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DERIVED EQUIVALENCES

FOR Φ-AUSLANDER-YONEDA ALGEBRAS

WEI HU AND CHANGCHANG XI

Abstract. In this paper, we first define a new family of Yoneda algebras,
called Φ-Auslander-Yoneda algebras, in triangulated categories by introducing
the notion of admissible sets Φ in N, which includes higher cohomologies in-
dexed by Φ, and then present a general method to construct a family of new
derived equivalences for these Φ-Auslander-Yoneda algebras (not necessarily

Artin algebras), where the choices of the parameters Φ are rather abundant.
Among applications of our method are the following results: (1) if A is a
self-injective Artin algebra, then, for any A-module X and for any admissible
set Φ in N, the Φ-Auslander-Yoneda algebras of A ⊕ X and A ⊕ ΩA(X) are
derived equivalent, where Ω is the Heller loop operator. (2) Suppose that A
and B are representation-finite self-injective algebras with additive generators

AX and BY , respectively. If A and B are derived equivalent, then so are the
Φ-Auslander-Yoneda algebras of X and Y for any admissible set Φ. In partic-
ular, the Auslander algebras of A and B are derived equivalent. The converse
of this statement is open. Further, motivated by these derived equivalences
between Φ-Auslander-Yoneda algebras, we show, among other results, that a
derived equivalence between two basic self-injective algebras may transfer to a
derived equivalence between their quotient algebras obtained by factoring out
socles.

1. Introduction

Derived categories and derived equivalences were introduced by Grothendieck
and Verdier in [13]. As is known, they have been widely used in many branches of
mathematics and physics. One of the fundamental problems in the study of derived
categories and derived equivalences is: How do we construct derived equivalences?
On the one hand, Rickard’s beautiful Morita theory for derived categories can be
used to find all rings that are derived equivalent to a given ring A by determin-
ing all tilting complexes over A (see [10] and [11]). Of course, to construct tilting
complexes in general, this is a very hard problem and still not solved completely.
On the other hand, a related natural question is: How do we construct new de-
rived equivalences from given ones? In this direction, Rickard used tensor products
and trivial extensions to produce new derived equivalences in [10, 12], while Barot
and Lenzing exploited one-point extensions to transfer derived equivalences to new
ones in [2]. Up to the present time, however, not much seems to be available for
constructing new derived equivalences based on given ones.
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5682 WEI HU AND CHANGCHANG XI

In this paper, we continue the consideration in this direction and provide, roughly
speaking, two general methods to construct new derived equivalences from given
ones. One is to form Φ-Auslander-Yoneda algebras (see Section 3.1 for a definition)
of generators, or cogenerators with a flexible choice of the parameter set Φ, and the
other is to form quotient algebras of derived equivalent algebras. The first method
has two advantages: the plentiful choices of parameters Φ, and the ones of genera-
tors. This provides a systematic way to construct new derived equivalences based
on given ones. Thus we can get derived equivalences between Auslander algebras,
generalized Yoneda algebras and some of their quotients, as well as between certain
kinds of Koszul algebras. Furthermore, our consideration is not just confined to
derived equivalences between finite-dimensional algebras, but also produces derived
equivalences between infinite-dimensional algebras.

To state our results, we first introduce some terminology.
Suppose that F is a derived equivalence between two Artin algebras A and B,

with the quasi-inverse functor G. Further, suppose that

T • : · · · −→ 0 −→ T−n −→ · · · −→ T−1 −→ T 0 −→ 0 −→ · · ·
is a radical tilting complex over A associated to F , and suppose that

T̄ • : · · · −→ 0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄n −→ 0 −→ · · ·
is a radical tilting complex over B associated to G. The functor F is called almost ν-
stable if add(

⊕−n
i=−1 T

i)=add(
⊕−n

i=−1 νAT
i), and add(

⊕n
i=1 T̄

i)=add(
⊕n

i=1 νBT̄
i),

where νA is the Nakayama functor for A. Clearly, every derived equivalence between
self-injective algebras provides an almost ν-stable derived equivalence. Surprisingly,
there are plenty of almost ν-stable derived equivalences between non-self-injective
algebras, and every almost ν-stable functor F induces an equivalence functor F̄
between the stable module categories A-mod and B-mod. For more details, we
refer the reader to [6].

For a module M over an algebra A, the generalized Yoneda algebra of M is
defined by Ext∗A(M) :=

⊕
i≥0 Ext

i
A(M,M). In case M = A/rad(A), the algebra

Ext∗A(M) is called the Yoneda algebra of A in the literature. We shall extend this
notion to a more general situation and introduce the Φ-Auslander-Yoneda algebras
with Φ a parameter set in N (for details, see Subsection 3.1 below). We notice that
a Φ-Auslander-Yoneda algebra may not be an Artin algebra in general.

Our main result on Φ-Auslander-Yoneda algebras of modules reads as follows:

Theorem 1.1. Let A and B be two Artin algebras, and let F̄ : A-mod −→ B-mod
be the stable equivalence induced by an almost ν-stable derived equivalence F between
A and B. Supposing that X is an A-module, we set M := A ⊕ X and N :=
B⊕ F̄ (X). Let Φ be an admissible subset of N, and define the Φ-Auslander-Yoneda

algebra of M as EΦ
A(M) :=

⊕
i∈Φ ExtiA(M,M). Then:

(1) The Φ-Auslander-Yoneda algebras EΦ
A(M) and EΦ

B(N) are derived equivalent.
(2) If Φ is finite, then there is an almost ν-stable derived equivalence between

EΦ
A(M) and EΦ

B(N). Thus EΦ
A(M) and EΦ

B(N) are also stably equivalent. In partic-
ular, there is an almost ν-stable derived equivalence and a stable equivalence between
EndA(M) and EndB(N).

A dual version of Theorem 1.1 can be found in Corollary 3.17 below.
Since Auslander algebra and generalized Yoneda algebra are two special cases

of Φ-Auslander-Yoneda algebras, Theorem 1.1 provides a large variety of derived
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DERIVED EQUIVALENCES FOR Φ-AUSLANDER-YONEDA ALGEBRAS 5683

equivalences between Auslander algebras, and between generalized Yoneda alge-
bras, or their quotient algebras. Note that Theorem 1.1 (2) extends a result in [6,
Proposition 6.1], where algebras were assumed to be finite-dimensional over a field,
in order to employ two-sided tilting complexes in proofs, and where only endomor-
phism algebras were considered instead of general Auslander-Yoneda algebras. The
existence of two-sided tilting complexes is guaranteed for Artin R-algebras that
are projective as R-modules [11]. For general Artin algebras, however, we do not
know the existence of two-sided tilting complexes. Hence, in this paper, we have
to provide a completely different proof to the general result, Theorem 1.1 (2).

As a direct consequence of Theorem 1.1, we have the following corollary con-
cerning the Auslander algebras of self-injective algebras.

Corollary 1.2. (1) For a self-injective Artin algebra A and an A-module Y , the Φ-

Auslander-Yoneda algebras EΦ
A(A⊕ Y ) and EΦ

A(A⊕ΩA(Y )) are derived equivalent,
where Ω is the Heller loop operator.

(2) Suppose that A and B are self-injective Artin algebras of finite representation
type with AX and BY additive generators for A-mod and B-mod, respectively. If
A and B are derived equivalent, then:

(i) The Auslander algebras of A and B are both derived and stably equivalent.
(ii) The generalized Yoneda algebras Ext∗A(X) and Ext∗B(Y ) of X and Y are

derived equivalent.

It is an open question whether a derived equivalence between the Auslander
algebras of two representation-finite self-injective algebras A and B implies that A
and B themselves are derived equivalent.

Notice that, in Corollary 1.2, the Auslander algebra of A is a quotient algebra
of the generalized Yoneda algebra Ext∗A(X) of the additive generator X. The next
result shows another way to construct derived equivalences for quotient algebras.

Theorem 1.3. Let F : Db(A) −→ Db(B) be a derived equivalence between two
self-injective basic Artin algebras A and B. Suppose that P is a direct summand
of AA, and Q is a direct summand of BB such that F (soc(P )) is isomorphic to
soc(Q), where soc(P ) denotes the socle of the module P . Then the quotient algebras
A/soc(P ) and B/soc(Q) are derived equivalent.

The structure of this paper is organized as follows. In Section 2, we make some
preparations needed for our proofs. In Section 3, we introduce the Φ-Auslander-
Yoneda algebras and prove Theorem 1.1 and its dual version, Corollary 3.17, which
produces derived equivalences between the endomorphism algebras of cogenerators.
Furthermore, we deduce a series of consequences of Theorem 1.1 for self-injective
algebras, including Corollary 1.2. In Section 4, we provide several methods to con-
struct derived equivalences for quotient algebras. First, we give a general criterion,
and then apply it to self-injective algebras modulo socles, and to algebras modulo
annihilators. In particular, we show Theorem 1.3, and point out a class of derived
equivalences satisfying the conditions in Theorem 1.3.

2. Preliminaries

In this section, we shall recall basic definitions and facts on derived categories
and derived equivalences, which are elementary elements in our proofs.
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5684 WEI HU AND CHANGCHANG XI

Throughout this paper, R is a fixed commutative Artin ring. Given an R-
algebra A, by an A-module we mean a unitary left A-module; the category of all
finitely generated A-modules is denoted by A-mod, and the full subcategory of A-
mod consisting of projective (respectively, injective) modules is denoted by A-proj
(respectively, A-inj). The stable module category A-mod of A is, by definition,
the quotient category of A-mod modulo the ideal generated by homomorphisms
factoring through projective modules. An equivalence between the stable module
categories of two algebras is called a stable equivalence.

An R-algebra A is called an Artin R-algebra if A is finitely generated as an R-
module. For an Artin R-algebra A, we denote by D the usual duality on A-mod,
and by νA the Nakayama functor DHom A(−,AA) : A-proj −→ A-inj. For an A-
module M , we denote by ΩA(M) the first syzygy of M , and call ΩA the Heller loop
operator of A. In this paper, we mainly concentrate on Artin algebras and finitely
generated modules.

Let C be an additive category.
For two morphisms f : X → Y and g : Y → Z in C, we write fg for their

composite. But for two functors F : C → D and G : D → E of categories, we write
GF for their composite instead of FG. For an object X in C, we denote by add(X)
the full subcategory of C consisting of all direct summands of finite direct sums of
copies of X. An object X in C is called an additive generator for C if add(X) = C.

By a complex X• over C we mean a sequence of morphisms diX between objects

Xi in C: · · · → Xi di
X−→ Xi+1

di+1
X−→ Xi+2 → · · · , such that diXdi+1

X = 0 for all i ∈ Z,
and write X• = (Xi, diX). For a complex X•, the brutal truncation σ<iX

• of X• is
a quotient complex of X• such that (σ<iX

•)k is Xk for all k < i and zero otherwise.
Similarly, we define σ�iX

•. For a fixed n ∈ Z, we denote by X•[n] the complex
obtained from X• by shifting n degrees, that is, (X•[n])0 = Xn.

The category of all complexes over C with chain maps is denoted by C (C). The
homotopy category of complexes over C is denoted by K (C). When C is an abelian
category, the derived category of complexes over C is denoted by D(C). The full
subcategory of K (C) and D(C) consisting of bounded complexes over C is denoted
by K b(C) and Db(C), respectively. As usual, for an algebra A, we simply write
C (A) for C (A-mod), K (A) for K (A-mod) and K b(A) for K b(A-mod). Similarly,
we write D(A) and Db(A) for D(A-mod) and Db(A-mod), respectively.

It is well known that, for an R-algebra A, the categories K (A) and D(A) are
triangulated categories. For basic results on triangulated categories, we refer the
reader to the excellent books [3] and [9].

Let A be an Artin algebra. Recall that a homomorphism f : X → Y of A-
modules is called a radical map if, for any module Z and homomorphisms h : Z → X
and g : Y → Z, the composite hfg is not an isomorphism. A complex over A-mod
is called a radical complex if all of its differential maps are radical maps. Every
complex over A-mod is isomorphic to a radical complex in the homotopy category
K (A). If two radical complexes X• and Y • are isomorphic in K (A), then X• and
Y • are isomorphic in C (A).

Two R-Artin algebras A and B are said to be derived equivalent if their derived
categories Db(A) and Db(B) are equivalent as triangulated categories. By a result
of Rickard (see Lemma 2.2 below), two algebras A and B are derived equivalent
if and only if B is isomorphic to the endomorphism algebra EndK b(A)(T

•) of a
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DERIVED EQUIVALENCES FOR Φ-AUSLANDER-YONEDA ALGEBRAS 5685

tilting complex T • over A. Recall that a complex T • in K b(A-proj) is called a
tilting complex over A if it satisfies

(1) Hom K b(A-proj)(T
•, T •[n]) = 0 for all n �= 0, and

(2) add(T •) generates K b(A-proj) as a triangulated category.
It is known that, given a derived equivalence F between A and B, there is

a unique (up to isomorphism in K b(A)) tilting complex T • over A such that
F (T •) � B. This complex T • is called a tilting complex associated to F . Recall that
a complex X• of A-modules is called self-orthogonal if Hom Db(A)(X

•, X•[i]) = 0
for every i �= 0.

The following lemma, proved in [6, Lemma 2.2], will be used frequently in our
proofs below.

Lemma 2.1. Let A be an arbitrary ring with identity, and let A-Mod be the category
of all left (not necessarily finitely generated) A-modules. Suppose that X• is a
complex over A-Mod bounded above, and that Y • is a complex over A-Mod bounded
below. Let m be an integer. If one of the following two conditions holds:

(1) Xi is projective for all i > m and Y j = 0 for all j < m,
(2) Y j is injective for all j < m and Xi = 0 for all i > m,

then the localization functor θ : K (A-Mod) −→ D(A-Mod) induces an isomorphism
θX•,Y • : Hom K (A-Mod)(X

•, Y •) −→ Hom D(A-Mod)(X
•, Y •).

Thus, for the complexes X• and Y • given in Lemma 2.1, the computation of
morphisms from X• to Y • in D(A-Mod) is reduced to that in K (A-Mod).

For later reference, we cite the following fundamental result on derived equiva-
lences by Rickard (see [10, Theorem 6.4]) as a lemma.

Lemma 2.2 ([10]). Let Λ and Γ be two rings. The following conditions are equiv-
alent:

(a) K −(Λ-Proj) and K −(Γ-Proj) are equivalent as triangulated categories;
(b) Db(Λ-Mod) and Db(Γ-Mod) are equivalent as triangulated categories;
(c) K b(Λ-Proj) and K b(Γ-Proj) are equivalent as triangulated categories;
(d) K b(Λ-proj) and K b(Γ-proj) are equivalent as triangulated categories;
(e) Γ is isomorphic to End(T ), where T is a tilting complex in K b(Λ-proj).
Here Λ-Proj stands for the full subcategory of Λ-Mod consisting of all projective

Λ-modules.

Two rings Λ and Γ are called derived equivalent if one of the above conditions
(a)-(e) is satisfied. For Artin algebras, the two definitions of a derived equivalence
coincide with each other.

3. Derived equivalences for Φ-Auslander-Yoneda algebras

As is known, Auslander algebra is a key to characterizing representation-finite
algebras, and Yoneda algebra plays a role in the study of the graded module the-
ory of Koszul algebras. In this section, we shall first unify the two notions and
introduce the so-called Φ-Auslander-Yoneda algebra of an object in a triangulated
category, where Φ is a parameter subset of N, and then construct new derived equiv-
alences between these Φ-Auslander-Yoneda algebras from a given almost ν-stable
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5686 WEI HU AND CHANGCHANG XI

derived equivalence. In particular, Theorem 1.1 will be proved, and a series of its
consequences will be deduced in this section.

3.1. Admissible sets and Auslander-Yoneda algebras. First, we introduce
some special subsets of the set N := {0, 1, 2, . . . } of the natural numbers, called ad-
missible sets, and then define a class of algebras called Auslander-Yoneda algebras,
in which the notion of admissible sets ensures the associative law of these algebras.

A subset Φ of N containing 0 is called an admissible subset of N if the following
condition is satisfied:

If i, j and k are in Φ such that i + j + k ∈ Φ, then i + j ∈ Φ if and only if
j + k ∈ Φ.

For instance, the sets {0, 3, 4}, {0, 1, 2, 3, 4} are admissible subsets of N. But the
set {0, 1, 2, 4} is not admissible. The following is a family of admissible subsets of
N.

Let n be a positive integer, and let m be another positive integer or positive
infinity. We define

Φ(n,m) := {xn | x ∈ N, 0 ≤ x < m+ 1}.

Then Φ(n,m) is an admissible subset in N. Clearly, we have Φ(1,∞) = N,Φ(1, 0) =
{0}, and Φ(1,m) = {0, 1, 2, . . . ,m}.

Admissible subsets of N have the following simple properties.

Proposition 3.1. (1) If Φ is an admissible subset of N, then so is mΦ := {mx |
x ∈ Φ} for every m ∈ N.

(2) If Φ1 and Φ2 are admissible subsets of N, then so is Φ1 ∩Φ2. Moreover, the
intersection of a family of admissible subsets of N is admissible.

(3) For a subset Φ ⊆ N with 0 ∈ Φ, the set Φm := {xm | x ∈ Φ} is an admissible
subset of N for every integer m ≥ 3.

Proof. The statements (1) and (2) follow easily from the definition of admissible
subsets. Now we consider (3). We pick an integer m ≥ 3. Let im, jm, km and lm be
in Φm such that im+ jm+ km = lm. If im+ jm ∈ Φm, then im+ jm = tm for some
t ∈ Φ. By Fermat’s Last Theorem, one of the integers i and j is zero. If j = 0,
then jm + km = km ∈ Φm. If i = 0, then jm + km = lm ∈ Φm. Similarly, we can
show that if jm + km ∈ Φm, then im + jm ∈ Φ. Hence the set Φm is an admissible
subset of N. �

Note that Φ2 is not necessarily admissible in N even if Φ is an admissible subset
of N. For instance, if Φ = {0, 3, 4, 5, 12, 13}, then Φ is admissible. Clearly, 32+42+
122 = 132 ∈ Φ2 and 32 + 42 = 52 ∈ Φ2, but 42 + 122 �∈ Φ2, so Φ2 is not admissible.

Now, we use admissible subsets to define a class of associative algebras. Let us
start with the following general situation.

Let Φ be a subset of N. Given an N-graded R-algebra Λ =
⊕∞

i=0 Λi, where R is
a commutative ring and each Λi is an R-module with ΛiΛj ⊆ Λi+j for all i, j ∈ N,
we define an R-module Λ(Φ) :=

⊕
i∈Φ Λi, and a multiplication in Λ(Φ): for ai ∈ Λi

and bj ∈ Λj with i, j ∈ Φ, we define ai · bj = aibj if i + j ∈ Φ, and zero otherwise.
Then one can easily check that Λ(Φ) is an associative algebra if Φ is an admissible
subset of N.
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This procedure can be applied to a triangulated category; in this special situa-
tion, the details which are needed in our proofs read as follows:

Let T be a triangulated R-category over a commutative Artin ring R, and let Φ
be a subset in N containing 0. We denote by EΦ

T (−,−) the bifunctor⊕
i∈Φ

Hom T (−,−[i]) : T × T −→ R-Mod,

(X,Y ) �→ EΦ
T (X,Y ) :=

⊕
i∈Φ

Hom T (X,Y [i]).

Let X,Y and Z be objects in T . For each i ∈ Φ, let ιi denote the canonical
embedding of Hom T (X,Y [i]) into EΦ

T (X,Y ). For i �∈ Φ, we define ιi to be the zero

map from Hom T (X,Y [i]) to EΦ
T (X,Y ). An element in EΦ

T (X,Y ) is of the form
(fi)i∈Φ, where fi is a morphism in Hom T (X,Y [i]) for i ∈ Φ. For simplicity, we

shall just write (fi) for (fi)i∈Φ, and each element (fi) in EΦ
T (X,Y ) can be rewritten

as
∑
i∈Φ

ιi(fi), where ιi(fi) denotes the image of fi under the map ιi.

Let (fi) ∈ EΦ
T (X,Y ) and (gi) ∈ EΦ

T (Y, Z). We define a multiplication (hi) =
(fi)(gi):

EΦ
T (X,Y )× EΦ

T (Y, Z) −→ EΦ
T (X,Z),(

(fi), (gi)
)
�→ (hi),

where

hi :=
∑

u,v∈Φ
u+v=i

fu(gv[u])

for each i ∈ Φ. In particular, for f ∈ Hom T (X,Y [i]) and g ∈ Hom T (Y, Z[j]) with
i, j ∈ Φ, we have

ιi(f) ιj(g) = ιi+j(f(g[i])).

Note that ιi+j = 0 if i+ j �∈ Φ.
The next proposition further explains why we need to introduce admissible sub-

sets.

Proposition 3.2. Let T be a triangulated R-category with at least one non-zero
object, and let Φ be a subset of N containing 0. Then EΦ

T (V, V ) together with the
multiplication defined above is an associative R-algebra for every object V ∈ T if
and only if Φ is an admissible subset of N.

Proof. If Φ is an admissible subset of N, then it is straightforward to check that the
multiplication on EΦ

T (V, V ) defined above is associative for all objects V ∈ T . Now
we assume that Φ is not an admissible subset; that is, there are integers i, j, k ∈ Φ
satisfying: i+ j+k ∈ Φ, i+ j ∈ Φ, and j+k �∈ Φ. Let X be a non-zero object in T ,

and let V :=
⊕i+j+k

s=0 X[s]. We consider the multiplication on EΦ
T (V ). By definition,

the object
⊕i+j+k

s=i X[s] is a common direct summand of V and V [i]. Let f be the

composite V
π−→

⊕i+j+k
s=i X[s]

λ−→ V [i], where π is the canonical projection and

λ is the canonical inclusion. Similarly, we define g : V −→
⊕i+j+k

s=j X[s] −→ V [j]

and h : V −→
⊕i+j+k

s=k X[s] −→ V [k]. Since i+ j ∈ Φ, we have
(
ιi(f)ιj(g)

)
ιk(h) =

ιi+j(f(g[i]))ιk(h) = ιi+j+k

(
f(g[i])(h[i + j])

)
. One can check that f(g[i])(h[i + j])

is just the composite V −→ X[i + j + k] −→ V [i + j + k], where the maps are
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5688 WEI HU AND CHANGCHANG XI

canonical maps. Hence the map
(
ιi(f)ιj(g)

)
ιk(h) is non-zero. Since j + k �∈ Φ, we

have ιj(g)ιk(h) = 0, and consequently ιi(f)
(
ιj(g)ιk(h)

)
= 0. This shows that the

multiplication of EΦ
T (V, V ) is not associative, and the proof is completed. �

Note that EN

T (X,X) is an N-graded associative R-algebra with Hom T (X,X[i])

as the i-th component. If we define Λ := EN

T (X,X), then Λ(Φ) = EΦ
T (X,X).

From now on, we consider exclusively admissible subsets Φ of N. Thus, for ob-
jects X and Y in T , one has an R-algebra EΦ

T (X,X) (which may not be

Artinian), and a left EΦ
T (X,X)-module EΦ

T (X,Y ). For simplicity, we write EΦ
T (X)

for EΦ
T (X,X).

In case Φ = Φ(1, 0) = {0}, we see that EΦ
T (X) is the endomorphism algebra

of the object X in T . In case Φ = N, we know that EΦ
T (X) is the generalized

Yoneda algebra Ext∗T (X) =
⊕

i≥0Hom T (X,X[i]) of X. Particularly, let us take

T = Db(A) with A an Artin R-algebra. If A is representation-finite and if X is an

additive generator for A-mod, then E
Φ(1,0)
T (X) is the Auslander algebra of A; if we

take X = A/rad(A), then E
Φ(1,∞)
T (X) is the usual Yoneda algebra of A. Thus the

algebra EΦ
T (X) is a generalization of both the Auslander algebra and the Yoneda

algebra. For this reason, the algebra EΦ
T (X) of X in a triangulated category T is

called the Φ-Auslander-Yoneda algebra of X in T in this paper.
If T = Db(A) with A an Artin algebra, we simply write EΦ

A(X) for EΦ
T (X), and

EΦ
A(X,Y ) for EΦ

T (X,Y ). If Φ is finite, or if the projective or injective dimension of

X is finite, then EΦ
A(X) is an Artin R-algebra.

Note also that the algebra E
Φ(1,m)
T (X) is a quotient algebra of EN

T (X), and

the algebra E
Φ(n,m)
T (X) is a subalgebra of E

Φ(1,nm)
T (X). Nevertheless, if we take

Φ = {0, 3, 9} and X the simple module over the algebra A := k[X]/(X2) with k a

field, then EΦ
A(X) is neither a subalgebra nor a quotient algebra of the generalized

Yoneda algebra of X.
Let us remark that one may define the notion of admissible subsets of Z (or of

a monoid M with an identity e), and introduce the Φ-Auslander-Yoneda algebra
of an object in an arbitrary R-category C with an additive self-equivalence functor
(or a family of additive functors {Fg}g∈M from C to itself, such that Fe = idC and
FgFh = Fgh for all g, h ∈ M). For our goals in this paper, we just formulate the
admissible subsets for N.

3.2. Almost ν-stable derived equivalences. We briefly recall some basic facts
on almost ν-stable derived equivalences from [6], which are needed in the proofs.

Let A and B be Artin algebras, and let F : Db(A) −→ Db(B) be a derived
equivalence between A and B. Suppose that Q• and Q̄• are the tilting complexes
associated to F and to a quasi-inverse G of F , respectively. Now, we assume that
Qi = 0 for all i > 0; that is, the complex Q• is of the form

0 −→ Q−n −→ · · · −→ Q−1 −→ Q0 −→ 0.

In this case, the complex Q̄• may be chosen of the following form (see [6, Lemma
2.1], for example):

0 −→ Q̄0 −→ Q̄1 −→ · · · −→ Q̄n −→ 0.

Set Q :=
⊕n

i=1 Q
−i and Q̄ :=

⊕n
i=1 Q̄

i. The functor F is called an almost ν-stable
derived equivalence provided add(AQ) = add(νAQ) and add(BQ̄) = add(νBQ̄). A
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crucial property is that an almost ν-stable derived equivalence induces an equiv-
alence between the stable module categories A-mod and B-mod. Thus A and B
share many common properties: for example, A is representation-finite if and only
if B is representation-finite.

In the following lemma, we collect some basic facts on almost ν-stable derived
equivalences, which will be used in our proofs.

Lemma 3.3. Let F : Db(A) → Db(B) be an almost ν-stable derived equivalence
between Artin algebras A and B. Suppose that Q• and Q̄• are the tilting complexes
associated to F and to its quasi-inverse G, respectively. Then:

(1) For each A-module X, the complex F (X) is isomorphic in Db(B) to a radical
complex Q̄•

X of the form

0 −→ Q̄0
X −→ Q̄1

X −→ · · · −→ Q̄n
X −→ 0,

with Q̄i
X ∈ add(BQ̄) for all i > 0. Moreover, the complex Q̄•

X of this form is unique
up to isomorphism in C b(B).

(2) For each B-module Y , the complex G(Y ) is isomorphic in Db(A) to a radical
complex Q•

Y of the form

0 −→ Q−n
Y −→ · · · −→ Q−1

Y −→ Q0
Y −→ 0,

with Qi
Y ∈ add(AQ) for all i < 0. Moreover, the complex Q•

Y of this form is unique
up to isomorphism in C b(B).

(3) There is a stable equivalence F̄ : A-mod −→ B-mod with F̄ (X) = Q̄0
X for

each A-module X.
(4) There is a stable equivalence Ḡ : B-mod −→ A-mod with Ḡ(Y ) = Q0

Y for
each B-module Y . Moreover, the functor Ḡ is a quasi-inverse of F̄ defined in (3).

(5) For an A-module X, we denote by Q̄+
X the complex σ>0Q̄

•
X . Then G(Q̄+

X)
is isomorphic in Db(A) to a bounded complex P •

X of projective-injective A-modules
with P i

X = 0 for all i > 1.

Proof. Statement (1) follows from [6, Lemma 3.1]. Statement (2) is a direct conse-
quence of the definition of an almost ν-stable derived equivalence and [6, Lemma
3.2]. Note that statements (3) and (4) follow from the proof of [6, Theorem 3.7],
and statement (5) is implied in the proof of [6, Proposition 3.6]. �

For an Artin algebra A, let AE be the direct sum of all non-isomorphic indecom-
posable projective A-modules P with the property: νiAP is projective-injective for
all i ≥ 0. The A-module AE is called a maximal ν-stable A-module.

3.3. Derived equivalences for Auslander-Yoneda algebras. Our main re-
sult in this section is the following theorem on derived equivalences between Φ-
Auslander-Yoneda algebras.

Theorem 3.4. Let F : Db(A) −→ Db(B) be an almost ν-stable derived equivalence
between two Artin algebras A and B, and let F̄ be the stable equivalence defined in
Lemma 3.3 (3). For an A-module X, we set M := A ⊕ X and N := B ⊕ F̄ (X).
Suppose that Φ is an admissible subset in N. Then we have the following:

(1) The algebras EΦ
A(M) and EΦ

B(N) are derived equivalent.
(2) If Φ is finite, then there is an almost ν-stable derived equivalence between

EΦ
A(M) and EΦ

B(N). Thus EΦ
A(M) and EΦ

B(N) are also stably equivalent. In partic-
ular, there is an almost ν-stable derived equivalence and a stable equivalence between
EndA(M) and EndB(N).
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Thus, under the assumptions of Theorem 3.4, if Φ is finite, then the algebras
EΦ
A(M) and EΦ

B(N) share many common invariants: for example, finiteness of
finitistic and global dimensions, representation dimension, Hochschild cohomology,
representation-finite type, and so on.

The rest of this section is essentially devoted to the proof of Theorem 3.4. First
of all, we need some preparations. Let us start with the following lemma that
describes some basic properties of the algebra EΦ

A(V ), where V is an A-module and
is considered as a complex concentrated in degree zero.

Lemma 3.5. Let A be an Artin algebra, and let V be an A-module. Suppose that
V1 ∈ add(AV ) and V2 ∈ A-mod. Then:

(1) The EΦ
A(V )-module EΦ

A(V, V1) is projective and finitely generated, and there
is an isomorphism

μ : EΦ
A(V1, V2) −→ Hom EΦ

A(V )(E
Φ
A(V, V1),E

Φ
A(V, V2)),

which sends (fi) ∈ EΦ
A(V1, V2) to the morphism

(
(ai) �→ (ai)(fi)

)
for (ai) ∈

EΦ
A(V, V2). Moreover, if V3 ∈ add(AV ) and (gi) ∈ EΦ

A(V2, V3), then μ((fi)(gi)) =
μ((fi))μ((gi)).

(2) The functor EΦ
A(V,−) : add(AV ) −→ EΦ

A(V )-proj is faithful.

(3) If V1 is projective or V2 is injective, then the functor EΦ
A(V,−) induces an

isomorphism of R-modules:

EΦ
A(V,−) : Hom A(V1, V2) −→ Hom EΦ

A(V )(E
Φ
A(V, V1),E

Φ
A(V, V2)).

(4) If Φ is finite, and P ∈ add(AV ) is projective, then

νEΦ
A(V )E

Φ
A(V, P ) � EΦ

A(V, νAP ).

Proof. (1) Since EΦ
A(V,−) is an additive functor and since V1 ∈ add(AV ), we know

that EΦ
A(V, V1) is in add(EΦ

A(V )), and consequently EΦ
A(V, V1) is a finitely generated

projective EΦ
A(V )-module. Similarly, the EΦ

A(V )-module EΦ
A(V, V2) is also projec-

tive. To show that μ is an isomorphism, we can assume that V1 is indecomposable
by additivity. Let π1 : V −→ V1 be the canonical projection, and let λ1 : V1 −→ V
be the canonical injection. We define a map

γ : Hom EΦ
A(V )(E

Φ
A(V, V1),E

Φ
A(V, V2)) −→ EΦ

A(V1, V2)

by sending α ∈ Hom EΦ
A(V )(E

Φ
A(V, V1),E

Φ
A(V, V2)) to ι0(λ1)α

(
ι0(π1)

)
. By calcula-

tion, the morphism (γμ)(α) : EΦ
A(V, V1) −→ EΦ

A(V, V2) sends each x ∈ EΦ
A(V, V1) to

xι0(λ1)α
(
ι0(π1)

)
= α

(
xι0(λ1)ι0(π1)

)
= α(x). This shows that γ μ = id. Similarly,

one can check that μ γ = id. Hence μ is an isomorphism. The rest of (1) can be
verified easily.

(2) By definition, one can check that the map

EΦ
A(V,−) : Hom Db(A)(V1, V2) −→ Hom EΦ

A(V )(E
Φ
A(V, V1),E

Φ
A(V, V2))

is the composite of the embedding ι0 : Hom A(V1, V2) −→ EΦ
A(V1, V2) with the

isomorphism μ in (1). Hence EΦ
A(V,−) is a faithful functor.

(3) If V1 is projective or V2 is injective, then the embedding

ι0 : Hom Db(A)(V1, V2) −→ EΦ
A(V1, V2)

is an isomorphism. Since EΦ
A(V,−) is the composite of ι0 with the isomorphism μ

in (1), statement (3) follows.
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(4) This follows directly from the isomorphisms:

νEΦ
A(V )E

Φ
A(V, P ) = DHom EΦ

A(V )(E
Φ
A(V, P ),EΦ

A(V, V ))

� DEΦ
A(P, V ) by (1)

= DHom A(P, V )
� Hom A(V, νAP )

= EΦ
A(V, νAP ).

Thus we have finished the proof. �

From now on, we assume that F : Db(A) −→ Db(B) is an almost ν-stable derived
equivalence with a quasi-inverse functor G, that Q• and Q̄• are tilting complexes
associated to F and G, respectively, and that F̄ : A-mod −→ B-mod is the stable
equivalence defined by Lemma 3.3 (3). For an A-module X, we may assume that
F (X) = Q̄•

X as in Lemma 3.3 (1), and define AM = A⊕X and BN = B ⊕ F̄ (X).
By T̄ • we denote the complex Q̄• ⊕ Q̄•

X . Clearly, T̄ • is in K b(add(BN)).

Lemma 3.6. Keeping the notation above, we have the following:
(1) Hom K b(add(BN))(T̄

•, T̄ •[i]) = 0 for all i �= 0.

(2) add(T̄ •) generates K b(add(BN)) as a triangulated category.

Proof. Since F (A) � Q̄•, the complex T̄ • is isomorphic to F (M) = Q̄•
M . So, we

consider Q̄•
M instead.

(1) Suppose i < 0. Then Hom K b(B)(Q̄
•
M , Q̄•

M [i]) � Hom Db(B)(Q̄
•
M , Q̄•

M [i])

by Lemma 2.1. Since F (M) = Q̄•
M , we have Hom Db(B)(Q̄

•
M , Q̄•

M [i]) �
Hom Db(A)(M,M [i]) = 0. Hence Hom K b(B)(Q̄

•
M , Q̄•

M [i]) = 0 for all i < 0.

Let Q̄+
M be the complex σ>0Q̄

•
M . There is a distinguished triangle

(∗) Q̄+
M

iM−→ Q̄•
M

πM−→ F̄ (M)
αM−→ Q̄+

M [1]

in K b(B). Applying Hom K b(B)(Q̄
•
M ,−) to (∗), we get an exact sequence

Hom K b(B)(Q̄
•
M , F̄ (M)[i−1]) → Hom K b(B)(Q̄

•
M , Q̄+

M [i])

→ Hom K b(B)(Q̄
•
M , Q̄•

M [i]) → Hom K b(B)(Q̄
•
M , F̄ (M)[i])

for each integer i. Since Q̄i
M = 0 for all i < 0, we have Hom K b(B)(Q̄

•
M , F̄ (M)[i]) =

0 for all i > 0. By Lemma 3.3 (5), G(Q̄+
M ) is isomorphic to a bounded complex P •

M

of projective-injective A-modules such that P i
M = 0 for all i > 1. Thus, we have

Hom K b(B)(Q̄
•
M , Q̄+

M [i])

� Hom Db(B)(Q̄
•
M , Q̄+

M [i]) (since Q̄+
M [i] is in K b(B-inj))

� Hom Db(A)(G(Q̄•
M ), G(Q̄+

M )[i])

� Hom Db(A)(M,P •
M [i])

� Hom K b(A)(M,P •
M [i])

= 0

for all i > 1, and consequently Hom K b(B)(Q̄
•
M , Q̄•

M [i]) = 0 for all i > 1. To prove

(1), it remains to show that Hom K b(B)(Q̄
•
M , Q̄•

M [1]) = 0. Using the above exact
sequence, we only need to show that the induced map

Hom K b(B)(Q̄
•
M , αM ) : Hom K b(B)(Q̄

•
M , F̄ (M)) −→ Hom K b(B)(Q̄

•
M , Q̄+

M [1])
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is surjective. Note that G(Q̄+
M ) is isomorphic in Db(A) to a complex P •

M of
projective-injective modules such that P k

M = 0 for all k > 1. Thus, we can form a
commutative diagram

P •
M

φM−−−−→ M
λ−−−−→ con(φM )

p−−−−→ P •
M [1]⏐⏐��

⏐⏐��
⏐⏐��

⏐⏐��

G(Q̄+
M )

GiM−−−−→ GF (M)
GπM−−−−→ GF̄ (M)

GαM−−−−→ G(Q̄+
M )[1]

in Db(A), where all the vertical maps are isomorphisms, λ and p are the canoni-
cal morphisms, and where the morphism φM is chosen in K b(A) such that the
first square is commutative. The distinguished triangle in the top row of the
above diagram can be viewed as a distinguished triangle in K b(A). Applying
Hom K b(A)(M,−) to this triangle, we can easily see that Hom K b(A)(M,p) is a
surjective map since Hom K b(A)(M,M [1]) = 0. By Lemma 2.1, the localization

functor θ : K b(A) → Db(A) induces two isomorphisms

Hom K b(A)(M, con(φM )) � Hom Db(A)(M, con(φM ))

and
Hom K b(A)(M,P •

M [1]) � Hom Db(A)(M,P •
M [1]).

It follows that Hom Db(A)(M,p) is surjective. Since all the vertical maps of the
above diagram are isomorphisms, the map Hom Db(A)(M,GαM ) is surjective or,

equivalently, Hom Db(A)(G(Q̄•
M ), GαM ) is surjective. Since G is an equivalence, it

follows that Hom Db(B)(Q̄
•
M , αM ) is surjective. By Lemma 2.1 again, the localiza-

tion functor θ : K b(B) → Db(B) gives rise to isomorphisms

Hom K b(B)(Q̄
•
M , F̄ (M)) � Hom Db(B)(Q̄

•
M , F̄ (M))

and
Hom K b(B)(Q̄

•
M , Q̄+

M [1]) � Hom Db(B)(Q̄
•
M , Q̄+

M [1]).

Hence the map Hom K b(B)(Q̄
•
M , αM ) is surjective, and consequently

Hom K b(B)(Q̄
•
M , Q̄•

M [1]) = 0.

Altogether, we have shown that Hom K b(B)(Q̄
•
M , Q̄•

M [i]) = 0 for all i �= 0. Since

K b(add(BN)) is a full subcategory of K b(B), we have

Hom K b(add(BN))(Q̄
•
M , Q̄•

M [i]) = 0

for all i �= 0. This proves (1).
(2) Since Q̄• is a tilting complex over B, add(Q̄•) generates K b(add(BB)) as a

triangulated category. By Lemma 3.3, Q̄0
X = F̄ (X) and all the terms of Q̄•

X other
than Q̄0

X are in add(BB). Hence F̄ (X) is in the triangulated subcategory generated
by add(Q̄•⊕ Q̄•

X), and consequently add(Q̄•⊕ Q̄•
X) generates K b(add(B⊕ F̄ (X)))

as a triangulated category. Thus, statement (2) follows. �

The additive functor EΦ
B(N,−) : add(BN) −→ EΦ

B(N)-proj induces a triangle
functor

EΦ•
B (N,−) : K b(add(BN)) −→ K b(EΦ

B(N)-proj).

In fact, for each integer i, the i-th term of EΦ•
B (N, T̄ •) is EΦ

B(N, T̄ i), and the differ-

ential map from EΦ
B(N, T̄ i) to EΦ

B(N, T̄ i+1) is EΦ
B(N, d), where d : T̄ i −→ T̄ i+1 is

the differential map of T̄ •.
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Lemma 3.7. The complex EΦ•
B (N, T̄ •) is a tilting complex over EΦ

B(N).

Proof. Let i �= 0, and let f• be a morphism in Hom K b(EΦ
B(N)-proj)(E

Φ•
B (N, T̄ •),

EΦ•
B (N, T̄ •)[i]). Then we have a commutative diagram

0 �� EΦ
B(N, T̄ 0)

EΦ
B(N,d)

��

f0

��

EΦ
B(N, T̄ 1)

EΦ
B(N,d)

��

f1

��

· · ·

EΦ
B(N, T̄ i−1)

EΦ
B(N,d)

�� EΦ
B(N, T̄ i)

EΦ
B(N,d)

�� EΦ
B(N, T̄ i+1)

EΦ
B(N,d)

�� · · · .

Note that the term EΦ
B(N, T̄ i) is zero if i < 0. Since all the terms of T̄ • other

than T̄ 0 are projective-injective, and since i �= 0, we see from Lemma 3.5 (3) that

fk = EΦ
B(N, gk) for some gk : T̄ k −→ T̄ k+i for each integer k. It follows from the

above commutative diagram that, for each integer k, we have

EΦ
B(N, d)EΦ

B(N, gk+1)− EΦ
B(N, gk)EΦ

B(N, d) = 0,

or equivalently EΦ
B(N, dgk+1−gkd)=0. Since EΦ

B(N,−) : add(BN) −→ EΦ
B(N)-proj

is a faithful functor by Lemma 3.5 (2), we have dgk+1−gkd = 0 for all integers k, and

consequently g• := (gk) is in Hom K b(add(BN))(T̄
•, T̄ •[i]) and f• = EΦ•

B (N, g•). By

Lemma 3.6 (1), the map g• is null-homotopic, and consequently f• = EΦ•
B (N, g•)

is null-homotopic. Thus, we have proved that

Hom K b(EΦ
B(N)-proj)(E

Φ•
B (N, T̄ •),EΦ•

B (N, T̄ •)[i]) = 0

for all non-zero integers i.
By definition, the triangle functor

EΦ•
B (N,−) : K b(add(BN)) −→ K b(EΦ

B(N)-proj)

sends N to EΦ
B(N). The full triangulated subcategory of K b(add(BN)) generated

by add(T̄ •) contains N by Lemma 3.6 (2), and so EΦ
B(N) is in the full trian-

gulated subcategory of K b(EΦ
B(N)-proj) generated by add(EΦ•

B (N, T̄ •)). Hence

add(EΦ•
B (N, T̄ •)) generates K b(EΦ

B(N)-proj) as a triangulated category. This fin-
ishes the proof. �

In the following, we shall prove that the endomorphism algebra of the complex
EΦ•
B (N, T̄ •) is isomorphic to EΦ

A(M). For this purpose, we first prove the following
lemma.

Lemma 3.8. Keeping the notation above, for each A-module V , we have
(1) for each positive integer k, there is an isomorphism

θk : Hom Db(A)(V, V [k]) −→ Hom Db(B)(F̄ (V ), F̄ (V )[k]).

Here we denote the image of g under θk by θk(g).
(2) For each pair of positive integers k and l, the θk and θl in (1) satisfy

θk(g)(θl(h)[k]) = θk+l(g(h[k]))

for all g ∈ Hom Db(A)(V, V [k]) and h ∈ Hom Db(A)(V, V [l]).
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Proof. By Lemma 3.3, we may assume that F (V ) is the complex Q̄•
V defined in

Lemma 3.3 (1), and therefore F̄ (V ) = Q̄0
V . As before, the complex σ>0Q̄

•
V is

denoted by Q̄+
V . Thus, we have a distinguished triangle in Db(B):

Q̄+
V

iV �� F (V )
πV �� F̄ (V )

αV �� Q̄+
V [1].

(1) For a morphism f : V −→ V [k], we can form the following commutative
diagram in Db(B):

Q̄+
V

iV ��

af

��

F (V )
πV ��

F (f)

��

F̄ (V )
αV ��

bf

��

Q̄+
V [1]

af [1]

��

Q̄+
V [k]

iV [k]
�� F (V )[k]

πV [k]
�� F̄ (V )[k]

αV [k]
�� Q̄+

V [k + 1].

The map bf exists because the composite iV F (f)(πV [k]) belongs to Hom Db(B)(Q̄
+
V ,

F̄ (V )[k]) = 0. If there is another map b′f : F̄ (V ) −→ F̄ (V )[k] such that πV b
′
f =

F (f)(πV [k]), then πV (bf − b′f ) = 0, and bf − b′f factors through Q̄+
V [1]. But

Hom Db(B)(Q̄
+
V [1], F̄ (V )[k]) � Hom K b(B)(Q̄

+
V [1], F̄ (V )[k]) = 0.

Hence bf = b′f ; that is, the map bf is uniquely determined by the above commutative
diagram. Thus, we can define a morphism

θk : Hom Db(A)(V, V [k]) −→ Hom Db(B)(F̄ (V ), F̄ (V )[k])

by sending f to bf . We claim that this θk is an isomorphism.
In fact, it is surjective: For each map b : F̄ (V ) −→ F̄ (V )[k], the composite

πV b(αV [k]) belongs to Hom Db(B)(F (V ), Q̄+
V [k + 1]) � Hom Db(A)(GF (V ),

G(Q̄+
V )[k + 1]). By Lemma 3.3 (5), the complex G(Q̄+

V ) is isomorphic in Db(A)
to a bounded complex P •

V of projective-injective A-modules such that P i
V = 0 for

all i > 1. Hence Hom Db(A)(GF (V ), G(Q̄+
V )[k+1]) � Hom Db(A)(V, P

•
V [k+1]) = 0,

and the map πV b(αV [k]) is zero. It follows that there is a morphism u : F (V ) −→
F (V )[k] such that u(πV [k]) = πV b. Since F is an equivalence, we have u = F (f)
for some f : V −→ V [k], and consequently b = θk(f). This shows that θk is a
surjective map.

Now we show that θk is injective: Assume that θk(f) = bf = 0. Then the
composite F (f)(πV [k]) = 0, and consequently F (f) factors through Q̄+

V [k]. It

follows that GF (f) factors through G(Q̄+
V )[k] � P •

V [k] or, equivalently, the map
f : V −→ V [k] factors through the bounded complex P •

V of projective-injective
A-modules, say f = gh for some g : V −→ P •

V and h : P •
V −→ V [k]. Since k > 0,

and since both g and h can be chosen to be chain maps, we see immediately that
f = gh = 0. This shows that the map θk is injective, and therefore θk is an
isomorphism.

(2) By the above discussion, we have

πV θk(g)(θl(g)[k]) = (F (g)(πV [k]))(θl(h)[k])
= F (g)((πV θl(h))[k])
= F (g)((F (h)(πV [l]))[k])
= (F (g)F (h[k]))(πV [k + l])
= F (g(h[k]))(πV [k + l]).

By the definition of θk+l, we have θk+l(g(h[k])) = θk(g)(θl(g)[k]). �
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Remark. Let f be in Hom Db(A)(V, V ), and let g be in Hom Db(A)(V, V [k]) for some

k > 0. If tf : F̄ (V ) −→ F̄ (V ) is a morphism such that πV tf = F (f)πV , then, by a
proof similar to Lemma 3.8(3), we have

tfθk(g) = θk(fg) and θk(g)(tf [k]) = θk(g(f [k])).

For instance, by Lemma 2.1, we can assume that the map F (f) : Q̄•
V −→ Q̄•

V is
induced by a chain map p•, that is, F (f) = p• in Db(B). Since the map πV is the
canonical map from Q̄•

V to Q̄0
V , we see that the map p0 : F̄ (V ) −→ F̄ (V ) satisfies

the condition πV p
0 = F (f)πV . Therefore, by the above discussion, we have

p0θk(g) = θk(fg) and θk(g)(p
0[k]) = θk(g(f [k])).

Proposition 3.9. EndK b(EΦ
B(N)-proj)(E

Φ•
B (N, T̄ •)) is isomorphic to EΦ

A(M).

Proof. Let (fi) be in EΦ
A(M). By our assumption, we have T̄ • = F (M). By

Lemma 2.1, the morphism F (f0) : T̄ • −→ T̄ • is equal in Db(B) to a chain map.
For simplicity, we shall assume that F (f0) is a chain map. Recall that F̄ (M) = T̄ 0

by the definition of F̄ (see Lemma 3.3(3)).
Now we set Φ+ := Φ\{0}. For each k ∈ Φ+, by Lemma 3.8, we have a map

θk(fk) : F̄ (M) −→ F̄ (M)[k]. This gives rise to a morphism

μ
(
ιk(θk(fk))

)
: EΦ

B(N, T̄ 0) −→ EΦ
B(N, T̄ 0),

where μ is the isomorphism defined in Lemma 3.5 (1) and ιk is the embedding from

Hom Db(B)(T̄
0, T̄ 0[k]) to EΦ

B(T̄
0, T̄ 0). We claim that the composite of μ

(
ιk(θk(fk))

)
with the differential EΦ

B(N, d) : EΦ
B(N, T̄ 0) → EΦ

B(N, T̄ 1) is zero.

Indeed, by the proof of Lemma 3.5 (2), we have EΦ
B(N, d) = μ (ι0(d)). Thus,

μ
(
ιk(θk(fk))

)
EΦ
B(N, d)

= μ
(
ιk(θk(fk))

)
μ (ι0(d)) (by the proof of Lemma 3.5 (2))

= μ
(
ιk(θk(fk))ι0(d)

)
(by Lemma 3.5(1))

= μ
(
ιk(θk(fk)d[k])

)
= 0 (since θk(fk)d[k] : T̄

0 −→ T̄ 1[k] must be zero).

Thus, the map μ
(
ιk(θk(fk))

)
gives rise to an endomorphism of EΦ•

B (N, T̄ •):

0 �� EΦ
B(N, T̄ 0)

EΦ
B(N,d)

��

μ
(
ιk(θk(fk))

)
��

EΦ
B(N, T̄ 1) ��

0

��

· · · �� EΦ
B(N, T̄n) ��

0

��

0

0 �� EΦ
B(N, T̄ 0)

EΦ
B(N,d)

�� EΦ
B(N, T̄ 1) �� · · · �� EΦ

B(N, T̄n) �� 0.

We denote this endomorphism by θ̃k(fk). Now, we define a map

η : EΦ
A(M) −→ EndK b(EΦ

B(N)-proj)(E
Φ•
B (N, T̄ •))

by sending (fi) to

EΦ•
B (N,F (f0)) +

∑
k∈Φ+

θ̃k(fk).

We claim that η is an algebra homomorphism. This will be shown with the help of
the next lemma.
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Lemma 3.10. Let (fi) and (gi) be in EΦ
A(M), and let k, l be in Φ+. Then the

following hold:

(1) θ̃k(fk)θ̃l(gl) =

{
θ̃k+l(fk(gl[k])), k + l ∈ Φ;
0, k + l �∈ Φ.

(2) EΦ•
B (N,F (f0))θ̃k(gk) = θ̃k(f0gk).

(3) θ̃k(fk)E
Φ•
B (N,F (g0)) = θ̃k(fk(g0[k])).

Proof. (1) By Lemma 3.8 (2), we have

ιk
(
θk(fk)

)
ιl
(
θl(fl)

)
= ιk+l

(
θk+1(fk(gl[k]))

)
.

If k + l ∈ Φ, then it follows that θ̃k(fk)θ̃l(fl) = θ̃k+l(fk(gl[k])) by applying μ. If
k + l �∈ Φ, then ιk+l = 0, and consequently ιk

(
θk(fk)

)
ιl
(
θl(fl)

)
= 0. Therefore

θ̃k(fk)θ̃l(fl) = 0 for k + l �∈ Φ.

(2) and (3) By definition, the map EΦ•
B (N,F (f0))

0 : EΦ
B(N, T̄ 0) −→ EΦ

B(N, T̄ 0)

is EΦ
B(N,F (f0)

0) = μ (ι0(F (f0)
0)), where F (f0)

0 : T̄ 0 −→ T̄ 0 is induced by the
chain map F (f0) from T̄ • to T̄ •. By the remark just before Lemma 3.9, we have

ι0(F (f0)
0)ιk

(
θk(gk)

)
= ιk

(
θk(f0gk)

)
and ιk

(
θk(fk)

)
ι0(F (g0)

0) = ιk
(
θk(fk(g0[k]))

)
.

Applying μ to these equalities, one can easily see that

EΦ•
B (N,F (f0))θ̃k(gk) = θ̃k(f0gk) and θ̃k(fk)E

Φ•
B (N,F (g0)) = θ̃k(fk(g0[k])).

These are precisely statements (2) and (3). �

Now, we continue the proof of Lemma 3.9: With Lemma 3.10 in hand, it is
straightforward to check that η is an algebra homomorphism. In the following we
first show that η is injective.

Pick an (fi) in EΦ
A(M) and let p• := η((fi)). Then we have

p0 = EΦ
B(N,F (f0)

0) +
∑
k∈Φ+

μ
(
ιk(θk(fk))

)

and pi = EΦ
B(N,F (f0)

i) for all i > 0. If p• = 0, then there is a map hi :

EΦ
B(N, T̄ i) −→ EΦ

B(N, T̄ i−1) for i > 0 such that p0 = EΦ
B(N, d)h1 and pi =

EΦ
B(N, d)hi+1 + hiEΦ

B(N, d) for all i > 0. Since T̄ i is projective-injective for all

i > 0, it follows from Lemma 3.5 (3) that, for each i > 0, we have hi = EΦ
B(N, ui)

for some ui : T̄ i −→ T̄ i−1. Hence

EΦ
B(N,F (f0)

0) +
∑
k∈Φ+

μ
(
ιk(θk(fk))

)
= EΦ

B(N, d)EΦ
B(N, u1) = EΦ

B(N, du1).

This yields that

μ
(
ι0(F (f0)

0 − du1)
)
= EΦ

B(N,F (f0)
0 − du1) =

∑
k∈Φ+

μ
(
ιk(θk(fk))

)
.

Since μ is an isomorphism, and since EΦ
B(N, T̄ 0) =

⊕
k∈Φ

Hom Db(B)(N, T̄ 0[k]) is a

direct sum, we get F (f0)
0 = du1 and θk(fk) = 0 for all k ∈ Φ+. Since θk is an

isomorphism by Lemma 3.8, we have fk = 0 for all k ∈ Φ+. Now for each i > 0, we
have

EΦ
B(N,F (f0)

i) = pi = EΦ
B(N, d)EΦ

B(N, ui+1) + EΦ
B(N, ui)EΦ

B(N, d).
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Hence EΦ
B(N,F (f0)

i − dui+1 − uid) = 0. By Lemma 3.5 (2), the functor EΦ
B(N,−)

is faithful. Therefore, we get F (f0)
i = dui+1 + uid for i > 0. Note that we have

shown that F (f0)
0 = du1. Hence the morphism F (f0) is null-homotopic, that is,

F (f0) = 0, and therefore f0 = 0. Altogether, we get (fi) = 0. This shows that η is
injective.

Finally, we show that η is surjective. For p• in EndK b(EΦ
B(N)-proj)(E

Φ•
B (N, T̄ •)),

we can assume that pi = EΦ
B(N, ti) with ti : T̄ i −→ T̄ i for i > 0 since T̄ i is

projective-injective for i > 0. By Lemma 3.5 (1), we may assume further that
p0 = μ

(∑
k∈Φ ιk(sk)

)
with sk : T̄ 0 −→ T̄ 0[k] for k ∈ Φ. By the proof of Lemma

3.5 (3), we have μ
(
ι0(s0)

)
= EΦ

B(N, s0). Thus, p
0 = EΦ

B(N, s0)+
∑

k∈Φ+ μ
(
ιk(sk)

)
.

It follows from EΦ
B(N, d)p1 = p0EΦ

B(N, d) that

EΦ
B(N, dt1) = EΦ

B(N, s0d) +
∑
k∈Φ+

μ
(
ιk(sk)

)
μ
(
ι0(d)

)

= EΦ
B(N, s0d) +

∑
k∈Φ+

μ
(
ιk(sk(d[k]))

)

= EΦ
B(N, s0d) (since sk(d[k]) : T̄

0 −→ T̄ 1[k] must be zero for k > 0).

Hence dt1 = s0d since EΦ
B(N,−) is faithful on add(N). For each i > 0, by the

fact that EΦ
B(N, d)pi+1 = piEΦ

B(N, d), we get dti+1 = tid. This gives rise to a
morphism α• in EndK b(B)(T̄

•) by defining α0 := s0 and αi := ti for all i > 0. By
Lemma 2.1 and the fact that F is an equivalence, we conclude that α• = F (f0)

for some f0 ∈ Hom Db(A)(M,M). The map p• − EΦ•
B (N,α•) is a chain map β•

from EΦ•
B (N, T̄ •) to itself with β0 =

∑
k∈Φ+ μ

(
ιk(sk)

)
and βk = 0 for all k > 0.

By Lemma 3.8, we can write sk = θk(fk) with fk : M −→ M [k] for all k ∈ Φ+.

Thus β0 =
∑

k∈Φ+ μ
(
ιk(sk)

)
=

∑
k∈Φ+ μ

(
ιk(θk(fk))

)
, and p• − EΦ•

B (N,α•) =∑
k∈Φ+ θ̃k(fk). Consequently, we get

p• = EΦ•
B (N,α•) +

∑
k∈Φ+

θ̃k(fk) = EΦ•
B (N,F (f0)) +

∑
k∈Φ+

θ̃k(fk) = η
(
(fi)

)

for (fi) ∈ EΦ
A(M). Hence η is surjective. This finishes the proof of Lemma 3.9. �

Lemma 3.11. Let F : Db(Λ) −→ Db(Γ) be a derived equivalence between Artin
R-algebras Λ and Γ, and let P • be a tilting complex associated to F . Suppose that
the following two conditions are satisfied.

(1) All the terms of P • in negative degrees are zero, and all the terms of P • in
positive degrees are in add(ΛW ) for some projective Λ-module ΛW with add(νΛW )
= add(ΛW ).

(2) For the module ΛW in (1), the complex F (ΛW ) is isomorphic to a complex
in K b(add(ΓV )) for some projective Γ-module ΓV with add(νΓV ) = add(ΓV ).

Then the quasi-inverse of F is an almost ν-stable derived equivalence.

Proof. Let G be a quasi-inverse of F . By the definition of almost ν-stable equiva-
lences, we need to consider the tilting complex associated to G. This is equivalent
to considering F (Λ).

Since P • is a tilting complex over Λ, it is well known that ΛΛ is in add(
⊕

i∈Z
P i),

which is contained in add(P 0 ⊕ W ) by assumption (1). Hence F (ΛΛ) is in
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add(F (P 0 ⊕ W )). Let P+ be the complex σ>0P
•. There is a distinguished tri-

angle

P+ �� P • �� P 0 �� P+[1]

in Db(Λ). Applying F , we get a distinguished triangle

F (P+) �� F (P •) �� F (P 0) �� F (P+)[1]

in Db(Γ). By definition, there is an isomorphism F (P •) � Γ in Db(Γ). By assump-
tion (1), we have P+ ∈ K b(add(ΛW )), and consequently F (P+) is isomorphic in
Db(Γ) to a complex R• in K b(add(ΓV )) by assumption (2). Thus, the complex
F (P 0) is isomorphic in Db(Γ) to the mapping cone of a chain map from R• to ΓΓ.
This implies that F (P 0) is isomorphic in Db(Γ) to a complex S• in K b(Γ-proj)
such that Si ∈ add(ΓV ) for all i �= 0. By assumption (2) again, the complex F (ΛW )
is isomorphic in Db(Γ) to a complex in K b(add(ΓV )). Hence F (P 0) ⊕ F (ΛW ) is
isomorphic in Db(Γ) to a complex U• in K b(Γ-proj) such that U i ∈ add(ΓV ) for
all i �= 0. Note that F (Λ) ∈ add(F (P 0)⊕F (ΛW )). Therefore, the complex F (Λ) is
isomorphic in Db(Γ) to a complex P̄ • in K b(Γ-proj) such that P̄ i ∈ add(ΓV ) for
all i �= 0. Since P i = 0 for all i < 0, we see from [6, Lemma 2.1] that P̄ • has zero
homology in all positive degrees. Hence we can assume that P̄ i = 0 for all i > 0.

Thus, the complex P̄ • � F (Λ) is a tilting complex associated to G and satisfies
that P̄ i = 0 for all i > 0 and P̄ i ∈ add(ΓV ) for all i < 0. The complex P • is a tilting
complex associated to F and satisfies that P i = 0 for all i < 0 and P i ∈ add(ΛW )
for all i > 0. Since add(νΛW ) = add(ΛW ), and since add(νΓV ) = add(ΓV ),
it follows from [6, Proposition 3.8 (3)] that the functor G is an almost ν-stable
derived equivalence. �

Now we prove our main result, Theorem 3.4, in this section.

Proof of Theorem 3.4. Statement (1) follows from Lemma 3.7, Proposition 3.9 and
Lemma 2.2. It remains to prove statement (2). Now we suppose that Φ is finite.

Then EΦ
A(M) and EΦ

B(N) are Artin R-algebras.
Let AE be a maximal ν-stable A-module, and let BĒ be a maximal ν-stable B-

module. Then AE can be viewed as a direct summand of AM . Let Q̄•
E be F (AE)

defined in Lemma 3.3 (1). Then Q̄•
E is a direct summand of Q̄•

M = Q̄• ⊕ Q̄•
X . Note

that Q̄•
M is just the complex T̄ • considered in Proposition 3.9. Now we consider the

isomorphism η in the proof of Proposition 3.9. Let e be the idempotent in EndA(M)

corresponding to the direct summand AE. Then ι0(e) is the idempotent in EΦ
A(M)

corresponding to the direct summand EΦ
A(M,E) of EΦ

A(M). By definition, η
(
ι0(e)

)
is EΦ•

B (N,F (e)), which is the idempotent in EndEΦ
B(N)-proj(T̄

•) corresponding to

EΦ•
B (N, Q̄•

E). Hence the derived equivalence F̂ : Db(EΦ
A(M)) −→ Db(EΦ

B(N)) is

induced by the isomorphism η in the proof of Proposition 3.9 that sends EΦ
A(M,E)

to EΦ•
B (N, Q̄•

E). By [6, Lemma 3.9], the functor F induces an equivalence between
the triangulated categories K b(add(AE)) and K b(add(BĒ)). Hence Q̄•

E = F (AE)

is in K b(add(BĒ)), the complex EΦ•
B (N, Q̄•

E) belongs to K b(add(EΦ
B(N, Ē))) and

consequently F̂ induces a full, faithful triangle functor

F̂ : K b(add(EΦ
A(M,E))) −→ K b(add(EΦ

B(N, Ē))).

Since add(AE) clearly generates K b(add(AE)) as a triangulated category, we see
immediately that add(Q̄•

E) generates K b(add(BĒ)) as a triangulated category.
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This implies that add(EΦ•
B (N, Q̄•

E)) generates K b(add(EΦ
B(N, Ē))) as a triangu-

lated category. This shows that

F̂ : K b(add(EΦ
A(M,E))) −→ K b(add(EΦ

B(N, Ē)))

is dense, and therefore an equivalence. Let Ĝ be a quasi-inverse of the derived
equivalence F̂ . Then the functor Ĝ also induces an equivalence between the tri-
angulated categories K b(add(EΦ

B(N, Ē))) and K b(add(EΦ
A(M,E))). This implies

that the complex Ĝ(EΦ
B(N, Ē)) is isomorphic to a complex in K b(add(EΦ

A(M,E))).

Now we use Lemma 3.11 to complete the proof. In fact, the complex EΦ•
B (N, T̄ •)

is a tilting complex associated to the derived equivalence Ĝ : Db(EΦ
B(N)) −→

Db(EΦ
A(M)). By definition, the B-module Q̄ is in add(BĒ). Thus, the term

EΦ
B(N, T̄ i) of EΦ•

B (N, T̄ •) in degree i is in add(EΦ
B(N, Ē)) for all i > 0, and it

follows from Lemma 3.5 (4) that

add(νEΦ
B(N)E

Φ
B(N, Ē)) = add(EΦ

B(N)E
Φ
B(N, νBĒ)) = add(EΦ

B(N)E
Φ
B(N, Ē)).

Similarly, we have add(νEΦ
A(M)E

Φ
A(M,E)) = add(EΦ

A(M)E
Φ
A(M,E)). Hence, by

Lemma 3.11, the functor F̂ is an almost ν-stable derived equivalence.
The statements on stable equivalence in Theorem 3.4 follow from [6, Theorem

1.1]. This finishes the proof. �

Note that the proof of Theorem 3.4 (2) also shows that if both EΦ
A(M) and

EΦ
B(N) are Artin R-algebras, then the conclusion of Theorem 3.4 (2) is valid.
Let us remark that, in the case of finite-dimensional algebras over a field, the

special case for Φ = Φ(1, 0) = {0} in Theorem 3.4 about the stable equivalence
was proved in [6, Proposition 6.1] by using two-sided tilting complexes, and the
conclusion there guarantees a stable equivalence of Morita type. But the proof
there in [6] does not work here any more, since we do not have two-sided tilting
complexes in general for Artin algebras.

As a consequence of Theorem 3.4, we have the following corollary.

Corollary 3.12. Let F : Db(A) −→ Db(B) be a derived equivalence between
self-injective Artin algebras A and B, and let φ be the stable equivalence induced
by F . Then, for each A-module X and each admissible subset Φ of N, the Φ-
Auslander-Yoneda algebras EΦ

A(A⊕X) and EΦ
B(B ⊕ φ(X)) are derived equivalent.

Particularly, the generalized Yoneda algebras Ext∗A(A ⊕ X) and Ext∗B(B ⊕ φ(X))

are derived equivalent. Moreover, if Φ is finite, then EΦ
A(A⊕X) and EΦ

B(B⊕φ(X))
are stably equivalent.

Proof. There is an integer i such that F [i] is an almost ν-stable derived equivalence.
Let φ1 be the stable equivalence induced by F [i]. Then φ(X) � φ1Ω

i(X) in B-mod
for every A-module X, where Ωi is the i-th syzygy operator of A. By the definition
of an almost ν-stable derived equivalence, either [i] or [−i] is almost ν-stable. Hence

EΦ
A(A⊕X) and EΦ

A(A⊕ Ωi(X)) are derived equivalent by Theorem 3.4. Thus, by

Theorem 3.4 again, the algebras EΦ
A(A⊕Ωi(X)) and EΦ

B(B⊕φ1Ω
i(X)) are derived

equivalent. The stable equivalence follows from [6, Theorem 1.1]. Thus the proof
is completed. �
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As a direct consequence of Corollary 3.12, we have the following corollary con-
cerning Auslander algebras.

Corollary 3.13. Suppose that A and B are self-injective Artin algebras of finite
representation type. If A and B are derived equivalent, then the Auslander algebras
of A and B are both derived and stably equivalent.

Let us remark that the notion of a stable equivalence of Morita type for finite-
dimensional algebras can be formulated for Artin R-algebras. But, in this case, we
do not know if a stable equivalence of Morita type between Artin algebras induces
a stable equivalence since we do not know whether a projective A-A-bimodule is
projective as a one-sided module when the ground ring is a commutative Artin
ring. So, Theorem 3.4 (2), Corollary 3.12 (1) and Corollary 3.13 ensure a stable
equivalence between the endomorphism algebras of generators over Artin algebras,
while the main result in [6, Section 6] ensures a stable equivalence of Morita type
between the endomorphism algebras of generators over finite-dimensional algebras.

Note that if A and B are not self-injective, then Corollary 3.13 may fail. For
a counterexample, we just check the following two algebras A and B, where A is

given by the path algebra of the quiver ◦ → ◦ → ◦, and B is given by ◦ α−→ ◦ β−→ ◦
with the relation αβ = 0. Clearly, B is the endomorphism algebra of a tilting
A-module. Note that the Auslander algebras of A and B have different numbers
of non-isomorphic simple modules, and therefore are never derived equivalent since
derived equivalences preserve the number of non-isomorphic simple modules [7].
Notice that, though A and B are derived equivalent, there is no almost ν-stable
derived equivalence between A and B since A and B are not stably equivalent. This
example also shows that Theorem 3.4 may fail if we drop the almost ν-stability
condition.

The following question relevant to Corollary 3.13 might be of interest.

Question. Let A and B be self-injective Artin algebras of finite representation
type with AX and BY additive generators for A-mod and B-mod, respectively.

Suppose that there is a natural number i such that the algebras E
Φ(1,i)
A (X) and

E
Φ(1,i)
B (Y ) are derived equivalent. Are A and B derived equivalent?

We remark that Asashiba in [1] gave a complete classification of representation-
finite self-injective algebras up to derived equivalence.

For a self-injective Artin R-algebra A, we know that the shift functor [−1]:
Db(A) −→ Db(A) is an almost ν-stable derived equivalence, and this functor in-
duces a stable functor F̄ : A-mod−→ A-mod, which is isomorphic to ΩA(−), the
Heller loop operator. Thus we have the following corollary to Theorem 3.4, which
extends [5, Corollary 3.7] in some sense.

Corollary 3.14. Let A be a self-injective Artin algebra. Then, for any admissible
subset Φ of N and for any A-module X, we have a derived equivalence between
EΦ
A(A⊕X) and EΦ

A(A⊕ ΩA(X)). Moreover, if Φ is finite, then there is an almost

ν-stable derived equivalence between EΦ
A(A ⊕ X) and EΦ

A(A ⊕ ΩA(X)). Thus they
are stably equivalent.

Let us mention the following consequence of Corollary 3.14.
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Corollary 3.15. Let A be a self-injective Artin algebra, and let J be the Jacobson
radical of A with the nilpotency index n. Then:

(1) For any 1 ≤ j ≤ n−1 and for any admissible subset Φ of N, the Φ-Auslander-

Yoneda algebras EΦ
A(A⊕

j⊕
i=1

A/J i) and EΦ
A(A⊕

j⊕
i=1

J i) are derived equivalent.

(2) The global dimension of EndA(AA⊕ J ⊕ J2 ⊕ · · · ⊕ Jn−1) is at most n.

(3) The global dimension of EndA(AA⊕
n−1⊕
i=1

A/soci(AA)) is at most n.

(4) The global dimension of EndA(AA⊕ soc(AA)⊕ · · · ⊕ socn−1(AA)) is at most
n.

Proof. Since the syzygy of
⊕j

i=1 A/J i is
⊕j

i=1 J
i up to a projective summand, we

have (1) immediately from Corollary 3.14. Statement (2) follows from [6, Corollary
4.3] together with a result of Auslander, which says that, for any Artin algebra A,

the global dimension of EndA(A⊕
⊕n−1

i=1 A/J i) is at most n.
Since AA is injective, we know that add(AA) = add(D(AA)). It follows from

D(AA/J
i
A) � soci(D(AA)) that

EndAop(AA ⊕
n−1⊕
i=1

A/J i
A) �

(
EndA

(
D(AA ⊕

n−1⊕
i=1

A/J i
A)

))op

�
(
EndA

(
D(AA)⊕

n−1⊕
i=1

soci(D(AA))
))op

.

The latter is Morita equivalent to
(
EndA(AA ⊕

⊕n−1
i≥1 soci(AA))

)op
. This shows

(4). Statement (3) follows from (4), Corollary 3.14 and [6, Corollary 4.3]. �

Finally, we state a dual version of Theorem 3.4, which will produce derived
equivalences between the endomorphism algebras of cogenerators. First, we point
out the following facts.

Lemma 3.16. Let F : Db(A) −→ Db(B) be an almost ν-stable derived equivalence
with a quasi-inverse functor G. Suppose D is the usual duality. Then we have the
following:

(1) The functor DGD : Db(Bop) −→ Db(Aop) is an almost ν-stable derived
equivalence with a quasi-inverse functor DFD.

(2) Let F̄ : A-mod −→ B-mod and DFD : Aop-mod −→ Bop-mod be the stable
equivalences defined in Lemma 3.3 (3) and (4), respectively. Then, for each A-
module X, there is an isomorphism DF̄ (X) � DFD(D(X)) in Bop-mod.

Proof. (1) Suppose that Q• and Q̄• are tilting complexes associated to F and
G, respectively. We assume that Q• and Q̄• are radical complexes. There is an
isomorphism

DGD(Hom•
B(Q̄

•,BB)) � DG(νBQ̄
•) � DνBG(Q̄•) � DνA(AA)

� Hom A(AA,AA) � AA.

Similarly, we have DFD(Hom•
A(Q

•,AA)) � BB . Consequently, the complexes
P • := Hom•

B(Q̄
•,BB) and P̄ • := Hom•

A(Q
•,AA) are tilting complexes associated
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to DGD and DFD, respectively. Since BQ̄ =
⊕n

i=1 Q̄
i, we have Hom B(Q̄,BB) =⊕n

i=1 P
−i. Moreover,

νBop(Hom B(Q̄,BB)) � D(BQ̄) � Hom B(ν
−
B (Q̄),BB) ∈ add(Hom B(Q̄,BB))

since ν−B Q̄ is in add(BQ̄). Hence add(νBop(Hom B(Q̄,BB)))=add(Hom B(Q̄,BB)).
Similarly, we have Hom A(Q,AA) =

⊕n
i=1 P̄

i and add(νAop(Hom A(Q,AA))) =
add(Hom A(Q,AA)), and consequently DGD is an almost ν-stable derived equiv-
alence. Clearly, the functors DGD and DFD are mutually quasi-inverse functors.
This proves (1).

(2) For each A-module X, we have DFD(D(X)) = DF (X). By Lemma 3.3 (2),
the complex DFD(D(X)) is isomorphic to a complex P •

D(X) of the form

0 −→ P−n
D(X) −→ · · · −→ P 0

D(X) −→ 0

with P i
D(X) ∈ add(Hom B(Q̄,BB)) for all i < 0 and DFD(D(X)) = P 0

D(X). Con-

sequently, the complex F (X) is isomorphic to D(P •
D(X)) of the form

0 −→ D(P 0
D(X)) −→ · · · −→ D(P−n

D(X)) −→ 0

with D(P 0
D(X)) being in degree zero and D(P i

D(X)) ∈ add(νBQ̄) = add(BQ̄) for all

i > 0. By Lemma 3.3 (1) and (3), we have F̄ (X) � D(P 0
D(X)) = DDFD(D(X)) in

B-mod. This finishes the proof. �

Clearly, for an Artin algebra A and an A-module V , the algebra EΦ
Λ(V ) is iso-

morphic to the opposite algebra of EΦ
Λop(D(V )) for every admissible subset Φ of

N.

Corollary 3.17. Let F : Db(A) −→ Db(B) be an almost ν-stable derived equiva-
lence between two Artin algebras A and B, and let F̄ be the stable equivalence defined
in Lemma 3.3. For each A-module X, set M = D(AA)⊕X and N = D(BB)⊕F̄ (X).
Suppose that Φ is an admissible subset of N. Then:

(1) The Φ-Auslander-Yoneda algebras EΦ
A(M) and EΦ

B(N) are derived equivalent.
(2) If Φ is finite, then there is an almost ν-stable derived equivalence between

EΦ
A(M) and EΦ

B(N).

Proof. We consider the Aop-module DM = AA⊕D(X) and the Bop-module DN =
BB ⊕DF̄ (X). By Lemma 3.16, we see that DF̄ (X) � DFD(D(X)). Let G be a
quasi-inverse of F . Then the functorDGD is an almost ν-stable derived equivalence
by Lemma 3.16 (1), and DFD is a quasi-inverse of DGD. Thus, by Theorem 3.4
and by Lemma 3.16 (1), the corollary follows. �

4. Derived equivalences for quotient algebras

In the previous section, we have seen that there are many derived equivalences
between quotient algebras of Φ-Auslander-Yoneda algebras that are derived equiva-
lent (see Theorem 3.4 and Subsection 3.1). This phenomenon gives rise to a general
question: How do we construct a new derived equivalence for quotient algebras from
the given one between two given algebras? In this section, we shall consider this
question and provide methods to transfer a derived equivalence between two given
algebras to a derived equivalence between their quotient algebras. In particular, we
shall prove Theorem 1.3.
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4.1. Derived equivalences for algebras modulo ideals. Let us start with the
following general setting.

Suppose that A is an Artin R-algebra over a commutative Artin ring R, and
suppose that I is an ideal in A. We denote by A the quotient algebra A/I of A by
the ideal I. The category A-mod can be regarded as a full subcategory of A-mod.
Also, there is a canonical functor from A-mod to A-mod which sends each X ∈ A-
mod to X := X/IX. This functor induces a functor − : C (A) −→ C (A), which
is defined as follows: for a complex X• = (Xi)i∈Z of A-modules, let IX• be the
subcomplex of X• in which the i-th term is the submodule IXi of Xi; we define

X
•
to be the quotient complex of X• modulo IX•. The action of − on a chain map

can be defined canonically. Thus − is a well-defined functor. For each complex X•

of A-modules, we have the following canonical exact sequence of complexes:

0 −→ IX• i•−→ X• π•
−→ X

• −→ 0.

For a complex Y • of A-modules, this sequence induces another exact sequence of
R-modules:

0 �� Hom C (A)(X
•
, Y •)

π∗
�� Hom C (A)(X

•, Y •)
i∗ �� Hom C (A)(IX

•, Y •).

Since Y • is a complex of A-modules, the map i∗ must be zero, and consequently π∗

is an isomorphism. Now we show that π∗ actually induces an isomorphism between

Hom K (A)(X
•
, Y •) and Hom K (A)(X

•, Y •).

Lemma 4.1. Suppose that A is an Artin algebra and I is an ideal in A. Let A be
the quotient algebra of A modulo I. If X• is a complex of A-modules and Y • is a
complex of A-modules, then we have a natural isomorphism of R-modules

π∗ : Hom K (A)(X
•
, Y •) −→ Hom K (A)(X

•, Y •).

Proof. Note that we already have an isomorphism

π∗ : Hom C (A)(X
•
, Y •) −→ Hom C (A)(X

•, Y •).

Clearly, π∗ sends null-homotopic maps to null-homotopic maps. This means that
π∗ induces an epimorphism

π∗ : Hom K (A)(X
•
, Y •) −→ Hom K (A)(X

•, Y •).

Now let f• : X
• → Y • be a chain map such that π∗(f•) = π•f• is null-homotopic.

Then there is a homomorphism hi : Xi → Y i−1 for each integer i such that πif i =
hidi−1

Y + diXhi+1. Note that hi factors through πi; that is, hi = πigi for some

gi : X
i → Y i−1. Hence we have

πif i = hidi−1
Y + diXhi+1

= πigidi−1
Y + diXπi+1gi+1

= πigidi−1
Y + πidi

X
gi+1

= πi(gidi−1
Y + di

X
gi+1).

It follows that f i = gidi−1
Y + di

X
gi+1 since πi is surjective for each i. Therefore, the

map f• is null-homotopic. Thus π∗ is injective. �
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For any complexes X• and X ′• over A-mod, we have a natural map

η : Hom K (A)(X
•, X ′•) −→ Hom K (A)(X

•
, X ′•),

which is the composite of the map π•
∗ : Hom K (A)(X

•, X ′•)−→Hom K (A)(X
•, X ′•)

and the map (π∗)−1: Hom K (A)(X
•, X ′•) −→ Hom K (A)(X

•
, X ′•) defined in

Lemma 4.1. In particular, if X• = X ′•, then we get an algebra homomorphism

η : EndK (A)(X
•) −→ EndK (A)(X

•
).

Now, let T • be a tilting complex over A, and let B = EndK (A)(T
•). Further,

suppose that I is an ideal in A. By the above discussion, there is an algebra
homomorphism

η : EndK (A)(T
•) −→ EndK (A)(T

•
).

Let JI be the kernel of η, which is an ideal of B. Since (π∗)−1 is an isomorphism,

we see that JI is the kernel of the map π•
∗ : EndK (A)(T

•) −→ Hom K (A)(T
•, T

•
).

In fact, JI is also the set of all endomorphisms of T • which factor through the
embedding IT • −→ T •. We denote the quotient algebra B/JI by B.

In the following, we study when the complex T
•
is a tilting complex over the

quotient algebra A and induces a derived equivalence between A and B. The
following result supplies an answer to this question.

Theorem 4.2. Let A be an Artin algebra, and let T • be a tilting complex over A
with the endomorphism algebra B = EndK b(A)(T

•). Suppose that I is an ideal in

A, and A := A/I. Let B be the quotient algebra of B modulo JI . Then T
•
is a

tilting complex over A and induces a derived equivalence between A and B if and

only if Hom K b(A)(T
•, IT •[i]) = 0 for all i �= 0 and Hom K b(A)(T

•
, T

•
[−1]) = 0.

Proof. First, we assume that Hom K b(A)(T
•, IT •[i]) = 0 for all i �= 0 and that

Hom K b(A)(T
•
, T

•
[−1]) = 0. Applying the functor Hom Db(A)(T

•,−) to the dis-
tinguished triangle

IT • i•−→ T • π•
−→ T

• −→ IT •[1],

we get an exact sequence for each integer i:

Hom Db(A)(T
•, T •[i]) −→ Hom Db(A)(T

•, T
•
[i]) −→ Hom Db(A)(T

•, IT •[i+ 1]),

which is isomorphic to the exact sequence

Hom K b(A)(T
•, T •[i]) −→ Hom K b(A)(T

•, T
•
[i])(∗)

−→ Hom K b(A)(T
•, IT •[i+ 1]).

Since the first and third terms of (∗) are zero for i �= 0,−1, the middle term

Hom K b(A)(T
•, T

•
[i]) must be zero for i �= 0,−1. Thus, taking our assumption

into account, we have

Hom K b(A-proj)(T
•
, T

•
[i]) � Hom K b(A)(T

•
, T

•
[i])

� Hom K b(A)(T
•, T

•
[i])

= 0

for all i �= 0. Thus T
•
is self-orthogonal in Db(A).

Note that the functor

(A/I)⊗L
A − : K b(A-proj) −→ K b(A-proj)
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sends T • to T
•
. Let C be the full triangulated subcategory of K b(A-proj) generated

by add(T
•
), and let D be a full triangulated subcategory of K b(A-proj) consist-

ing of those X• for which (A/I) ⊗L
A X• belongs to C. Then D contains add(T •).

Therefore D = K b(A-proj), and consequently add(A) is contained in C. Thus

C = K b(A-proj), and T
•
is a tilting complex over the quotient algebra A. Since

Hom K b(A)(T
•, IT •[1]) = 0, we have a surjective map π•

∗ : Hom K b(A)(T
•, T •) →

Hom K b(A)(T
•, T

•
) from the exact sequence (∗). Therefore, the algebra homomor-

phism η : EndK b(A)(T
•) → EndK b(A)(T

•
) is surjective. Hence

B = EndK b(A)(T
•)/Ker(η) � EndK b(A)(T

•
) � EndK b(A)(T

•
).

Consequently, the tilting complex T
•
induces a derived equivalence between A and

B.
Conversely, we assume that T

•
is a tilting complex over A and induces a derived

equivalence between A and B. Then Hom K (A)(T
•
, T

•
[i]) = 0 for all i �= 0. Note

that, for each integer i, we have an exact sequence

Hom K b(A)(T
•, T

•
[i− 1]) −→ Hom K b(A)(T

•, IT •[i])(∗∗)
−→ Hom K b(A)(T

•, T •[i]).

Since Hom K b(A)(T
•, T

•
[i − 1]) � Hom K (A)(T

•
, T

•
[i − 1]) and since T • is self-

orthogonal, the first and third terms of (∗∗) are zero for i �= 0, 1. It follows that
Hom K b(A)(T

•, IT •[i]) = 0 for all i �= 0, 1. We claim that Hom K b(A)(T
•, IT •[1])

= 0. Indeed, we consider the following exact sequence:

Hom K b(A)(T
•, IT •)

i•∗−→ Hom K b(A)(T
•, T •)

π•
∗−→ Hom K b(A)(T

•, T
•
)

−→ Hom K b(A)(T
•, IT •[1]) −→ Hom K b(A)(T

•, T •[1]) = 0.

Since the kernel of π•
∗ is JI , the image of π•

∗ is isomorphic toB as R-modules. But we

already know that B � EndK b(A)(T
•
), which is isomorphic to Hom K b(A)(T

•, T
•
)

as an R-module. Hence the map π•
∗ is surjective, and Hom K b(A)(T

•, IT •[1]) = 0.

Clearly, Hom K b(A)(T
•
, T

•
[−1]) = 0. Altogether, we have shown that

Hom K b(A)(T
•, IT •[i]) = 0 for all i �= 0 and Hom K b(A)(T

•
, T

•
[−1]) = 0. This

completes the proof of Theorem 4.2. �
4.2. Derived equivalences for self-injective algebras modulo socles. In the
following, we shall use Theorem 4.2 to prove our second main result in this paper.
Let us first prove the following lemma.

Lemma 4.3. Let A be a self-injective basic algebra, and let P be a direct summand
of AA.

(1) If J is an ideal of A such that AJ � Asoc(P ), then J = soc(P ).
(2) If T • is a radical tilting complex over A such that the endomorphism algebra

of T • is self-injective and basic, then T i � νAT
i for all integers i.

Proof. (1) Let e be the sum of the idempotents corresponding to the simple direct
summands of soc(P ). By assumption, we have J ⊆ soc(A) and eJ = J . Hence
J = eJ ⊆ e(soc(A)) = soc(P ), and consequently J = soc(P ).

(2) Let B be the endomorphism algebra of T •. Then there is a derived equiv-
alence F : Db(A) −→ Db(B) such that F (T •) � B. Since B is a self-injective
basic algebra, and since F commutes with the Nakayama functor ν, we have
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F (νAT
•) � νBF (T •) � νBB � B � F (T •). Consequently, we have T • � νAT

• in
Db(A). Since A is self-injective, we see that νAT

• is also a complex in K b(A-proj).
Hence νAT

• � T • in K b(A-proj), and consequently T • � νAT
• in C b(A) since

both T • and νAT
• are radical complexes. Thus, statement (2) follows. �

Theorem 4.4. Suppose that A and B are basic self-injective Artin algebras and that
F : Db(A) −→ Db(B) is a derived equivalence. Let P be a direct summand of AA,
and let P ′ be a direct summand of BB such that F (soc(P )) is isomorphic to soc(P ′).
Then the quotient algebras A/soc(P ) and B/soc(P ′) are derived equivalent.

Proof. Since A and B are basic self-injective algebras, soc(P ) and soc(P ′) are ideals
in A and B, respectively. In the following, we shall verify that the conditions of
Theorem 4.2 are satisfied by the ideal soc(P ) in A and the tilting complex T •

associated to F .
Since F (soc(P )) is isomorphic to soc(P ′), we can assume that P =

⊕s
i=1 Pi

and P ′ =
⊕s

i=1 P
′
i , where P and P ′ are indecomposable such that F (soc(Pi)) is

isomorphic to soc(P ′
i ) for all i = 1, . . . , s. Let Di be the endomorphism ring of

soc(Pi), which is a division ring. Since F (soc(Pi)) � soc(P ′
i ), we see that Di is

isomorphic to EndB(soc(P
′
i )). Note that a radical map f : M1 → M2 between

two projective modules M1 and M2 has image contained in rad(M2). Since all the
differential maps of T • are radical maps, the image of dkT is contained in rad(T k+1)
for all integers k. It follows that

Hom A(T
n, soc(Pi)) � Hom K b(A)(T

•[n], soc(Pi))
� Hom Db(A)(T

•[n], soc(Pi))
� Hom Db(B)(B[n], soc(P ′

i ))
= 0

for all n �= 0. Hence, for each integer n �= 0, the module ν−1
A Pi is not a di-

rect summand of Tn. Since Tn � νAT
n (Lemma 4.3(2)), we infer that Pi is not

a direct summand of Tn for all n �= 0. Recall that Hom Db(A)(T
•, soc(Pi)) �

Hom Db(B)(B, soc(P ′
i )) � soc(P ′

i ) as Dop
i -modules. Since B is basic, we see that

soc(P ′
i ) is one-dimensional over Dop

i . Hence Hom Db(A)(T
•, soc(Pi)) is one-dimen-

sional over Dop
i . It follows that ν−1

A Pi is a direct summand of T 0 with multiplicity
1. Since νAT

0 � T 0, we see that Pi is a direct summand of T 0 with multiplicity 1.
Note that soc(Pi)X = 0 for any A-module X if Pi is not a direct summand of X.
Hence soc(Pi)T

• is isomorphic to the stalk complex soc(Pi)Pi = soc(Pi). Therefore

Hom K b(A)(T
•, soc(P )T •[n]) = Hom K b(A)(T

•,
s⊕

i=1

soc(Pi)[n]) = 0

for all n �= 0.

Let T
•
be the quotient complex T •/(soc(P )T •). There is a canonical triangle in

Db(A):

soc(P )T • λ−→ T • −→ T
• −→ (soc(P )T •)[1].

Applying Hom Db(A)(T
•,−) to this triangle, we have an exact sequence of B-

modules:

0−→Hom Db(A)(T
•, T

•
[−1])−→Hom Db(A)(T

•,soc(P )T •)
λ∗−→Hom Db(A)(T

•, T •).

We claim that λ∗ is a monomorphism. Since soc(P )T • is isomorphic to
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⊕s
i=1 soc(Pi)T

•, the map λ can be written as (λ1, . . . , λs)
tr, where λi : soc(Pi)T

• →
T • is the canonical map, and where tr stands for the transpose of a matrix. Now
we consider the following commutative diagram of B-modules:

Hom Db(A)(T
•, soc(Pi)T

•)
(λi)∗

��

�
��

Hom Db(A)(T
•, T •)

�
��

Hom B(B,F (soc(Pi)T
•))

F (λi)∗
�� Hom B(B,B).

Since λi �= 0, we see that F (λi) is non-zero. Moreover, F (soc(Pi)T
•) � F (soc(Pi))

� soc(P ′
i ). This implies that F (soc(Pi)) is a simple B-module for all i. Hence

F (λi)∗ must be injective. To show that λ∗ is injective, it suffices to show that
F (λ)∗ is injective. This is equivalent to proving that (F (λ1)∗, . . . , F (λs)∗)

tr is in-
jective. For this, we use induction on s. If s = 1, the foregoing discussion shows that
this is true. Now we assume s > 1. Then the kernel K of (F (λ1)∗, . . . , F (λs)∗)

tr is
the pull-back of (F (λ1)∗, . . . , F (λs−1)∗)

tr and F (λs)∗, both of which are monomor-
phisms by the induction hypothesis. Thus K is isomorphic to a submodule of

both Hom Db(A)(T
•,
⊕s−1

i=1 soc(P )) and Hom Db(A)(T
•, soc(Ps)). However, the

B-modules Hom Db(A)(T
•, soc(Pi)) � soc(P ′

i ), i=1, . . . , s, are pairwise non-isomor-
phic simple B-modules since B is basic. This implies that K = 0. Hence λ∗ is in-

jective, and therefore Hom Db(A)(T
•, T

•
[−1]) = 0. Since

Hom K b(A)(T
•
, T

•
[−1]) � Hom K b(A)(T

•, T
•
[−1]) � Hom Db(A)(T

•, T
•
[−1]),

it follows that Hom K b(A)(T
•
, T

•
[−1]) = 0. Hence the complex T • and the ideal

soc(P ) satisfy all conditions in Theorem 4.2. Thus A/soc(P ) and B/J are derived
equivalent, where J is the ideal of B consisting of maps b factoring through the
canonical map soc(P )T • −→ T •. Moreover, J is isomorphic to Hom K b(A)(T

•,
soc(P )) as B-modules, and the latter is isomorphic to soc(P ′). By Lemma 4.3 (1),
we have J = soc(P ′), and the theorem is proved. �

We give a criterion to judge when a derived equivalence satisfies the condition
in Theorem 4.4.

Proposition 4.5. Let T • = (T i, di) be a tilting complex associated to a derived
equivalence F between self-injective basic Artin algebras A and B, and let P be an
indecomposable projective A-module. Suppose we have the following:

(1) P �∈ add(νAT
i) for all i �= 0;

(2) the multiplicity of P as a direct summand of νAT
0 is one.

Let T •
P be the indecomposable direct summand of T • such that P is a direct summand

of νA(T
0
P ), and let P̄ be the projective B-module νB(Hom K b(A-proj)(T

•, T •
P )).

Then F (soc(AP )) � soc(BP̄ ).

Proof. We know that the Nakayama functor sends P to the injective envelope of
top(AP ). From (1) it follows that Hom A(T

i, soc(AP )) = 0 for all i �= 0. Conse-
quently, Hom Db(A)(T

•, soc(AP )[i]) = 0 for all i �= 0. This means that F (soc(AP ))

is isomorphic in Db(B) to a B-module X that is indecomposable. Now we have
the following isomorphisms:

Hom B(B,X) � Hom Db(A)(T
•, soc(AP )) � Hom Db(A)(T

•
P , soc(AP ))

� Hom B(ν
−
B P̄ ,X).
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5708 WEI HU AND CHANGCHANG XI

Hence soc(BP̄ ) is the only simple B-module which occurs as a composition factor
of X. If X were not simple, then we would get a non-zero homomorphism X →
top(X) → soc(X) → X, which is not an isomorphism. This is a contradiction since
EndB(X) � EndDb(B)(F (soc(AP )) � EndA(soc(AP )) is a division ring. Hence X

is simple and isomorphic to soc(BP̄ ). This finishes the proof. �

4.3. Derived equivalences for algebras modulo annihilators. Now, we turn
to another construction for derived equivalent quotient algebras by using idempo-
tent elements, which can be regarded as another consequence of Theorem 4.2.

Lemma 4.6. Let e be an idempotent of an Artin algebra A. Then there is a unique
left ideal I of A, which is maximal with respect to the property eI = 0. Moreover,
I is an ideal of A. If, in addition, add(Ae) = add(D(eA)), then Ie = 0.

Proof. Note that such a left ideal I in A exists, and any left ideal L in A with
eL = 0 is contained in I. Clearly, I is a left ideal in A. We have to show that I
is a right ideal in A. Let x ∈ A and a ∈ I. Since the right multiplication by x is
a homomorphism ϕ from AA to AA, we see that the image ϕ(I) of I under ϕ is a
left ideal in A. Since eI = 0, we have ϕ(I) ⊆ I and ax ∈ I.

Suppose add(Ae) = add(D(eA)). It follows from

0 = eI = Hom A(Ae, I) � DHom A(I,D(eA))

that HomA(I, Ae) = 0. Clearly, the map ψ : I → Ae defined by x �→ xe is a
homomorphism from I to Ae. Thus ψ = 0 and Ie = 0. �

Let A be an Artin algebra and e an idempotent of A such that add(Ae) =
add(D(eA)). By a result in [4], there is a tilting complex T • associated to e, which
is defined in the following way: suppose ϕ is a minimal right add(Ae)-approximation
of A. Then we form the following complex:

T •
f : 0 −→ Q1

ϕ−→ A −→ 0

with A in degree zero. Let T •
e := (Ae)[1]. The tilting complex T • associated

with e is defined to be the direct sum of T •
e and T •

f . Let λe : T •
e → T • be the

canonical inclusion and pe : T • → T •
e the canonical projection. Then ẽ := peλe is

an idempotent in B := EndK (A)(T
•), which corresponds to the summand T •

e of

T •. Thus, there is a derived equivalence F : Db(A) −→ Db(B), which sends T •
e

to Bẽ, and T •
f to B(1 − ẽ). Let ∇(e) and ∇(ẽ) be the ideal I of A and B defined

by e and ẽ in Lemma 4.6, respectively. With this notation in mind, we have the
following proposition.

Proposition 4.7. Let A be an Artin algebra and e an idempotent element in A
such that add(D(eA)) = add(Ae). Suppose that T • = T •

e ⊕T •
f is the tilting complex

defined by the idempotent e and set B = EndK (A)(T
•). Let ẽ be the idempotent

element in EndK (A)(T
•) corresponding to T •

e . Then A/∇(e) is derived equivalent
to B/∇(ẽ).

Proof. Let F : Db(A) −→ Db(B) be the derived equivalence given by the tilting
complex T •. Then F (T •

e ) = F (Ae)[1] � Bẽ.
The complex ∇(e)T • is isomorphic to ∇(e) because, by Lemma 4.6, we have

∇(e)Ae = 0 and ∇(e)T • = ∇(e), which is a complex with the only non-zero term
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∇(e) in degree zero. It is easy to see that Hom K (A)(T
•,∇(e)[i]) = 0 for all i �= 0.

Let T
•
be the quotient complex T •/∇(e)T •. Then T

•
is of the following form:

0 �� Ae⊕Q1

[ 0
ϕ ]

�� A �� 0 ,

where A = A/∇(e), and where ϕ is the composite of ϕ with the canonical surjection
from A to A. Since Hom K (A)(T

•
f , T

•
e [−1]) = 0, we get Hom A(Coker(ϕ), Ae) = 0.

Moreover, since Coker(ϕ) is a quotient module of Coker(ϕ), we have
Hom A(Coker(ϕ), Ae) = 0. Thus

Hom K (A)(T
•
, T

•
[−1]) = 0.

By Theorem 4.2, T
•
is a tilting complex over A/∇(e), and A/∇(e) is derived

equivalent to B/J , where J = {α• ∈ EndK (A)(T
•) | α•π• = 0}, and where the

map π• is the canonical map from T • to T
•
. Note that ∇(e)T •

e = 0. This allows
us to rewrite π• as

T •
e ⊕ T •

f

[
1 0
0 π•

f

]
�� T •

e ⊕ T •
f /(∇(e)T •

f ).

For any α• ∈ J , we can write α• as

T •
e ⊕ T •

f

[
α•
11 α•

12
α•
21 α•

22

]
�� T •

e ⊕ T •
f .

Since α•π• = 0, we have α•
11 = 0 = α•

21 and α•
12π

•
f = 0 = α•

22π
•
f . Hence α•

12 : T •
e →

T •
f factor through ∇(e)T •

f = ∇(e). But Hom K (A)(T
•
e ,∇(e)) = 0. This implies

that α•
12 = 0. Consequently, J consists of maps α• of the form[

0 0

0 α•
22

]

with α•
22π

•
f = 0. Therefore ẽJ = 0 and J ⊆ ∇(ẽ). By the proof of Theorem 4.2, we

know that the quotient B-module B/J is isomorphic to Hom K (A)(T
•, T

•
). Note

that we have a distinguished triangle

A/∇(e) −→ T
• −→ (Ae⊕Q1)[1] −→ (A/∇(e))[1]

in K (A). Applying the functor Hom K (A)(T
•,−) to this triangle, we get an exact

sequence

Hom K (A)(T
•, A/∇(e)) −→ Hom K (A)(T

•, T
•
) −→ Hom K (A)(T

•, (Ae⊕Q1)[1]).

By the maximality of ∇(e), the quotient A/∇(e) has no submodule X with eX = 0.
Since ϕ is a right add(Ae)-approximation of A, we have e(Coker(ϕ)) = 0. It follows
that Hom A(Coker(ϕ), A/∇(e)) = 0. Hence we have Hom K (A)(T

•, A/∇(e)) = 0.

Consequently, Hom K (A)(T
•, T

•
) can be embedded in Hom K (A)(T

•, (Ae⊕Q1)[1]),
which is in add(Bẽ) = add(D(ẽB)). This means that J is the maximal submodule
of B with ẽJ = 0. Hence J = ∇(ẽ), and this finishes the proof. �

We point out that there is another type of construction by passing derived equiva-
lences between two given algebras to those between their quotient algebras, namely,
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5710 WEI HU AND CHANGCHANG XI

forming endomorphism algebras first, and then passing to stable endomorphism al-
gebras. For details of this construction, we refer the reader to [5, Corollary 1.2,
Corollary 1.3].

Now, we end this paper by two simple examples to illustrate our results.

Example 1. Let k be a field, and let A be a k-algebra given by the quiver

•
α11 2��

β1

��
��

��
��

��
��

•

α2

����
��
��
��
��β2

��

•
3

α3

������������

β3

������������

with relations αiβi+1 − βiαi+2 = αiαi+1 = βiβi−1 = 0, where the subscripts are
considered modulo 3. This algebra is isomorphic to the group algebra of the alter-
native group A4 if k has characteristic 2. Let e2 be the idempotent corresponding
to the vertex 2, and let T • be the tilting complex T • associated with e2. Then the
endomorphism algebra B of T • is given by the quiver

•
α �� •

β
��

δ1
�� •

γ 32
��

with relations αδ = γβ = δαβγ − βγδα = 0. Note that B is isomorphic to the
principal block of the group algebra of A5 if k has characteristic 2. It is easy to
see that the idempotent ẽ2 is the idempotent corresponding to the vertex 2 in the
quiver of B. Thus, by Proposition 4.7, the algebras A/∇(e2) and B/∇(ẽ2) are
derived equivalent. A calculation shows that A/∇(e2) = A/〈α2β3〉 and B/∇(ẽ2) =
B/〈βγδα〉. Note that the algebras A/〈α2β3〉 and B/〈βγδα〉 are stably equivalent of
Morita type by a result in [8]. Thus A/〈α2β3〉 and B/〈βγδα〉 are not only derived
equivalent, but also stably equivalent of Morita type.

Example 2. Letm ≥ 3 be an integer, and let A = k[t]/(tm), the quotient algebra of
the polynomial algebra k[t] over a field k in one variable tmodulo the ideal generated

by tm. Let X be the simple A-module k. Then EN

A(A⊕X) and EN

A(A⊕ΩA(X)) are
infinite-dimensional k-algebras which can be described by quivers with relations:

EN

A(A⊕X) EN

A(A⊕ ΩA(X))

•
β

��
α 		 •

21 γ
��

δ1




δ2

�� • x ��•
21 y

��

z1




z2

��

αm−1 − βγ = αβ = γα = γβ = 0; xzi = ziy = 0, i = 1, 2;
δiγ = βδi = 0, i = 1, 2; z21 = z1z2 − z2z1 = 0;
δ21 = δ1δ2 − δ2δ1 = 0. (yx)m−1 = 0.

By Theorem 3.4, or Corollary 3.14, the two algebras EN

A(A⊕X) and EN

A(A⊕ΩA(X))
are derived equivalent.

Let n ≥ 1 be a natural number. Then the finite-dimensional k-algebra

E
Φ(1,n)
A (A ⊕ X) is the quotient of EN

A(A ⊕ X) by the ideal generated by δ
[n2 ]+1
2

for n an odd number, and by δ1δ
n/2
2 and δ

n/2+1
2 for n an even number, where [n2 ] is

is the largest integer less than or equal to n/2, and the finite-dimensional algebra
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E
Φ(1,n)
A (A ⊕ ΩA(X)) is the quotient of EN

A(A ⊕ ΩA(X)) by the ideal generated by

z
[n2 ]+1
2 for n an odd number, and by z1z

n/2
2 and z

n/2+1
2 for n an even number. By

Corollary 3.14, we know that E
Φ(1,n)
A (A ⊕ X) and E

Φ(1,n)
A (A ⊕ ΩA(X)) are both

derived and stably equivalent.
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