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The purpose of this note is to correct a mistake in the proofs of the results, Theorems 3.1
and 4.5, in the above-mentioned paper[1]. The mistake arises due to the statement “the first
syzygy of aB-module is anA-module”. All errors caused by this mistake can be corrected
by the following lemmas. Thus all results in[1] remain true.

In the present note, we keep the original notation used in[1].

Lemma 0.1. Let B be a subalgebra of an artin algebra A with the same identity such that
the Jacobson radical rad(B) of B is a left ideal in A. If X is a B-module, then rad(�B(X))

and�2
B(X) are A-modules, where�B(X) stands for the first syzygy of the B-module X.

Proof. LetXbe aB-module, and letf : PB(X) −→ X be a projective cover ofX. Thus the
top ofXand the top ofPB(X) are isomorphic, and the kernel off is contained in the radical
of PB(X). We denote the radical of theB-moduleX by rad(X). Note that any surjection
g : X −→ Y betweenB-modulesX andY induces a surjectiong′ : rad(X) −→ rad(Y ) with
kernel Ker(g′)= Ker(g)∩ rad(X). Thus we get the following exact sequence inB-mod:

0 −→ �B(X)
g′

−→ rad(PB(X))
f ′

−→ rad(BX) −→ 0.

� DOI of original article: 10.1016/j.jpaa.2004.03.009.
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Let us denote the multiplication map rad(B)⊗BX −→ rad(BX) = rad(B)X by �X, and
the inclusion rad(BX) → X by qX. Then we have the following commutative diagram in
B-mod:

0−−−−−−→ TorB1 (rad(B), X)
�−−−−−−→ rad(B)⊗B�B(X)

1⊗g−−−−−−→ rad(B)⊗B(PB (X))
1⊗f−−−−−−→ rad(B)⊗BX −−−−−−→0

��B(X)q�B(X)





�

�PB(X)





�

�X





�

0 −−−−−−→ �B(X)
g′

−−−−−−→ rad(PB (X))
f ′

−−−−−−→ rad(
B

X) −−−−−−→0

Since rad(BX) = rad(B)X and since the map�PB(X) is an isomorphism, we get an exact
sequence

0 −→ TorB1 (rad(B), X)
�−→ rad(B)⊗B�B(X)

�−→ rad(B)�B(X)=rad(�B(X)) −→ 0.

Since rad(B) is anA-B-bimodule, we see that the morphism TorB
1 (rad(B), X) −→

rad(B)⊗B�B(X) is anA-module homomorphism. Thus rad(�B(X)), as the quotient of
the A-module homomorphism�, is anA-module. Note that theA-module structure of
rad(�B(X)) is induced from rad(B)⊗B�B(X), that is, theA-module structure on
rad(B)�B(X) is given bya · (bx)= (ab)x for all a ∈ A, b ∈ rad(B) andx ∈ �B(X). Now
it follows from the surjectionPB(�B(X)) −→ �B(X) that we have another exact sequence
in B-mod:

(∗) 0 −→ �2
B(X) −→ rad(PB(�B(X)) −→ rad(�B(X)) −→ 0.

Since theA-module structures on rad(PB(�B(X))) and rad(�B(X)) are given by the
left multiplication of elements inA, the map rad(PB(�B(X))) −→ rad(�B(X)) is an
A-homomorphism. Thus its kernel�2

B(X) is anA-module. �

We stress that rad(BX) might not be anA-module in general, this can be seen by the
following example which is given by R. Farnsteiner, and informed to me by C.M. Ringel.
However, ifX is a projectiveB-module, then rad(X) � rad(B)⊗BX is anA-module.

Example. LetA be the 2 by 2 matrix algebra over thek-algebrak[x]/(x2). If we takeB to
be the subalgebra ofA generated by rad(A) and the identity ofA. Then rad(A) = rad(B).
Note thatB is a local algebra and has a 2-dimensional uniserial moduleX. The radical
of X is one-dimensional and cannot be anA-module because a simpleA-module must be
2-dimensional. This shows that rad(BX) may not have anA-module structure even under
the assumption “rad(B) = rad(A)”.

Lemma 0.2. Suppose B is a subalgebra of A such that rad(B) is a left ideal in A. For any
B-module X and integeri�2, there is a projective A-module Q and an A-module Z such
that�i

B(X) � �A(Z) ⊕ Q as A-modules.
If rad(B) is an ideal in A, then there is an exact sequence of A-modules:

0 −→ �i
B(X) −→ �2

A(Y ) ⊕ P −→ S −→ 0,

where P is projective, and S is an A-module such thatBS is semisimple. In particular, if
rad(B) = rad(A), the module S is even a semisimple A-module.
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Proof. We take a minimal projective resolution of theB-moduleBX:

· · · −→ Pn
dn−→ Pn−1 −→ · · · −→ P1

d1−→ P0
d0−→ BX −→ 0.

This gives an exact sequence ofA-modules:

(∗) 0 −→ �i
B(X) −→ radB(Pi−1)

di−1−→ radB(Pi−2).

Since radB(Pi) is anA-module by the left multiplication of elements inA, we know that the
mapdi−1 in (∗) is anA-homomorphism with the image rad(�i−1

B (X)). Now we have the
following sequence

A⊗BPi−1
g−→ A⊗BPi−2 −→ Y −→ 0,

whereY is the cokernel of the mapg := idA⊗Bdi−1. Then one has embeddings�i
B(X)

↪→ rad(BPi−1) � rad(B)⊗BPi−1 ↪→ A⊗BPi−1, with the last inclusion following from the
projectivity ofPi−1.

This implies that�i
B(X) can be embedded in the projectiveA-moduleA⊗BPi−1. If we

denote the cokernel of this embedding byZ, then we know that�i
B(X) � �A(Z)⊕Q with

Q a projectiveA-module. Note that the modulesZ andQ depend uponX. This finishes the
first part of the lemma.

Now suppose that the minimal projective presentation of theA-moduleY is given by

0 −→ �2
A(Y ) −→ Q1 −→ Q0 −→ Y −→ 0,

with Qi projective. Then an elementary homological calculation shows that there is a pro-
jectiveA-moduleQ′ such that Im(g) � �A(Y ) ⊕ Q′. SinceQ1 ⊕ Q′ −→ Im(g) is a
projective cover of theA-module Im(g) with the kernel�2

A(Y ), we know that there is a
projectiveA-moduleP such that Ker(g) � �2

A(Y ) ⊕ P . Thus we have the following exact
commutative diagram inA-mod:

0 0 0


�




�




�

0−−−−−−→ �i
B (X) −−−−−−→ rad(Pi−1) −−−−−−→ rad(�i−1

B
(X)) −−−−−−→ 0




�




�




�

0−−−−−−→ �2
A(Y ) ⊕ P −−−−−−→ A⊗BPi−1 −−−−−−→ A⊗BPi−2 −−−−−−→ Y −−−−−−→0




�




�




�

∥
∥
∥
∥

0−−−−−−→ S1 −−−−−−→ S2 −−−−−−→ S3 −−−−−−→ Y −−−−−−→0.



�




�




�

0 0 0

SinceS2 is isomorphic to(A/rad(B))⊗BPi−1, we know thatS2 is a semisimpleB-module
because rad(B) is an ideal inA and rad(B)(A/rad(B)) = 0. Note that if rad(B) = rad(A),
thenS2 itself is a semisimpleA-module. Thus, as a submodule ofS2, the moduleS1 is also
semisimple as aB-module. This gives the second part of the lemma.�
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By Lemma 0.1, we can give a new proof of Theorem 3.1: one has to replace�B(X) by
�2

B(X) and raise the given bound by 1 in the original proof. Theorem 4.5 in[1] can be
proved as follows:

Theorem 0.3. LetA, B and C be three artin algebras with the same identity such that(i)
C ⊆ B ⊆ A, and(ii) the Jacobson radical of C is a left ideal of B, and the Jacobson radical
of B is a left ideal of A. If A is representation-finite, then C has finite finitistic dimension.

Proof. Let CX be aC-module of finite projective dimension. It follows from Lemma 0.1
that�2

C(X) is aB-module. So we may consider the following exact sequence ofB-modules:

0 −→ �B�2
C(X) −→ P −→ �2

C(X) −→ 0,

whereP is a projectiveB-module. By Lemma 0.2, there is aB-moduleY and a projective
B-moduleQ′ such that�2

C(X) = �B(Y ) ⊕ Q′. Thus the above exact sequence can be
rewritten as:

0 −→ �2
B(Y ) −→ P −→ �2

C(X) −→ 0.

Again by Lemma 0.2, there is anA-moduleZ and a projectiveA-moduleQ such that
�2

B(Y ) = �A(Z) ⊕ Q. So we have the following exact sequence:

0 −→ �A(Z) ⊕ Q −→ P −→ �2
C(X) −→ 0.

Now, if we consider this sequence as a sequence inC-mod, then we may use the idea in[1]
to finish the proof of this theorem.�

As a consequence of the two lemmas, all proofs in[1] remain unchanged, but must take
into account the second syzygy of aB-module.
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