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1. Introduction

Given a natural number n and an associative (not necessarily commutative) ring R
with identity, all symmetric sequences of n2 elements in R form a subring of the full 
n × n matrix ring Mn(R). This subring is called the centrosymmetric matrix ring of 
R, denoted by Sn(R). The study of centrosymmetric matrices over a field has a long 
history in matrix theory (see [18, p. 19], [1, p. 124]). Such matrices arise as transition 
matrices for certain Markov processes (see [21]), emerge in approximations to the kernels 
of certain integral equations (see [10]) and have applications in engineering problems and 
quantum physics (see [6]). A short survey of this topic in earlier time can be found in 
[21] where, in particular, the structure of R-algebra Sn(R) was determined, that is, 
Sn(R) � Mn−k(R) ×Mk(R), with k = �n/2�, the least integer bigger than or equal to 
n/2. Thus Sn(R) is always a semisimple R-algebra. Though there are lots of works on 
different aspects of matrix theory of centrosymmetric matrices, less attentions focus on 
algebraic aspects of such matrix algebras.

In this note, we shall investigate ring-theoretical structures of the centrosymmetric 
matrix algebras Sn(R) for an arbitrary ring R. This will be carried out by using methods 
in both matrix theory and representation theory of algebras. It turns out that Sn(R)
may not be semisimple even if R is a field. We also study relations between Sn(R) and 
Mn(R). Our main result is the following.

Theorem. (1) For any ring R, Mn(R) is a separable Frobenius extension of Sn(R); and 
Sn(R) is Morita equivalent to S2(R) if n is even, and to S3(R) if n ≥ 3 is odd.

(2) If R is a commutative ring, then Sn(R) is a cellular R-algebra for n ≥ 1.

The proof of this result is given in Section 3 after some preparations in Section 2
where we give the precise definitions of all terminology unexplained in the result and all 
elementary facts needed in the proof.

2. Preliminaries

Throughout this note, R stands for a ring with identity. We denote by Mn(R) the ring 
of all n ×n matrices over R for any positive integer n, and by R-Mod the category of all left 
R-modules. Recall that two rings R and S are Morita equivalent if the categories R-Mod
and S-Mod are equivalent, denoted by R ≈ S. For example, R is Morita equivalent to 
Mn(R) for all n ≥ 1.

A sequence a = (a1, · · · , an) of n elements a1, a2, · · · , an in R is said to be symmetric
if ai = an+1−i for all 1 ≤ i ≤ n. The number n is called the length of the sequence a. 
Let Sn(R) denote the set of all symmetric sequences of length n in R.

Now we define

Sn(R) := {a ∈ Mn(R) | aij = an+1−i,n+1−j , 1 ≤ i, j ≤ n}.
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Matrices in Sn(R) are called centrosymmetric matrices. Examples of centrosymmetric 
matrices include symmetric Toeplitz matrices.

If m = n2, then each element a ∈ Sm(R) gives rise to a unique n × n matrix A :=
(aij) ∈ Sn(R) with the first row (a1, · · · , an), the second row (an+1, · · · , a2n), · · · , and 
the n-th row (a(n−1)n+1, · · · , an2). So we identify a with A and consider Sm(R) as a 
subset of Mn(R), and therefore Sm(R) can be identified with Sn(R).

Let eij be the matrix units of Mn(R) with 1 ≤ i, j ≤ n, and let c := e1n + e2,n−1 +
· · · + en−1,2 + en1 be the skew diagonal identity in Mn(R). Then c ∈ Sn(R) and c2 = 1. 
Note that, for any a = (aij) ∈ Mn(R), we have

(cac)jk = an+1−j,n+1−k, 1 ≤ j, k ≤ n.

Recall that a matrix a = (aij) ∈ Mn(R) is called persymmetric if ca′c = a where a′

stands for the transpose of the matrix a, that is, aij = an+1−j,n+1−i for all 1 ≤ i, j ≤ n. 
Thus, if a is bisymmetric, that is, both symmetric and persymmetric, then a ∈ Sn(R). 
Let Bn(R) be the set of all bisymmetric matrices in Mn(R). Then Bn(R) ⊆ Sn(R). In 
general, Bn(R) may not be closed under multiplication (for example, in M3(Z), (e11 +
e13 + e31 + e33)(e12 + e21 + e23 + e32) = 2(e12 + e32) is not bisymmetric). But we will see 
that Sn(R) is closed under multiplication.

Centrosymmetric and bisymmetric matrices over fields have been intensively studied 
in matrix theory. For information, we refer the reader to [1,2,18,20,21].

Now we define an anti-Kronecker delta σ: σij = 0 if i = j, and σij = 1 if i 
= j. 
Further, we define

fii := eii + σi,n+1−ien+1−i,n+1−i, fij := eij + en+1−i,n+1−j , 1 ≤ i 
= j ≤ n.

Then {fij | 1 ≤ i < j ≤ n} ∪ {fii | 1 ≤ i ≤ �n/2�} is an R-basis of Sn(R) and 
1 =

∑�n/2�
i=1 fii is a decomposition of 1 into pairwise orthogonal idempotents in Sn(R). 

In the sequel, we often write fi for fii for simplicity.

Lemma 2.1. (1) An element a = (aij) ∈ Mn(R) belongs to Sn(R) if and only if cac = a.
(2) Sn(R) is a subring of the matrix ring Mn(R).
(3) Sn(R) is a free R-module of rank �n2/2�, where �n2/2� denotes the least integer 

bigger than or equal to n2/2.

Proof. (1) is obvious. (3) follows from the identification of Sn2(R) with Sn(R).
(2) This was observed for R = R in [21]. It is easy to check: if a, b ∈ Sn(R), then 

ab = (cac)(cbc) = cac2bc = c(ab)c, that is, ab ∈ Sn(R). �
Lemma 2.2. (1) fiSn(R)fj = Rfij +Rfi,n+1−j and f2

i,n+1−j = δijfij + δi,n+1−jfi,n+1−j.
(2) fijfpq = δjpfiq + δj,n+1−pfi,n+1−q, where δij is the Kronecker delta.
(3) f ′

ij = fji, and f ′
ij = fij if and only if either i = j or i + j = n + 1.
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Thus the action of the transpose on fiSn(R)fi is identity.

Example 2.3. (1) S1(R) = R and S2(R) � R[C2], the group algebra of the cyclic group 
C2 of order 2 over R. In fact, f1f12 = f12 = f12f1, f2

12 = f1. Thus S2(R) = Rf1 +Rf12 �
R[C2]. Note that if R is a field, then R[C2] � R[X]/(X2) if R is of characteristic 2, and 
R[C2] � R×R if R is not of characteristic 2.

(2) S3(R) �
(
R[C2] R
R R

)
, where the multiplication is given by

(
a + bx u

d v

)(
a1 + b1x u1

d1 v1

)

=
(
aa1 + bb1 + ud1 + (ab1 + ba1 + ud1)x au1 + bu1 + uv1

da1 + db1 + vd1 2du1 + vv1

)

and where x is a generator of C2.
In fact, {f1, f2, f12, f13, f21} is an R-basis of S3(R). And calculation shows that 

f1S3(R)f1 = Rf1 + Rf13 with f2
13 = f1, f12f21 = f1 + f13, and f2S3(R)f2 = Rf2, 

f21f12 = 2f2. Thus we get the above multiplication of S3(R). Moreover, if 2 is invertible in 
R, then we define E11 := 1

2 (f1+f13), E12 = 1
2f12, E21 = f21, E22 = f2, E33 = 1

2 (f1−f13). 
One can check that {Eij | 1 ≤ i, j ≤ 2} is a set of matrix units of 2 × 2 matrix ring over 
R and that S3(R)E33 � R is a block of S3(R). Thus S3(R) � M2(R) ×R. Generally, if 2
is invertible in R, then Sn(R) � Mn−k(R) ⊕Mk(R), where k is the least integer bigger 
than or equal to n/2. This was shown in [5] for R being a field, but the proof works also 
for general case.

Now we recall the definitions of Frobenius extensions and cellular algebras.
Let A and B be rings with identity. If B is a subring of A with the same identity, 

then we say that A (or B ⊆ A) is an extension of B. One of the interesting extensions 
is the class of Frobenius extensions introduced initially by Kasch (see [14]). They play 
an important role in topological quantum field theories in dimension 2 and even 3 (see 
[15]) and in representation theory and knot theory (see [12], [13], [22] and the references 
therein). Also, each Frobenius extension B ⊆ A with B a commutative ring provides us 
with a series of solutions to classical Yang-Baxter equation (see [13, Chapters 4 and 5]).

Definition 2.4. (1) An extension B ⊆ A of rings is called a Frobenius extension if BA is 
a finitely generated projective B-module and HomB(BA, B) � AAB as A-B-bimodules.

(2) An extension B ⊆ A is said to be split if the B-bimodule BBB is a direct summand 
of BAB , and separable if the multiplication map A ⊗B A → A is a split surjective 
homomorphism of A-bimodule.

Frobenius extensions have the following properties (see [13, Theorem 1.2, p. 3; Corol-
laries 2.16-17, p. 15] for proofs).
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Lemma 2.5. Let B ⊆ A be an extension of rings.
(1) The extension is a Frobenius extension if and only if there exists a B-B-bimodule 

homomorphism E ∈ HomB−B(BAB , BBB), xi, yi ∈ A, 1 ≤ i ≤ n, such that, for any 
a ∈ A,

n∑
i=1

xiE(yia) = a =
∑
i

E(axi)yi.

In this case, (E, xi, yi) is called a Frobenius system of the extension.
(2) Suppose that B ⊆ A is a Frobenius extension with a Frobenius system (E, xi, yi). 

Then:
(i) B ⊆ A is separable if and only if there exists d ∈ CA(B) := {a ∈ A | ab = ba,

∀b ∈ B} such that 
∑n

i=1 xidyi = 1.
(ii) B ⊆ A is split if and only if there exists d ∈ CA(B) such that E(d) = 1.

Finally, we recall the definition of quasi-hereditary and cellular algebras introduced by 
Cline-Parshall-Scott (see, for example, [4]) and by Graham-Lehrer (see [11]), respectively. 
The former arise in the study of highest weight categories in representation theory of 
semisimple complex Lie algebras and of reductive algebraic groups, and the latter are 
motivated by Kashdan-Lusztig’s canonical basis of Hecke algebras. For cellular algebras, 
we will use an equivalent formulation in [16].

Let R be a commutative ring and A be an R-algebra, that is, A is a ring with identity 
and there is a ring homomorphism R → A such that its image lies in the center of A. 
For example, any ring is a Z-algebra.

Definition 2.6. (1) An ideal AeA of A generated by an idempotent element e ∈ A is 
called a heredity ideal if eAe � R, AeeAe and eAeeA are finitely generated, free modules 
over eAe, and the multiplication map Ae ⊗R eA → AeA is injective. The algebra A is 
said to be quasi-hereditary if there is a complete set of pairwise orthogonal idempotents, 
{e1, e2, · · · , en} in A, such that, by defining Ji := A(e1 + · · · + ei)A, the subquotient 
Ji/Ji−1 of the chain

0 = J0 ⊆ J1 ⊂ · · · ⊂ Ji ⊂ · · · ⊂ Jn = A

is a heredity ideal in A/Ji−1 for each i.
(2) Let i : A → A be an R-involution (that is, an anti-automorphism of the R-algebra 

A of order 2). An ideal J in A is called a cell ideal if and only if i(J) = J and there 
exists a left ideal Δ ⊆ J such that Δ is finitely generated and free over R and that there 
is an isomorphism of A-bimodules, say α : J � Δ ⊗R i(Δ), where i(Δ) is the image of 
Δ under i, such that the diagram commutes:
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J
α

i

Δ ⊗R i(Δ)

x⊗y �→i(y)⊗i(x)

J
α Δ ⊗R i(Δ)

The algebra A with the involution i is called a cellular algebra if and only if there is an 
R-module decomposition, A = J ′

1 ⊕ J ′
2 ⊕ · · · ⊕ J ′

n with i(J ′
j) = J ′

j for all j, such that 
putting Jj = ⊕j

p=1J
′
p gives a chain of two-sided ideals of A and for each j the quotient 

J ′
j = Jj/Jj−1 is a cell ideal in A/Jj−1 with respect to the involution induced from i on 

the quotient.

The following fact is well known in the literature (see, for example, [4,8] or [16,17]).

Lemma 2.7. Suppose that A is an R-algebra and e2 = e is an idempotent in A such that 
eAe � R and Ae is a free R-module of finite rank. If i is an R-involution on A such that 
i(e) = e and the multiplication map Ae ⊗eAe eA → AeA is injective, then AeA is a cell 
ideal in A.

Clearly, the full matrix R-algebra Mn(R) is quasi-hereditary and cellular with respect 
to the matrix transpose. The group algebra R[C2] of C2 over R is cellular with respect 
to the identity map since R(1 − x) with x2 = 1, is a cell ideal in R[C2] and the chain 
R(1 − x) ⊂ R[C2] is a cell chain. If R is a field of characteristic 2, then R[C2] is not 
quasi-hereditary.

We remark that the cellularity of R-algebras does not have to be preserved under 
Morita equivalences.

3. Proof of the result

We first prove the following result.

Theorem 3.1. Let R be a ring. Then:
(1) S2m+1(R) is Morita equivalent to S3(R) for all m ≥ 1.
(2) S2m(R) is Morita equivalent to R[C2] for all m ≥ 1, where C2 is the cyclic group 

of order 2.
(3) Sn(R) ⊆ Mn(R) is a separable Frobenius extension for all n ≥ 1.

Proof. We assume n ≥ 4 and define

ϕ : Sn(R)f1 −→ Sn(R)fj , af1 �→ af1(e1j + en,n+1−j)

for 1 ≤ j ≤ �n/2�, where �p� denotes the largest natural number z such that z ≤ p. 
Note that f1(e1j + en,n+1−j)fj = e1j + en,n+1−j . Thus ϕ is well defined. Clearly, it is a 
homomorphism of left Sn(R)-modules.

Note that elements in Sn(R)f1 and Sn(R)fj are of the forms
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 . . . 0 an1
a21 0 . . . 0 an−1,1
...

...
...

...
aj1 0 . . . 0 an+1−j,1
...

...
...

...
an1 0 . . . 0 a11

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . a1j 0 . . . 0 anj . . . 0
0 . . . a2j 0 . . . 0 an−1,j . . . 0

0 . . .
...

...
...

... . . . 0
0 . . . ajj 0 . . . 0 an+1−j,j . . . 0

0 . . .
...

...
...

... . . . 0
0 . . . anj 0 . . . 0 a1j . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

(ai,j ∈ R)

respectively.
Since ϕ sends the first and n-th columns of af1 to the j-th and (n +1 − j)-th columns 

of af1(e1j + en,n+1−j), respectively, it is clear that ϕ is injective. Given an element 
x ∈ Sn(R)fj , we define an element a ∈ Sn(R)f1 by putting the j-th and (n + 1 − j)-th 
columns of x as the first and n-th columns of a, and 0 for other columns of a. Then a is 
sent to x by ϕ. Thus ϕ is surjective.

(1) If n = 2m +1, then 1 = f1 + · · ·+ fm + fm+1 in S2m+1(R). So, the above forms of 
matrices show Sn(R)fj � Sn(R)f1 as left Sn(R)-modules for 2 ≤ j ≤ m. Hence Sn(R)
is Morita equivalent to EndSn(R)

(
Sn(R)f1 ⊕ Sn(R)fm+1

)
.

We shall prove EndSn(R)
(
Sn(R)f1 ⊕ Sn(R)fm+1

)
� S3(R). Indeed, by definition, 

fm+1 = em+1,m+1. Clearly,

f1Sn(R)f1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

a11 0 . . . 0 a1n
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0
a1n 0 . . . 0 a11

⎞
⎟⎟⎟⎟⎠ | aij ∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Rf1 + Rf1n � R[C2],

f1Sn(R)fm+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0 . . . 0 a1,m+1 0 . . . 0
0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0
0 . . . 0 a1,m+1 0 . . . 0

⎞
⎟⎟⎟⎟⎠ | a1,m+1 ∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

� Rf1,m+1,

fm+1Sn(R)f1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

am+1,1 0 . . . 0 am+1,1
0 0 . . . 0 0
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

| am+1,1 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� Rfm+1,1.
0 0 . . . 0 0
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Further, we have

f1,m+1 ∈ f1Sn(R)fm+1, fm+1,1 ∈ fm+1Sn(R)f1,

f1,m+1fm+1,1 = f1 + f1,n, fm+1,1f1,m+1 = 2fm+1.

Thus, by Example 2.3, EndSn(R)
(
Sn(R)f1 ⊕ Sn(R)fm+1

)
� S3(R).

(2) If n = 2m, then 1 = f1+· · ·+fm. Similarly, we can prove Sn(R)fj � Sn(R)f1 as left 
Sn(R)-modules for 2 ≤ j ≤ m. Thus Sn(R) is Morita equivalent to EndSn(R)

(
Sn(R)f1

)
. 

It is easy to show EndSn(R)
(
Sn(R)f1

)
� f1Sn(R)f1 � S2(R).

Another proof of (2) can be found in the proof of Theorem 3.3.
(3) Now, let n be arbitrary. To show that the extension Sn(R) ⊆ Mn(R) is a Frobenius 

extension, we define

σ : Mn(R) −→ Mn(R), y �→ cyc.

Note that c2 = c and cs = sc for all s ∈ Sn(R). Thus a + σ(a) = a + cac = c(a + cac)c ∈
Sn(R). Visually, if a = (aij) ∈ Mn(R), then

σ(a) =

⎛
⎜⎜⎜⎜⎝

ann an,n−1 . . . an2 an1
an−1,n an−1,n−1 . . . an−1,2 an−1,1

...
...

...
...

a2n a2,n−1 . . . a22 a21
a1n a1,n−1 . . . a12 a11

⎞
⎟⎟⎟⎟⎠

n×n

So

a + σ(a) =

⎛
⎜⎜⎜⎜⎝

a11 + ann a12 + an,n−1 . . . a1,n−1 + an2 a1n + an1
a21 + an−1,n a22 + an−1,n−1 . . . a2,n−1 + an−1,2 a2n + an−1,1

...
...

...
...

an−1,1 + a2n an−1,2 + a2,n−1 . . . an−1,n−1 + a22 an−1,n + a21
an1 + a1n an2 + a1,n−1 . . . an,n−1 + a12 ann + a11

⎞
⎟⎟⎟⎟⎠

n×n

∈ Sn(R).

Now, we define

E : Mn(R) −→ Sn(R), x �→ x + σ(x) = x + cxc ∈ Sn(R),

xi := ei1 and yi := e1i ∈ Mn(R) for 1 ≤ i ≤ n. In the following, we will prove that 
(E, xi, yi) is a Frobenius system, that is, the following (i) and (ii) hold.

(i) E is a homomorphism of Sn(R)-Sn(R)-bimodules. In fact, E(x +y) = E(x) +E(y). 
Moreover, for s ∈ Sn(R) and x ∈ Mn(R), it follows from sc = cs that E(sx) = sx +csxc =
sx + s · cxc = s(x + cxc) = sE(x). Similarly, E(xs) = E(x)s.
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(ii) For any a ∈ Mn(R), 
∑

i xiE(yia) = a and 
∑

i E(axi)yi = a. Indeed, axi = aei1 is 
the matrix which has the first column equal to the i-th column of a and other columns 
equal to 0, and xia = ei1a is the matrix that has the i-th row equal to the first row 
of a and other rows equal to 0. Also, yia is the matrix with the first row equal to the 
i-th row of a and other rows equal to zero, while ayi is the matrix with the i-th column 
equal to the first column of a and other columns equal to 0. Thus xiE(yia) is the matrix 
with the i-th row equal to the i-th row of a and with other rows equal to 0. Hence ∑

i xiE(yia) = a. Similarly, 
∑

i E(axi)yi = a.
Thus (E, xi, yi) is a Frobenius system and Sn(R) ⊆ Mn(R) is a Frobenius extension. 

Since 
∑n

i=1 xiyi = 1, the Frobenius extension is separable by Lemma 2.5(2)(i). �
Corollary 3.2. Suppose that 2 is invertible in R.

(1) Sn(R) ⊆ Mn(R) is a split Frobenius extension. In particular, the global dimension 
of Sn(R) equals the global dimension of R.

(2) If R is semisimple, then Sn(R) is semisimple.

Proof. (1) Since c2 = 1 ∈ Mn(R), we have E(1
2 ) = 1

2 + 1
2c

2 = 1 ∈ Sn(R). Thus the 
extension is split by Lemma 2.5(ii). The second statement in (1) is a consequence of split 
separable Frobenius extensions (see [13, p. 14]).

(2) Since Morita equivalences preserve semisimplicity of rings, (2) follows from the 
semisimplicity of Si(R) for i = 1, 2, 3. �

Next, we show the cellularity of centrosymmetric matrix algebras.

Theorem 3.3. If R is a commutative ring, then:
(1) S2m+1(R) is a quasi-hereditary, cellular R-algebra with respect to the matrix trans-

pose.
(2) S2m(R) is a cellular R-algebra with respect to the matrix transpose.

Proof. Note that Sn(R) is closed under taking transpose and f ′
i = fi ∈ Sn(R) for all i.

(1) Let n = 2m + 1 with m ≥ 0. Then fm+1Sn(R)fm+1 � R. We consider the ideal 
Sn(R)fm+1Sn(R) and show that the multiplication map

Sn(R)fm+1 ⊗R fm+1Sn(R) −→ Sn(R)fm+1Sn(R)

is injective, and therefore an isomorphism. For this purpose, it is sufficient to show that, 
for any 1 ≤ i, j ≤ m + 1, the multiplication map

μij : fiSn(R)fm+1 ⊗R fm+1Sn(R)fj −→ fiSn(R)fm+1Sn(R)fj

is injective. If one of fi and fj equals fm+1, then μij is obviously injective. So, we 
assume 1 ≤ i, j ≤ m. In this case, fiSn(R)fm+1 = Rfi,m+1, fm+1Sn(R)fj = Rfm+1,j
and fiSn(R)fm+1Sn(R)fj = Rfi,m+1fm+1,j = R(fij + fi,n+1−j). Thus the R-module 



326 C.C. Xi, S.J. Yin / Linear Algebra and its Applications 590 (2020) 317–329
fiSn(R)fm+1 ⊗R fm+1Sn(R)fj is a free R-module of rank 1. Hence the multiplication 
map μij is injective.

Let J = Sn(R)fm+1Sn(R) and Sn(R) := Sn(R)/J . Then J has an R-basis {αij :=
fij + fi,n+1−j | 1 ≤ i, j ≤ m} ∪ {αm+1,j := fm+1,j , αj,m+1 := fj,m+1 | 1 ≤ j ≤ m}. Let 
J ′

1 = J and J ′
2 = {fij | 1 ≤ i, j ≤ m}. Then Sn(R) has an R-module decomposition 

Sn(R) = J ′
1 ⊕ J ′

2 such that the matrix transpose preserves J ′
1 and J ′

2, respectively. By 
Lemma 2.7, J is a cell ideal. Now we prove that Sn(R) is a cellular algebra with respect 
to the matrix transpose. It suffices to show Sn(R) � Mm(R) as cellular algebras.

Indeed, {f̄ij | 1 ≤ i, j ≤ m} is an R-basis of Sn(R) and 1̄ = f̄1 + · · · + f̄m, where 
ā = a + J ∈ Sn(R) for a ∈ Sn(R). Thus

Sn(R) =

⎛
⎜⎜⎜⎝

f̄1Sn(R)f̄1 f̄1Sn(R)f̄2 · · · f̄1Sn(R)f̄m
f̄2Sn(R)f̄1 f̄2Sn(R)f̄2 · · · f̄2Sn(R)f̄m

...
...

. . .
...

f̄mSn(R)f̄1 f̄mSn(R)f̄2 · · · f̄mSn(R)f̄m

⎞
⎟⎟⎟⎠ .

(For basic facts on representing an algebra as a matrix algebra, we refer to, for instance, 
[9, Section 1.7].) It follows from fi,m+1fm+1,n+1−j = fij + fi,n+1−j (see Lemma 2.2(2)) 
that f̄ij = −f̄i,n+1−j in Sn(R). Since fiSn(R)fj = Rfij +Rfi,n+1−j , we get f̄iSn(R)f̄j =
Rf̄ij and Sn(R) =

⊕
1≤i,j≤m Rf̄ij .

If 1 ≤ i, j ≤ m, then δi,n+1−j = 0. Otherwise, we would have 2m +2 = n +1 = i + j ≤
2m. Thus it follows from Lemma 2.2(2) that, for 1 ≤ i, j, p, q ≤ m,

fijfpq = δjpfiq + δj,n+1−pfi,n+1−q = δjpfiq.

Hence f̄ij f̄pq = δjpf̄iq in Sn(R). This means Sn(R) � Mm(R). Clearly, the transpose on 
matrices in Sn(R) is just the transpose of matrices in Mm(R). Thus this isomorphism is 
an isomorphism of cellular algebras.

(2) Let n = 2m with m ≥ 1. Then δi,n+1−i = 0 for all i, and δi,n+1−j = 0 for all 
1 ≤ i, j ≤ m. Note that 1 = f1 + · · ·+ fm with fi = eii + en+1−i,n+1−i. Thus Sn(R) has 
the matrix representation

Sn(R) =

⎛
⎜⎜⎝

f1Sn(R)f1 f1Sn(R)f2 · · · f1Sn(R)fm
f2Sn(R)f1 f2Sn(R)f2 · · · f2Sn(R)fm

...
...

. . .
...

fmSn(R)f1 fmSn(R)f2 · · · fmSn(R)fm

⎞
⎟⎟⎠ .

The transpose is then given by (aij)′ = (a′ji) where aij ∈ fiSn(R)fj for all i, j. By 
Lemma 2.2(1), we have

fiSn(R)fj = Rfij ⊕Rfi,n+1−j , f2
i,n+1−i = fi, 1 ≤ i, j ≤ m.
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Note that the above direct sum of R-modules follows from fij 
= fi,n+1−j . Let x be a 
generator of the cyclic group C2 of order 2 and ϕ be the map

ϕ : Mm(R[C2]) −→ Sn(R),
(
aij + bijx

)
�→

(
aijfij + bijfi,n+1−j

)

where aij , bij ∈ R for all i, j. Then, by Lemma 2.2, we can check that ϕ is an algebra 
homomorphism. Obviously, ϕ is surjective and injective. Thus S2m(R) � Mm(R[C2]) as 
R-algebras. Observe that the commutativity of R is not used in the above argument and 
therefore this isomorphism holds true for any ring R.

Note that ϕ commutes with the matrix transpose and that Mm(R[C2]) is a cellular 
algebra with the transpose as its involution. Thus S2m(R) is a cellular R-algebra with 
respect to the transpose of matrices. �

The following corollary describes the algebraic K-groups of the centrosymmetric ma-
trix algebras. We refer to [19] for basic knowledge on algebraic K-theory of rings.

Corollary 3.4. (1) Let Kn(R) denote the n-th algebraic K-group of a ring R in the sense 
of Quillen. Then Kn

(
S2m(R)

)
� Kn(R[C2]) and Kn

(
S2m+1(R)

)
� Kn(R) ⊕Kn(R) for 

n ≥ 0 and m ≥ 1.
(2) If R is commutative, then the center of Sn(R) is R[c] for n ≥ 1.

Proof. (1) Since Morita equivalences preserve algebraic K-groups of rings, Kn(S2m(R)) �
Kn(S2(R)) � Kn(R[C2]) for all n ≥ 1 by Theorem 3.1.

Let A := S2m+1(R). It follows from the proof of Theorem 3.3 that the ideal J :=
Afm+1A is a finitely generated projective A-module and EndA(AJ) is Morita equivalent 
to fm+1Afm+1 � R. Then, by [3, Corollary 1.5], Kn(A) � Kn(A/J) ⊕Kn(EndA(AJ)) =
Kn(Mm(R)) ⊕Kn(R) � Kn(R) ⊕Kn(R).

(2) Recall that the center of a ring S is the set Z(S) := {x ∈ S | xy = yx, ∀y ∈ S}. 
Since Morita equivalences preserve the centers of rings, the center of S2m(R) is R[c]. 
For S2m+1(R), it follows from Hochschild cohomology calculation of quasi-hereditary 
algebras (see [7]) that the center of S2m+1(R) is a free R-module of rank 2 for m ≥ 1, 
thus it is R[c]. For S1(R), we have c = 1 and R[c] = R. �

Finally, we point out quiver presentations of centrosymmetric matrix algebras over a 
field.

Let R be a field. The path algebra of a quiver Q over R is denoted by RQ. By 
Theorem 3.1, up to Morita equivalence, it is sufficient to describe the quivers and relations 
of Si(R) for i = 1, 2, 3.

Clearly, S1(R) = R •. If char(R) 
= 2, then S2(R) = R(• •) and S3(R) � M2(R) ×
R ≈ R(• •). If char(R) = 2, then

S2(R) = R
(
• α

)
/(α2)
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and

S3(R) = R
(
•

α

•
β

)
/(αβ).

Recall that a finite-dimensional algebra A over a field is representation-finite if there 
are only finitely many non-isomorphic indecomposable left A-modules. Thus

Corollary 3.5. The centrosymmetric matrix algebra Sn(R) over a field R is representation-
finite for all n ≥ 1.
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