ON THE SEMI-SIMPLICITY OF CYCLOTOMIC TEMPERLEY-LIEB
ALGEBRAS

HEBING RUI, CHANGCHANG XI AND WEIHUA YU

ABSTRACT. In [7], a class of associative algebras called cyclotomic Temperley-Lieb algebras
over a commutative ring was introduced. In this note, we provide a necessary and sufficient

condition for a cyclotomic Temperley-Lieb algebra to be semi-simple.

1. INTRODUCTION

The Temperley-Lieb algebras were first introduced in [9] in order to study the single bond
transfer matrices for the Ising model and for the Potts model. Jones [4] defined a trace function
on a Temperley-Lieb algebra so that he could construct Jones polynomial of a link when the
trace is non-degenerate. It is known that the trace is non-degenerate if the Temperley-Lieb
algebra is semi-simple. So it is an interesting question to provide a criterium for a Temperley-
Lieb algebra to be semi-simple. In [10, §5], Westbury computed explicitly the determinants of
Gram matrices associated to all “cell modules” via Tchebychev polynomials. This implies that
a Temperley-Lieb algebra is semi-simple if and only if such polynomials do not take values zero
for the paprameters.

As a generalization of a Temperley-Lieb algebra, the cyclotomic Temperley-Lieb algebra
T Ly, n(6) of type G(m, 1,n) was introduced in [7]. It is proved in [7] that T'L,, ,,(d) is a cellular
algebra in the sense of [2]. Thus T'L,, ,(d) is semi-simple if and only if all of its “cell modules”
are pairwise non-isomorphic irreducible. In order to describe a cell module to be irreducible,
Rui and Xi computed the determinants of Gram matrices of certain cell modules [7, 8.1]. In
general, it is hard to compute the determinants for all cell modules.

In this note, we shall consider the semi-simplicity of cyclotomic Temperley-Lieb algebras, this
is an analog question considered in [8] (see [1] for the case m = 1). Following [5], we study two
functors F' and G between certain categories in section 3. Via these functors and [7, 8.1], we
can show Theorem 4.6, the main result of this paper, which says that the semi-simplicity of a
cyclotomic Temperley-Lieb algebra can be determined by generalized Tchebychev polynomials

and the parameters §;,1 < i < m.

Rui and Yu are supported in part by NSFC(n0.10271014) and EYTP. Xi is supported in part by a China-UK
joint project of the Royal Society, UK.
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2. CycLoTOMIC TEMPERLEY-LIEB ALGEBRAS

In this section, we recall some of results on the cyclotomic Temperley-Lieb algebras in [7].
Throughout the paper, we fix two natural numbers m and n.

A labelled Temperley-Lieb diagram (or labelled TL-diagram) D of type G(m,1,n) is a
Temperley-Lieb diagram with 2n vertices and n arcs. Each arc is labelled by an element in
Lo, = Z/mZ, which will be considered as the number of dots on it. The following are two

special labelled TL-diagrams.

1 1 1+ 1 n 1 1 n
()
1 1 1+ 1 n 1 ) n

An arc in a labelled TL-diagram D is horizontal if both of its endpoints are in the same row of
D. Otherwise, it is vertical. A dot will be replaced by m — 1 dots if it moves from one endpoint
of a horizontal arc to another. A dot in a vertical arc can move freely from one endpoint to
another.

Given a horizontal arc {7, j} of D with ¢ < j. We say i (resp. j) the left (resp. right) endpoint
of the arc. For a horizontal (resp. vertical) arc, we always assume that the dots on this arc
concentrate on the left endpoint (resp. the endpoint on the top row of the labelled TL-diagram
D).

Suppose an arc l; joins another arc lo with a common endpoint j. A dot can move from [ to
lo. We always assume that a dot on the endpoint j € I; can be replaced by a dot on j € [s.

Given two labelled TL-diagrams D; and Ds of type G(m,1,n). Following [7], we define a
new labelled TL-diagram D; o Do as follows: First, compose D; and D> in the same way as
was done for the Temperley-Lieb algebra to get a new diagram P. Second, applying the rule for
the movement of dots to relabel each arc of P. We get a new labelled TL-diagram, and this is
defined to be Dy o Dy. Let n(f, D1, D2) be the number of the relabelled closed cycles on which

there are i dots.

Definition 2.1. [7, 3.3] Let R be a commutative ring containing 1 and do,...,dn—1. Put
= (00,...,0m—1). A cyclotomic Temperley-Lieb algebra T'L,, ,(d) is an associative algebra
over R with a basis consisting of all labelled TL-diagrams of type G(m,1,n), and the multipli-
cation is given by Dy - Dy = H?;gl (5?6’D1’D2)D1 o Ds.

It was shown in [7] that T'L,, ,,(d) can be defined by generators and relations. For the details
we refer to [7, 2.1].



ON THE SEMI-SIMPLICITY OF CYCLOTOMIC TEMPERLEY-LIEB ALGEBRAS 3

In the remaining part of this section, we recall some results on the representations of T'Ly, ,,(6).
First, we give the notion of a cellular algebra in [2], which depends on the existence of certain

basis. There is also a basis-free definition of cellular algebras, for this we refer to [6].

Definition 2.2. [2, 1.1] An associative R-algebra A is called a cellular algebra with cell
datum (I, M, C, 1) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each A € I there is a finite set M ().
The algebra A has an R-basis CﬁT where (S, T) runs through all elements of M (\) x M () for
all A e 1.

(C2) The map i is an R-linear anti-automorphism of A with i* = id which sends CQ,T to
Chs.

(C3) For each A € I and S,T € M () and each a € A the product aC’éT can be written as

aCé‘yT = Z rq(U, S)Cﬁr_p + 17,
UeM())
where 7/ belongs to A<* consisting of all R-linear combination of basis elements with upper

index p strictly smaller than A, and the coefficients r,(U, S) € R do not depend on 7.

For each A\ € I, one can define a cell module A(\) and a symmetric, associative bilinear form
Dy : A(N)®@rA(N) — R in the following way (see [2, §2]): As an R-module, A(\) has an R-basis
{C%| S € M(\)}, the module structure is given by
(2.1) aCy= > r(U,8)Cp.

UeM ()
The bilinear form @ is defined by
q))\(0§7 C%)C?]\,V = C&SC%,V (mOd A<>\))
where U and V' are arbitrary elements in M (A).

Let radA(M\) = {c € A(\) | ®a(e,d) =0 for all ¢ € A(N)}. Then radA(N) is a submodule of

A(X). Put L(A) = A(X)/radA(X). Then either L(A) = 0 or L(A) is irreducible [2, 3.2]. We will

need the following result next section.
Lemma 2.3. radA(\) is annihilated by AS?.

Proof. Let a = Cgl,Tl € ASN and C3 € radA(N). If pu < A, then aCq = 0 in A(N). If p = A,
then we still have aCg = 0 since 74(S1, S) = ®»(Cp,, C3) and CF € radA(N). O

From now on, we assume that R is a splitting field of 2" —1. Then 2 —1 = [[", (z—u;) for
some u; € R,1 <7 <m. Let Gy, be the R-subalgebra of T'L,, ,(d) generated by T1, 1%, - - ,T),.
Let A(m,n) = {(i1,i2,--- ,in) | 1 <1i; < m}. Define i <jif iy > jj for all 1 < k < n. Then
(A(m,n),<) is a poset. For any i € A(m,n), set C} | = IT5-, H?iijﬂ(tj —uy).
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Lemma 2.4. The set {Cil |ie A(m,n)} is a cellular basis of G .

The cell module for i € A(m,n) with respect to the above cellular basis will be denoted by
A(i).

An (n, k)-labelled parenthesis graph is a graph consisting of n vertices {1,2,...,n} and k hor-
izontal arcs (hence 2k < n and there are n — 2k free vertices which do not belong to any arc)
such that

(1) there are at most m — 1 dots on each arc,

(2) there are no arcs {7,j} and {q,l} satisfying i < ¢ < j <!

(3) there is no arc {i,j} and free vertex ¢ such that i < g < j.

Let P(n, k) be the set of all (n, k)-labelled parenthesis graphs. A labelled TL-diagram D with
k horizontal arcs can be determined by a triple pair (vi, va, ), © € Gy, p—2r and v1,v2 € P(n, k)
(see [7, §5]) and vice versa. Such a D will be denoted by v; ® vy ® z. In this case, we define
top(D) = v1 and bot(D) = vs.

Let Ay = {(k,i) | 0 < k < [n/2],,i € A(m,n — 2k)}. For any (k,i),(l,j) € Amn, say
(k,i) < (1,j) if either k >l or k = and i < j. Then (A, n, <) is a poset. For vi,vs € P(n,k)
and i € A(m,n — 2k), define 01(,’;11,)2 =01 QU2 ® C’il.

Proposition 2.5. [7, 5.3] Let R be a splitting field of 2™ — 1. The set {Cq()]f:,)z (k,i) €
Apm,v1,v2 € P(n,k)} is a cellular basis of T Ly, n(6).

Let A(k,1) be the cell module with respect to the cellular basis given in Proposition 2.5. Then
(2.2) A(k,i) 2V (n, k) @r vo @r A(i)

where V(n, k) is the free R-module generated by P(n, k) and vy is a fix element in P(n, k). The

following theorem is known as branching rule for the cell module A(k,i).

Proposition 2.6. [7, 7.1] Suppose chR t m. For i = (i1,i2, " ,in—2x) € A(m,n — 2k), define
ig = (il,ig, e 77:n—2k—1) S A(m,n — 2k — 1) and iUj = (il,ig, s ,in_gk,j) S A(m,n —2k+ 1).

Then there is a short exact sequence

(2.3) 0 — A(k,io) — A(k,i) |— DAk - 1,iuj) — 0,
j=1

where we denote by M | the restriction of a T Ly, ,(6)-module M to a T' Ly, n—1(6)-module.
Proof. Tt is proved in [7, 7.1] that
0 — A(k,ip) — A(k,i) | — V(n—1,k—1) Qrvo ®r A(i) ®r R(tn—2k+1) — 0.

Since chR 1 m, R(t,_ox+1) is semi-simple. Therefore, R(t,_okt1) = @;”ZlA(j), where A(j) is

the cell module of R(t,—2r+1) with respect to the cellular basis given in Lemma 2.4 (the case
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m = 1). By direct computation, we have
Al) @r A(j) = AU ).

By (2.2), we have (2.3). O

~

As Gy, p-module, A(0,i) = A(i). Note that a cellular algebra is semi-simple if and only if
all of its cell modules are pairwise non-isomorphic irreducible [2]. Therefore, that T'L,, »(d) is
semi-simple implies all A(i) are pairwise non-isomorphic irreducible. So, Gy, , is semi-simple
which is equivalent to the fact chR { m. Moreover, u; # w; for any i # j, 1 < 4,5 < m.

In the sub-sequel, we assume chR { m, u; = &, 1 < i < m where ¢ is a primitive m-th
root of unity. The reason is that the semi-simplicity of Gy, , is necessary for T'L,, ,(d) to be
semi-simple.

For the latter use, we need another construction of the cell modules as follows. Let Jz >k v (resp.
Jﬁlkn) be the free R-submodule of T'L,, , generated by labelled TL-diagrams with [ horlzontal
arcs such that [ > k (resp. | > k). Let Iﬁw(é) be the submodule of J>k /J; generated by the
coset of v ® vy ® x, with v € P(n, k), x € Gy n—2k, and vy = top(Ep—_2k41 - En—1) € P(n, k).
Then Iﬁ%n(d) is a right G, 5,—2k-module in which « € Gy, 21 acts on the free vertices of bot(D)

of, D € Iﬁ%n(d). In the following we give an example to illustrate the action.

o e
=

A()

By the construction of cell modules, we have

(2.4) A(k,i) 2 I, ,(8) ®c

m,n—2k

Moreover, {v ® vy ®¢ Ci, |v € P(n,k)} is a free R-basis of A(k,1).

m,n—2k

3. RESTRICTION AND INDUCTION

In this section, we assume that there is at least one non-zero parameter, say d;. Otherwise
§; =0for 1 < j <m (see (4.1) for the definition of 6;). By [7, 8.1], T'Ly, ,,(8) is not semi-simple.

Lemma 3.1. Suppose d; #0. Lete = 5;1T£En,1 € T'Ly, 1, (0). Then e =e, and eT' Ly, pn(d)e =
T Ly n—2(9).
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Proof. Each element in eT'Ly, ,(d;)e is a linear combination of the labelled TL-diagrams D in
which top(D) (resp. bot(D)) contains a horizontal arc {n — 1,n} where there are i (resp. 0)
dots. Let D° be the labelled TL-diagram obtained from D by removing the horizontal arc
{n—1,n} on top(D) and bot(D). By the definition of the product of two labelled TL-diagrams
in Definition 2.1, one can verify easily that the R-linear isomorphism ¢ : €T'Lyy, ,(0;)e — T Ly, p—2

with ¢(D) = §; DV, is an algebraic isomorphism. O
Now we may use the idempotent e to define two functors F' and G as follows.

Definition 3.2. Let F' : T Ly, ,(6)-mod — T'Ly, ,—2(6)-mod with F(M) = eM and G :
T Ly n—2(8)-mod — T'Ly, »,(d)-mod with G(M) = TL,, »(d)e QT Ly o(8) M-

Proposition 3.3. Assume i € A(m,n — 2k).
a) If ¢ is a non-zero T Ly, y,—2(8)-homomorphism, then G(¢) # 0.
b) FG is an identity functor.
c) G(A(k —1,i)) = A(k,i), G(A(k—1,i)])=A(k,i) |;
d) F(A(k,i)) = A(k —1,i1), F(A(k,i)])=Ak—-1,i) |.

Proof. (a) and (b) follows from a general result in [3, 6.2]. (d) follows from (c) and (b) by
applying the functor F' on both side of (c).
Let v = top(Ep—2k+1En—ok+3 - - - En—1) € P(n, k). We claim, as T Ly, ,,(d)-modules,

(3-1) Ir];,n(‘s) = TLm,n(‘s)e ®TLm,n72(5) Iﬁ;r}—2(5)~

In fact, let [ = n — 2k. Then e = T}

PTY T! 2B Epy3-- B, 3 €181 (8), that is,

+3° " In m,n—2

Suppose Die @ Dy € T Ly, n(d)e QT Ly n—2(8) If{l (8). Then Dy - e = 5571D2 , eDy = Dse

n—2

and
Die® Dy =6} ""Die ® Doe = 6;"D1Dje @ e.

where DY can be obtained from Dy by adding two horizontal arcs {n—1,n} on the top and bottom

row of Dy. Obviously, D1 DY € Ign(di). Therefore, any element in T' L n(6)e @7r,, . _.(5)
Ik?—l

m,n—2

Define the R-linear map o : 'L n(d)e @7r,, . _o(s) =1 (8) — IF . (8) with a(Dse ® €) = Ds.

m,n—2

(8) can be expressed as a linear combination of the element Dse ® € with D3 = D1D8.
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Then « is an epimorphism. If Ds = 0, then either 0 = D3 € T'L,, ,(d) or bot(Ds3) contains at

least one extra arc, say (¢,i' + 1), i/ < n — 2k — 1, in which there are s dots. So,
Dse®e =6, 'DsT, *EyTie®e=0; ' Dye ® T}, *EyTje = 6; ' D3e ® 0 = 0.
Therefore, « is injective. By (3.1) and (2.2),
G(A(k=1,1)) = TLpnn(8)e®7r,, . o6) (Ihno(8) @c,, .o A1)
= (TLinn(8)e ®11,,,0206) Im-2(0)) ®C o AlR)

=~ I .(0) ®¢ A(i)
A(k,1).

m,n—2k

This completes the proof of the first isomorphism given in (¢). The second isomorphism can be

proved similarly. O

Definition 3.4. For any T'L,, ,(d)-modules M and N, define
(M,N) =(M,N >TLm,n(5) = dimg Homyy,,  (5)(M, N).

Proposition 3.5. Suppose i € A(m,n),j € A(m,n — 2k) and kg € N. Then <A(k0,i),A(k: +
K0.3) ),y op, 7 0 if and only if ( A(0,1), A(k.j)), # 0.

Proof. 7 < follows from Proposition 3.3(a) and (c) by applying G repeatedly.

”=" Suppose 0 # ¢ € Homyj, &) (A(ko, 1), A(k + ko,j)) and W = @(A(ko,i)). Let

e=90; Tn+2ko 1

m,n+2kg
E,tor,—1. We claim

(3.2) eW # 0.
Otherwise, we have eV = 0. Let v; = top(£;) = bot(£;). Then

E1 = 5; (Ul & Un+42kg—1 & ’Ld) n+2ko 1En+2ko 1T n4+2ko—1 " ('Un+2k0—1 R v ® ’Ld)

So, E4W = 0 which implies EW = 0 with £ = E1E3---Eg,,—1. On the other hand, Let
Up = radA(kp,i). Then either A(kg,i) = Uy or A(ko,1)/Up is irreducible [2, 3.2]. Let m =
(m,m, -+~ ,m) € A(m,n). Since E € TLW>™) < TLZ%),  Lemma 2.3 shows EU = 0. We
have W = p(A(ko,1)) = A(ko,1)/U. We claim U C Uy. Otherwise, U+ Uy = A(ko, 1) and hence
U/(UyNU) = A(kg,1)/Uy is irreducible. So, there is a composition series of A(kg,1i) such that
the multiplicity of L(ko,1) is greater than 2, a contradiction.

Let y = top(T{T4 - T4, _E). Then v = y®uvo@C} ; € A(ko, 1) is a non-zero element, where
vp is a fixed element in P(n + 2ko, ko). Since §; # 0, TiT% - "TQikO_lE v = (6;)Fv # 0, which
implies v ¢ U. Therefore, TiT% - - ~T2ik0_1E(v +U) = 6f0 (v+U) # 0 mod U, which contradicts
to the fact el = 0. This completes the proof of (3.2).

If eW # 0, then F(p) # 0. Now, the result follows from induction and (3.2). O
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Proposition 3.6. Suppose M is a T Ly, ,(0)-module. Then M 1= G(M) |, where M 7 is the
induced module of a T Ly, ,,(8)-module M to T' Ly, n41(6). In particular, for anyi € A(m,n—2k),

Ak, i) 12 Ak + 1) .

Proof. Suppose x € T Ly, n11(6). Add (n + 2)-th vertex on top(z) and bot(x) to get a new
labelled TL-diagram D in which

(1) the (n + 2)-th vertex of top(D) joins the vertex j if {j,n + 1} is an arc in . Here n + 1
is the (n + 1)-th vertex in bot(x). Moreover, if there are s dots on the arc {j,n + 1}, so is the
new arc {j,n + 2}

(2) {n+ 1,n + 2} is a horizontal arc in bot(D) in which there is no dot.

We give two examples to illustrate the above definition.

/A Rl V7
N[N/

Define an R-linear map o : T'Ly, n4+1(0) — T Ly nt2(0)e with o(z) = D. Obviously, « is an

R-linear isomorphism. By the definition of the product of two labelled TL-diagrams, « is a left
T Ly n+1(8)-module and right T'L,, ,(d)-module isomorphism. That is,

(3.3) TLomns1(8) 2 T Ly nio(6)e.
For any T'L,, »(d)-module M,

M T

I

TLm,n—l—l(‘” ®TLm,n(6) M
TLmn+2(8)e @7y, .5y M by (3.3)
G(M) | .

Il

Il

0

Corollary 3.7. Suppose chR 1 m. Assume i = (i1,i2,...,in) € A(m,n). If j =
(i1,02,...,in,J) € A(m,n+ 1), then <A(0,i) 1, A(0,j) >n+1 #0.

Proof. By Proposition 3.6, <A(O,i) 1, A(0,)) >n+1 = <A(1,i) 1, A(0,j) >n+1. Now Proposi-
tion 2.6 implies that, for all j = (i1,142,...,ip,7),1 < j < m, <A(1,i) 1, A0, j) >n+1 £ 0. O

Proposition 3.8. Suppose chR t m and ( A(0,1), A(k,j) >n # 0 fori € A(m,n) and j €
A(m,n — 2k).
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(a) Ifi° = (i1,da,. .. in-1) € A(m,n — 1), then ( A(0,i°),A(k,j) | ) _, #0.
(b) Let i = (1,2, jn-2k—1) and j' = (j1, 42, Jn—2k,J0), 1 < jo < m. Then either
(A0,i%),A(k,§%) ), #0 or (A(0,i%),A(k—1,j')) | #0.

Proof. Since i’ € A(m,n — 1), Corollary 3.7 implies ( A(0,i°) 1,A(0,i)), # 0. Since chR {
m, A(i) is a simple G, ,-module, forcing A(0,i) to be an irreducible T'L,, ,,(d)-module. So,
<A(O, i 1, Ak, j) >n # 0. Using Frobenius reciprocity, we get (a).

Let V = A(k,j) |. By Proposition 2.6, there is a submodule W C V such that W =2 A(k, j°).
3= (1, J2s - s n—2k-1)-

Let 0 # S be the image of A(0,i%) in V. Since A(0,i°) is irreducible, S = A(0,i%). If S ¢ W,
(A0,i°),A(k,§°) ), #0.

If S¢ W, then SNW = 0. Thus, (S@W)/W =2 S/(WnNS) =S5 is an irreducible submodule
of V/W. By Proposition 2.6,

V/W =P AKk-1,jUj).
j=1
Hence there is a j' = (j1,j2, - - -, jn—2k, jo) € A(m,n—2k+1) such that (S&W)/W C A(k—1,j'),
forcing ( A(0,i%), A(k —1,j') ), |, #0. 0

4. SEMI-SIMPLICITY OF THE CYCLOTOMIC TEMPERLEY-LIEB ALGEBRAS

In this section, we shall give the necessary and sufficient conditions on the semi-simplicity of
TLyn(6). The key is [7, 8.1]. First, let us recall some of results in [7].

Let u; = &' where ¢ is a primitive m-th root of unity. For any i = (i1,42, -+ ,in_2) €
Alm,n —2), let
A B
BT A B
BY A Bj
Vi(n, 1) = S ;
A Bn72
BI , A

where B = (bs) with by = ufj__t for 1 <s,t <m, and BZ-T stands for the transpose of B;, and
do 01 0 Ome
0 dg -0 0
A = -1 '2 -O

Om-1 00 -+ Om—2
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Let p(x) = Sox™ L+ 612™ 2 + - 4 §,,,_1. Write

5 ) Om
(4.1) p@) _ 0 %
xm —1 T —uy x— U9 T — Um
Then
(4.2) 55 = p(u;)/ T (v
1#£]

FOHOWiIlg [7] we partitioni = (il, ig, .. ’in 2) into (’il 1, ’il 25 .- il,jl,ig 1, ’iQ 25 .- iz,jQ, .. irjr) with
J1+ jo2 + ... + jr = n — 2 such that m divides 4, 4 + ip4+1 for all p with 1 < ¢ < j, and that m
does not divide iy j, + ipy1,1 forall 1 < p < r. Let

T 1
1 X9 1

Tpn—1 1

1 T,

We call P,(z1, o, -

was proved in [7, §8].

, Tn) the n-th generalized Tchebychev polynomial. The following result

Proposition 4.1. Keep the setup. Then

5102...0 -
et Win, 1) = (1) Dt (002 = H G )}
Hp:1 (57” ip,jp q 1 ’p q
Proposition 4.2. Suppose i € A(m,n),j € A(m,n — 2). If <A(O, i), A(1,)) >n #+ 0, then
det ¥;(n,1) = 0.

Proof. Since { A(0,1), A(1,j) >n # 0, there is a ¢ € Homyp, (5)(A(0,1),A(1,j)) such that
p(v) # 0 for some v € A(0,i). Consider an element

n—1m-—1

T=> > T/ET; € TLyn(5)

i=1 s=0
We have Tp(v) = p(Tv) = ¢(0) = 0. Write

n—1m-—1 .
=3 Y w wwed,

i=1 s=0

where UZ(S) = top(T7 E;) and vy is a fixed element in P(n,1). Since

(V1 ® v @ c1 D2 @ va ® 01 D) = v @ v @ ) (1, 1, ...,tn_g)(c{m (mod TL; (),
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for some elements gbg,?ll,g (t1,t2,.cs tn—2) in Gy p—2. By a direct computation, we have

71 j
0=Tpw)= > ¢i?g) )m (U s 05, ) 501" @ v @ CY

1<4,j<n—10<st<m—-1 * 7

y (n71) —
Therefore, for all 7, s, we have Zlgjgnfl Zogtgmq ¢v(5) (0 (W, Uy« v s U5 )0 = 0.
L

Since p(v) # 0, there is at least one of a;; # 0, which implies det ¥;(n,1) = 0. O

Proposition 4.3. Suppose R is a splitting field of x™ — 1 with chR{m. If det U;(I,1) # 0 for
all2 <1 <nandie A(m,l —2), then T Ly, ,(d) is semi-simple.

Proof. 1t is proved in [7] that T'L,, ,,(8) is a cellular algebra. Note that a cellular algebra is semi-
simple if and only if all of its cell modules are pairwise non-isomorphic irreducible (see [2]). So,
T Ly, 5 (0) is not semi-simple if there is a cell module, say A(kq, ), which is not irreducible. Thus,
the length of A(kp,1) is strictly greater than 1, and there is an irreducible proper submodule D
of A(kq,1). Note that any simple module of a cellular algebra is the simple head of a cell module.
Therefore, D is the simple quotient of a cell module, say A(ks,j). Since D is a composition
factor of A(ky,i), it follows from Definition 2.2 and (2.1) that (ki,i) < (kg,j). Moreover,
(k1,1) # (ka,j). Otherwise, A(k1,1) would have a simple head D. So, the multiplicity of D in
A(ki,i) is at least two, a contradiction. We have ( A(ks,j), A(ki, 1) >n # 0. Moreover, either
k1> ko or k1 = ko and i < j.

Suppose k1 > ko. Using Proposition 3.5, we can assume j € A(m,l),l = n — 2ky. Let
k =k — ky. Then <A(O,j), A(k, 1) >l # 0. Applying Proposition 3.8 repeatedly, we can assume
k = 1. By Proposition 4.2, det ¥;(I,1) = 0, a contradiction.

Suppose k1 = ks and i < j. By Proposition 3.5, <A(0,j), A(0,1) >n—2k1 # 0, a contradiction
since A(0,j) 2 A(0,i) and both of them are irreducible.

Thus we have shown that under our assumption all cell modules are irreducible. It is clear

that they are also pairwise non-isomorphic. Hence T'Ly, ,(d) is semi-simple. U

Lemma 4.4. Suppose det Wi(n,1) # 0 for all i € A(m,n — 2) with m > 2. Then &; # 0 for any

i1<i<m.

Proof. Take i = (m,m,---,m) € A(m,n — 2). Then i can be divided into one part with

j1 = n — 2. By Proposition 4.1, 6; # 0, 1 < i < m — 1 since they are the factors of det W;(n,1).

Takei= (1,1,---,1) € A(m,n—2). Then i can be divided into either one part if m =2 or n —2

parts if m > 2. By Proposition 4.1, d,, # 0 since it is a factor of det ¥;(n, 1) in any case. O
It is proved in [7, 8.1] that det W;(n, 1) # 0 for all i € A(m,n —2) and chR {m if T'L,, () is

semi-simple. The following is the inverse of this result.

Proposition 4.5. Suppose R is a splitting field of ™ — 1 with chR t m and m > 2. If
det ¥i(n,1) # 0 for alli e A(m,n — 2), then T'Ly, ,(8) is semi-simple.
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Proof. By Proposition 4.3, we need prove det W;(l,1) # 0 for all 2 < [ < n,i € A(m,l —
2) under our assumption. If det ¥;(l,1) = 0 for some [,I # n and i € A(m,l — 2), then

P;,(0iy15 0050 Sip’jp) = 0 for some p,1 < p < r by Proposition 4.1 and Lemma 4.4.
On the other hand, take iy = (i1,42, - ,ij—2,a,a, - ,a) € A(m,n — 2) with m { (i;_2 +

a). By Proposition 4.1, Pj, (0,0, ...,5ip’].p
det U;,(n,1) = 0, a contradiction. O

) must be a factor of det ¥;, (n,1) and hence

Remark. The reason we assume m > 2 is that we need the fact that 7;_s and a cannot be
in the same part. When m = 1, we cannot use the above argument. However, one can get a
necessary and sufficient condition for T'L,, ; to be semi-simple [10, §5].

Together with [7, 8.1] and Proposition 4.5, we have the main result of this paper as follows.
Note that Theorem 4.6 is not true if m = 1.

Theorem 4.6. Suppose m > 2. Let R be a splitting field of x™ — 1, containing 1,00, ,0m—1-
Then the following conditions are equivalent.

(a) T Ly, n(6) is semi-simple.

(b) TLy, ., (0) is split semi-simple.

(¢c) chRtm and det ¥i(n,1) # 0 for alli € A(m,n — 2).

(d) All cell modules A(k,1i) with (k,i) € Ay are pairwise non-isomorphic irreducible.

(e) All cell modules A(k,i) with (k,i) € Apm,k € {0,1} are pairwise non-isomorphic irre-

ducible.

Proof. Since T Ly, ,(8) is a cellular algebra, (a), (b) and (d) are equivalent. By [7, 8.1], (c¢) and
(e) are equivalent. By Proposition 4.5 and [7, 8.1], (a) and (c) are equivalent. O

The following Corollary follows immediately from [7, 8.1] and Proposition 4.5.

Corollary 4.7. Keep the setup. Then T Ly, ,(0) is semi-simple if and only if

(a) chR{m

(b) P1(8;) = 6; # 0,1 <i <m.

(¢) For any (i1, i, -+ ,i1) € A(m, 1) withm | (ij+ij41),1 <3 <1—1, P04, 00y, ,0;) # 0,
2<1l<n.

Remark. When m = 1, A(m,n) contains only one element (1,1,---,1) which can be parti-

tioned into one part. In this case, Corollary 4.7 is Westbury’s Theorem given in [10, §5].
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