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Abstract. In [7], a class of associative algebras called cyclotomic Temperley-Lieb algebras

over a commutative ring was introduced. In this note, we provide a necessary and sufficient

condition for a cyclotomic Temperley-Lieb algebra to be semi-simple.

1. Introduction

The Temperley-Lieb algebras were first introduced in [9] in order to study the single bond

transfer matrices for the Ising model and for the Potts model. Jones [4] defined a trace function

on a Temperley-Lieb algebra so that he could construct Jones polynomial of a link when the

trace is non-degenerate. It is known that the trace is non-degenerate if the Temperley-Lieb

algebra is semi-simple. So it is an interesting question to provide a criterium for a Temperley-

Lieb algebra to be semi-simple. In [10, §5], Westbury computed explicitly the determinants of

Gram matrices associated to all “cell modules” via Tchebychev polynomials. This implies that

a Temperley-Lieb algebra is semi-simple if and only if such polynomials do not take values zero

for the paprameters.

As a generalization of a Temperley-Lieb algebra, the cyclotomic Temperley-Lieb algebra

TLm,n(δ) of type G(m, 1, n) was introduced in [7]. It is proved in [7] that TLm,n(δ) is a cellular

algebra in the sense of [2]. Thus TLm,n(δ) is semi-simple if and only if all of its “cell modules”

are pairwise non-isomorphic irreducible. In order to describe a cell module to be irreducible,

Rui and Xi computed the determinants of Gram matrices of certain cell modules [7, 8.1]. In

general, it is hard to compute the determinants for all cell modules.

In this note, we shall consider the semi-simplicity of cyclotomic Temperley-Lieb algebras, this

is an analog question considered in [8] (see [1] for the case m = 1). Following [5], we study two

functors F and G between certain categories in section 3. Via these functors and [7, 8.1], we

can show Theorem 4.6, the main result of this paper, which says that the semi-simplicity of a

cyclotomic Temperley-Lieb algebra can be determined by generalized Tchebychev polynomials

and the parameters δ̄i, 1 ≤ i ≤ m.
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2. Cyclotomic Temperley-Lieb algebras

In this section, we recall some of results on the cyclotomic Temperley-Lieb algebras in [7].

Throughout the paper, we fix two natural numbers m and n.

A labelled Temperley-Lieb diagram (or labelled TL-diagram) D of type G(m, 1, n) is a

Temperley-Lieb diagram with 2n vertices and n arcs. Each arc is labelled by an element in

Zm = Z/mZ, which will be considered as the number of dots on it. The following are two

special labelled TL-diagrams.
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An arc in a labelled TL-diagram D is horizontal if both of its endpoints are in the same row of

D. Otherwise, it is vertical. A dot will be replaced by m− 1 dots if it moves from one endpoint

of a horizontal arc to another. A dot in a vertical arc can move freely from one endpoint to

another.

Given a horizontal arc {i, j} of D with i < j. We say i (resp. j) the left (resp. right) endpoint

of the arc. For a horizontal (resp. vertical) arc, we always assume that the dots on this arc

concentrate on the left endpoint (resp. the endpoint on the top row of the labelled TL-diagram

D).

Suppose an arc l1 joins another arc l2 with a common endpoint j. A dot can move from l1 to

l2. We always assume that a dot on the endpoint j ∈ l1 can be replaced by a dot on j ∈ l2.

Given two labelled TL-diagrams D1 and D2 of type G(m, 1, n). Following [7], we define a

new labelled TL-diagram D1 ◦ D2 as follows: First, compose D1 and D2 in the same way as

was done for the Temperley-Lieb algebra to get a new diagram P . Second, applying the rule for

the movement of dots to relabel each arc of P . We get a new labelled TL-diagram, and this is

defined to be D1 ◦D2. Let n(̄i,D1, D2) be the number of the relabelled closed cycles on which

there are ī dots.

Definition 2.1. [7, 3.3] Let R be a commutative ring containing 1 and δ0, . . . , δm−1. Put δ

= (δ0, . . . , δm−1). A cyclotomic Temperley-Lieb algebra TLm,n(δ) is an associative algebra

over R with a basis consisting of all labelled TL-diagrams of type G(m, 1, n), and the multipli-

cation is given by D1 ·D2 =
∏m−1

i=0 δ
n(̄i,D1,D2)
i D1 ◦D2.

It was shown in [7] that TLm,n(δ) can be defined by generators and relations. For the details

we refer to [7, 2.1].
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In the remaining part of this section, we recall some results on the representations of TLm,n(δ).

First, we give the notion of a cellular algebra in [2], which depends on the existence of certain

basis. There is also a basis-free definition of cellular algebras, for this we refer to [6].

Definition 2.2. [2, 1.1] An associative R–algebra A is called a cellular algebra with cell

datum (I,M, C, i) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a finite set M(λ).

The algebra A has an R–basis Cλ
S,T where (S, T ) runs through all elements of M(λ)×M(λ) for

all λ ∈ I.

(C2) The map i is an R–linear anti–automorphism of A with i2 = id which sends Cλ
S,T to

Cλ
T,S .

(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A the product aCλ
S,T can be written as

aCλ
S,T =

∑

U∈M(λ)

ra(U, S)Cλ
U,T + r′,

where r′ belongs to A<λ consisting of all R-linear combination of basis elements with upper

index µ strictly smaller than λ, and the coefficients ra(U, S) ∈ R do not depend on T .

For each λ ∈ I, one can define a cell module ∆(λ) and a symmetric, associative bilinear form

Φλ : ∆(λ)⊗R ∆(λ) → R in the following way (see [2, §2]): As an R-module, ∆(λ) has an R-basis

{Cλ
S | S ∈ M(λ)}, the module structure is given by

(2.1) aCλ
S =

∑

U∈M(λ)

ra(U, S)Cλ
U .

The bilinear form Φλ is defined by

Φλ(Cλ
S , Cλ

T )Cλ
U,V ≡ Cλ

U,SCλ
T,V (mod A<λ),

where U and V are arbitrary elements in M(λ).

Let rad∆(λ) = {c ∈ ∆(λ) | Φλ(c, c′) = 0 for all c′ ∈ ∆(λ)}. Then rad∆(λ) is a submodule of

∆(λ). Put L(λ) = ∆(λ)/rad∆(λ). Then either L(λ) = 0 or L(λ) is irreducible [2, 3.2]. We will

need the following result next section.

Lemma 2.3. rad∆(λ) is annihilated by A≤λ.

Proof. Let a = Cµ
S1,T1

∈ A≤λ and Cλ
S ∈ rad∆(λ). If µ < λ, then aCλ

S = 0 in ∆(λ). If µ = λ,

then we still have aCλ
S = 0 since ra(S1, S) = Φλ(Cλ

T1
, Cλ

S) and Cλ
S ∈ rad∆(λ). ¤

From now on, we assume that R is a splitting field of xm−1. Then xm−1 =
∏m

i=1(x−ui) for

some ui ∈ R, 1 ≤ i ≤ m. Let Gm,n be the R-subalgebra of TLm,n(δ) generated by T1, T2, · · · , Tn.

Let Λ(m,n) = {(i1, i2, · · · , in) | 1 ≤ ij ≤ m}. Define i ≤ j if ik ≥ jk for all 1 ≤ k ≤ n. Then

(Λ(m,n),≤) is a poset. For any i ∈ Λ(m,n), set Ci
1,1 =

∏n
j=1

∏m
l=ij+1(tj − ul).
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Lemma 2.4. The set {Ci
1,1 | i ∈ Λ(m,n)} is a cellular basis of Gm,n.

The cell module for i ∈ Λ(m, n) with respect to the above cellular basis will be denoted by

∆(i).

An (n, k)-labelled parenthesis graph is a graph consisting of n vertices {1, 2, ..., n} and k hor-

izontal arcs (hence 2k 6 n and there are n − 2k free vertices which do not belong to any arc)

such that

(1) there are at most m− 1 dots on each arc,

(2) there are no arcs {i, j} and {q, l} satisfying i < q < j < l

(3) there is no arc {i, j} and free vertex q such that i < q < j.

Let P (n, k) be the set of all (n, k)-labelled parenthesis graphs. A labelled TL-diagram D with

k horizontal arcs can be determined by a triple pair (v1, v2, x), x ∈ Gm,n−2k and v1, v2 ∈ P (n, k)

(see [7, §5]) and vice versa. Such a D will be denoted by v1 ⊗ v2 ⊗ x. In this case, we define

top(D) = v1 and bot(D) = v2.

Let Λm,n = {(k, i) | 0 ≤ k ≤ [n/2], , i ∈ Λ(m,n − 2k)}. For any (k, i), (l, j) ∈ Λm,n, say

(k, i) ≤ (l, j) if either k > l or k = l and i ≤ j. Then (Λm,n,≤) is a poset. For v1, v2 ∈ P (n, k)

and i ∈ Λ(m, n− 2k), define C
(k,i)
v1,v2 = v1 ⊗ v2 ⊗ Ci

1,1.

Proposition 2.5. [7, 5.3] Let R be a splitting field of xm − 1. The set {C(k,i)
v1,v2 | (k, i) ∈

Λn,m, v1, v2 ∈ P (n, k)} is a cellular basis of TLm,n(δ).

Let ∆(k, i) be the cell module with respect to the cellular basis given in Proposition 2.5. Then

(2.2) ∆(k, i) ∼= V (n, k)⊗R v0 ⊗R ∆(i)

where V (n, k) is the free R-module generated by P (n, k) and v0 is a fix element in P (n, k). The

following theorem is known as branching rule for the cell module ∆(k, i).

Proposition 2.6. [7, 7.1] Suppose chR - m. For i = (i1, i2, · · · , in−2k) ∈ Λ(m,n − 2k), define

i0 = (i1, i2, · · · , in−2k−1) ∈ Λ(m,n− 2k− 1) and i∪ j = (i1, i2, · · · , in−2k, j) ∈ Λ(m,n− 2k + 1).

Then there is a short exact sequence

(2.3) 0 −→ ∆(k, i0) −→ ∆(k, i) ↓−→
m⊕

j=1

∆(k − 1, i ∪ j) −→ 0,

where we denote by M ↓ the restriction of a TLm,n(δ)-module M to a TLm,n−1(δ)-module.

Proof. It is proved in [7, 7.1] that

0 −→ ∆(k, i0) −→ ∆(k, i) ↓−→ V (n− 1, k − 1)⊗R v0 ⊗R ∆(i)⊗R R〈tn−2k+1〉 −→ 0.

Since chR - m, R〈tn−2k+1〉 is semi-simple. Therefore, R〈tn−2k+1〉 ∼= ⊕m
j=1∆(j), where ∆(j) is

the cell module of R〈tn−2k+1〉 with respect to the cellular basis given in Lemma 2.4 (the case
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m = 1). By direct computation, we have

∆(i)⊗R ∆(j) ∼= ∆(i ∪ j).

By (2.2), we have (2.3). ¤

As Gm,n-module, ∆(0, i) ∼= ∆(i). Note that a cellular algebra is semi-simple if and only if

all of its cell modules are pairwise non-isomorphic irreducible [2]. Therefore, that TLm,n(δ) is

semi-simple implies all ∆(i) are pairwise non-isomorphic irreducible. So, Gm,n is semi-simple

which is equivalent to the fact chR - m. Moreover, ui 6= uj for any i 6= j, 1 ≤ i, j ≤ m.

In the sub-sequel, we assume chR - m, ui = ξi, 1 ≤ i ≤ m where ξ is a primitive m-th

root of unity. The reason is that the semi-simplicity of Gm,n is necessary for TLm,n(δ) to be

semi-simple.

For the latter use, we need another construction of the cell modules as follows. Let J≥k
m,n (resp.

J>k
m,n) be the free R-submodule of TLm,n generated by labelled TL-diagrams with l horizontal

arcs such that l ≥ k (resp. l > k). Let Ik
m,n(δ) be the submodule of J≥k

m,n/J>k
m,n generated by the

coset of v ⊗ v0 ⊗ x, with v ∈ P (n, k), x ∈ Gm,n−2k, and v0 = top(En−2k+1 · · ·En−1) ∈ P (n, k).

Then Ik
m,n(δ) is a right Gm,n−2k-module in which x ∈ Gm,n−2k acts on the free vertices of bot(D)

of, D ∈ Ik
m,n(δ). In the following we give an example to illustrate the action.
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By the construction of cell modules, we have

(2.4) ∆(k, i) ∼= Ik
m,n(δ)⊗Gm,n−2k

∆(i)

Moreover, {v ⊗ v0 ⊗Gm,n−2k
Ci

11 | v ∈ P (n, k)} is a free R-basis of ∆(k, i).

3. Restriction and induction

In this section, we assume that there is at least one non-zero parameter, say δi. Otherwise

δ̄j = 0 for 1 ≤ j ≤ m (see (4.1) for the definition of δ̄j). By [7, 8.1], TLm,n(δ) is not semi-simple.

Lemma 3.1. Suppose δi 6= 0. Let e = δ−1
i T i

nEn−1 ∈ TLm,n(δ). Then e2 = e, and eTLm,n(δ)e ∼=
TLm,n−2(δ).
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Proof. Each element in eTLm,n(δi)e is a linear combination of the labelled TL-diagrams D in

which top(D) (resp. bot(D)) contains a horizontal arc {n − 1, n} where there are i (resp. 0)

dots. Let D0 be the labelled TL-diagram obtained from D by removing the horizontal arc

{n− 1, n} on top(D) and bot(D). By the definition of the product of two labelled TL-diagrams

in Definition 2.1, one can verify easily that the R-linear isomorphism φ : eTLm,n(δi)e → TLm,n−2

with φ(D) = δiD
0, is an algebraic isomorphism. ¤

Now we may use the idempotent e to define two functors F and G as follows.

Definition 3.2. Let F : TLm,n(δ)-mod −→ TLm,n−2(δ)-mod with F (M) = eM and G :

TLm,n−2(δ)-mod −→ TLm,n(δ)-mod with G(M) = TLm,n(δ)e⊗TLm,n−2(�) M .

Proposition 3.3. Assume i ∈ Λ(m,n− 2k).

a) If ϕ is a non-zero TLm,n−2(δ)-homomorphism, then G(ϕ) 6= 0.

b) FG is an identity functor.

c) G(∆(k − 1, i)) = ∆(k, i), G(∆(k − 1, i) ↓) = ∆(k, i) ↓;
d) F (∆(k, i)) = ∆(k − 1, i), F (∆(k, i) ↓) = ∆(k − 1, i) ↓.

Proof. (a) and (b) follows from a general result in [3, 6.2]. (d) follows from (c) and (b) by

applying the functor F on both side of (c).

Let v0 = top(En−2k+1En−2k+3 · · ·En−1) ∈ P (n, k). We claim, as TLm,n(δ)-modules,

(3.1) Ik
m,n(δ) ∼= TLm,n(δ)e⊗TLm,n−2(�) Ik−1

m,n−2(δ).

In fact, let l = n− 2k. Then ε = T i
l+1T

i
l+3 · · ·T i

n−3El+1El+3 · · ·En−3 ∈ Ik−1
m,n−2(δ), that is,

1

1

ε = · · ·

l

l

l + 1

l + 1

l + 2

l + 2

¨ ¥
± °•

(i) · · ·

n− 3

n− 3

n− 2.

n− 2

¨ ¥
± °•

(i)

Suppose D1e ⊗D2 ∈ TLm,n(δ)e ⊗TLm,n−2(�) Ik−1
m,n−2(δ). Then D2 · ε = δk−1

i D2 , eD2 = D2e

and

D1e⊗D2 = δ1−k
i D1e⊗D2ε = δ−k

i D1D
0
2e⊗ ε.

where D0
2 can be obtained from D2 by adding two horizontal arcs {n−1, n} on the top and bottom

row of D2. Obviously, D1D
0
2 ∈ Ik

m,n(δi). Therefore, any element in TLm,n(δ)e ⊗TLm,n−2(�)

Ik−1
m,n−2(δ) can be expressed as a linear combination of the element D3e ⊗ ε with D3 = D1D

0
2.

Define the R-linear map α : TLm,n(δ)e⊗TLm,n−2(�) Ik−1
m,n−2(δ) → Ik

m,n(δ) with α(D3e⊗ ε) = D3.
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Then α is an epimorphism. If D3 = 0, then either 0 = D3 ∈ TLm,n(δ) or bot(D3) contains at

least one extra arc, say (i′, i′ + 1), i′ ≤ n− 2k − 1, in which there are s dots. So,

D3e⊗ ε = δ−1
i D3T

i−s
i′ Ei′T

s
i′e⊗ ε = δ−1

i D3e⊗ T i−s
i′ Ei′T

s
i′ε = δ−1

i D3e⊗ 0 = 0.

Therefore, α is injective. By (3.1) and (2.2),

G(∆(k − 1, i)) = TLm,n(δ)e⊗TLm,n−2(�)
(
Ik−1
m,n−2(δ)⊗Gm,n−2k

∆(i)
)

∼=
(
TLm,n(δ)e⊗TLm,n−2(�) Ik−1

m,n−2(δ)
)⊗Gm,n−2k

∆(i)
∼= Ik

m,n(δ)⊗Gm,n−2k
∆(i)

= ∆(k, i).

This completes the proof of the first isomorphism given in (c). The second isomorphism can be

proved similarly. ¤

Definition 3.4. For any TLm,n(δ)-modules M and N , define
〈
M, N

〉
n

=
〈
M,N

〉
TLm,n(�) = dimR HomTLm,n(�)(M,N).

Proposition 3.5. Suppose i ∈ Λ(m,n), j ∈ Λ(m,n − 2k) and k0 ∈ N. Then
〈
∆(k0, i),∆(k +

k0, j)
〉
n+2k0

6= 0 if and only if
〈
∆(0, i), ∆(k, j)

〉
n
6= 0.

Proof. ” ⇐” follows from Proposition 3.3(a) and (c) by applying G repeatedly.

”⇒” Suppose 0 6= ϕ ∈ HomTLm,n+2k0
(�) (∆(k0, i), ∆(k + k0, j)) and W = ϕ(∆(k0, i)). Let

e = δ−1
i T i

n+2k0−1En+2k0−1. We claim

(3.2) eW 6= 0.

Otherwise, we have eW = 0. Let vi = top(Ei) = bot(Ei). Then

E1 = δ−2
i (v1 ⊗ vn+2k0−1 ⊗ id) · T i

n+2k0−1En+2k0−1T
i
n+2k0−1 · (vn+2k0−1 ⊗ v1 ⊗ id).

So, E1W = 0 which implies EW = 0 with E = E1E3 · · ·E2k0−1. On the other hand, Let

U0 = rad∆(k0, i). Then either ∆(k0, i) = U0 or ∆(k0, i)/U0 is irreducible [2, 3.2]. Let m =

(m,m, · · · ,m) ∈ Λ(m,n). Since E ∈ TL
(k0,m)
m,n+2k0

⊂ TL
≤(k0,i)
m,n+2k0

, Lemma 2.3 shows EU0 = 0. We

have W = ϕ(∆(k0, i)) ∼= ∆(k0, i)/U . We claim U ⊂ U0. Otherwise, U +U0 = ∆(k0, i) and hence

U/(U0 ∩ U) ∼= ∆(k0, i)/U0 is irreducible. So, there is a composition series of ∆(k0, i) such that

the multiplicity of L(k0, i) is greater than 2, a contradiction.

Let y = top(T i
1T

i
3 · · ·T i

2k0−1E). Then v = y⊗v0⊗Ci
1,1 ∈ ∆(k0, i) is a non-zero element, where

v0 is a fixed element in P (n + 2k0, k0). Since δi 6= 0, T i
1T

i
3 · · ·T i

2k0−1E · v = (δi)k0v 6= 0, which

implies v 6∈ U . Therefore, T i
1T

i
3 · · ·T i

2k0−1E(v + U) = δk0
i (v + U) 6≡ 0 modU , which contradicts

to the fact eW = 0. This completes the proof of (3.2).

If eW 6= 0, then F (ϕ) 6= 0. Now, the result follows from induction and (3.2). ¤
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Proposition 3.6. Suppose M is a TLm,n(δ)-module. Then M ↑∼= G(M) ↓, where M ↑ is the

induced module of a TLm,n(δ)-module M to TLm,n+1(δ). In particular, for any i ∈ Λ(m,n−2k),

∆(k, i) ↑∼= ∆(k + 1, i) ↓.

Proof. Suppose x ∈ TLm,n+1(δ). Add (n + 2)-th vertex on top(x) and bot(x) to get a new

labelled TL-diagram D in which

(1) the (n + 2)-th vertex of top(D) joins the vertex j if {j, n + 1} is an arc in x. Here n + 1

is the (n + 1)-th vertex in bot(x). Moreover, if there are s dots on the arc {j, n + 1}, so is the

new arc {j, n + 2}
(2) {n + 1, n + 2} is a horizontal arc in bot(D) in which there is no dot.

We give two examples to illustrate the above definition.
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Define an R-linear map α : TLm,n+1(δ) → TLm,n+2(δ)e with α(x) = D. Obviously, α is an

R-linear isomorphism. By the definition of the product of two labelled TL-diagrams, α is a left

TLm,n+1(δ)-module and right TLm,n(δ)-module isomorphism. That is,

(3.3) TLm,n+1(δ) ∼= TLm,n+2(δ)e.

For any TLm,n(δ)-module M ,

M ↑ ∼= TLm,n+1(δ)⊗TLm,n(�) M

∼= TLm,n+2(δ)e⊗TLm,n(�) M by (3.3)
∼= G(M) ↓ .

¤

Corollary 3.7. Suppose chR - m. Assume i = (i1, i2, . . . , in) ∈ Λ(m,n). If j =

(i1, i2, . . . , in, j) ∈ Λ(m,n + 1), then
〈
∆(0, i) ↑, ∆(0, j)

〉
n+1

6= 0.

Proof. By Proposition 3.6,
〈
∆(0, i) ↑, ∆(0, j)

〉
n+1

=
〈
∆(1, i) ↓, ∆(0, j)

〉
n+1

. Now Proposi-

tion 2.6 implies that, for all j = (i1, i2, . . . , in, j), 1 ≤ j ≤ m,
〈
∆(1, i) ↓, ∆(0, j)

〉
n+1

6= 0. ¤

Proposition 3.8. Suppose chR - m and
〈
∆(0, i),∆(k, j)

〉
n
6= 0 for i ∈ Λ(m,n) and j ∈

Λ(m, n− 2k).



ON THE SEMI-SIMPLICITY OF CYCLOTOMIC TEMPERLEY-LIEB ALGEBRAS 9

(a) If i0 = (i1, i2, . . . , in−1) ∈ Λ(m,n− 1), then
〈
∆(0, i0), ∆(k, j) ↓ 〉

n−1
6= 0.

(b) Let j0 = (j1, j2, . . . , jn−2k−1) and j1 = (j1, j2, . . . , jn−2k, j0), 1 ≤ j0 ≤ m. Then either〈
∆(0, i0), ∆(k, j0)

〉
n−1

6= 0 or
〈
∆(0, i0), ∆(k − 1, j1)

〉
n−1

6= 0.

Proof. Since i0 ∈ Λ(m,n − 1), Corollary 3.7 implies
〈
∆(0, i0) ↑, ∆(0, i)

〉
n
6= 0. Since chR -

m, ∆(i) is a simple Gm,n-module, forcing ∆(0, i) to be an irreducible TLm,n(δ)-module. So,〈
∆(0, i0) ↑,∆(k, j)

〉
n
6= 0. Using Frobenius reciprocity, we get (a).

Let V = ∆(k, j) ↓. By Proposition 2.6, there is a submodule W ⊂ V such that W ∼= ∆(k, j0).

j0 = (j1, j2, . . . , jn−2k−1).

Let 0 6= S be the image of ∆(0, i0) in V . Since ∆(0, i0) is irreducible, S ∼= ∆(0, i0). If S ⊂ W ,〈
∆(0, i0), ∆(k, j0)

〉
n−1

6= 0.

If S 6⊂ W , then S ∩W = 0. Thus, (S⊕W )/W ∼= S/(W ∩S) = S is an irreducible submodule

of V/W . By Proposition 2.6,

V/W ∼=
m⊕

j=1

∆(k − 1, j ∪ j).

Hence there is a j1 = (j1, j2, . . . , jn−2k, j0) ∈ Λ(m,n−2k+1) such that (S⊕W )/W ⊂ ∆(k−1, j1),

forcing
〈
∆(0, i0), ∆(k − 1, j1)

〉
n−1

6= 0. ¤

4. Semi-simplicity of the cyclotomic Temperley-Lieb algebras

In this section, we shall give the necessary and sufficient conditions on the semi-simplicity of

TLm,n(δ). The key is [7, 8.1]. First, let us recall some of results in [7].

Let ui = ξi where ξ is a primitive m-th root of unity. For any i = (i1, i2, · · · , in−2) ∈
Λ(m, n− 2), let

Ψi(n, 1) =




A B1

BT
1 A B2

BT
2 A B3

. . . . . . . . .
. . . A Bn−2

BT
n−2 A




,

where Bj = (bst) with bst = us−t
ij

for 1 ≤ s, t ≤ m, and BT
i stands for the transpose of Bi, and

A =




δ0 δ1 · · · δm−1

δ1 δ2 · · · δ0

...
... · · · ...

δm−1 δ0 · · · δm−2




.
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Let p(x) = δ0x
m−1 + δ1x

m−2 + · · ·+ δm−1. Write

(4.1)
p(x)

xm − 1
=

δ̄1

x− u1
+

δ̄2

x− u2
+ · · ·+ δ̄m

x− um
.

Then

(4.2) δ̄j = p(uj)/
∏

i 6=j

(uj − ui).

Following [7], we partition i = (i1, i2, ..., in−2) into (i1,1, i1,2, ..., i1,j1 , i2,1, i2,2, ..., i2,j2 , ..., ir,jr) with

j1 + j2 + ... + jr = n− 2 such that m divides ip,q + ip,q+1 for all p with 1 6 q < jp and that m

does not divide ip,jp + ip+1,1 for all 1 6 p < r. Let

Pn(x1, ..., xn) = det




x1 1

1 x2 1
. . . . . . . . .

. . . xn−1 1

1 xn




.

We call Pn(x1, x2, · · · , xn) the n-th generalized Tchebychev polynomial. The following result

was proved in [7, §8].

Proposition 4.1. Keep the setup. Then

detΨi(n, 1) = (−1)
1
2
m(m−1)(n−1)mm(n−1) (δ̄1δ̄2...δ̄m)n−1

∏r
p=1(δ̄m−ip,jp

∏jp

q=1 δ̄ip,q)

r∏

p=1

Pjp(δ̄ip,1 , δ̄ip,2 , ..., δ̄ip,jp
).

Proposition 4.2. Suppose i ∈ Λ(m,n), j ∈ Λ(m,n − 2). If
〈
∆(0, i), ∆(1, j)

〉
n
6= 0, then

detΨj(n, 1) = 0.

Proof. Since
〈
∆(0, i), ∆(1, j)

〉
n
6= 0, there is a ϕ ∈ HomTLm,n(�)(∆(0, i),∆(1, j)) such that

ϕ(v) 6= 0 for some v ∈ ∆(0, i). Consider an element

T =
n−1∑

i=1

m−1∑

s=0

T s
i EiT

s
i ∈ TLm,n(δ)

We have Tϕ(v) = ϕ(Tv) = ϕ(0) = 0. Write

ϕ(v) =
n−1∑

i=1

m−1∑

s=0

ai,sv
(s)
i ⊗ v0 ⊗ Cj

1,1,

where v
(s)
i = top(T s

i Ei) and v0 is a fixed element in P (n, 1). Since

(v1 ⊗ v1 ⊗ Cj
1,1)(v2 ⊗ v2 ⊗ Cj

1,1) ≡ v1 ⊗ v2 ⊗ φ(n,1)
v1,v2

(t1, t2, ..., tn−2)(C
j
1,1)

2 (mod TL<(1,j)
n,m ),
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for some elements φ
(n,1)
v1,v2(t1, t2, ....., tn−2) in Gm,n−2. By a direct computation, we have

0 = Tϕ(v) =
∑

1≤i,j≤n−1

∑

0≤s,t≤m−1

φ
(n,1)

v
(s)
i ,v

(t)
j

(uj1 , uj2 , . . . , ujn−2)aj,tv
(s)
i ⊗ v0 ⊗ Cj

1,1

Therefore, for all i, s, we have
∑

1≤j≤n−1

∑
0≤t≤m−1 φ

(n,1)

v
(s)
i ,v

(t)
j

(uj1 , uj2 , . . . , ujn−2)aj,t = 0.

Since ϕ(v) 6= 0, there is at least one of ai,t 6= 0, which implies det Ψj(n, 1) = 0. ¤

Proposition 4.3. Suppose R is a splitting field of xm − 1 with chR - m. If detΨi(l, 1) 6= 0 for

all 2 ≤ l ≤ n and i ∈ Λ(m, l − 2), then TLm,n(δ) is semi-simple.

Proof. It is proved in [7] that TLm,n(δ) is a cellular algebra. Note that a cellular algebra is semi-

simple if and only if all of its cell modules are pairwise non-isomorphic irreducible (see [2]). So,

TLm,n(δ) is not semi-simple if there is a cell module, say ∆(k1, i), which is not irreducible. Thus,

the length of ∆(k1, i) is strictly greater than 1, and there is an irreducible proper submodule D

of ∆(k1, i). Note that any simple module of a cellular algebra is the simple head of a cell module.

Therefore, D is the simple quotient of a cell module, say ∆(k2, j). Since D is a composition

factor of ∆(k1, i), it follows from Definition 2.2 and (2.1) that (k1, i) ≤ (k2, j). Moreover,

(k1, i) 6= (k2, j). Otherwise, ∆(k1, i) would have a simple head D. So, the multiplicity of D in

∆(k1, i) is at least two, a contradiction. We have
〈
∆(k2, j),∆(k1, i)

〉
n
6= 0. Moreover, either

k1 > k2 or k1 = k2 and i < j.

Suppose k1 > k2. Using Proposition 3.5, we can assume j ∈ Λ(m, l), l = n − 2k2. Let

k = k1 − k2. Then
〈
∆(0, j),∆(k, i)

〉
l
6= 0. Applying Proposition 3.8 repeatedly, we can assume

k = 1. By Proposition 4.2, detΨi(l, 1) = 0, a contradiction.

Suppose k1 = k2 and i < j. By Proposition 3.5,
〈
∆(0, j),∆(0, i)

〉
n−2k1

6= 0, a contradiction

since ∆(0, j) 6∼= ∆(0, i) and both of them are irreducible.

Thus we have shown that under our assumption all cell modules are irreducible. It is clear

that they are also pairwise non-isomorphic. Hence TLm,n(δ) is semi-simple. ¤

Lemma 4.4. Suppose detΨi(n, 1) 6= 0 for all i ∈ Λ(m,n− 2) with m ≥ 2. Then δ̄i 6= 0 for any

i, 1 ≤ i ≤ m.

Proof. Take i = (m,m, · · · ,m) ∈ Λ(m,n − 2). Then i can be divided into one part with

j1 = n− 2. By Proposition 4.1, δ̄i 6= 0, 1 ≤ i ≤ m− 1 since they are the factors of det Ψi(n, 1).

Take i = (1, 1, · · · , 1) ∈ Λ(m, n−2). Then i can be divided into either one part if m = 2 or n−2

parts if m > 2. By Proposition 4.1, δ̄m 6= 0 since it is a factor of det Ψi(n, 1) in any case. ¤

It is proved in [7, 8.1] that detΨi(n, 1) 6= 0 for all i ∈ Λ(m,n− 2) and chR - m if TLm,n(δ) is

semi-simple. The following is the inverse of this result.

Proposition 4.5. Suppose R is a splitting field of xm − 1 with chR - m and m ≥ 2. If

detΨi(n, 1) 6= 0 for all i ∈ Λ(m,n− 2), then TLm,n(δ) is semi-simple.
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Proof. By Proposition 4.3, we need prove detΨi(l, 1) 6= 0 for all 2 ≤ l ≤ n, i ∈ Λ(m, l −
2) under our assumption. If det Ψi(l, 1) = 0 for some l, l 6= n and i ∈ Λ(m, l − 2), then

Pjp(δ̄ip,1 , δ̄ip,2 , ..., δ̄ip,jp
) = 0 for some p, 1 ≤ p ≤ r by Proposition 4.1 and Lemma 4.4.

On the other hand, take i0 = (i1, i2, · · · , il−2, a, a, · · · , a) ∈ Λ(m,n − 2) with m - (il−2 +

a). By Proposition 4.1, Pjp(δ̄ip,1 , δ̄ip,2 , ..., δ̄ip,jp
) must be a factor of det Ψi0(n, 1) and hence

detΨi0(n, 1) = 0, a contradiction. ¤

Remark. The reason we assume m ≥ 2 is that we need the fact that il−2 and a cannot be

in the same part. When m = 1, we cannot use the above argument. However, one can get a

necessary and sufficient condition for TLn,1 to be semi-simple [10, §5].

Together with [7, 8.1] and Proposition 4.5, we have the main result of this paper as follows.

Note that Theorem 4.6 is not true if m = 1.

Theorem 4.6. Suppose m ≥ 2. Let R be a splitting field of xm − 1, containing 1, δ0, · · · , δm−1.

Then the following conditions are equivalent.

(a) TLm,n(δ) is semi-simple.

(b) TLm,n(δ) is split semi-simple.

(c) chR - m and detΨi(n, 1) 6= 0 for all i ∈ Λ(m,n− 2).

(d) All cell modules ∆(k, i) with (k, i) ∈ Λn,m are pairwise non-isomorphic irreducible.

(e) All cell modules ∆(k, i) with (k, i) ∈ Λn,m, k ∈ {0, 1} are pairwise non-isomorphic irre-

ducible.

Proof. Since TLm,n(δ) is a cellular algebra, (a), (b) and (d) are equivalent. By [7, 8.1], (c) and

(e) are equivalent. By Proposition 4.5 and [7, 8.1], (a) and (c) are equivalent. ¤

The following Corollary follows immediately from [7, 8.1] and Proposition 4.5.

Corollary 4.7. Keep the setup. Then TLm,n(δ) is semi-simple if and only if

(a) chR - m
(b) P1(δ̄i) = δ̄i 6= 0, 1 ≤ i ≤ m.

(c) For any (i1, i2, · · · , il) ∈ Λ(m, l) with m | (ij + ij+1), 1 ≤ j ≤ l−1, Pl(δ̄i1 , δ̄i2 , · · · , δ̄il) 6= 0,

2 ≤ l ≤ n.

Remark. When m = 1, Λ(m,n) contains only one element (1, 1, · · · , 1) which can be parti-

tioned into one part. In this case, Corollary 4.7 is Westbury’s Theorem given in [10, §5].
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