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The purpose of this note is to correct a mistake in the proofs of the results, Theorems 3.1
and 4.5, in the above-mentioned pafigr The mistake arises due to the statement “the first
syzygy of aB-module is arA-module”. All errors caused by this mistake can be corrected
by the following lemmas. Thus all results[if] remain true.

In the present note, we keep the original notation uséi]in

Lemma 0.1. Let B be a subalgebra of an artin algebra A with the same identity such that
the Jacobson radical ra@) of B is a left ideal in A. If X is a B-moduléhen rad 2z (X))
and Q% (X) are A-moduleswhereQp (X) stands for the first syzygy of the B-module X

Proof. Let Xbe aB-module, and leff : Pg(X) —> X be a projective cover of. Thus the
top of X and the top ofPg (X) are isomorphic, and the kernelfdg contained in the radical
of Pg(X). We denote the radical of tH&-moduleX by rad X). Note that any surjection
g : X — Y betweerB-modulesX andY induces a surjectiog’ : rad(X) — rad(Y) with
kernel Keg")= Ker(g)N rad(X). Thus we get the following exact sequencéimod:

0 — Qp(X) i; rad( Pg(X)) L,> radiz; X) — 0.
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Let us denote the multiplication map @)®p X — rad(zX) =radB)X by uy, and
the inclusion rad, X) — X by ¢gx. Then we have the following commutative diagram in
B-mod:

0o ToBradn.x) . radBeglgx) 28, radmeyrpx) 2, radmezx 0

ﬂizB(X)qQB(X)J “PB(X{ ﬂxl
0 N Qp(X) L) rad(Pp (X)) L> radzX) ———0
Since rad; X) = rad(B) X and since the mapp, x) is an isomorphism, we get an exact
sequence

0— Torf(rad(B), X) —5> radB)®pQp(X) N rad B)Q2z(X)=rad Qg (X)) — 0.

Since ra@B) is an A-B-bimodule, we see that the morphism j‘()tad(B), X)) —
rad B)®pQ2p(X) is anA-module homomorphism. Thus rdeg (X)), as the quotient of
the A-module homomorphisnd, is an A-module. Note that thé-module structure of
rad@p (X)) is induced from radB)®pQp(X), that is, the A-module structure on
rad(B)Qp(X) is given bya - (bx) = (ab)x foralla € A, b € radB) andx € Qp(X). Now
it follows from the surjectiorPz (25 (X)) — Qp(X) that we have another exact sequence
in B-mod:

(*) 00— Q2(X) — rad Pp(Qz(X)) — radQz(X)) — O.

Since theA-module structures on ré#lz (2p(X))) and radQp(X)) are given by the
left multiplication of elements irA, the map radPz(Q5(X))) — radQp(X)) is an
A-homomorphism. Thus its kernﬂ%(X) is anA-module. O

We stress that rdg X) might not be amA-module in general, this can be seen by the
following example which is given by R. Farnsteiner, and informed to me by C.M. Ringel.
However, ifX is a projectiveB-module, then rad¥) ~ rad(B)®p X is anA-module.

Example. LetAbe the 2 by 2 matrix algebra over tkalgebrak[x]/(x?). If we takeB to
be the subalgebra @ generated by rgdi) and the identity oA. Then radA) = rad(B).
Note thatB is a local algebra and has a 2-dimensional uniserial mogulehe radical
of X is one-dimensional and cannot be A&module because a simpfemodule must be
2-dimensional. This shows that rigdk') may not have a-module structure even under
the assumption “rad) = rad(A)".

Lemma 0.2. Suppose B is a subalgebra of A such that(idis a left ideal in A. For any
B-module X and integer> 2, there is a projective A-module Q and an A-module Z such
that Q% (X) ~ Q4 (Z) & Q as A-modules

If rad(B) is an ideal in Athen there is an exact sequence of A-modules

0— QLX) — QBA)dP — S — 0,

where P is projectiveand S is an A-module such thaf is semisimple. In particulauif
rad(B) =rad(A), the module S is even a semisimple A-module
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Proof. We take a minimal projective resolution of tBemodule; X :

d d d
—)Pn—n) Pn,1—>—>P1—l> PO—O>BX—>O

This gives an exact sequencefomodules:

(1) 0— QLX) — rads(P_1) 23 radg(P;_2).

Since rag (P;) is anA-module by the left multiplication of elementsAqwe know that the
mapd;_1 in (%) is anA-homomorphism with the image re@’B‘l(X)). Now we have the
following sequence

A®3Pi_]_—g> ARpP_» — Y — 0,

whereY is the cokernel of the map := ids®pd;_1. Then one has embeddingéB(X)
< rad(z P,_;) ~radB)®pP;_1 = A®pP;_1, with the last inclusion following from the
projectivity of P;_1.

This implies thalQ‘é(X) can be embedded in the projecti&emoduleA®p P;_1. If we
denote the cokernel of this embeddingdyhen we know thaQiB (X) >~ Q4(2)® Q with
Q a projectiveA-module. Note that the modul@sandQ depend upotX. This finishes the
first part of the lemma.

Now suppose that the minimal projective presentation oftimeoduleY is given by

0— Q%(Y) — Q1 — Qo — ¥ — 0,

with Q; projective. Then an elementary homological calculation shows that there is a pro-
jective A-module Q' such that Injg) ~ Q4(Y) ® Q’. SinceQ1 ® Q' — Im(g) is a
projective cover of thé\-module Im(g) with the kerneIQ,zq(Y), we know that there is a
projectiveA-moduleP such that Kefg) ~ Q%(Y) @ P. Thus we have the following exact

commutative diagram iA-mod:

0 0 0

:

o—— Q) ——— radP) — radQytX) ——— 0

|

0o QAW)eP —  A®pPi1 — > A®pP 2 Y 0
0— S1 - So - S3 Y 0.
0 0 0

SinceSy is isomorphic ta(A /rad(B))® p P;—1, we know thatS, is a semisimplé-module
because ra@®) is an ideal inA and radB) (A /rad(B)) = 0. Note that if radB) =rad(A),
thenSs itself is a semisimplé-module. Thus, as a submodule$f the moduleS; is also
semisimple as 8-module. This gives the second part of the lemm@l
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By Lemma 0.1, we can give a new proof of Theorem 3.1: one has to re@lacg) by
Q%(X) and raise the given bound by 1 in the original proof. Theorem 4[4jJircan be
proved as follows:

Theorem 0.3. Let A, B and C be three artin algebras with the same identity such (ipat
C C B C A, and(ii) the Jacobson radical of C is a left ideal of @&d the Jacobson radical
of B is a left ideal of A. If A is representation-finitten C has finite finitistic dimension

Proof. Let .X be aC-module of finite projective dimension. It follows from Lemma 0.1
thatQ%(X) is aB-module. So we may consider the following exact sequenBerobdules:

0 — QpQZ(X) — P — Q2(X) — 0,

whereP is a projectiveB-module. By Lemma 0.2, there isBamoduleY and a projective
B-module Q' such thatQ%(X) = Qp(Y) ® Q. Thus the above exact sequence can be
rewritten as:

0— Q%(Y) — P — Q%(X) — 0.

Again by Lemma 0.2, there is af+rmoduleZ and a projectiveA-module Q such that
Q%(Y) =Q4(Z) & Q. So we have the following exact sequence:

0— Qu(Z2)®Q — P — Q2(X) — 0.

Now, if we consider this sequence as a sequen€ernimd, then we may use the ided[i]
to finish the proof of this theorem.

As a consequence of the two lemmas, all proofidjrremain unchanged, but must take
into account the second syzygy oBamodule.
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