ideals is more general than the one in commutative rings where
it is required that R I is finitely generated (see [38]).

Let GV (R) be the set of all GV-ideals of R. For ideals I and J of R, we denote by
(I : J ) := {x ∈ R | I x ⊆ J }. This notation is different from what was usually used in ring
theory where it was written as (J : I ), but soon we will see the convenience of our notation
when elements compose. Clearly, (I : R) = R, (R : I ) = I , and (I : J ) is an ideal of R.

The following lemma shows some properties of GV-ideals, which are of interest for our
proofs.

Lemma 7.1 Let B be a ring with identity, and let J be a GV-ideal in B. Then

(1) the sequence 0 → J → B
π−→ A → 0 is an add(B B)-split sequence in B-Mod. Thus

EndB(B ⊕ J ) is derived equivalent to

(
B A
0 A

)
.

(2) EndB(J ) � B(as rings and as B-bimodules).
(3) If I is an ideal in B, then BHomB(J, I )B � (J : I ) as B-bimodules. In particular, if

J ⊆ I , then HomB(J, I ) � B.
(4) If x ∈ B such that J x = 0, then x = 0.
(5) If I is an ideal in B with J ⊆ I , then I ∈ GV (B).
(6) If I, J ∈ GV (B), then I J ∈ GV (B).

123



Higher algebraic K -groups and D-split sequences 1049

Proof (1) Clearly, π is a right add(B B)-approximation of B A since each module in
add(B B) is projective. To see that the inclusion J ↪→ B is a left add(B B)-approx-
imation of J , we apply HomB(−, B) to the canonical exact sequence 0 → J →
B → A → 0, and get the following exact sequence

HomB(B, B) −→ HomB(J, B) −→ Ext1
B(A, B).

By the definition of GV-ideals, the last term vanishes. This shows that the inclusion
is a left add(B B)-approximation of J . Thus the canonical sequence 0 → J →
B → A → 0 is an add(B B)-split sequence in B-Mod, and the derived equivalence
in (1) follows now from [13, Theorem 1.1].

(2) By the definition of GV-ideals, the induced map μJ : B −→ HomB(B J, B) is
an isomorphism, this means that every homomorphism f from B J to B B is given
by the right multiplication of an element in B. Since J is an ideal in R, f is in
fact an endomorphism of the module B J . Conversely, if f ∈ EndB(J ), then f is a
restriction of a right multiplication of an element of B. Hence EndB(J ) � B.

(3) We define a map ϕ : HomB(J, I ) → (J : I ) as follows: For f ∈ HomB(J, I ),
there is a unique element b ∈ B such that the composite of f with the inclusion
λ : I → B is the right multiplication map ·b since J ∈ GV (B). This means that

f λ = ·b and b ∈ (J : I ). So, we define f
ϕ�→ b. As (J : I ) is an ideal of B, it

has a canonical bimodule structure. Now one can check that ϕ is an isomorphism
of B-bimodules.

(4) This is a trivial consequence of the induced isomorphism μJ : B � HomB(J, B).
(5)-(6) These statements were already proved in detail in [38] for commutative rings, the

ideas of their proofs are as follows: It follows from (4) that HomB(I/J, B) = 0. Fur-
ther, by the isomorphism μJ and the fact that μJ = μI i∗ where i∗ : HomB(I, B) →
HomB(J, B) is induced from the inclusion i : J → I , one can check that μI is an
isomorphism of B-bimodules. This proves (5).
Let I, J ∈ GV (B). It follows from (4) that μI J : B → HomB(I J, B) is injec-
tive. We show that it is also surjective. In fact, since the composite of the maps
B → HomB(J, B) → HomB(J, HomB(I, B)) → HomB(I ⊗B J, R) is an iso-
morphism of B-B-bimodules, which is equal to the composite of μI J with the
injective map m∗ : HomB(I J, B) → HomB(I ⊗B J, B) induced from the sur-
jective multiplication map m : I ⊗B J → I J , we see that m∗ is surjective, and
therefore it is an isomorphism of B-B-bimodules. This implies that μI J is surjective,
and therefore (6) holds. �

From Lemma 7.1, we have the following

Proposition 7.2 Let B be a ring with identity. Suppose that In ⊆ In−1 ⊆ · · · ⊆ I2 ⊆ I1 is
a chain of ideals in B. If In is a GV-ideal in B, then

(1) EndB(I1 ⊕ · · · ⊕ In) is isomorphic to

C :=

⎛
⎜⎜⎜⎜⎜⎝

B (I1 : I2) (I1 : I3) · · · (I1 : In)

B B (I2 : I3) · · · (I2 : In)
...

...
. . .

. . .
...

B B · · · B (In−1 : In)

B B · · · B B

⎞
⎟⎟⎟⎟⎟⎠

.
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(2) The K -theory space of EndB(I1 ⊕· · ·⊕ In) is equivalent to the product of the K -theory
spaces of B and B/(I j : I j+1), 1 ≤ j < n. In particular, K∗

(
EndB(I1 ⊕ · · · ⊕ In)

) �
K∗(B) ⊕ K∗

(
B/(I1 : I2)

) ⊕ · · · ⊕ K∗i
¯

g(B/(In−1 : In)
)

for all ∗ ∈ N.

Proof (1) Note that EndB(I1⊕ I2⊕· · ·⊕ In) is the matrix ring with the entries HomB(Ii , I j )

for 1 ≤ i, j ≤ n. Since In is a GV-ideal in B, every ideal I j in the chain is a GV-ideal
of B by Lemma 7.1(5). Now (1) follows from Lemma 7.1 immediately.

(2) This is a direct consequence of Proposition 7.2(1) and Theorem 1.2(1). �
As a consequence of Proposition 7.2 and Lemma 7.1(6), we have the following corollary.

Corollary 7.3 If I is a GV-ideal in a ring B with identity, then, for any positive integer n,

K∗
(
EndB(

n⊕
j=1

I j )) � K∗(B) ⊕
n−1⊕
j=1

K∗(B/(I j : I j+1)).

If we take I1 = B, then we have the following corollary.

Corollary 7.4 Let B be a ring with identity. Suppose that In ⊆ In−1 ⊆ · · · ⊆ I2 ⊆ I1 = B
is a chain of GV -ideals in B. Then

K∗
(
EndB(B ⊕

n⊕
j=2

B/I j )
) � K∗(B) ⊕ K∗(B/I2) ⊕

n−1⊕
j=2

K∗
(
B/(I j : I j+1)

)
.

Proof For each j , we have an add(B B)-split sequence by Lemma 7.1(1):

0 −→ I j −→ B B −→ B/I j −→ 0.

This yields another add(B B)-split sequence

0 −→
n⊕

j=1

I j −→
n⊕

j=1

B B −→
n⊕

j=1

B/I j −→ 0.

Hence EndB(B B ⊕ ⊕n
j=2 I j ) and EndB(B B ⊕ ⊕n

j=2 B/I j ) are derived equivalent by [13,
Theorem 1.1 ], and have isomorphic algebraic K -groups K∗. By Proposition 7.2, we see that
K∗

(
EndB(B B ⊕ ⊕n

j=1 B/I j )
) � K∗(B) ⊕ ⊕n−1

j=1 K∗
(
B/(I j : I j+1)

)
for all ∗ ∈ N. �

As a concrete example, we consider the polynomial ring B:=Z[x] over Z in one variable x
and its ideal J := (p, x) with p a prime number in Z. It is known that J is a GV-ideal in B.
Thus, for the ring R := EndZ[x](Z[x] ⊕ J ), by Proposition 7.2, we have

K∗(R) � K∗(Z[x]) ⊕ K∗(Z/pZ).

Since Z is a left noetherian ring of global dimension 1, the Fundamental Theorem in algebraic
K -theory says that the above isomorphism can be rewritten as

K∗(R) � K∗(Z) ⊕ K∗(Z/pZ).

By [24], we get

K0(R) � Z ⊕ Z, K1(R) � Z/2Z ⊕ (Z/pZ)×,

K2m(R)= K2m(Z) for m ≥1, K2m−1(R) � K2m−1(Z) ⊕ Z/(pm − 1)Z for m ≥2.
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Note that J is not a projective Z[x]-module. In fact, we have a non-split exact sequence

0 −→ Z[x] λ−→ Z[x] ⊕ Z[x] π−→ J −→ 0,

where λ sends f (x) to (x f (x),−p f (x)), and π sends ( f (x), g(x)) to p f (x) + xg(x) for
all f (x), g(x) ∈ Z[x]. So, the result in [16] cannot be applied to R. However, the one in this
note is applicable.

Finally, we mention the radical-full extensions in [37]. Recall that an extension B ⊆ A of
rings with the same identity is said to be left radical-full if rad(A) = rad(B)A and rad(B) is a
left ideal of A, where rad(A) stands for the Jacobson radical of A. So, given a left radical-full

extension B ⊆ A of rings, we may form the ring C :=
(

A rad(B)

A B

)
. It follows from our

results in this note that Kn(C) � Kn(A) ⊕ Kn(B/rad(B)) for all n ≥ 0 since for any ring

extension S ⊆ R and any ideal I in S, if I is a left ideal in R, then the rings

(
R I
R S

)
and

(
S/I 0
R/I R

)
are derived equivalent by Lemma 3.4.

Related to the last example, we have the following open question which will be investigated
in a forthcoming paper.
Question: Suppose that I and J are two arbitrary ideals in a ring R with identity. For the ring

S :=
(

R I
J R

)
(or generally, the ring in Corollary 4.6), can one give a formula for Kn(S)

similar to the one in Theorem 1.2 for n ≥ 1?
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