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Abstract

Graham and Lehrer have defined cellular algebras and developed a theory that allows in particular to
classify simple representations of finite dimensional cellular algebras. Many classes of finite dimensional
algebras, including various Hecke algebras and diagram algebras, have been shown to be cellular, and the
theory due to Graham and Lehrer successfully has been applied to these algebras.

We will extend the framework of cellular algebras to algebras that need not be finite dimensional
over a field. Affine Hecke algebras of type A and infinite dimensional diagram algebras like the affine
Temperley–Lieb algebras are shown to be examples of our definition. The isomorphism classes of simple
representations of affine cellular algebras are shown to be parameterised by the complement of finitely
many subvarieties in a finite disjoint union of affine varieties. In this way, representation theory of non-
commutative algebras is linked with commutative algebra. Moreover, conditions on the cell chain are
identified that force the algebra to have finite global cohomological dimension and its derived category
to admit a stratification; these conditions are shown to be satisfied for the affine Hecke algebra of type A if
the quantum parameter is not a root of the Poincaré polynomial.
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1. Introduction

Given an algebra or a group, a fundamental question is to find a parameter set of the simple
(= irreducible) representations up to isomorphism. One of the most successful general tech-
niques available in the case of finite dimensional algebras relies on cellular structures in the
sense of Graham and Lehrer’s definition of cellular algebras [7]. A (finite dimensional) cellular
algebra has, by definition, a finite chain of cell ideals, and a subset of the index set of this chain
is a natural parameter set of the isomorphism classes of simple representations. Once a cellular
structure is known, it is a problem of linear algebra to identify this subset. Moreover, the problem
to describe the simple modules, their dimensions or characters, also is reduced to a linear algebra
problem, which, however, is hard in general. Cellular structures have been found and successfully
applied for large classes of algebras, including group algebras of symmetric groups, their Hecke
algebras, Temperley–Lieb algebras, Brauer algebras and other diagram algebras; other important
classes of algebras such as generalised Schur algebras of reductive algebraic groups and blocks
of the Bernstein–Gelfand–Gelfand category O have been studied by using properties such as
quasi-heredity that are even stronger than cellular. Apart from providing a crucial method for
finding parameter sets of simples, cellular algebras also have interesting homological features.
In [19] we have given an explicit characterisation when a cellular algebra has finite global (= co-
homological) dimension, and we also have shown the Cartan determinant conjecture to hold true
for cellular algebras.

The aim of this article is to extend the theory of cellular algebras from finite dimensional
algebras over a field to associative unitary algebras (not necessarily finitely generated) over
a principal ideal domain. Our definition of affine cellular algebras A requires the existence of
a finite cell chain. The subquotients (= cells) in this chain may be large over the given ground
ring, but each subquotient is required to have a special form that makes it look similar, in
a precise sense (Definition 2.1 and Section 2.2), to a matrix algebra over some commutative
ring that depends on the given subquotient. Therefore, an affine cellular algebra has associ-
ated with it an asymptotic algebra (Definition 3.13) that is a finite direct sum of matrix rings,
in general over varying commutative ground rings Bj . The problem of finding a parameter
set of simple A-representations will be solved in complete generality (Theorem 3.12). The
parameter set is contained, as the complement of the union of finitely many affine subvari-
eties, in the disjoint union

⋃n
j=1 MaxSpec(Bj ) of affine varieties, which form the parameter

sets of the matrix ring summands of the asymptotic algebra, where MaxSpec(Bj ) denotes
the spectrum of Bj consisting of all maximal ideals in Bj . In particular, the parameter set
is completely determined by the finitely many commutative algebras Bj and finitely many
elements in each Bj . The methods we develop in this context are based on viewing subquo-
tients in the cell chain as rings without units and comparing them with matrix rings. If the
ground rings of the matrix rings are principal ideal domains, then we can in addition use linear
algebra techniques and get a more precise description of the simple representations (Theo-
rem 3.16).

Our definition applies to infinite dimensional diagram algebras like the affine Temperley–Lieb
algebras (and presumably many other examples of this kind), but the most important example of
affine cellular algebras to be discussed in this article is Lusztig’s extended affine Hecke algebra of
type A (Theorem 5.7). More precisely, our results will cover the extended affine Hecke algebras
associated with general linear or special linear groups. Here, we are using Lusztig’s cell theory
for affine Hecke algebras and in particular N.H. Xi’s proof [32] of Lusztig’s conjecture about the
so-called based rings.
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Having shown that our definition of affine cellular algebra covers examples of interest in
various contexts of mathematics and mathematical physics and having demonstrated its use
for solving the problem of finding parameter sets of simple representations, we turn to homo-
logical aspects. In Theorem 4.1 we show that the parameter set of simple A-representations
equals the full variety

⋃n
j=1 MaxSpec(Bj ) if and only if all the sections in the cell chain

are idempotent. This is implied by the existence of a set of idempotents generating the cell
ideals, providing us with a condition on cell chains that naturally extends the notion of hered-
ity chains. Then we show that this condition implies finiteness of global (= cohomological)
dimension (Theorem 4.4) – provided the global dimensions of the Bj are finite – and even
a stratification of derived module categories. We show that the extended affine Hecke alge-
bra of type A satisfies this condition if the quantum parameter is not a root of the Poincaré
polynomial (Theorem 5.8); this includes the case of q not being a root of unity, which is
the situation for which Kazhdan and Lusztig have proved the Deligne–Langlands classifica-
tion [15].

The main results of this article are Theorem 3.12, which provides the classification of simple
A-representations for any affine cellular algebra A, and the results of Section 4: Theorems 4.1,
4.3, 4.4 discussing the stronger ‘quasi-hereditary’ situation and its homological consequences –
note that this is the ‘generic’ case for affine Hecke algebras.

The paper is organised as follows. In Section 2, we give the definition and examples of affine
cellular algebras. In Section 3, we prove the main results Theorem 3.12 and Theorem 3.16. In
Section 4, we investigate homological properties of affine cellular algebras and prove Theo-
rems 4.1, 4.3 and 4.4. In Section 5, we verify that Lusztig’s affine Hecke algebras of type A are
affine cellular in the sense of this paper. Moreover, if the ground field has characteristic zero and
the Poincaré polynomial does not vanish at the defining parameter, then the affine Hecke algebra
of type A has finite global dimension.

Recently, further examples of affine cellular algebras are provided by Guilhot and Miemietz
in [12]. Their main result is that any affine Hecke algebra of rank 2 is affine cellular in the sense
of Definition 2.1 below.

2. Affine cellular algebras: definition, examples and comparison to existing concepts

We start this section by defining the central concept of this article, affine cellular algebras.
Then we illustrate this concept by several examples. Next we interpret the notion of affine cell
ideal in terms of what is called generalised matrix rings. Finally, we compare the new concept to
existing ones.

First, we fix some notation to be used throughout this article. Let k be a noetherian domain; we
will study k-algebras that are associative and have a unit, but on the way some algebras without
unit will appear, too. We do not assume the algebras studied to be finitely generated or projective
over k. For two k-modules V and W , we denote by τ the switch map: V ⊗k W −→ W ⊗k V ,
v ⊗ w �−→ w ⊗ v for v ∈ V and w ∈ W . A k-linear anti-automorphism i of a k-algebra A

with i2 = idA will be called a k-involution on A. A commutative k-algebra B is called affine
if it is a quotient of a polynomial ring k[x1, . . . , xt ] in finitely many variables x1, . . . , xt by an
ideal I , that is, B = k[x1, . . . , xt ]/I . Affine commutative rings will come up as ground rings of
certain matrix algebras that provide us with the affine spaces containing the parameter sets we
are looking for.
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2.1. Definition and examples

Definition 2.1. Let A be a unitary k-algebra with a k-involution i on A. A two-sided ideal J

in A is called an affine cell ideal if and only if the following data are given and the following
conditions are satisfied:

(1) The ideal J is fixed by i: i(J ) = J .
(2) There exist a free k-module V of finite rank and an affine commutative k-algebra B with

identity and with a k-involution σ such that � := V ⊗k B is an A-B-bimodule, where the
right B-module structure is induced by that of the right regular B-module BB .

(3) There is an A-A-bimodule isomorphism α :J −→ � ⊗B �′, where �′ = B ⊗k V is a B-A-
bimodule with the left B-structure induced by BB and with the right A-structure via i, that
is, (b ⊗ v)a := τ(i(a)(v ⊗ b)) for a ∈ A, b ∈ B and v ∈ V , such that the following diagram
is commutative:

J
α

i

� ⊗B �′

v1⊗b1⊗Bb2⊗v2 �−→v2⊗σ(b2)⊗Bσ(b1)⊗v1

J
α

� ⊗B �′.

The algebra A (with the involution i) is called affine cellular if and only if there is a k-module
decomposition A = J ′

1 ⊕ J ′
2 ⊕ · · · ⊕ J ′

n (for some n) with i(J ′
j ) = J ′

j for each j and such that

setting Jj = ⊕j

l=1 J ′
l gives a chain of two-sided ideals of A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A

(each of them fixed by i) and for each j (j = 1, . . . , n) the quotient J ′
j = Jj/Jj−1 is an affine

cell ideal of A/Jj−1 (with respect to the involution induced by i on the quotient).
We call this chain a cell chain for the affine cellular algebra A. The module � will be called

a cell lattice for the affine cell ideal J .

The subsections of a cell chain often will be called ‘cells’ or ‘layers’ of the affine cellular
structure.

An affine cellular algebra need not be noetherian although each commutative algebra B ap-
pearing in � is noetherian (for an example, see Section 3.2 below).

Easy examples. A cellular algebra in the sense of [7] is a trivial example of an affine cellular
algebra; here, all the rings Bj are equal to the ground ring k.

Another trivial example is a noetherian domain, which is an affine cellular algebra with respect
to any involution.

The field C of complex numbers with the usual conjugation as an R-involution is not a cel-
lular R-algebra, but it is an affine cellular algebra in the sense of Definition 2.1. In fact, every
affine commutative k-algebra is an affine cellular k-algebra with respect to the identity map as a
k-involution.

Suppose k is a field and A is a cellular k-algebra with respect to a k-involution i. Then the
tensor product k[x] ⊗k A is an affine cellular k-algebra with respect to the involution id ⊗k i.
Suppose J1 ⊂ J2 ⊂ · · · ⊂ Jm = A is a cell chain of A. Then k[x] ⊗k J1 ⊂ k[x] ⊗k J2 ⊂ · · · ⊂
k[x] ⊗k Jm = k[x] ⊗k A is a cell chain for k[x] ⊗k A. Using the language introduced in the
next subsection, the forms ψj on the tensor product algebra are given by the forms defining the
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cellular structure on the algebra A, and all Bj are equal to k[x]. In this case, we see that each
subquotient (k[x] ⊗k Js)/(k[x] ⊗k Js−1) is a free k[x]-module.

A non-trivial class of examples of affine cellular algebras will be discussed after the next
subsection.

2.2. Ideals and generalised matrix algebras

Now we are collecting some basic properties of an affine cell ideal J in an algebra A. In
particular, we derive the basic structure of J when viewed as an algebra (without unit) in itself.

Proposition 2.2. Let J be an affine cell ideal in a k-algebra A with an involution i. We identify J

with � ⊗B �′ = V ⊗k B ⊗k V . Then:

(1) i(u ⊗ b ⊗ v) = v ⊗ σ(b) ⊗ u for all u,v ∈ V and b ∈ B .
(2) There is a k-linear map ψ :V ⊗k V −→ B such that σ(ψ(v, v′)) = ψ(v′, v), and

(u ⊗ b ⊗ v)
(
u′ ⊗ b′ ⊗ v′) = u ⊗ bψ

(
v,u′)b′ ⊗ v′

for all u,u′, v, v′ ∈ V and b, b′ ∈ B .
(3) For any element a ∈ A and u ⊗ b ⊗ v ∈ J , we have

a(u ⊗ b ⊗ v) ∈ V ⊗k Bb ⊗k v, and (u ⊗ b ⊗ v)a ∈ u ⊗k bB ⊗k V .

In particular, if I is an ideal in B and u,v ∈ V , then V ⊗k I ⊗k v is a left ideal in A, and
u ⊗k I ⊗k V is a right ideal in A.

Proof. (1) is clear from the commutative diagram in Definition 2.1. (3) follows from the fact that
α is an A-A-bimodule homomorphism since we can write a(u ⊗ b ⊗ v) = a(u ⊗ 1 ⊗B b ⊗ v) =
(a(u ⊗ 1)) ⊗B (b ⊗ v) = f (a,u)b ⊗k v, where f (a,u) ∈ V ⊗k B and f (a,u) is independent
of b and v. So, it remains to verify (2).

Suppose {vj | j = 1,2, . . . ,m} is a k-basis of V . Let us compute (vp ⊗k b⊗k vq)(vs ⊗k c⊗k vt )

where b and c are in B . On the one hand, since � = V ⊗k B is a left A-module, we have

(vp ⊗k b ⊗k vq)(vs ⊗k 1 ⊗B c ⊗k vt ) =
∑
j

vj ⊗k fj (vp, vq, b, vs)c ⊗k vt ,

where fj (vp, vq, b, vs) is a function with values in B . On the other hand, since �′ is a right
A-module, we have

(vp ⊗k b ⊗B 1 ⊗k vq)(vs ⊗k c ⊗k vt ) =
∑
j

vp ⊗k bgj (vq, vs, c, vt ) ⊗k vj ,

where gj (vp, vs, c, vt ) is a function with values in B . By observing linear independence (over k)
of the summands and then comparing the coefficients, we find that

(vp ⊗k b ⊗k vq)(vs ⊗k c ⊗k vt ) = vp ⊗k fp(vp, vq, b, vs)c ⊗k vt

= vp ⊗k bgt (vq, vs, c, vt ) ⊗k vt .
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Thus fp(vp, vq, b, vs)c = bgt (vq, vs, c, vt ) for all b, c ∈ B and p,q, s, t ∈ {1,2, . . . ,m}.
In particular, if we take b = 1, then fp(vp, vq,1, vs)c = gt (vq, vs, c, vt ). This shows that
gt (vq, vs, c, vt ) is independent of vt , thus we may write gt (vq, vs, c, vt ) = gt (vq, vs, c). Simi-
larly, fp(vp, vq, b, vs) is independent of vp , and we can write fp(vp, vq, b, vs) = fp(vq, b, vs).
This shows that

(vp ⊗k b ⊗k vq)(vs ⊗k c ⊗k vt ) = vp ⊗k bfp(vq,1, vs)c ⊗k vt .

If we define ψ(vq, vs) := fp(vq,1, vs), then ψ(vq, vs) is a k-bilinear form because the multipli-
cation in J is k-bilinear. Finally, the condition σ(ψ(v, v′)) = ψ(v′, v), relating ψ and σ follows
from (1). �

Therefore, the action of A on � is given as follows:

a(v ⊗k b) = f (a, v)b, a ∈ A, v ∈ V, b ∈ B,

where f (a, v) ∈ V ⊗k B is independent of b. In particular, if a = w ⊗k b′ ⊗k u ∈ J , then

a(v ⊗ b) = w ⊗ b′ψ(u,v)b.

Also, Proposition 2.2 provides a general recipe of constructing affine cell ideals: Given a
free k-module V , a (commutative) k-algebra B and a k-bilinear form ψ :V ⊗k V −→ B , we
may define an associative algebra A(V ,B,ψ) as follows: As a k-module, A(V ,B,ψ) := V ⊗k

B ⊗k V . The multiplication on the module is defined by

(u ⊗k b ⊗k v)
(
u′ ⊗k b′ ⊗k v′) = u ⊗ bψ

(
v,u′)b′ ⊗k v′

for all u,u′, v, v′ ∈ V , and b, b′ ∈ B . Moreover, if B admits a k-involution i such that iψ(v, v′) =
ψ(v′, v), then A(V ,B,ψ) admits a k-involution j which sends v ⊗ b ⊗ w to w ⊗ i(b) ⊗ v for
all v,w ∈ V and b ∈ B .

Apart from the additional requirement concerning the involution i, this construction is exactly
that of a generalised matrix algebra over the ground ring B . Suppose that B is a k-algebra and fix
a natural number n, set V = kn and choose a k-bilinear form ψ :V ⊗k V −→ B . Then the gener-
alised matrix algebra (Mn(B),ψ) over B with respect to ψ as a k-space equals the ordinary ma-
trix algebra Mn(B) of n×n matrices over B , but multiplication is deformed in the following way.
We write matrices in (Mn(B),ψ) as sums of ‘matrix units’ a⊗x⊗b with a, b ∈ V , x ∈ B and put
(a ⊗x ⊗b) · (c⊗y ⊗d) := a ⊗xψ(b, c)y ⊗d . Linearly extending this setting defines an associa-
tive and k-linear multiplication on (Mn(B),ψ), which thus becomes a k-algebra, in general with-
out unit. Note that A(V ,B,ψ) 
 (Mn(B),ψ) and there may not be a B-algebra structure present.
This notion goes back to W.P. Brown [3] who used it when studying Brauer algebras (see also [20]
for a further use of this concept, using finite dimensional non-commutative algebras as Bj ).

Summarising the above discussion, we have the following description of affine cellular alge-
bras.

Proposition 2.3. Let k be a noetherian domain, and let A be a k-algebra (with a k-involution i).
Suppose there is a decomposition:

A = J ′
1 ⊕ J ′

2 ⊕ · · · ⊕ J ′
n

of k-modules, such that
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(1) each J ′
t is invariant under i;

(2) the chain J0 = 0 ⊂ J1 ⊂ · · · ⊂ Jn = A with Jt = ⊕t
j=1 J ′

j is a chain of ideals in A; and
(3) for each 1 � s � n, there is a free k-module Vs of finite rank, an affine commutative

k-algebra Bs , a k-bilinear form ψs :Vs ⊗k Vs −→ Bs , and a k-linear involution is on Bs ,
such that the subquotient Js/Js−1 is isomorphic to A(Vs,Bs,ψs) 
 �s ⊗B �′

s as an algebra
(not necessarily with identity) and as an A-A-bimodule, and that the induced involution of i

on Js/Js−1 is given by i(v1 ⊗k b ⊗k v2) = v2 ⊗k is(b) ⊗k v1 for all v1, v2 ∈ V , b ∈ Bs . Then
A is an affine cellular algebra.

Example. Let A = ( k[x] k[x]
xk[x] k[x]

)
, where k is a field. Then we define an involution on A by

sending
( a c

xb d

)
to

(
a b
xc d

)
, where a, b, c and d are elements in k[x]. Let J ′

1 = ( k[x] k[x]
xk[x] xk[x]

)
,

and J ′
2 = ( 0 0

0 k

)
. Then A is a direct sum of k[x]-modules J ′

1 and J ′
2 each of which is invari-

ant under the involution. Let V1 be a k-space of dimension 2 with basis {v1, v2}. We define a
k-bilinear form ψ1 :V1 ⊗k V1 −→ k[x] by the matrix

( 1 1
x x

)
. This defines a generalised matrix

ring A(V1, k[x],ψ1). Let V2 = k and ψ2 = (1). Then A is an affine cellular algebra. The same
kind of example exists over any Dedekind domain; A always is an example of a hereditary order.

Lemma 2.4. Suppose K is another noetherian domain and φ : k −→ K is a homomorphism of
rings with identity. If A is an affine cellular k-algebra with an involution i, then K ⊗k A is an
affine cellular K-algebra with respect to the involution idK ⊗ i.

Proof. Let A be an affine cellular algebra. We define I ′
j = J ′

j ⊗k K , Ij = ⊕j

l=1 I ′
l = Jj ⊗k K ,

Wj = Vj ⊗k K and Cj = K ⊗k Bj . The (K ⊗k A)-Cj -bimodule structure on Wj ⊗K Cj is
induced from the natural module structure on Vj ⊗k K ⊗k Bj which is identified with Wj ⊗K Cj .
We define βj : Ij −→ Wj ⊗K Cj ⊗K Wj by λ ⊗k x �−→ λα(x) for x ∈ Jj and λ ∈ K . Note that
we identify the K-module Vj ⊗k (K ⊗k Bj ) ⊗k Vj with the K-module Wj ⊗K Cj ⊗K Wj .
Then the Ij , 1 � j � n form a cell chain of K ⊗k A. Thus K ⊗k A is an affine cellular algebra
over K . �
Remark. While the definition of affine cellular algebra is in many respects similar to that of
cellular algebra, there is one fundamental difference; the new ingredients in the affine case are
the algebras Bj , and the main problem is that these algebras are given as kind of external data,
which are not a priori related to the algebra A. For instance, modifying the above example into
A = ( Z Z

pZ Z
)

we get an affine cellular algebra, which has B2 = Z/pZ associated with the top cell
(which actually equals B2). In this case, and in general, the algebras Bj need not be subalgebras
of the centre of A. There is no natural action of an algebra Bj on A. Indeed, although the cell
ideal J is a generalised matrix ring over B , there is no natural ring homomorphism from B to J

with the image contained in the centre of J . Moreover, while the bimodule structure of A�B

induces a ring homomorphism B −→ EndA(�), the image of this map may in general not be
contained in the centre of EndA(�). All of these problems force us to give up on the methods
used in the theory of finite dimensional cellular algebras.

2.3. Affine Temperley–Lieb algebras

Infinite dimensional diagram algebras that have arisen in mathematical physics or in knot
theory are natural sources of examples of affine cellular algebras. Here, we consider affine
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Temperley–Lieb algebras and show that these are affine cellular algebras. First, let us recall the
definition of the affine Temperley–Lieb algebra TLa

n(δ) given in [8].
We fix a vertical cylinder with n marked points on the top circle of its boundary and n marked

points on the bottom circle. An affine diagram of type (n,n) is obtained by joining these points
pairwise by arcs on the surface of the cylinder without intersection. We can also add to an affine
diagram a finite number of circles which circumnavigate the cylinder if there is no intersection
with arcs. We denote by D(n) the set of isotopy classes of such affine diagrams of type (n,n). If
α and β are two elements in D(n), then we may glue the bottom boundary circle of α to the top
boundary circle of β so that the corresponding marked points coincide, and thus we get a cylinder
again; there may be some loops on its surface. We denote by m(α,β) the number of loops, and
by α ◦ β the affine diagram obtained by removing all loops. Then α ◦ β is an element in D(n).

Let k be a field and δ an element in k. The affine Temperley–Lieb algebra TLa
n(δ) is an asso-

ciative k-algebra spanned over k by affine diagrams in D(n) with multiplication

αβ = δm(α,β)α ◦ β

for all α,β ∈ D(n). This is an associative algebra with identity. Note that there is an involution ∗
on TLa

n(δ), which is given by turning around the cylinder, thus turning the bottom points into the
top points and vice versa.

An arc in an affine diagram is called a through arc if it connects a bottom point and a top point.
Let j be an integer with 0 � j � n and j ≡ n (mod 2). We denote by J ′

j the k-space spanned by
the set of affine diagrams of D(n) with exactly j through arcs. Clearly, J ′

j is invariant under the
involution ∗.

We first consider the case j = 0, which only occurs if n is even. Then J ′
0 is an infinite di-

mensional k-space. Each affine diagram D in J ′
0 can be expressed as xrD′ where x is a variable

and r is the number of circles in D, and D′ is obtained from D by deleting all circles. So, we
may define x acting on D by adding one circle. If we denote by I the k-space spanned by all
such affine diagrams D′, then J ′

0 is isomorphic to k[x] ⊗k I as k[x]-modules. The involution
on k[x] is defined to be the identity map. Note that each diagram in I splits up uniquely into
two half-diagrams Dt , the top part of D, and Db, the bottom part of D. Let V0 be the vector
space spanned by all these Dt . Now we define a bilinear form ψ0 :V0 ⊗k V0 −→ k[x] which
controls the multiplication inside J ′

0. We will identify J ′
0 with V0 ⊗k k[x] ⊗k V0. For this, we

first compose Dt with Db by identifying all corresponding vertices, and then count the number
n(Dt ,Db) of circles and the number m(Dt ,Db) of loops in the resulting diagram, and finally,
we define ψ0(Dt ,Db) = δm(Dt ,Db)xn(Dt ,Db). Thus J ′

0 is an affine cell ideal. In the terminology
of the previous subsection we have shown that J ′

0 = A(V0, k[x],ψ0).
If j 
= 0, then there is a twist τj :

...

...

......

...

...

......

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 2 3 j
• • • •

�
�

�
�

�
��

�
�

�
��

�
�

�
�� �

��

• • • •
1 2 j − 1 j

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

and we may consider J ′
j as a left module over k[x, x−1] := k[x, y]/(xy − 1), where x acts on

an affine diagram D by putting τj on top of D, but only identifying those marked points of D

which are end points of through arcs.
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We note that every affine diagram D in J ′
j is of the form τ r

j D′, where r is an integer, and
where D′ is a standard diagram, namely, D′ has no circumnavigating circles and it can be drawn
without intersections of through arcs with a straight line segment from the top vertex numbered 1
to the bottom vertex also numbered 1.

Let Vj be the k-space spanned by all half-diagrams of standard diagrams D in J ′
j . Here,

a half-diagram of type (n, j) is a diagram with n marked points on a circle, such that there are
n − j arcs each of which has two end points on the circle, and j rays each of which has its
starting point on the circle, and such that there is no intersections between arcs, nor between arcs
and rays. Then we may identify J ′

j with Vj ⊗k k[x, x−1]⊗k Vj . Now we define a k-bilinear map

ψj :Vj ⊗k Vj −→ k[x, x−1]. As in the case j = 0, we compose two half-diagrams Dt and Db,
and count the number m(Dt ,Db) of loops. Note that for j 
= 0, there are no circumnavigating cir-
cles in the resulting diagram. We put ψj(Dt ,Db) = δm(Dt ,Db) ∈ k[x, x−1]. Then the subquotient
Jj /Jj−1 is an affine cell; it is isomorphic to A(Vj , k[x, x−1],ψj ). The involution i on k[x, x−1]
is defined by x �−→ x−1. Thus an affine Temperley–Lieb algebra is an affine cellular algebra and
we have shown:

Proposition 2.5. For any choice of parameters n and δ, the affine Temperley–Lieb algebra TLa
n(δ)

is an affine cellular algebra.

2.4. Comparison with existing concepts

Obviously, finite dimensional cellular algebras over fields, as studied extensively ever since
Graham and Lehrer’s ground-breaking article [7], are special examples of affine cellular algebras.
We note, however, that our definition is more general even in the finite dimensional case, since
it allows to vary the ground rings Bj of the cells. Thus field extensions as the complex numbers
viewed as an algebra over the real numbers do become examples. In the context of finite groups,
work of Roggenkamp [28,29] implies that group rings of dihedral groups are affine cellular
without, in general, being cellular.

When passing from cellular to affine cellular algebras, the following major problems do arise.
While for cellular algebras, each layer of the cell chain contributes one or no simple module, we
will see that each layer of a cell chain of an affine cellular algebra may (and in general does)
contribute infinitely many simple representations, which have to be parameterised. Moreover,
while for a cellular algebra each layer either has trivial multiplication modulo lower layers or it
is a heredity ideal modulo lower layers [17], in the affine case we will have to find the infinite
dimensional analogue of a heredity ideal in order to get started with a reasonable homological
theory.

Graham and Lehrer formulated their definition of cellular algebras in terms of k-bases having
special properties. An equivalent reformulation in structural terms has been given in [17], which
we follow here. It is possible to rephrase our definition of affine cell ideal in terms of bases,
too, but this uses a finite B-basis, not a k-basis. Thus defining affine cellularity in terms of bases
means working with bases over different ground rings for different layers. We refrain from giving
the obvious, but tedious details.

A tempting way of generalising Graham and Lehrer’s definition of cellular algebras is to keep
the definition of cell ideals, but allowing the cell chain to be infinite (with finite dimensional
layers). As the example of the polynomial ring k[x] in one variable shows, such infinite ‘cell
chains’ sometimes do exist, but do not give any information on simple representations of the
algebra studied. Since localisations of the polynomial ring have the same kind of infinite cell
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chain, it is indeed unlikely that such cell chains give any reasonable information on the alge-
bra.

There are two existing concepts dealing with infinite dimensional generalisations of cellular
algebras, both due to R.M. Green. The first one, procellular algebras [9], drops the finiteness
of the cell chain and studies completions, that is projective limits, of finite dimensional cellular
algebras. This works well for certain quantum groups such as Lusztig’s algebra U̇ , which is
known to have infinitely many cells. An easy example of such a procellular algebra is a power
series ring in one variable, while the polynomial ring and most of its localisations are excluded.
Although the concept of procellular algebras does cover interesting examples, it seems to lead to
a theory rather disjoint from the one to be developed in this article and it does not cover examples
such as affine Hecke algebras. The parameter set of finite dimensional simple modules in some
sense is built into the definition of procellular algebras, in the form of a ‘cell datum of profinite
type’, and thus needs to be found already when checking that an algebra is procellular; so in that
theory, the problem of finding a parameter set of simples is rather different in its nature than in
our setting. Homological properties of procellular algebras have not been studied yet.

Another generalisation of cellular algebras, also due to Green, is the concept of tabular alge-
bras [10]. This exhibits similar structures in important classes of examples; indeed, our proof that
extended affine Hecke algebras of type A are affine cellular uses the same results of Lusztig’s
cell theory and N.H. Xi’s work on Lusztig’s conjecture as Green’s proof [11] that these algebras
are tabular. So, there is much overlap in examples, although tabular algebras in general are not
affine cellular, and affine cellular algebras are in general not tabular (since we do not require the
positivity of the structure constants of Bj ; for example, Bj = Q[x, y]/(x2 − xy, xy + y2) is not
a hypergroup). As Green remarks, there is no result known how to parameterise simple repre-
sentations of tabular algebras or reasonable classes thereof, while we solve the corresponding
problem for affine cellular algebras. Since our methods are quite general, they potentially can be
adapted to other algebras, which are not affine cellular, too. Also, our homological results might
indicate on how to proceed with a similar theory for tabular algebras.

Much of the motivation for our definition of affine cellular algebras comes from our earlier
work on cellular algebras, in particular our work on inflations and on Brauer algebras [17,18,20].
There we have rephrased the definition of cellular algebras in terms of generalised matrix rings
(which Brown had already used in a special case half a century ago) and we have shown the
feasibility of this concept. Here, and in particular in the case of Brauer algebras and many other
diagram algebras, generalised matrix rings with entries in a non-commutative ring B have turned
out to be very useful; for instance, B may be the group algebra of a symmetric group. This also
has led to a stronger homological theory [14]. We refrain from discussing affine versions of these
results here.

Much of the theory to be developed below works also for a more general definition of cellular-
ity, where the algebras Bl are allowed to be arbitrary (not necessarily affine) commutative rings.
In such generality, however, one cannot expect to achieve a classification of simple A-modules,
since a similar classification is missing for the algebras Bl . In other words, there is an analogue
of Theorem 3.10, but not of Theorem 3.12, and thus the main result on classifying simples would
only reduce the problem to the same problem for all Bl , without solving it. Therefore, we do
not work in this generality. We remark, however, that there may be meaningful extensions of the
theory below for choices of Bl that are not affine, but still have a known representation theory in
some sense. We refrain from discussing details here in order to avoid overloading this article with
technicalities and also, because the approach given here covers all the examples we are interested
in.
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This article has been motivated by and represents our solution to a problem posed by Gus
Lehrer in survey lectures on cellular algebras during a workshop at Oxford in 2005.

3. Classification of simple representations of affine cellular algebras

This section contains the first main result of this article, a classification of simple modules
of affine cellular algebras in full generality. The parameter set will turn out to be subset of the
finite disjoint union of the affine spaces parameterising the simple Bl-modules. The complement
of the parameter set will be shown to be a disjoint union of (possibly empty) subvarieties, one
for each l, of these affine spaces. In order to prove this classification, we first set up a general
ring theoretic technique that in the special case of an affine cellular algebra A turns the set of
simple A-modules into a disjoint union of the sets of simple modules over the rings without unit
Jl/Jl−1, that is, over generalised matrix rings over the commutative algebras Bl . In the second
step, again based on representation theory of rings without unit, we construct injective maps
from the parameter sets of simple Jl/Jl−1-modules to affine spaces over Bl . In this step we also
get coarse upper bounds, but not precise formulae, for the dimensions of simple A-modules;
this involves a kind of highest weight theory for our algebras. At this point, the classification
Theorem 3.12 can be stated and proved. Under the additional assumption that all the algebras Bl

are principal ideal domains, we are able to go further and to use linear algebra methods to give
more precise descriptions of simple A-modules and better bounds for their dimensions. Here, it
turns out to be an advantage to work with rings without unit; indeed, a normal form for such
a ring can be obtained simply by Gauss elimination, since there is no unit to be preserved by
isomorphisms.

3.1. Simple modules, ideals and algebras without unit

In this subsection we shall carry out the first step in the above programme. We will work in
a quite general situation, comparing modules over an algebra with modules over an ideal in that
algebra, viewed as a non-unitary algebra. This material is elementary, but a suitable reference
seems to be missing, and therefore we provide the details.

Let Λ be a k-algebra which may not have an identity element; by a k-algebra we then
just mean a (not necessarily free) k-module structure on the ring Λ such that multiplication is
k-bilinear. By a Λ-module M we mean a (not necessarily free) k-module together with the usual
Λ-module structure requirements except for the unitary condition. A Λ-module M is called sim-
ple if ΛM 
= 0 and there are no submodules different from 0 and M ; note that a module with zero
Λ-action cannot be simple, by definition. If the algebra Λ has a unit then we require a Λ-module
to be unitary.

From the definition of simple modules we have the following easy properties, where Λj de-
notes the j -fold product Λ · Λ · · · · · Λ, that is, Λj = {∑m

i=1 ai1 · · ·aij | m ∈ N, aip ∈ Λ, 1 �
p � j}: If M is a simple Λ-module, then (1) M 
= 0, (2) ΛjM = M for all positive integers j ,
(3) for any element x in M and any left ideal I in Λ, if Ix 
= 0, then M = Ix, (4) for any non-
zero element m in M , we have Λm = M . (Otherwise, we consider the proper k-submodule km

of M , which contains m 
= 0, but which is contained in the submodule Λ(km) = k(Λm) = 0.) In
particular, if Λn = 0 for some positive integer n, then there is no simple Λ-module. Conversely,
suppose M is a Λ-module. Then M is simple if (1) ΛM 
= 0, and (2) for any 0 
= m ∈ M we have
Λm = M .
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A construction of simple Λ-modules using ideals of Λ goes as follows. Let I be a non-zero
left ideal of Λ, and suppose I ′ is a left ideal of Λ, which is properly contained in I . If I ′ is
maximal in I with the property that ΛI � I ′, then I/I ′ is a simple Λ-module.

Now let J be an ideal (= two-sided ideal) in Λ. Suppose L is a simple Λ-module such that
Ju 
= 0 for some element u ∈ L. Then JL = L = Ju, and L = Jnu for all positive integers n.
Moreover, there is an exact sequence of Λ-modules:

0 −→ AnnJ (u) −→ J
μ−−→ Ju = L −→ 0,

where μ is given by x �−→ xu for all x ∈ J , and where AnnJ (u) denotes the annihilator of the
element u in J . Clearly, AnnJ (u) has the following properties:

(a) AnnJ (u) is a left ideal of Λ; and it is maximal with respect to being a left ideal of Λ properly
contained in J , that is, AnnJ (u) 
= J , and if I is a left ideal in Λ such that AnnJ (u) � I ⊆ J

then I = J .
(b) J 2 � AnnJ (u), thus J 2 + AnnJ (u) = J by (a).

Conversely, if a left ideal I of Λ is contained in J with the above two properties, then J/I is
a simple Λ-module.

Using property (a) we can derive the following property.

(c) AnnJ (u) is a maximal left ideal in J (which is seen as an algebra in itself). In fact, if I

is a left ideal of J and properly contains AnnJ (u), then I + ΛI is a left ideal of Λ and is
contained in J . By (a), we must have I + ΛI = J . Note that (ΛI)u is a Λ-submodule of L.
Thus either ΛIu = 0 or ΛIu = L. In the first case, we have ΛI ⊆ AnnJ (u), and therefore,
I + ΛI ⊆ I + AnnJ (u) = I , so I is a left ideal in Λ, contradicting (a). Thus we must have
ΛIu = L. This implies that L = JL = JΛIu ⊆ Iu and hence Iu = L is a Λ-module. Note
that AnnI (u) = I ∩AnnJ (u) = AnnJ (u). Now, we consider the following exact commutative
diagram of J -modules:

0 0 0

0 AnnI (u) I Iu = L 0

0 AnnJ (u) J Ju = L 0.

0 J/I 0

The snake lemma shows that J/I = 0, that is, J = I . Thus AnnJ (u) is a maximal left ideal
of J .

As a consequence of (c), we see that J/AnnJ (u) 
 L is simple as a J -module, too. The
converse is also true:



Author's personal copy

S. Koenig, C.C. Xi / Advances in Mathematics 229 (2012) 139–182 151

Lemma 3.1. Let J be an ideal in Λ. Then every simple J -module L is a simple Λ-module.

Proof. If L is a simple J -module, then there exists a maximal left ideal J ′ of J such that J 2 � J ′
and L 
 J/J ′. Let J1 be the left ideal of Λ generated by J ′. Then J1 = J ′ +ΛJ ′ ⊆ J . Thus J 2

1 ⊆
J1J

′ +J1ΛJ ′ ⊆ JJ ′ +JJ ′ ⊆ J ′. Now we consider the following exact commutative diagram of
J -modules:

0 J ′ J L 0

0 J1 J L′ 0.

This provides an exact sequence

0 −→ J1/J
′ −→ L −→ L′ −→ 0.

Since J 2 � J ′ and J 2
1 ⊆ J ′, we see that J1 
= J and hence L′ 
= 0. Note that L is a simple

J -module. Therefore, J ′ = J1, and it is a left ideal in Λ. Thus L = L′, as a quotient of left ideals
in Λ, is a Λ-module and simple, too. �

As a direct consequence of Lemma 3.1, we get the following general statement, which is what
we need when continuing our programme of classifying simple modules. For A being affine
cellular, we reduce in this way the problem of classifying simple A-modules to the problem of
classifying the simple modules for each generalised matrix ring Λ̃ = Jl/Jl−1.

Corollary 3.2. Let J = J0 ⊆ J1 ⊆ · · · ⊆ Jn = Λ be a chain of k-submodules in Λ. If Jl−1 is an
ideal in Jl for all 1 � l � n, then every simple J -module L is a simple Λ-module. Conversely, if
a simple Λ-module L satisfies JL 
= 0, then L is a simple J -module.

3.2. Swich algebras and classification of simple representations

In this subsection we will carry out the second step of our programme, culminating in two
results. The first one, Theorem 3.10 provides a very general procedure to compare simple repre-
sentations of algebras and of what we call swich algebras (see below for an explanation of the
terminology); this includes the situation we are interested in, namely to compare simple repre-
sentations of generalised matrix algebras and of ordinary matrix algebras. Applying this result to
an affine cellular algebra, we then get Theorem 3.12, which is our main result in this context; it
describes the parameter set as a finite disjoint unions of subsets in affine varieties, contained in
the affine spaces MaxSpec(Bj ), the spectrum of all maximal ideals in Bj .

Again, we will work in a quite general setup, in order to clearly exhibit the crucial structures.
We keep the noetherian domain k as a ground ring, and we require all unitary algebras Λ to
be finitely generated over their centres. These assumptions are valid in the application to affine
cellular algebras since, in the affine cellular situation, the algebras called Λ in the current sub-
section are matrix algebras of finite size over the affine commutative algebras Bl associated with
subquotients in the cell chain, and each of them is noetherian over its centre.
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Definition 3.3. Let Λ be a k-algebra and a0 a fixed element in Λ. We define a new k-algebra
Λ̃ = S(Λ,a0), called the swich algebra of Λ with respect to a0, where as a set Λ̃ = {ã | a ∈ Λ},
and the algebra structure on Λ̃ is given by

ã + b̃ = ã + b, a, b ∈ Λ,

ã · b̃ = ãa0b, a, b ∈ Λ,

λã = λ̃a, λ ∈ k, a ∈ Λ.

The algebra Λ̃ is an associative algebra, not necessarily with identity. The term ‘swich’ is
a composition of ‘sandwich’ indicating the definition of multiplication by putting a0 in between
the two elements to be multiplied, and of ‘switch’ indicating the main use we will make of these
algebras by switching from cells to matrix algebras.

A typical example of an algebra of the form Λ̃ is an affine cell ideal J , when viewed as a gen-
eralised matrix algebra, see Proposition 2.2 and the discussion following it. Using the notation
in Section 2.2, the multiplication in J is given by xy = xΨy for all x, y ∈ Mn(B), where Ψ is
the matrix describing the bilinear form ψ with respect to some basis of V . In this case, we have
Λ = Mn(B), a0 = Ψ and Λ̃ = (Mn(B),Ψ ) with the multiplication in Λ̃ being given by Ψ . By
Corollary 3.2, our task is to classify the simple (Mn(B),Ψ )-representations, where Λ̃ is a sub-
quotient (= layer) in a cell chain. Thus, we are going to classify, in the general setup, simple
Λ̃-representations in terms of simple Λ-representations. In the application to affine cellular al-
gebras, Λ is an ordinary matrix algebra over some Bl , hence it is Morita equivalent to Bl and its
simple representations are parameterised by MaxSpec(Bl).

Note that Λ̃ may not be a noetherian algebra even if Λ is a noetherian algebra. A small
example is Λ = k[x] with k a field and a0 = 0. Using this Λ̃, we get an affine cellular algebra
A = k ⊕ Λ̃ with cell chain 0 ⊂ Λ̃ ⊂ A such that Λ̃ is not noetherian, since it is just a vector space
with trivial multiplication.

In the following, we always assume that the algebra Λ, which for now is any k-algebra, has
an identity. The main purpose of this subsection is to establish a general correspondence between
the simple modules over Λ and the simple modules over Λ̃, and thus to parameterise simple Λ̃-
modules via simple Λ-modules. Let us first construct an algebra homomorphism from Λ̃ to Λ.

Lemma 3.4. Let Λ be a k-algebra with identity and Λ̃ the swich algebra defined by a0. Then
there is an algebra homomorphism ϕ : Λ̃ −→ Λ defined by ã �−→ ϕ(ã) = aa0. Similarly, the
map ϕ′ : Λ̃ −→ Λ defined by ã �−→ ϕ′(ã) = a0a also is an algebra homomorphism. The map ϕ

is injective if and only if a0 is not a right zero-divisor, and it is surjective if and only if a0 is
a right unit in Λ (that is, there is b ∈ Λ such that ba0 = 1).

Proof. This is a straightforward computation. �
Thus, via ϕ, each Λ-module M will become a Λ̃-module, which is denoted by Mϕ .

Lemma 3.5. There is a Λ-Λ̃-bimodule structure on Λ: The left Λ-module structure on Λ is the
regular one, and the right Λ̃-module structure is defined by

x · ã = xa0a, a, x ∈ Λ.

Similarly, there is a left Λ̃-module structure on Λ. Moreover, we have Λ̃Λ 
 Λ̃Λ̃.
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Proof. Clearly, the left module structure is well defined. It remains to verify that the right struc-
ture is well defined and the associative law is fulfilled by the two module structures: Suppose
x ∈ Λ, and ã, b̃ ∈ Λ̃ with a, b ∈ Λ. Then

x · (ãb̃) = xa0(aa0b) = (x · ã) · b̃,

(ax) · b̃ = axa0b = a(xa0b) = a(x · b̃).

Thus Λ is a Λ-Λ̃-bimodule. The second half of the lemma can be proved similarly. �
Remark. Using Lemma 3.5, the algebra homomorphism ϕ in Lemma 3.4 can be described as
ã �−→ a · 1̃ = a(1 · 1̃), where 1 is the identity in Λ. The right Λ̃-module structure on Λ is induced
from ϕ′, not from ϕ, namely x · ã = xϕ′(ã) for all x, a ∈ Λ.

The algebra homomorphisms in Lemma 3.4 provide us with functors Λ-mod −→ Λ̃-mod. In
order to get functors backwards, we need some kind of induction procedure, involving a tensor
product over the non-unitary algebra Λ̃. Following a definition by Lusztig [22] in the context
of affine Hecke algebras, we define such a tensor product as follows. Given a Λ-Λ̃-bimodule X

and a Λ̃-module Y , we define X ⊗Λ̃ Y as the quotient of X ⊗k Y modulo the k-submodule
generated by {xã ⊗y −x ⊗ ãy | x ∈ X, y ∈ Y, a ∈ Λ}. Then X ⊗Λ̃ Y is a Λ-module in the usual
sense.

Using the Λ-Λ̃-bimodule structure on Λ, we can now compare the modules over Λ with those
over Λ̃, as the following lemma shows.

Lemma 3.6.

(1) Let X be a Λ-module and M a Λ̃-submodule of Xϕ . Then there is a homomorphism of
Λ-modules:

θ : ΛΛ ⊗Λ̃ M −→ X, a ⊗ m �−→ ϕ(ã)m, m ∈ M, a ∈ Λ

such that ϕ(Λ̃)Ker(θ) = 0.
(2) Let Y be a Λ̃-module. Then there is a Λ̃-module homomorphism:

p : (Λ ⊗Λ̃ Y )ϕ −→ Y, a ⊗ y �−→ ãy, a ∈ Λ, y ∈ Y

such that Λ̃Ker(p) = 0.

Proof. (1) It follows from ϕ(ã · b̃)m = (ϕ(ã)ϕ(b̃))m = ϕ(ã)(ϕ(b̃)m) = ϕ(ã)(b̃m) that the im-
ages of a ⊗ b̃m and a · b̃ ⊗ m under θ coincide with each other. Thus θ is well defined.
Now we check that θ is a Λ-homomorphism. Let a ∈ Λ and b ⊗ m ∈ Λ ⊗Λ̃ M . Then the
image under θ of a(b ⊗ m) = ab ⊗ m is ϕ(ãb)m = aba0m. This is equal to a(ϕ(b̃)m) =
a(ba0m). Thus θ preserves the left action of elements a ∈ Λ, and it is a Λ-module homomor-
phism.

Let
∑

i ai ⊗ mi be in the kernel of θ with ai ∈ Λ and mi ∈ M . Then
∑

i ϕ(ãi)mi = 0. Pick
an ã in Λ̃. We get
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ϕ(ã)

(∑
i

ai ⊗ mi

)
=

∑
i

ϕ(ã)ai ⊗ mi =
∑

i

aa0ai ⊗ mi

=
∑

i

a · ãi ⊗ mi =
∑

i

a ⊗ ãimi

= a ⊗
∑

i

ãimi = a ⊗
∑

i

ϕ(ãi)mi = 0.

This finishes the proof of (1).
(2) The proof of (2) is similar to that of (1). �
This has a useful consequence for our programme of classifying Λ̃-modules; every simple

Λ̃-module is a quotient of the restriction to Λ̃ of some Λ-module.

Corollary 3.7. Let S be a simple Λ̃-module. Then S is a quotient of (Λ ⊗Λ̃ S)ϕ .

Proof. Since S is simple and Λ̃S 
= 0, the map p : (Λ ⊗Λ̃ S)ϕ −→ S is a surjective Λ̃-module
homomorphism by Lemma 3.6(2). �

This result provides the first step towards a kind of highest weight theory for swich algebras.
Simple modules over Λ̃ are to be constructed as the unique simple quotients of the restrictions
to Λ̃ of simple Λ-modules. The next proposition shows that the restriction to Λ̃ of a simple
Λ-module either does not contribute any Λ̃-simple or precisely one. Before stating the propo-
sition we comment on the term “composition factor” to be used now. A composition factor of
a Λ̃-module M by definition is a simple subquotient L of M . According to our definition, the
simple module L is required to carry a non-zero Λ̃-action. A module with trivial action does not
qualify. Therefore, it may happen that the restriction to Λ̃ of some Λ-module, for instance a sim-
ple one, say E, has no composition factor at all. It is exactly in this case that E does not contribute
to the classification of simple Λ̃-modules. In the case of finite dimensional cellular algebras, this
is precisely the case when a cell module equals the radical of its associated bilinear form.

Proposition 3.8. Let E be a simple Λ-module.

(1) The Λ̃-module Eϕ has a composition factor if and only if ϕ(Λ̃)E 
= 0.

(2) If a simple Λ̃-module S is a composition factor of the Λ̃-module Eϕ , then S is a quotient
of Eϕ .

(3) If the Λ̃-module Eϕ has a composition factor, then it has a unique simple quotient S. The
kernel of the epimorphism Eϕ −→ S has no composition factor.

Proof. First, we observe that ϕ(Λ̃)E by definition equals Λa0E, which is a Λ-submodule
of E; thus it is either zero or equals E. Suppose it is non-zero. Then E = Λa0E. The subset
M = {m ∈ E | Λa0m = 0} is a Λ̃-submodule of Eϕ . Moreover, we claim that M is a maximal
submodule of Eϕ . Suppose M ′ is a Λ̃-submodule of Eϕ such that M ′ properly contains M . Pick
an element m′ ∈ M ′ \M . Then Λa0m

′ 
= 0. Since E is simple, we have E = Λa0m
′. This implies

that Eϕ = E = Λa0m
′ = Λ̃ · m′ ⊆ M ′. Hence, as claimed, M is a maximal submodule of Eϕ .

Since E = Λa0E, we see that M is properly contained in E and that Λ̃ acts non-trivially on the
quotient Eϕ/M . Thus Eϕ/M is a simple Λ̃-module, which proves one implication of (1).
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Suppose that the Λ̃-module Eϕ has a composition factor, say S. By definition, there is a
chain X2 ⊆ X1 ⊆ Eϕ of submodules of Eϕ such that X1/X2 
 S. Since Λ̃S 
= 0, we see
ϕ(Λ̃)X1 
= 0. This means that there are elements ã ∈ Λ̃ and x ∈ X1 such that ãx 
= 0. Hence
the Λ-homomorphism

θ :Λ ⊗Λ̃ X1 −→ E, a ⊗ x �−→ ϕ(ã)x, a ∈ Λ, x ∈ X1

is non-zero, and therefore it is surjective since E is simple. It follows that the image Im(θ) of θ

is equal to E, and Im(θ) also equals ϕ(Λ̃)X1 which is contained in the k-submodule X1. Thus
E = X1 = Eϕ , which implies that S is a quotient of Eϕ. This proves (2) and also the other
implication of (1), since the Λ̃-action on the simple quotient S being non-zero implies the action
on Eϕ also to be non-zero.

Note that the previous argument proves a statement stronger than (2). If X is any Λ̃-submodule
of Eϕ with non-trivial Λ̃-action, then X = E, since the map θ has image Im(θ) equal to E and
Im(θ) also is contained in the Λ̃-module X. In particular, the above submodule X2 is a proper
submodule, since X2 has already been shown to be the kernel of an epimorphism X1 = Eϕ −→
S 
= 0. Thus X2 must be acted upon trivially by Λ̃. Therefore, X2 ⊆ {x ∈ Eϕ | Λ̃x = 0} =: Z.
Note that Z is a submodule of Eϕ . Since Z/X2 is a proper submodule of the simple Λ̃-module
Eϕ/X2, we must have X2 = Z. This implies (3). �

In general, if E is a simple Λ-module such that its restriction Eϕ has simple quotient S over Λ̃,
the three Λ-modules E, Λ ⊗Λ̃ S and Λ ⊗Λ̃ Eϕ may all be different. In a special situation, how-
ever, which will be investigated in more detail in the subsequent section, there are isomorphisms
between these three modules.

Proposition 3.9. Let Λ be a noetherian k-algebra. Suppose ϕ(Λ̃)E′ 
= 0 for each simple
Λ-module E′. Let S be a simple Λ̃-module, and let E be a simple Λ-module.

If S is a composition factor of Eϕ , then Λ ⊗Λ̃ Eϕ 
 E 
 Λ ⊗Λ̃ S as Λ-modules.

Proof. Suppose S is a composition factor of Eϕ . Then ϕ(Λ̃)E 
= 0. This implies that the map
θ :Λ ⊗Λ̃ Eϕ −→ E is surjective since E is simple. Now we show that Ker(θ) = 0. If x is an
element in Ker(θ), then Λx is a finitely generated Λ-module. Since we are assuming that Λ is
a noetherian k-algebra, the module Λx is a noetherian Λ-module. Thus, if x 
= 0, then there is
a maximal submodule K of Λx such that F := Λx/K is a simple Λ-module, which by assump-
tion carries a non-trivial Λ̃-action. However, ϕ(Λ̃)(F ) ⊂ ϕ(Λ̃)(Ker(θ)/K) = 0 by Lemma 3.6,
which is a contradiction. Thus Ker(θ) = 0 and θ is injective, and E 
 Λ ⊗Λ̃ Eϕ . Since S is
a quotient of Eϕ by Lemma 3.8(1), we have a surjective Λ-homomorphism from Λ ⊗Λ̃ Eϕ to
Λ ⊗Λ̃ S 
= 0. Note that Λ ⊗Λ̃ Eϕ 
 E is simple. So, Λ ⊗Λ̃ S 
 Λ ⊗Λ̃ Eϕ . �

The following result establishes a relationship between the set of all simple modules over Λ

and that over a swich algebra Λ̃.

Theorem 3.10. Let Λ be a k-algebra with identity such that Λ is finitely generated over its
centre Z. Let Λ̃ = S(Λ,a0) be the swich algebra of Λ with respect to a0 in Λ. Then there is
a bijection ω between the set of non-isomorphic simple Λ-modules E with ϕ(Λ̃)E 
= 0, and the
set of all non-isomorphic simple Λ̃-modules, which is given by E �−→ Eϕ/{x ∈ Eϕ | Λ̃x = 0}.
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Moreover, all simple Λ̃-modules are modules over Z and as such they are semisimple and
artinian.

Proof. By Proposition 3.8, the map ω is well defined. We first show that ω is surjective. Let S

be a simple Λ̃-module. We shall show that there is a simple Λ-module E such that S is a (hence
the unique) quotient of Eϕ .

Since S is a simple Λ̃-module, there is an element s0 ∈ S such that S = Λ̃s0. Hence we have a
surjective homomorphism q :Λ −→ S of Λ̃-modules, which is defined by λ �−→ λ̃s0 for λ ∈ Λ.
Let M be the kernel of q . Note that Λ is a left Λ̃-Z-bimodule. In order to make the bimodule
structure more visible, we will write the morphism q on the right of its argument.

Claim 1. M = ZM . In particular, M is a Z-module, and S is a Λ̃-Z-bimodule.

In fact, it follows from (Λ̃ · Λ)q = Λ̃(Λ)q = Λ̃S = S that Λ̃ · Λ � M . Clearly, ZM is a
Λ̃-submodule of Λ̃Λ. To show that ZM = M , it is sufficient to prove that ZM � Λ since M is
a maximal Λ̃-submodule of Λ. If ZM = Λ, then, for any λ,μ ∈ Λ, we write μ = ∑

i zimi with
zi ∈ Z and mi ∈ M , and get

λ̃ · μ = λ̃ ·
(∑

i

zimi

)
=

∑
i

λa0zimi =
∑

i

λ̃zi · mi ∈ M

since M is a Λ̃-module. This contradicts the fact that Λ̃ · Λ � M . Thus we have shown that
M = ZM .

Claim 2. There is a maximal ideal m of Z such that mS = 0.

Indeed, if for each maximal ideal m in Z we have mS = S, then, by localisation at m, we
have Sm = mmSm, where the subindex means the localisation at m. Since Zm is a local ring with
maximal ideal mm and since S is a finitely generated Z-module, Nakayama’s Lemma implies
that Sm = 0. Thus, by a well-known fact in commutative algebra (see [2, Proposition 3.8]), we
have S = 0, a contradiction. This shows Claim 2.

Claim 3. Let m be a maximal ideal in Z such that mS = 0. Then the map q induces a surjec-
tive Z-homomorphism q ′ :Λ/Λm −→ S. Moreover, the Λ-module Λ/Λm is both artinian and
noetherian.

In fact, the first statement in Claim 3 follows from (mΛ)q = m(Λ)q = mS = 0 since q is also
a Z-homomorphism (by Claim 1).

Since Λ is finitely generated as a Z-module, we have a surjective Z-homomorphism
f :Zn −→ Λ for some positive integer n. The quotient of Zn modulo the Z-submodule (mZ)n is
isomorphic to (Z/m)n, which is a direct sum of n copies of the field Z/m. Thus it is a semisimple,
artinian and noetherian Z-module. Note that Λm = mΛ. Since the image of the Z-submodule
(mZ)n of Zn under f is mΛ, it follows that f induces a surjective Z-homomorphism from
(Z/m)n to Λ/Λm. Thus Λ/Λm is a semisimple Z-module which is both artinian and noetherian.
Since Λ is a Z-algebra, this implies that Λ/Λm is also artinian and noetherian as a Λ-module.
This proves Claim 3.
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Thus we have an exact sequence of Λ̃-modules:

0 −→ Ker
(
q ′) −→ (Λ/Λm)ϕ

q ′−→ S −→ 0.

Since Λ̃(Λ/Λm)ϕ 
= 0 and since Λ/Λm is both artinian and noetherian, there is a composition
series of the Λ-module Λ/Λm:

0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xs−1 ⊂ Xs ⊂ · · · ⊂ Xn = Λ/Λm

such that (Xs−1)q
′ = 0 
= (Xs)q

′ and E = Xs/Xs−1 is a simple Λ-module. Note that Xs−1 is
contained in Ker(q ′). So we have the following commutative diagram with exact rows in Λ̃-mod:

0 (Xs−1)ϕ (Xs)ϕ

μ

Eϕ

μ′

0

0 Ker(q ′) (Λ/Λm)ϕ
q ′

S 0,

where μ is the canonical inclusion, and μ′ is the induced map. Suppose μ′ = 0. Then Xs would
be included in Ker(q ′), thus (Xs)q

′ = 0, a contradiction. So the map μ′ is non-zero. This shows
that S is a (in fact, the unique) quotient of Eϕ with E simple and ϕ(Λ̃)E 
= 0.

Finally, we show that the map ω is injective. Suppose that E and F are two simple Λ-modules
such that Eϕ and Fϕ have the same simple quotient S. We have to show that E and F are
isomorphic.

Indeed, let π ′ be the projection from Eϕ to S. Then we have a surjective Λ-homomorphism
π := 1 ⊗ π ′ :Λ ⊗Λ̃ Eϕ −→ Λ ⊗Λ̃ S. By Lemma 3.6, there is a Λ-homomorphism θ :Λ ⊗Λ̃

Eϕ −→ E, which is surjective. So, we get the following commutative exact diagram of
Λ-modules:

0 Ker(θ)
α

β

Λ ⊗Λ̃ Eϕ

π

E

ν

0

0 Im(απ)
γ

Λ ⊗Λ̃ S Cok(γ ) 0.

Since E is simple and ν is surjective, we have that Cok(γ ) 
 E or Cok(γ ) = 0. By Lemma 3.6,
ϕ(Λ̃)Ker(θ) = 0. This implies that the second case, Cok(γ ) = 0, cannot happen. Moreover, β is
surjective, and ϕ(Λ̃) Im(απ) = 0. As a consequence, the exact sequence 0 −→ Im(απ) −→
Λ ⊗Λ̃ S −→ E −→ 0 shows that E is the unique quotient of Λ ⊗Λ̃ S such that ϕ(Λ̃)E 
= 0.
Similarly, F satisfies the same conditions. Hence E and F must be isomorphic. �

Theorem 3.10 describes how to parameterise the simple Λ̃-modules by using the simple
Λ-modules in a way strongly reminiscent of highest weight classifications in Lie theory.

Specialising to the situation of an affine cell ideal, that is, to Λ̃ being a generalised matrix
algebra and Λ an ordinary matrix algebra, we get the following step in our programme.
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Proposition 3.11. Suppose B is an affine commutative k-algebra with identity and Ψ = (ψmn)

is an n × n matrix over B . We denote by Λ = Mn(B) the n × n matrix k-algebra over B , and
by Λ̃ the algebra (Mn(B),Ψ ). Then there is a bijection between the set of isomorphism classes
of simple Λ̃-modules and the set of maximal ideals m in B such that m does not contain the ideal
of B generated by all the entries ψmn of Ψ , and this set is in bijection with the set of all simple
B-modules S such that there is some ψst with ψstS 
= 0.

So, in order to determine the parameter space of Λ̃-simples it is enough to know the finitely
many entries of the matrix Ψ .

Proof of Propsosition 3.11. Since simple B-modules are parameterised by maximal ideals in B

and since Λ is Morita equivalent to B , it is sufficient (by Theorem 3.10) to decide for which
simple Λ-module E we can have (ΛΨ )E 
= 0. Given a simple B-module S, there is a unique
maximal ideal m in B such that mS = 0. The corresponding simple Λ-module E associated
with S (under the Morita equivalence) satisfies that Mn(m)E = 0. Note that ΛΨ E = 0 if and only
if Ψ E = 0 if and only if Ψ ∈ Mn(m) since Mn(m) is a maximal ideal in Λ. The last condition is
equivalent to ψmn ∈ m for all m, n. �

Summarising the above discussion, we get the main result, classifying the simple modules
of an affine cellular algebra. For free, we also get a criterion on block decompositions of affine
cellular algebras. Recall that by MaxSpec(B) we mean the maximal spectrum of B consisting of
all maximal ideals in B .

Theorem 3.12. Let A be an affine cellular algebra with a cell chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A

such that Jj/Jj−1 
 A(Vj ,Bj ,ψj ). Let (ψ
(j)
st ) be the matrix corresponding to the bilinear

form ψj . Then:

(1) There is a bijection between the set of isomorphism classes of simple A-modules and the set

{
(j,m)

∣∣ 1 � j � n, m is a maximal ideal of Bj such that there is some ψ
(j)
st /∈ m

}
.

In particular, the parameter set of simple A-modules is the disjoint union of sets Vj =
{m ⊂ B | m is a maximal ideal in Bj such that there is some ψ

(j)
st /∈ m}, and each set Vj

is contained in an affine variety MaxSpec(Bj ); the complement of Vj in MaxSpec(Bj ) is an
affine subvariety of MaxSpec(Bj ).
Each simple A-module S is finite dimensional over some field Bj/m (which is a k-module),
and its dimension (over this field Bj/m) is bounded above by the dimension (over the same
field) of the corresponding simple module E of the matrix ring Mnj

(Bj ), which is a quotient
of the cell lattice �j .

(2) Let 1 � j � n. Then ψj is an isomorphism if and only if the determinant det(ψ(j)
st ) of ψj

is a unit in Bj . In particular, if all ψj are isomorphisms, then A is isomorphic, as an affine
cellular k-algebra, to

⊕n
j=1 Mnj

(Bj ), where nj is the k-rank of Vj .
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Here, by an isomorphism of affine cellular algebras we mean a k-algebra isomorphism that
carries the cell chain of the first algebra into that of the second one, thereby inducing isomor-
phisms of the associated affine algebras Bj and of the corresponding generalised matrix algebra
structures. The term ‘affine variety’ is used in a generalised sense, denoting the maximal spec-
trum of an ‘affine k-algebra’ in the general sense used above.

Proof of Theorem 3.12. By assumption, each algebra Bj is affine, hence a quotient of a poly-
nomial algebra P over k, with finitely many variables. Therefore, the maximal spectrum
MaxSpec(Bj ) is an affine variety contained in the affine space corresponding to the polynomial
ring P . The points of MaxSpec(Bj ) not contained in Vj correspond to the maximal ideals M

of Bj such that Bj/M is annihilated by Jj/Jj−1. These maximal ideals M are exactly the
maximal ideals containing the ideal generated by the entries of the matrix Ψj of the correspond-
ing bilinear form ψj . That is, the M to be excluded are the points of an affine subvariety of
MaxSpec(Bj ).

The other statements in (1) follow inductively from Proposition 3.11. Claim (2) follows from
the proof of [20, Lemma 7.1], which carries over to the affine situation without any change, and
induction on the length n of a cell chain. �

We remark that the existence of a cell chain and the inductive use of Proposition 3.11 also
adds to the interpretation of the above ‘highest weight’ theory for A-simples in the following
way. Any simple A-module S is a simple module of a unique layer in the cell chain. This layer
is a cell ideal J of an affine cellular quotient A′ of A. Thus S is the unique simple J -quotient
of some simple Mn(B)-module E of the matrix algebra M(B) belonging to the generalised
matrix algebra J . The ideal J acts as zero on the kernel K(S) of the projection E −→ S. As an
A-module, E is a quotient of the cell lattice �, and the kernel K(S) is an A′/J -module, and S

is the only composition factor that is not an A′/J -module, hence S is the highest composition
factor when defining an order on the layers in the usual way of highest weight categories or
quasi-hereditary algebras.

Due to the close relation of parameter sets, the sum of the ordinary matrix rings deserves to
get a name.

Definition 3.13. Let A be an affine cellular algebra with a cell chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A

such that Jj/Jj−1 
 A(Vj ,Bj ,ψj ). Then the algebra
⊕n

j=1 Mnj
(Bj ) is called the asymptotic

algebra of the affine cellular algebra A; here nj is the rank of the free k-module Vj .

When specialising A to be an extended affine Hecke algebra of type A and studying its affine
cellular structure we will see that the asymptotic algebra in this case coincides with an algebra
Lusztig defined in a completely different way as the asymptotic algebra of the extended affine
Hecke algebra.

If all Bj in Theorem 3.12 are principal ideal domains, we can describe the simple modules
over A in more detail by using linear algebra methods. This will be done in the next subsection.

3.3. Simple representations of affine cellular algebras over a principal ideal domain

Our general results on parameter sets of simple representations of an affine cellular algebra
are based on ring theoretic considerations, in particular on our theory of swich algebras. Once
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the simple representations have been classified for a given class of affine cellular algebras, the
next step is to try describing them in more detail, in particular by working out dimensions or
characters. While a general answer cannot be expected – after all, the same question is already
wide open in the finite dimensional case, as the example of symmetric groups shows – there
are two possible approaches to this second step. One approach will be indicated in some of the
proofs in the next section; for a given affine cell ideal, associated with a commutative ring B ,
a simple module has as parameter a maximal ideal of B . As we will show, it is possible to factor
out this maximal ideal and to get a finite dimensional cell ideal, even a heredity ideal over a
quotient algebra, such that the same simple module is the unique simple quotient of the standard
module associated with this heredity ideal. In this way, one can study individual simple modules
by a reduction to finite dimensional situations.

Another approach, to be worked out in this subsection, works in case the ring B is a principal
ideal domain. Then linear algebra over B is available (see for instance [4, 16.6]) and we are able
to derive a normal form of the affine cell ideal. Consequently we will get a much more detailed
description of simple modules. One of our main results here is an exact formula for the dimension
of simple modules depending only on knowing the finitely many entries of the swich element Ψ .
In contrast to the first approach, this one simultaneously deals with all simple modules in a given
cell. Of course, there is also a hybrid approach possible, using the first one to reduce not to a
field, but to some principal ideal domain, and then using the methods of the current section to
study families of simple modules.

Our setup in this subsection is as follows. Suppose A is an affine cellular algebra as in Defi-
nition 2.1, and the cell chain of A is

J0 = 0 ⊂ J1 ⊂ · · · ⊂ Jn = A.

Throughout this section we assume that all k-algebras Bj appearing in the quotients
Jj /Jj−1 
 Vj ⊗k Bj ⊗k Vj are principal ideal domains.

Let L be an arbitrary simple A-module. Then there is a minimal number t with 1 � t � n such
that JtL 
= 0. Since t is minimal, we must have Jt−1L = 0. Hence the simple A-module L is, in
fact, a simple A/Jt−1-module, where A/Jt−1 is again an affine cellular algebra. So we may and
will assume that t = 1, and we fix J = J1, B = B1 and m = rankk(V1). Then the multiplication
of the algebra J , viewed as a generalised matrix algebra, can be described by a bilinear form
ψ :V ⊗k V −→ B . As before, we may regard J as a generalised matrix algebra, that is, as a
k-module, J is the set of all m × m matrices over B , and the multiplication · in J is given by
a matrix Ψ (over B), that is a swich element, corresponding to ψ :

X · Y = XΨ Y

for all X,Y ∈ J . As before we denote this algebra by J̃ = (J,Ψ ), or simply by J̃ if the meaning
of Ψ is clear. The case of B being a field is already contained in Brown’s work [3]. In this case,
if Ψ is not zero, then J has exactly one simple module whose k-dimension equals the rank of the
matrix Ψ .

Note that if Φ is another matrix such that Φ = PΨ Q with P and Q invertible matrices over B ,
then the algebras (J,Φ) and (J,Ψ ) are isomorphic. That is, isomorphism of generalised matrix
algebras (as algebras without unit) is in terms of linear algebra given by Gauss elimination.

Since B is a principal ideal domain, there are invertible matrices P and Q such that PΨ Q

is a diagonal matrix diag{σ1, . . . , σr ,0, . . . ,0} with 0 
= σj | σj+1 for j = 1, . . . , r − 1. The
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scalars σj are called the invariant factors or invariant divisors of Ψ . The σj ’s are uniquely
(up to units) determined by Ψ . If r 
= 0, then we call σ1 the minimal invariant divisor of Ψ . By
the above discussion, we may now assume that Ψ is a diagonal matrix diag{σ1, . . . , σr ,0, . . . ,0}
with 0 
= σj for all j and σj | σj+1 for j = 1, . . . , r − 1.

Since the matrices X = (Xij ) with Xij = 0 for all 1 � i, j � r form a nilpotent ideal in J ,
these matrices belong to the radical of A, see Section 3 of [20]. Thus these matrices annihilate
the simple module L. So, in order to describe the simple module L, from now on we assume that
r = m. But we have to take into account that r = 0 is possible and this will produce a special
case in the classification to be obtained.

We shall use the notation Eij (a) for the matrix with entry a at the (i, j)-position, and zero
elsewhere. As usual, Im stands for the m × m identity matrix.

Let u be an element in L such that Ju 
= 0. Then L = Ju, and there is a matrix X ∈ J such that
Xu 
= 0. This implies that there is also a matrix X0 = Ei0,j0(a) with a ∈ B such that X0u 
= 0.
Thus L = J (X0u), and there is an exact sequence of A-modules:

0 −→ AnnJ (X0u) −→ J
μ−−→ J (X0u) = L −→ 0,

where μ is given by X �−→ X(X0u) = (XΨ X0)u = X · (X0u), and where AnnJ (v) denotes the
annihilator of v in J ; AnnJ (v) is a left ideal of A.

Since L = J (X0u) = (J · X0)u = (JΨ X0)u, we have Ψ X0 
= 0, that is, Ψ X0 =
Ei0,j0(σi0a) 
= 0, where σi0 is a diagonal entry of Ψ . Let c = σi0a. Thus

i0

L =

⎛
⎜⎜⎜⎝

0 · · · 0 Bc 0 · · · 0
0 · · · 0 Bc 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 Bc 0 · · · 0

⎞
⎟⎟⎟⎠u,

where the matrix is JΨ X0.
Let Vm(B) denote the set of all column vectors of size m with entries in B . It has a natural

J -module structure by ax := aΨ x for all a ∈ J and x ∈ Vm(B). Then L can be described by the
following exact sequence of J -modules:

0 −→ M −→ Vm(B)
μ−→ L −→ 0.

Here the J -module homomorphism μ is given by sending the column vector (b1, . . . , bm)T in
Vm(B) to the element

∑m
j=1 Ej,i0(bj c)u in L = (JΨ X0)u. Moreover, M is the kernel of μ,

which is a maximal submodule of Vm(B) such that JV (Bm) � M . We are going to determine all
such M in Vm(B).

We define a map πj :M −→ B̃ = A(k,B,σj ) to be the j -th projection, where B̃ is the gener-
alised matrix algebra defined by the 1 × 1 matrix (σj ), that is, for a, b ∈ B , the multiplication of
a and b in B̃ is aσjb.

Claim (i). The image Im(πj ) of πj is an ideal in B̃ .
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In fact, if we pick m ∈ Im(πj ) and b ∈ B , then there is a column vector x ∈ M with
πj (x) = m. Since M is a J -module, Ej,j (b)x belongs to M and its j -th component is bσjm =
b · m. Thus b · m ∈ Im(πj ), hence Im(πj ) is an ideal in B̃ .

Claim (ii). M + JVm(B) = Vm(B). In particular, if M ′ is another submodule of Vm(B) such
that M + M ′ is properly contained in Vm(B), then JVm(B) is not contained in M + M ′.

Indeed, the first statement follows from exactness of the sequence 0 −→ M −→ Vm(B) −→
L = JL −→ 0 by observing that JVm(B) maps onto L = JL and that JVm(B)+M contains M

and is contained in Vm(B). To prove the second statement, assume that JVm(B) is contained in
M + M ′. Then Vm(B) = M + JVm(B) ⊆ M + M ′ ⊆ Vm(B). Thus Vm(B) = M + M ′, a contra-
diction.

Now, we divide our further considerations into two cases:
Case (1). There are units among the diagonal elements of Ψ . Then we can write Ψ =

diag{1, . . . ,1, σr+1, . . . , σm}, where σr+1 is not a unit (this implies that all the σj are non-units).
We will describe the modules M in terms of irreducible elements in B . In order to include the

case of 0 being a maximal ideal, that is of B not having any irreducible element, we formally
define in this situation p = 0 to be an irreducible element.

Lemma 3.14. Suppose we are in Case (1). If M is a maximal submodule of the J -module Vm(B)

such that JVm(B) � M , then there exists an irreducible element p in B such that

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pB
...

pB

B
...

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where pB appears r times. Conversely, if M is of this form, then M is a maximal submodule of
the J -module Vm(B) such that JVm(B) � M .

Proof. By Claim (i) above, the image Im(πi) is an ideal in B for i = 1, . . . , r .
To prove that Im(πj ) is a maximal ideal in B for 1 � j � r , we first show that Im(πj ) 
= B . If

not, then for each b ∈ B there is an x ∈ M such that πj (x) = b. Since M is a J -module, we have
El,j (1)x = El(σjb) = El(b) ∈ M for all l. (Here, and later on, El(b) denotes the column vector
in M that has entry b at l-th place and 0 everywhere else.) Thus Vm(B) ⊆ M , a contradiction.
We have shown that Im(πj ) is a proper ideal.

Secondly, we show that Im(πj ) is a maximal ideal in B . If not, then there exists an ideal I ′
of B with I � I ′ � B . Since Vm(I ′) is a submodule of Vm(B), the j -th component of M +Vm(I ′)
is contained in I ′. It follows that M + Vm(I ′) is a proper submodule of Vm(B). Note that M �
M + Vm(I ′) � Vm(B). This contradicts the maximality of M by Claim (ii) above (note that we
are using the particular kind of maximality as used in the statement of (ii)).

So we have shown the claim that Im(πj ) is a maximal ideal in B for all 1 � j � r . Thus
Im(πj ) = Bpj for an irreducible element pj in B since B is a principal ideal domain.

Next, we show that all Im(πj ) are equal for 1 � j � r . If not, this means that pj /∈ Bpl

and pl /∈ Bpj , for some j 
= l. Since both Bpj and Bpl are maximal ideals in B , we have
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Bpj + Bpl = B . In this case, there are two elements u and v in B such that pju + plv = 1 since
B is a principal ideal domain. Using this fact and JM ⊆ M together with Elj (w)x = El(wπj (x))

for w ∈ B and x ∈ Vm(B), we can conclude that Vm(B) ⊆ M , a contradiction. Thus all pj are
equal and we denote their common value by p.

Finally, we show that M is of the desired form. Let

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pB
...

pB

B
...

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where pB appears r times. Then M ′ is a J -submodule of Vm(B) and M ⊆ M ′ � Vm(B). By
Claim (ii) and the maximality of M , we have that M = M ′.

Conversely, if M is of this form, then Vm(B)/M is a simple J -module. Indeed, this follows by
verifying (1) JM 
= 0 and (2) for each non-zero element x̄ ∈ Vm(B)/M and an arbitrary element
b̄ ∈ Vm(B)/M there is a matrix X ∈ J such that Xx̄ = b̄. �

Now we proceed to the second case.
Case (2). There are no units among the diagonal elements of Ψ . So, Ψ = diag{σ1, . . . , σm},

where all σj are non-units in B .

Lemma 3.15. Suppose we are in Case (2). If M is a maximal submodule of the J -module Vm(B)

such that JVm(B) � M , then there is an irreducible element p in B such that p does not di-
vide σ1, and that

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pB
...

pB

B
...

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where pB appears r times with r being the maximal number such that p does not divide σr .
Conversely, if M is of this form, then M is a maximal submodule of the J -module Vm(B) such
that JVm(B) � M .

Proof. We start by showing that Im(π1) is a maximal ideal in B .
In fact, by (i), Im(π1) is an ideal in B̃ . Note that an ideal in B̃1 is not automatically an ideal

in B . Let B Im(π1) be the ideal of B generated by Im(π1) in B .

Claim 1. B Im(π1) 
= B .

Otherwise, we may write 1 = ∑s
j=1 bjxj with xj ∈ Im(π1) and bj ∈ B . Then, for an arbi-

trary b ∈ B , we have b = ∑s
j=1 bbjxj and bσ1 = ∑s

j=1 bbjσ1xj . Suppose that xl = π1(ml) for
ml ∈ M . This implies that
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
bσ1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ej,1(bb1)m1 + Ej,1(bb2)m2 + · · · + Ej,1(bbs)ms

lies in M for all j . Since σ1 divides all the other invariant factors, we get JVm(B) ⊆ M , a con-
tradiction. So we have shown Claim 1, that is, B Im(π1) 
= B .

Claim 2. B Im(π1) is a maximal ideal in B .

Let I be a maximal ideal of B containing B Im(π1). Then Vm(I) and M + Vm(I) both are
J -submodules of Vm(B). Note that the set of all first components of elements in M + Vm(I) is
contained in I . This shows that M +Vm(I) � Vm(B). By property (ii), JVm(B) is not contained
in M + Vm(I). Hence we must have M + Vm(I) = M by the maximality of M . In particular,
Im(π1) = I . This shows Claim 2, that is, Im(π1) is a maximal ideal in B .

Since B is a principal ideal domain, there exists an irreducible element p in B such that
Im(π1) = Bp.

Claim 3. p does not divide σ1.

Assume it does so, then JVm(B) ⊆ Vm(Bσ1) ⊆ Vm(Bp). Moreover, Vm(B) = M +
JVm(B) ⊆ M + Vm(Bp) � Vm(B), where properness of the last inclusion follows by checking
the first component of M + Vm(Bp); indeed, the entries are multiples of p. This is a contradic-
tion. So we have proved Claim 3, that p does not divide σ1.

Let r be the maximal number of those j such that p does not divide σj . Then we define

M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

pB
...

pB

B
...

B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where pB appears r times.

Claim 4. M ′ is a maximal J -submodule of Vm(B).

Clearly, this module is not equal to Vm(B). To see it is a maximal submodule of Vm(B), we
consider the quotient Vm(B)/M ′. As in the proof of Case (1), we can show that the quotient is a
simple J -module, thus proving Claim 4.

Now it follows from the maximality of M and M ′ that M = M ′ since M + M ′ � Vm(B) by
π1(M + M ′) = Bp.

The converse also follows as in the proof of Case (1). �
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Thus, all simple J -modules, and therefore all simple A-modules which are not annihilated
by J , are completely determined by Ψ , that is, by a finite set of data.

Summarising the above discussions, we get the following result on simple modules of affine
cellular algebras if all Bj are principal ideal domains.

Theorem 3.16. Let A be an affine cellular k-algebra with cell chain J0 = 0 ⊂ J1 ⊂ · · · ⊂ Jn = A

such that Jj /Jj−1 is a generalised matrix algebra A(Bj ,Ψj ) with Bj a principal ideal domain.
Then:

(1) The isomorphism classes of simple modules are parameterised by {(j,p) | 1 � j � n,

Ψj 
= 0, p is an irreducible element (representing an equivalence class up to multiplication
by units) of Bj such that p does not divide the minimal invariant divisor of Ψj }.
Here we define p = 0, if there is no irreducible element in Bj .

(2) If L(j,p) is the simple A-module corresponding to (j,p), then

dimBj /(p) L(j,p) =

⎧⎪⎨
⎪⎩

r, if some invariant divisors of Ψj are units, and
r is the number of such unit divisors,

r, if no invariant divisor of Ψj is a unit, and
r is the number of invariant divisors not divisible by p.

(3) Suppose k is a field. If L(j,p) is the simple A-module corresponding to (j,p), then

dimk L(j,p) =

⎧⎪⎨
⎪⎩

r · dimk(Bj/(p)), if some invariant divisors of Ψj are units, and
r is the number of such unit divisors,

r · dimk(Bj/(p)), if no invariant divisor of Ψj is a unit, and
r is the number of invariant divisors not divisible by p.

Proof. (1) Let L be a simple A-module. Then there is a minimal j such that JjL 
= 0 = Jj−1L.
Thus L is a simple A/Jj−1-module, and also a simple Jj /Jj−1-module. So, J 2

j � Jj−1, that
is, Ψj 
= 0. If Bj is a field, then there is only one simple Jj /Jj−1-module (up to isomorphism).
Thus L can be labelled as L(j,0). If Bj is not a field, then, by Lemmas 3.14 and 3.15, there
is a maximal ideal of Bj generated by an irreducible element p (unique up to units) such that
p does not divide the minimal invariant factor of Ψj , and L is isomorphic to a unique simple
Jj /Jj−1-module associated with p. Thus L can be labelled as L(j,p). On the other hand, each
simple Jj /Jj−1 is a simple A-module by Lemma 3.1. Note that for different l and j , the simple
A-modules L(l, q) and L(j,p) are not isomorphic. Also, L(j,p) and L(j, q) are not isomorphic
if there is no unit u in Bj such that q = pu. This shows the statement (1).

Statements (2) and (3) follow from the proofs of Lemmas 3.14 and 3.15. �
Remarks. (1) If all Bj in Proposition 2.3 are isomorphic to k with k a field, then we get back
the notion of cellular algebra (see [7]). In this way Theorem 3.16 generalises a main result of
the representation theory of cellular algebras over a field. Moreover, Theorem 3.16 extends also
some results in the representation theory of linear semigroups in [24, pp. 111–120].

(2) In Theorem 3.16(3) the dimension dimk(Bj /(p)) of a simple module Bj/(p) may
be infinite. However, if Bj is a polynomial algebra k[X] or a Laurent polynomial algebra
k[X±

1 , . . . ,X±
n ] over the ground field k, then all simple A-modules are finite dimensional

over k.
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4. Idempotent ideals and cohomology

Having classified the simple modules of an affine cellular algebra we proceed now to develop
a structure theory of affine cellular algebras. Let us first recall relevant features of finite dimen-
sional cellular algebras. Given a cell ideal J in a finite dimensional algebra A over a field, there
are two cases (see [17]). Either J is nilpotent and then J 2 = 0 or J is what is called a heredity
ideal. Recall that an ideal J in A is called a heredity ideal if (a) J is idempotent, that is, J 2 = J

(and hence generated by an idempotent), (b) it is projective as a left and right A-module, (c) its
endomorphism ring EndA(J ) is semisimple and (d) the multiplication map Ae ⊗eAe eA −→ J is
always an A-bimodule isomorphism. Note that in the cellular case EndA(J ) is even a simple ring.
It is exactly in this second case when J is contributing a simple module to the classification of
simple A-modules. In [19] we have shown that a cellular algebra A has finite global (= cohomo-
logical) dimension if and only if in one, and then any, of its cell chains each subquotient is of the
second kind, that is a heredity ideal in the respective quotient. An even stronger property is true
in this case; the (bounded or unbounded) derived category of A-modules admits a stratification
by derived categories of simple algebras.

Now let A be an affine cellular k-algebra and let J be an affine cell ideal in its cell chain.
Our aim in this section is to determine precisely the connection between the properties of J to
be idempotent, or (not equivalent in general) to be generated by an idempotent, to be left or
right projective over A, the property of the endomorphism ring of � to be B , the property of the
parameter set of this layer to be the full affine space, and finiteness of the global dimension of A.
In particular, we will get a sufficient criterion for finiteness of the global dimension of A and
for the existence of a stratification of its derived module categories. In the application to affine
Hecke algebras this criterion will be satisfied in a very natural situation. Thus we get meaningful
and very general extensions of many results that have been fundamental in the finite dimensional
situation and which are in particular crucial in the theory of quasi-hereditary algebras and highest
weight categories. It has to be noted, however, that all the proofs developed in this section are
completely different from all the proofs known in the finite dimensional situation, and technical
statements behind the facts just mentioned are unexpected and reveal new features of this theory.

We mention at this point an open problem; we do not know a precise characterisation of
finiteness of global dimension that would be a rather far reaching generalisation of the main
result of [19]. In particular, we do not know what datum should play the role of the Cartan
determinant for affine cellular algebras.

We start by discussing the following question of independent interest. How to characterise
when the embedding of the affine parameter set of the cell layer, seen as a generalised matrix
algebra, into the affine parameter space of the corresponding ordinary matrix algebra, is the
identity? In the language of the previous section, this means, when does each module Eϕ have
a composition factor? There is a natural answer in terms of cell ideals being idempotent.

Theorem 4.1. Suppose J = V ⊗k B ⊗k V is an affine cell ideal in a k-algebra A with a bilinear
form ψ :V ⊗k V −→ B which defines multiplication inside J .

(1) The ideal J is idempotent if and only if for each maximal ideal m of B , the cell ideal J/J (m)

(of Ā) is a heredity ideal in the quotient algebra Ā := A/J(m) if and only if each simple
module of Mn(B) has a composition factor when viewed as a J -module if and only if the
embedding of the parameter set of J -simples into the parameter set of Mn(B)-simples is the
identity map. Here we denote by J (m) the set V ⊗k m ⊗k V in J .
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(2) Suppose J is idempotent and m is a maximal ideal in B . Then the A-module W(m) :=
V ⊗k (B/m) has endomorphism algebra isomorphic to B/m. In this case J̄ := J/J (m)

contains a primitive idempotent e such that ĀeĀ = J̄ ; any primitive idempotent f in J̄ is
equivalent to e, that is, Āf 
 Āe.

Note that by J being an idempotent ideal we mean J 2 = J . This does not imply that J

is generated by an idempotent element; the existence of such an idempotent element will be
discussed later.

Proof of Theorem 4.1. First we need to explain some terminology used in statement (2) and
a way to produce finite dimensional ideals from the given one. Suppose A is an affine cellular
algebra over a principal ideal domain k, and J 
= 0 is a cell ideal in A. So J is a swich alge-
bra Λ̃ of a matrix algebra Λ = Mn(B) with the swich element a0 = Ψ in Λ. Note that Λ is
a noetherian ring with identity. Suppose now that m is a maximal ideal in B , hence B/m is a
field, denoted by K . By the multiplication rule in J , we see that J (m) := V ⊗k m ⊗k V is an
ideal in J = V ⊗k B ⊗k V . Moreover, it is also an ideal in the given affine cellular algebra A

by Proposition 2.2(3). If m is fixed by the involution i of A then A/J(m) actually is an affine
cellular algebra with respect to the involution ī induced from i on A since i fixes the ideal J (m);
this is obvious from the isomorphism (A/J (m))/(J/J (m)) 
 A/J and the description of affine
cell ideals in terms of generalised matrix algebras. In general this may not be the case, but it still
makes sense to ask whether J/J (m) is a heredity ideal in A/J(m); note that the definition of
heredity ideal does not refer to an involution i.

To prove the equivalences in (1) we first suppose that for each simple Λ-module L we have
Λ̃L 
= 0, that is, a0L 
= 0. We claim that J is an idempotent ideal in A, that is, J 2 = J . Using
the definition of the algebra Λ̃, J being idempotent is equivalent to the equality Λ̃ · Λ̃ = Λ̃

that in turn is equivalent to Λa0Λ = Λ. To prove the claim, we observe first that each simple
Λ-module L is the quotient of Λ by some maximal left ideal in Λ. Therefore, the set a0Λ is not
contained in any maximal left ideal in Λ. So the ideal Λa0Λ is not contained in any maximal
left ideal of Λ. On the other hand, Λ is a noetherian algebra and every proper left ideal of Λ is
contained in a maximal left ideal of Λ. This implies Λa0Λ = Λ and hence the claim.

Conversely, if J is an idempotent affine cell ideal in A, then Λa0Λ = Λ, which implies that
a0L 
= 0 for all simple Λ-modules L. Thus we have shown that J is idempotent if and only if
each simple B-module provides a simple A-module if and only if for each maximal ideal m in B

there are elements u,v ∈ V such that ψ(u,v) does not lie in m.
Now we assume that J is an idempotent affine cell ideal in a k-algebra A: We claim that

J/J (m) is a heredity ideal in A/J(m). To prove the claim, we denote J/J (m) by J̄ and A/J(m)

by Ā. Clearly, J̄ = V ⊗k K ⊗k V . Since J is idempotent in A, also J̄ is idempotent in Ā.
Moreover, the ideal J being idempotent implies also that J 2 � J (m); Otherwise, the ideal of B

generated by all ψ(u,v) for u,v ∈ V would be contained in m. So we choose elements u,v ∈ V

such that ψ(u,v) /∈ m, and we calculate the product (v ⊗k 1 ⊗k u)2 = v ⊗k ψ(u, v) ⊗k u. Since
K = B/m is a field, we have an element λ ∈ B such that λψ(u, v) ≡ 1 (mod m). This means that
the element v ⊗k λ̄ ⊗k u is an idempotent element in J̄ . Let e = v ⊗k λ̄ ⊗k u. Then Āe = J̄ e =
V ⊗k K ⊗k u, J (m)J̄ e = 0 and eJ̄ e 
 K . This implies that eĀe 
 K . Moreover, since Āe = J̄ e

we get J̄ = (V ⊗k K)⊗K (K ⊗k V ) 
 J̄ e⊗K eJ̄ = Āe⊗eĀe eĀ. Thus J̄ is a heredity ideal in Ā.
Note that J̄ is a finite dimensional K-module, and thus the known results on finite dimensional
heredity ideals can be applied and all assertions in (2) follow readily as well as the remaining
equivalence in (1). �
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We note that the proof of (2) goes through for a particular ideal m in B provided the image
of ψ is not contained in m. That is, a simple A-module L corresponding to a simple module
of the affine cell ideal J , also is a simple module over some quotient algebra A/J(m) and then
it corresponds to a heredity ideal. This provides the reduction to a finite dimensional situation
mentioned above in Section 3.3. In order to study the simple modules associated with the cell
ideal, one may use all the linear algebra methods used in the theory of finite dimensional cellular
algebras. The fact, that the quotient algebra as a whole still may have infinite dimension over k

(when k is a field) does not matter in this context.
By the known properties of heredity ideals it follows that the endomorphism ring of L is B/m.

By induction we get:

Corollary 4.2. Let A be an affine cellular algebra. Then the endomorphism ring of the simple
A-module L = L(j,m) corresponding to the index (j,m) is isomorphic to the field Bj/m.

In this way, L = L(j,m) becomes a module over the field Bj/m and as such it is finite dimen-
sional.

We reiterate that, a priori, a module over a generalised matrix algebra over B is not a
B-module, since there is no natural B-action on the generalised matrix algebra. In Theorem 3.12
we have already shown that L = L(j,m) actually is a B-module and as such it is semisimple,
artinian and noetherian. The corollary makes this statement more precise.

Before we proceed, let us recall the finite dimensional situation. Then, each layer in a cell
chain contributes either none or exactly one simple module to the classification, and the second
case appears if and only if the subquotient is a heredity ideal. In the language of Theorem 4.1 this
means that when k = B is a field, the parameter set of simples corresponding to the particular
cell equals the full affine space MaxSpec(k) if and only if the ideal is idempotent. In the finite
dimensional situation it is then automatic that J is generated by an idempotent, that it is projective
over A on either side and that its endomorphism ring is simple. In our very general situation these
consequences may fail. In particular, idempotents cannot, in general, be lifted from the finite
dimensional situation over B/m to the situation over B . To show the existence of idempotents
for examples, it will be necessary to use special features of these examples, as in the case of affine
Hecke algebras to be discussed below. Concerning projectivity and endomorphism ring, we do,
however, prove natural analogues of the finite dimensional statements under realistic assumptions
on the ring B associated with J , for example if B is a (Laurent) polynomial ring (as in all our
applications).

The affine algebra B occurring in our setup is, by definition, a quotient of a polynomial ring in
finitely many variables. Let m be a maximal ideal in B . Then

⋂
j∈N mj = 0, since the same holds

true for the preimage of m in the polynomial ring. This property will be used in the proof of the
first statement of the following theorem. The second statement needs an additional assumption,
which excludes, for instance, non-trivial finite dimensional quotients of polynomial rings. This
condition is satisfied if B is a polynomial algebra or a Laurent polynomial algebra in finitely
many variables, which is the case in all our examples.

Theorem 4.3. Let J = V ⊗k B ⊗k V be an idempotent affine cell ideal in a k-algebra A with the
cell lattice � = V ⊗k B .

(1) If there is a non-zero idempotent e in J , then AJ is a projective A-module and J = AeA.
(2) Suppose that

⋂
m m = 0, where m runs over all maximal ideals in B , that is, rad(B) = 0.

Then End(A�) 
 B .
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Proof. Let J = V ⊗k B ⊗k V be an idempotent affine cell ideal in a k-algebra A, equipped with
a bilinear form ψ :V ⊗k V −→ B defining the multiplication inside J . We are first going to
prove (1). Suppose that 0 
= e is an idempotent element in J . Let m be a maximal ideal in B;
quotients indicated by overlining are to be taken modulo m. Since J is idempotent, the cell ideal
J̄ := J/J (m) is heredity for each maximal ideal m of B by Theorem 4.1. Thus there is a primitive
idempotent element f in J̄ such that Āf Ā = J̄ .

Claim 1. The idempotent e is not contained in J (m), hence ē 
= 0 ∈ J̄ .

Proof. Assume to the contrary that e ∈ J (m), that is, it is represented in J = V ⊗k B ⊗k V

by a matrix with all entries in m. Using the definition of multiplication in J as matrix multi-
plication involving the sandwich element ψ , we get ej ∈ (J (m))j for all j . This means that
e ∈ ⋂

j J (mj ) = J (
⋂

j mj ) = 0 and e = 0, a contradiction. Thus Claim 1 is true. �
Claim 2. AeA + J (m) = J for each maximal ideal m of B .

Proof. Since J̄ is finite dimensional over B/(m), the idempotent ē ∈ J̄ can be written as a
finite sum of pairwise orthogonal primitive idempotent elements in J̄ . Theorem 4.1 implies that
ĀēĀ = Āf Ā = J̄ . Thus Claim 2 is true. �
Claim 3. AeA is an A-B-submodule of J .

Proof. The left A-structure is clear; we have to show that AeA is a right B-module. Note that
AJB 
 A�n

B with n being the rank of V . So, we may identify the right B-module structure
on J with the action of the image of β :B −→ End(AJ ), where β is the right multiplication
of B-elements on J . With this identification, the ideal AeA is invariant under End(AJ ) by the
following computation. If g :J −→ J is an A-endomorphism and aea′ ∈ AeA with a, a′ ∈ A,
then (aea′)g = (ae ·ea′)g = ae(ea′)g ∈ AeA. This shows that AeA is a right B-submodule of J ,
and Claim 3 is true. �
Claim 4. AeA = J .

Proof. Combining Claims 2 and 3, we have AeA + J (m) = J as right B-modules. Passing to
the localisation at m, we get an equality:

(AeA)m + J (m)m = Jm.

The right-hand side is a direct sum of copies of the local ring Bm. The Jacobson radical of Jm

is J (m)m. Since Jm is a finitely generated Bm-module, we may apply Nakayama’s Lemma to get
(AeA)m = Jm for each maximal ideal m in B . Hence AeA = J . Claim 4 has been shown. �

From now on we are going to use the assumption J 2 = J .

Claim 5. Each element f ∈ End(A�) lies in End(�B), that is, A-endomorphisms of � are auto-
matically B-morphisms as well. Multiplication by b ∈ B on the right provides an endomorphism
in End(A�) that lies in the centre of End(A�).



Author's personal copy

170 S. Koenig, C.C. Xi / Advances in Mathematics 229 (2012) 139–182

Proof. We identify J with (Mn(B),Ψ ), as before. Then the bimodule A�B gets identified with
the set Vn(B) of all n×1 matrices over B . The swich algebra J acts on � via the matrix Ψ , which
is the swich element in this case, and B acts on the right by multiplying with scalars in B , which
is the same as multiplying x ∈ Vn(B) on the left with the diagonal matrix db = diag{b, b, . . . , b}
for b ∈ B . In other words, we have xb = dbx. Thus we have an embedding β of B into End(A�)

by sending b to db ∈ End(A�).
Now we shall show that db lies in the centre of End(A�). Let f ∈ End(A�), x ∈ Vn(B) = �

and let b ∈ B . Then we have the following chain of equalities, where Ψ is the swich
element and the sign · indicates products in the generalised matrix ring J : Ψ (f (x)b) =
Ψ (dbf (x)) = (Ψ db)f (x) = dbΨf (x) = db · f (x) = f (db · x) = f (dbΨ x) = f (Ψ dbx) =
f (Ψ (xb)) = f (In · (xb)) = In · f (xb) = Ψf (xb). Thus Ψ (f (x)b − f (xb)) = Ψ (dbf −
f db)(x) = 0 for all x ∈ Vn(B). This means that Ψ (dbf − f db)(Vn(B)) = 0. Note that g :=
dbf −f db ∈ End(A�). Since J 2 = J , we have J� = �, that is, Mn(B)Ψ Vn(B) = Vn(B). Thus
g(�) = g(J�) = Jg(�) = Mn(B)Ψg(Vn(B)) = 0 and g = 0. This shows that db lies in the
centre of End(A�) and f ∈ End(�B). Thus Claim 5 is true. �
Claim 6. There is an equality add(AAe) = add(A�).

Proof. We first show that Ae ∈ add(A�). Multiplying by e gives a surjective homomorphism
AeA −→ Ae = AeAe. This implies that Ae is a direct summand of AeA. Hence Ae ∈ add(A�).

In the following, we shall show � ∈ add(Ae). We first observe that if X is an A-submodule
of � such that X = Xm := ∑

x∈X xm for a maximal ideal m in B , then X = 0. In fact, the
definition of the bimodule A�B implies that (V ⊗k B)mj = V ⊗k mj for all j � 1. Therefore,
X = Xmj ⊆ (V ⊗k B)mj ⊆ V ⊗k mj . However,

⋂
j(V ⊗k mj ) = 0. Thus we have proved the

observation.
Now we may assume that � = X1 ⊕ X2 is a decomposition of � into A-submodules, where

0 
= X1 ∈ add(AAe), and where X2 /∈ add(AAe) is a complement, which we have to show to
be equal to zero. Let fi be the idempotent in End(A�), which is the projection of � onto Xi .
Since fi commutes with elements in B , we see that Xi = Im(fi) ⊇ fi(�m) = fi(�)m = Xim.
By passing to the quotient module with respect to a maximal ideal m of B , we get that W(m) :=
�/(�m) = (V ⊗k B)/(V ⊗k m) = V ⊗k (B/m) = X̄1 ⊕ X̄2. Since W(m) is indecomposable by
Theorem 4.1(1), one of the X̄1 and X̄2 must be zero. Note that X1 contains a non-zero direct
summand of Ae and ē 
= 0. So X̄2 = 0. This is true for an arbitrary maximal ideal m in B .
By our observation, we get X2 = 0. Hence � ∈ add(Ae), as desired. This finishes the proof of
Claim 6. �

This finishes the proof of statement (1) and we proceed to prove statement (2).
As before, we identify J with (Mn(B),Ψ ). Again, the bimodule A�B gets identified with

the set Vn(B) of all n × 1 matrices over B , where J acts on � via the matrix Ψ and B acts
from the right-hand side by multiplying with scalars in B . By Claim 5, the B-action is in the
centre of End(A�). Thus we may write an element f in End(A�) as an n × n matrix (fjl) in
Mn(B) = End(�B), where we identify �B with Vn(B)B . Let m be a maximal ideal in B; then
we can identify �m with Vn(m). Since each f in End(A�) induces a homomorphism on �m by
restriction, f induces a homomorphism f̄ :�/(�m) −→ �/(�m) of A-modules. Identifying
�/(�m) with Vn(B/m), we get that f̄ = (fjl) = (fjl), where fjl ∈ B/m. By Theorem 4.1(1),
(fjl) is a scalar matrix over B/m. Hence fjl ∈ m for j 
= l, and fjj ≡ fll (mod m). It follows
from

⋂
m m = 0 that fjl = 0 for j 
= l, and fjj = fll . Hence f ∈ B , and End(A�) = B . �
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Using the structure exhibited by the previous results, we can now state a strong homological
consequence. Here gldim(A) denotes the left global dimension of A, that is the maximum degree
in which cohomology does not vanish on the category of all left modules. We refer to [16] for
the concepts of stratifications and recollements of derived categories used in the following result.
Note that in case of finite global dimension a stratification of the unbounded derived category
implies one on the bounded level, see [16].

Theorem 4.4. Let A be an affine cellular algebra with a cell chain J0 = 0 ⊂ J1 ⊂ · · · ⊂ Jn = A

such that Jj /Jj−1 = Vj ⊗k Bj ⊗k Vj as in Definition 2.1. Suppose that each Bj satisfies
rad(Bj ) = 0. Suppose moreover that each Jj/Jj−1 is idempotent and contains a non-zero idem-
potent element in A/Jj−1. Then:

(a) The unbounded derived category D(A-Mod) of A admits a stratification, that is an iterated
recollement whose strata are the derived categories of the various algebras Bj .

(b) The global dimension gldim(A) is finite if and only if gldim(Bj ) is finite for all j .

Proof. (a) The assertion on the stratification follows by induction from a standard fact (see [16]):
Let J be a projective ideal in an algebra Λ; then the surjective ring homomorphism Λ −→
Λ/J is a homological epimorphism. Therefore there exists a recollement of unbounded derived
categories relating the rings Λ/J,Λ and eΛe.

Note that the derived category of an algebra of finite global dimension in general need not
have a stratification. The existence of a stratification implies further statements, in particular on
vanishing of cohomology.

(b) By induction on the length of the cell chain, it is sufficient to consider the following
situation: Let J = J1 be an idempotent affine cell ideal in A and the affine cellular alge-
bra A/J has finite global dimension. By Theorem 4.3, the left module AJ is projective and
add(Ae) = add(A�) for some non-zero idempotent e. Also, the endomorphism algebra of �

is Morita equivalent to eAe, thus Morita equivalent to B1 by Theorem 4.3. Summing up, it is
sufficient to prove the following general statement.

Lemma 4.5. Let Λ be a ring, e2 = e ∈ Λ, and ΛJ := ΛeΛ. If ΛJ is projective, then gldim(Λ) is
finite if and only if both gldim(Λ/J ) and gldim(eΛe) are finite.

Proof. We denote by pd(ΛX) the projective dimension of a module X over Λ. Clearly,
pd(ΛY ) � pd(Λ/J Y ) + pd(ΛΛ/J ) � pd(Λ/J Y ) + 1 for Y ∈ Λ/J -Mod. Observe that Λe ⊗eΛe

eΛ 
 ΛeΛ since ΛΛeΛ is projective (see [5]).
Suppose m := gldim(Λ) < ∞. Then, it is shown in [5] that gldim(Λ/J ) � gldim(Λ) = m. To

see gldim(eΛe) < ∞, we pick an eΛe-module X, and consider the Λ-module Λ ⊗eΛe X. Since
gldim(Λ) � m, there is a projective resolution of Λe ⊗eΛe X, say

0 −→ Pm −→ · · · −→ P0 −→ Λe ⊗eΛe X −→ 0.

This gives rise to an exact sequence

0 −→ ePm −→ · · · −→ eP0 −→ X −→ 0

in eΛe-Mod. If we can show that each ePj is a projective eΛe-module, then pd(eΛeX) � m

and gldim(eΛe) � m. Since ΛΛeΛ is projective, the map
⊕

x∈eΛ Λe −→ ΛeΛ given by
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(ax)x∈eΛ �−→ ∑
x∈eΛ axx is surjective, and therefore ΛeΛ is a direct summand of

⊕
x∈eΛ Λe.

This means that eΛeΛ is a direct summand of e(
⊕

x∈eΛ Λe), which is a free eΛe-module. The
inclusions eΛ ⊂ ΛeΛ ⊂ Λ imply eΛeΛ ⊂ eΛ ⊂ eΛeΛ. Therefore eΛ = eΛeΛ is a projective
eΛe-module, and direct summands of copies of eΛ are projective eΛe-modules. This implies
that each ePj is a projective eΛe-module.

Conversely, we assume that both a := gldim(Λ/J ) and b := gldim(eΛe) are finite. Let X be
a Λ-module. Then we have two canonical exact sequences of Λ-modules:

0 −→ JX −→ X −→ X/JX −→ 0, 0 −→ KX −→ J ⊗Λ X −→ JX −→ 0.

Here KX is the kernel of the multiplication map J ⊗Λ X −→ JX. Now we show that pd(ΛJX) �
a + b + 3. Indeed, it follows from Λe ⊗eΛe eΛ 
 ΛeΛ that J ⊗Λ X 
 Λe ⊗eΛe eX and eJ ⊗Λ

X 
 eJX = eX. This implies eKX = 0. Thus KX is a Λ/J -module, and pdΛ(KX) � a + 1. Let

0 −→ Qb −→ · · · −→ Q0 −→ eX −→ 0

be a projective resolution of eX. By tensoring this sequence by Λe, we get the following complex
in Λ-Mod:

0 −→ Λe ⊗eΛe Qb −→ · · · −→ Λe ⊗eΛe Q0 −→ Λe ⊗eΛe eX −→ 0

with homologies ToreΛe
i (Λe, eX). As in [31, Corollary 3.2(2)], we can show that ToreΛe

j (Λe, eX)

is a Λ/J -module for each j � 1. Thus, we see from [31, Lemma 2.4] (the bound there should be
raised by 1) that

pd(ΛΛe ⊗eΛe eX) � b + 1 + max
{
pd(ΛΛe ⊗eΛe Qj ),pd

(
ΛToreΛe

j (Λe, eX)
)}

� b + 1 + a + 1 = a + b + 2

since Λe ⊗eΛe Qj is projective. This implies pd(ΛJX) � max{pd(ΛJ ⊗Λ X),pd(ΛKX)} + 1 �
a + b + 3.

Hence we have

pd(ΛX) � max
{
pd(ΛJX),pd(ΛX/JX)

}
� a + b + 3,

and gldim(Λ) � a + b + 3. This finishes the proof of Lemma 4.5. �
5. Affine Hecke algebras

In this section, we verify that the extended affine Hecke algebras of type An−1 (associated
with general or special linear groups) are affine cellular; then we use this fact to prove the
main result of this section, Theorem 5.8, on cohomology of affine Hecke algebras. These al-
gebras are of fundamental importance in various parts of algebra and of number theory, but their
rather complicated structure is far from being well-understood. We first will exhibit their cellular
structure, using in particular Lusztig’s cell theory [21–23] and N.H. Xi’s proof [32] of a conjec-
ture of Lusztig; the latter will identify the algebras Bj . In this way we get new parameter sets
for the simple representations. Previous classifications, in the case of the quantum parameter q

not being a root of unity, have been achieved by Kazhdan and Lusztig [15], who proved the
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Deligne–Langlands conjecture in this case, using equivariant homology, and by Ginzburg using
equivariant K-theory, see also the papers [26,27]. Recently, N.H. Xi in [32] extended this classifi-
cation to the case of q not being a root of the Poincaré polynomial. The general case later on has
been settled in a completely different way by Ariki and Mathas [1], who worked with cyclotomic
Hecke algebras, that is, with a certain infinite family of finite dimensional quotient algebras.

The second main result of this section is an application of our homological theory. Working
over a field and assuming q not to be a root of the Poincaré polynomial (as in N.H. Xi’s exten-
sion of the Deligne–Langlands classification), the extended affine Hecke algebra will turn out to
satisfy the affine analogue of being quasi-hereditary; hence it has finite global dimension, and,
more strongly, its derived category has a stratification.

5.1. Affine Hecke algebras and Kazhdan–Lusztig basis

We first recall the general definitions of Hecke algebra of a Coxeter system and of asymp-
totic algebras. Then we specialise for the rest of this section to particular extended affine Hecke
algebras in type A.

Let R be the Laurent polynomial ring Z[q, q−1] over Z in one variable q .
Let (W,S) be a Coxeter system with S the set of simple reflections. The Hecke algebra H of

(W,S) over R is an associative R-algebra, with a free basis {Tw | w ∈ W } and relations

(
Ts − q2)(Ts + 1) = 0 if s ∈ S,

TwTu = Twu if �(wu) = �(w) + �(u).

The elements Tw turn out to be invertible. Let − be the Z-linear ring homomorphism of R

defined by q �−→ q−1. Then there is a Z-linear automorphism − of order two on H given by∑
w

awTw �−→
∑
w

āwT −1
w−1, aw ∈ R.

For each element w ∈ W , there is a unique element Cw in H such that Cw = Cw and Cw =
q−�(w)

∑
y�w Py,w(q2)Ty , where Py,w is a polynomial in q of degree at most 1

2 (�(w)−�(y)−1)

if �(w) > �(y) and Pw,w = 1.
The basis {Cw | w ∈ W } is called the Kazhdan–Lusztig basis of the Hecke algebra H and the

polynomials Py,w are the Kazhdan–Lusztig polynomials.
For w,u ∈ W , we write

CwCu =
∑
z∈W

hw,u,zCz,

where hw,u,z are elements in R.
For (W,S) crystallographic (see [21, 3.1]), the asymptotic Hecke algebra B of (W,S) has

been defined (by Lusztig) as follows: B has a free Z-basis {tw | w ∈ W }. Multiplication is given
by

twtu =
∑

z

γw,u,ztz,

where γw,u,z are certain non-negative integers (see [22] for further information).
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Now we prepare for the definition of extended Hecke algebras. Let (W ′, S) be a Coxeter sys-
tem with S the set of simple reflections. Suppose there is an abelian group Ω acting on (W ′, S).
Then the semidirect product is the extended Coxeter group W = Ω � W ′. The length function
and the Bruhat–Chevalley order on W ′ are extended to W : �(ωw) = �(w), and ωw � ω′w′ if
and only if ω = ω′ and w � w′, where ω, ω′ are in Ω and w, w′ are in W ′.

It is known that we may write W ′ = W0 � P for an abelian subgroup P of W such that W0
is the finite Weyl group, that is, the quotient NG(T )/T of the normaliser NG(T ) of a torus T

of the corresponding group G. In case of (W ′, S) being of type Ãn−1, the W0 is isomorphic
to the symmetric group on n letters. The polynomial

∑
w∈W0

q�(w) ∈ R is called the Poincaré
polynomial of the Hecke algebra H of (W,S).

The extended affine Hecke algebra HR(n, q) of type An−1 is the Hecke algebra of (W,S)

with (W ′, S) being the Coxeter system of type Ãn−1 (n � 3) and Ω the cyclic group Zn of
order n in case we work with special linear groups, or the infinite cyclic group Z in case of
general linear groups; in either case the cyclic group is acting by rotations of the Coxeter graph.
The corresponding asymptotic Hecke algebra of type Ãn−1 will be denoted by B(n).

If k is a commutative Z-algebra, we shall write Hk(n, q) for the algebra k ⊗Z HR(n, q). Thus
Hk(n, q) is a k[q, q−1]-algebra with the basis {Tw | w ∈ W } and the above relations. Similarly,
we write Bk(n) for the algebra k ⊗Z B(n).

If I is a subset of S, we denote by WI the parabolic subgroup of W generated by elements
in I . By HR(WI ) we denote the subalgebra of HR(n, q) generated by all Cw with w ∈ WI .

5.2. Cells and asymptotic algebras

Many basic results about Hecke algebras are in terms of Lusztig’s cell theory to be recalled
now for our particular situation (see [21]). As it is natural in type A, we will derive the affine
cellular structure from the cell theory.

Let w and u be in W . We write w �L u if there is a chain w = w0,w1, . . . ,wr = u, possibly
r = 0, of elements in W such that for each j < r , Cwj

occurs with non-zero coefficient when
expanding the product CsCwj+1 into a linear combination of basis elements, for some s ∈ S.
Then �L is a pre-order on W . The pre-order �R is defined by setting w �R u if and only if
w−1 �L u−1. The pre-order �LR is defined by the union of �L and �R , that is, given x, x′ ∈ W ,
we say that x �LR x′ if there is a sequence x = x0, x1, . . . , xn = x′ of elements in W such that
for each j , 1 � j � n, we have xj−1 �L xj or xj−1 �R xj .

The equivalence relation ∼L is defined by w ∼ u if and only if w �L u and u �L w. The
equivalence classes of ∼L are called the left cells of W . Similarly, one defines the equivalence
relation ∼R and the right cells of W , and the equivalence relation ∼LR and the two-sided cells
of W . Note that each pre-order defined above induces a partial order on the set of the correspond-
ing equivalence classes in W .

From now on we will consider the case (W,S) with (W ′, S) being the Coxeter system of
type Ãn−1 (n � 3) and Ω the cyclic group Zn of order n or the infinite cyclic group, acting by
rotations of the Coxeter graph. It has been shown in [30] that there is a bijection between the
set of two-sided cells of W and the set of partitions of n. In fact, this bijection is described by
a map σ from W to the set of all partitions of n. There is a partial order, the dominance order,
denoted by �, on the set of all partitions of n. This dominance order is compatible with the order
�LR by a result in [30]; for w,u ∈ W, we have w �LR u if and only if σ(u) � σ(w).

Let λ = (λ1, λ2, . . . , λr) be a partition of n and c the corresponding two-sided cell in W . We
denote by wλ the longest element of the Young subgroup of W associated to λ. Then wλ ∈ c.
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Let L1,L2, . . . ,Lm be a list of all left cells in c with wλ ∈ L1. Then Rj := L−1
j , 1 � j � m, are

a list of all right cells in c. Lusztig has shown that each left cell and each right cell in c contains
exactly one involution element d in W with certain properties. These are called the distinguished
involutions in c. We denote by Dc the set of all distinguished involutions in c, and by D the set of
all distinguished involutions. Let Ajl = Rj ∩ Ll for 1 � j, l � m. Then A−1

j l = Alj , and there is

a bijection φjl :Ajl −→ A11 defined in [32]. For x ∈ Ajl , φjl(x)−1 = φlj (x
−1). Note also that c

is the disjoint union of all Ajl . Each Ajj contains a unique distinguished involution element dj .
In [21, 2.1], a function a :W −→ N has been defined, which now is called Lusztig’s

a-function. We will use the following result that has been proved in [22].

Lemma 5.1. Let W be an extended Coxeter group.

(1) If c is a two-sided cell in W , then a(w) = a(u) for all w,u ∈ c. In particular, a(z) = a(z−1)

for all z ∈ W .
(2) For any x ∈ W , we have

H Cx ⊆
∑
y∈W
y�Lx

RCy, CxH ⊆
∑
y∈W
y�Rx

RCy, H CxH ⊆
∑
y∈W

y�LRx

RCy.

(3) If w �LR u in W , then a(w) � a(u). If w �L u and a(w) = a(u), then w ∼L u. Similarly, if
w �R u and a(w) = a(u), then w ∼R u. In particular, if w �LR u in W and a(u) = a(w),
then w ∼LR u.

(4) Let w, u and z be in a two-sided cell c. If hw,u,z 
= 0, then z ∼R w and z ∼L u.

Let c be a two-sided cell in W . Then the free Z-submodule Bc of B generated by all tw with
w ∈ c is a two-sided ideal in B, and it has an identity

∑
d∈Dc

td , where as above Dc = D ∩ c.
Thus B is a direct sum of Bc, where the sum ranges over all two-sided cells of W (see [22]).
Bc is called the asymptotic Hecke algebra of the cell c. The canonical projection from B to Bc
will be denoted by πc.

In the following lemma we collect some properties of the structure constants of Hecke alge-
bras and asymptotic Hecke algebras.

Lemma 5.2. Let c be a two-sided cell in W .

(1) For x1, x2, x3, z′ in W such that z′ ∈ c and x2 ∈ c, we have∑
z∈c

hx1,x2,zγz,x3,z
′ =

∑
z∈c

hx1,z,z
′γx2,x3,z.

(2) Suppose y, z ∈ c. Then
∑

d∈Dc
γd,z,z = 1, and γd,y,z = 0 if y 
= z.

Proof. Statement (1) follows from [22, 2.4(d)] and [11, Proposition 3.4.4]. Statement (2) is
a consequence of the fact that

∑
d∈Dc

td is the identity of Bc. �
5.3. The extended affine Hecke algebras of type A are affine cellular

In this subsection we are going to demonstrate that our general framework covers the extended
affine Hecke algebras of type A.
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We keep the notation of the previous subsection and set up some more notation. For a sub-
set J of W , we denote by BJ (n) the Z-submodule of B generated by all basis elements tw with
w ∈ J . Let B := BA11 , where as before A11 = R1 ∩ L1. Lusztig has shown that B is a com-
mutative algebra with a Z-linear involution tw �−→ tw−1 for w ∈ A11. The following result has
been conjectured by Lusztig (in a more general form) and it has been proved (in type A) by
N.H. Xi [32]:

Theorem 5.3. (See N.H. Xi [32].) Let c be a two-sided cell in W and λ the corresponding
partition of n. Let μ = (μ1, . . . ,μr ′) be the dual partition of λ, and define nλ := n!/(μ1! · · ·μr ′ !).

(1) Bc(n) is isomorphic to an nλ ×nλ matrix algebra over a commutative ring B := BR1∩L1(n)

with identity. The isomorphism is given by tw �−→ Ejl(tφjl(w)) if w ∈ Ajl , where Ejl(b)

denotes a square matrix whose (j, l)-entry is b and all other entries are zero.
(2) The ring B in (1) is an affine commutative Z-algebra. It is isomorphic to a tensor product of

rings of the form Z[X1,X2, . . . ,Xs+1]/(XsXs+1 − 1).

Statement (1) is taken from [32, Theorem 2.3.2, p. 16], where B is the algebra BR1∩L1(n).
Statement (2) is essentially [32, Theorem 8.2.1] that B is isomorphic to the representation

ring of an algebraic group, which is a product of general linear groups GLt . The representation
ring of a general linear group GLt is known to be isomorphic to Z[X1, . . . ,Xt−1,Xt ,X

−1
t ], see

for instance [6, Exercise 23.36(d), p. 379]. The case of special linear groups is done in [32,
Section 8.4].

Thus each element in Bc(n) is a matrix over B . So we identify tw for w ∈ Ajl with
Ejl(tφjl(w)). We may use Theorem 5.3 to label the basis element Cw with w ∈ c, that is, we

write Ẽj l(tφjl (w)) for Cw with w ∈ Ajl . Let Ic be the identity matrix corresponding to the ele-
ment

∑
d∈Dc

td , and Ĩc be the matrix corresponding to the element
∑

d∈Dc
Cd . Note that Ic = Ĩc

as matrices over B , but they are considered as elements in different sets, in order to avoid any
confusion (see notations in Section 3.2).

The next lemma follows from Lemma 5.1 which indicates how to label the indices of a matrix
corresponding to a basis element in B(n).

Lemma 5.4. Suppose c is a two-sided cell in W with w ∈ c. If u, z ∈ W such that hw,u,z 
= 0 then
z ∈ Ajq , where j is given by w ∈ Ajl and q is given by u ∈ Apq .

In the following, we shall rewrite the homomorphism ϕ defined by Lusztig in [22] in our
setup, as in Section 3.2.

Recall that D denotes the distinguished involutions in W ′, and that BR(n) = R ⊗Z B(n) is
a direct sum of Bc(n), where c runs over all two-sided cells of W , and Bc(n) is the R-module
spanned by all tw with w ∈ c. There is a well-defined injective homomorphism, due to Lusztig,
ϕ :HR(n, q) −→ BR(n):

ϕ(Cw) =
∑
d∈D
z∈W

a(z)=a(d)

hw,d,ztz

of R-algebras with identity.
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Let c be a two-sided cell of W . We denote by HR(n, q)�c the free R-submodule of
HR(n, q) generated by all Cw with w �LR w′ for some w′ ∈ c, and by HR(n, q)<c the free
R-submodule of HR(n, q) generated by all Cw with w <LR w′ for some w′ ∈ c. Then both
HR(n, q)�c and HR(n, q)<c are ideals in HR(n, q). We denote by HR(n, q)c the quotient
HR(n, q)�c/HR(n, q)<c. Thus HR(n, q)c has an R-basis {[Cw] | w ∈ c}, and the multiplica-
tion in HR(n, q)c is given by

[Cw][Cu] =
∑
z∈c

hw,u,z[Cz]

for all w,u ∈ c.
Note that Bc(n) is a Bc(n)-HR(n, q)c-bimodule via

tw · [Cu] :=
∑
z∈c

hw,u,ztz

for w ∈ c, u ∈ W (see [23, 1.4(b)], or [33, 2.1(d)]). This simply expresses the left regular rep-
resentation of HR(n, q)c. Note that our right module structure on Bc(n) is the same as the
one in [33, 2.1(d)]. In fact, if hw,u,z 
= 0, then z �R w. Thus, if a(z) = a(w), then z ∈ c by
Lemma 5.1.

The algebra homomorphism ϕ induces an algebra homomorphism from HR(n, q)c to Bc(n):

ψc :HR(n, q)c −→ Bc(n), [Cw] �−→
∑

d∈Dc, z∈c

hw,d,ztz = tw ·
[ ∑

d∈Dc

Cd

]
.

In terms of matrix language, we see that for w ∈ Ajl ,

ψc : Ẽj l(tφjl (w)) �−→ Ejl(tφjl(w)) · Ĩc = Ejl(tφjl(w))

((∑
d∈c

td

)
· Ĩc

)
,

where Ĩc is the identity matrix for Bc(n).
In the following we shall prove that the multiplication rule in HR(n, q)c is that of a swich

algebra Λ̃ as in Section 3.2. The corresponding algebra Λ is the asymptotic algebra of the cell c,
as defined by Lusztig. So, at this point we see that Lusztig’s asymptotic algebra is an asymptotic
algebra in our general sense, and thus no confusion should arise by using the same term for both
objects.

The following lemma is inspired by a result in [11].

Lemma 5.5. In Bc(n) we have

tw · [Cu] = tw

((∑
d∈c

td

)
· Ĩc

)
tu

for all w,u ∈ c.
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Proof. Since
∑

d∈c td is the identity of Bc(n), there are, by definition, equalities

tw

((∑
d∈c

td

)
· Ĩc

)
tu =

(
tw ·

( ∑
d∈Dc

[Cd ]
))

tu =
∑

d∈c, z,z′∈c

hw,d,z′γz′,u,ztz.

Now, we use Lemma 5.2(1) to replace
∑

z′ hw,d,z′γz′,u,z by
∑

z′ hw,z′,zγd,u,z′ , and get that

tw

((∑
d∈c

td

)
· Ĩc

)
tu =

∑
d,z,z′

hw,z′,zγd,u,z′ tz =
∑
z,z′

hw,z′,z

(∑
d

γd,u,z′
)

tz.

Then, it follows from Lemma 5.2(2) that

tw

((∑
d∈c

td

)
· Ĩc

)
tu =

∑
z∈c

hw,u,ztz = tw · [Cu].

This finishes the proof. �
When Lemma 5.5 gets translated into matrix language, the left-hand side of the equation in

Lemma 5.5 expresses the multiplication Ẽj l(tφjl (w)) · Ẽpq(tφpq(u)) in HR(n, q)c for w ∈ Ajl

and u ∈ Apq , and the right-hand side is just the product Ejl(tφjl(w))ΨcEpq(tφpq(u)) in the usual
matrix algebra Bc(n), where Ψc is the matrix representing (

∑
d∈c td ) · ∑d∈c[Cd ]. Note that the

map defined by [Cw] �−→ [Cw−1 ] is an R-involution of HR(n, q)c. This is induced from the
R-involution ∗ of HR(n, q), which sends Cw �−→ Cw−1 .

Thus we get the following result.

Proposition 5.6. Let c be a two-sided cell in W . Let Λ be the matrix algebra Bc(n). Then there
is a matrix Ψ in Λ such that HR(n, q)c can be identified with Λ̃. The multiplication in Λ̃ is
given by ã · b̃ = aΨcb for all a, b ∈ Λ. Moreover, the homomorphism defined by Lusztig from
HR(n, q)c to Bc(n) can be identified with the map from Λ̃ to Λ by multiplying Ψc from the
right.

Since the dominance order of partitions of n gives a partial order on the set of two-sided cells
in W , which is compatible with the partial order �LR , we may choose a linear order on the cells
in the following way: Let the set of two-sided cells of W be partitioned as a1 ∪ a2 ∪ · · · ∪ as such
that a1 takes the maximal value, and a2 the second largest value, and so on. Now we choose a
linear order for each aj , and define the elements of aj to be less than those in aj+1. In this way we
get a linear order of cells: c1, c2, . . . , cf with the property that cj �LR cl implies that j � l. We

define J ′
j to be the R-module generated by all Cw with w ∈ cj , and Jj = ⊕j

l=1 J ′
l . Then J ′

j

is invariant under the involution ∗, Jj is an ideal in HR(n, q) with Jj /Jj−1 
 HR(n, q)cj ,
and the chain

J1 ⊆ J2 ⊆ · · · ⊆ Jf = HR(n, q)

is a cell chain for HR(n, q) by Propositions 5.6 and 2.2. Thus we have proved

Theorem 5.7. Let R = Z[q, q−1]. Then the extended affine Hecke algebra HR(n, q) of type An−1
is an affine cellular Z-algebra with respect to the R-involution ∗ :Cw �−→ Cw−1 for w ∈ W .
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Remark 1. If E is a simple Bc(n)-module such that ψc(HR(n, q)c)E 
= 0, then, by Proposi-
tion 3.8, Eψc has a unique simple quotient S as an HR(n, q)c-module, say S = Eψc/X, where
X is a maximal submodule of Eψc with Ψc(HR(n, q)c)X = 0. The module S also is a sim-
ple HR(n, q)-module. Since E can also be regarded as an HR(n, q)-module via ϕπc and since
ψc is induced from the restriction of ϕπc to HR(n, q)�c, we get that ϕ(HR(n, q)�c)X = 0.
This means that all composition factors (as an HR(n, q)-module) of X are modules over
HR(n, q)/HR(n, q)�c. Thus the HR(n, q)-module E has one composition factor in the layer c,
and (possibly) other composition factors in higher layers c′ with c′ > c.

Remark 2. As mentioned before, an alternative approach to studying simple modules of affine
Hecke algebras has been based on the use of cyclotomic Hecke algebras, whose cellular structure
has been found and used by Dipper, James, Mathas, Ariki and others. These algebras are finite
dimensional quotients of the extended affine Hecke algebras. Moreover, each simple module
of the affine Hecke algebra is a simple module of some cyclotomic Hecke algebra, and vice
versa. The known cell structures of cyclotomic Hecke algebras do, however, use parameter sets
whose cardinality strongly depends on the particular cyclotomic algebra, that is, on the choice of
parameters for forming the quotient. So, there cannot exist a finite cell chain on the affine Hecke
algebra that induces the cell structures (of varying cell length) on all these quotient algebras.

5.4. Cohomology of extended affine Hecke algebras

Finally, we are going to use our homological theory of affine cellular algebras in order to
go beyond cell theory and to derive homological properties of extended affine Hecke algebras.
Here we work with a field of characteristic zero instead of R = Z[q, q−1]. Then we can show
that for almost all choices of the quantum parameter q , all layers in the cell chain satisfy all
the idempotent conditions. Hence the parameter varieties are the full affine spaces, the global
dimension is finite and there is a stratification of derived module categories. The precise result is
as follows.

Theorem 5.8. Assume that k is a field of characteristic zero, q ∈ k, and
∑

w∈W0
q�(w) 
= 0.

Then all cells in the cell chain of Hk(n, q) correspond to idempotent ideals, which all have
idempotent generators. In particular, the parameter set of simple Hk(n, q)-modules equals the
parameter set of simple modules of the asymptotic algebra, and so it is a finite union of affine
spaces. Moreover, Hk(n, q) is of finite global dimension and its derived module category admits
a stratification whose sections are the derived module categories of the algebras Bj .

The assumption made here is exactly that under which N.H. Xi [33] recently has been able to
verify the validity of Kazhdan and Lusztig’s Deligne–Langlands classification. We are going to
make essential use of crucial ideas in his proof.

Note that the extended affine Hecke algebra is noetherian. Therefore, its left and its right
global dimension coincide.

A cell chain as in the theorem may be called a ‘heredity chain’.

Proof of Theorem 5.8. It is sufficient to verify the validity of the conditions in Theorem 4.4. We
fix j and write c for cj . By Theorem 5.3, Bc(n) is the matrix algebra over a commutative alge-
bra Bc. This algebra Bc is isomorphic to k[X1, . . . ,Xs,Xs+1,X

−1
s+1, . . . ,Xnc,X

−1
nc

], which has
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finite global dimension. Moreover, this ring satisfies the first condition in Theorem 4.4. Now we
shall show that Jj /Jj−1 
 Hk(n, q)c is idempotent and has a non-zero idempotent element.

First, we claim that for two different two-sided cells c and c′ in W with a(c) = a(c′), we have
CuCw ≡ 0 (mod Hk(n, q)>a(c)) for all w ∈ c and u ∈ c′. In fact, by Lemma 5.1(2) and (3), we
can write CuCw in two ways:

CuCw =
∑

v∈W,v�Lw

hu,w,vCv =
∑

v�Lw,a(v)=a(w)

hu,w,vCv +
∑

v�Lw,a(v)>a(w)

hu,w,vCv,

CuCw =
∑

v∈W,v�Ru

hu,w,vCv =
∑

v�Ru,a(v)=a(u)

hu,w,vCv +
∑

v�Rw,a(v)>a(w)

hu,w,vCv.

It follows from Lemma 5.1(3) that

∑
v�Lw,a(v)=a(w)

hu,w,vCv ∈ Hk(n, q)c and
∑

v�Ru,a(v)=a(u)

hu,w,vCv ∈ Hk(n, q)c′
.

Since c and c′ are different, the first term in each expression must vanish by comparing the two
expressions of CuCw . Thus we get the claim.

Using results of A. Gyoja [13], N.H. Xi proved in [33] that, under our assumptions, for
each simple Bc(n)-module E, there is an element Cw ∈ WI such that a(w) = a(c) and
ψc(Cw)E 
= 0, where WI is a finite parabolic subgroup of W . This means that Jj /Jj−1 is
an idempotent ideal by Theorem 4.1 and that Hk(n, q)cEψc = Eψc . Let H (WI ) be the sub-
algebra of Hk(n, q) generated by all elements Cu with u ∈ WI . Now we fix such a simple
module E and an element Cw and such a finite parabolic subgroup WI . In the following we
denote the image of an element (or a subset) m of Hk(n, q) under the canonical map from
Hk(n, q) −→ Hk(n, q)/Hk(n, q)>a(c) by m̄. Note that Eψc is also an Hk(n, q)-module because

the space Jj−1 spanned by all Cu with u ∈ ⋃j−1
l=1 cl contains Hk(n, q)>a(c). Since H (WI ) is

semisimple by [13] (see also the proof of [33, Theorem 3.2]) and since Hk(n, q)�a(c) is an
ideal in Hk(n, q), we deduce that H (WI ) ∩ Hk(n, q)�a(c) is a non-zero semisimple algebra.
(Note that if we define aj = a(c) for c ∈ aj and if a(c) = at , then Hk(n, q)�a(c) is spanned

by all Cv with v ∈ (a1 ∪ · · · ∪ at ).) Let e be the identity in H (WI ) ∩ Hk(n, q)�a(c). Suppose
at = c ∪ C′. We may write e = ec + e′ such that ec ∈ Hk(n, q)c and e′ ∈ Hk(n, q)C

′
, and then

ēc + ē′ = e = e2 = ē2
c + (ē′ēc + ēcē

′ + (ē′)2). This means that ec ≡ e2
c (mod Hk(n, q)>a(c))

by the above claim and by the fact that Hk(n, q)>a(c) is an ideal in Hk(n, q). Note that
Cw ∈ H (WI ) ∩ Hk(n, q)�a(c). If ec = 0, then ψc(Cw)E = CwEψc = CwEψc = CweEψc =
Cwe′Eψc = Cwe′Hk(n, q)cEψc = 0 since e′Hk(n, q)c ⊆ Hk(n, q)>a(c) by the above claim. This
contradicts the fact that ψc(Cw)Eψc 
= 0. Thus ec is a non-zero element in Hk(n, q)c. Since
the space Jj−1 contains Hk(n, q)>a(c), we see that ec

2 ≡ ec (mod Jj−1). This means that
Jj /Jj−1 contains a non-zero idempotent. �
Remarks. In parallel and independent work, based on methods of harmonic analysis, Opdam
and Solleveld [25] have provided explicit projective resolutions of affine Hecke algebras (over
the field of real numbers and with q positive) as bimodules over themselves. This also implies
finiteness of global dimension, under the stronger assumptions on q made in [25]. Derived cate-
gories and stratifications are not considered in [25].
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In the situation of Theorem 5.8, the affine Hecke algebra Hk(n, q) may be called affine
quasi-hereditary, and the statement of Theorem 5.8 implies a whole set of cohomological results
analogous to known results about quasi-hereditary algebras and highest weight categories, for
example on the vanishing of certain extensions between cell lattices. This affine quasi-hereditary
structure on Hk(n, q) is non-trivial in the following sense: The algebra Hk(n, q) cannot, in
general, be isomorphic to its asymptotic algebra, and its cells cannot in general split off as di-
rect summands, since this would contradict the known description of the centre of Hk(n, q).
Kazhdan–Lusztig theory provides some information about non-vanishing extensions. Our ap-
proach may also be used to find non-zero cohomology, which is coming up whenever in our
setup the swich algebra Λ̃ is acting trivially on a non-zero subspace of a simple Λ-module. It is
an open and presumably hard problem to determine between which cells in our cell chain there
is non-zero cohomology.
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