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16G36 our results extend not only a recent result of East, but also some results of Wilcox.
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1. Introduction

Motivated by a multiplicative property of the famous Kazhdan-Lusztig canonical basis for Hecke algebras of type A, the
notion of cellular algebras was initially introduced by Graham and Lehrer in [4]. The theory of cellular algebras provides a
systematical method for understanding the representation theory of many important algebras in mathematics and physics.
Roughly speaking, a cellular algebra is an associative algebra with an involution and a basis such that the multiplication
of basis elements can be expressed by a “straightening formula” (see Definition 2.3). An advantage of a cellular algebra
is that many questions in representation theory are reduced to relatively easy ones in linear algebra; for instance, the
parametrization of non-isomorphic irreducible representations and the semisimplicity of a finite-dimensional cellular
algebra over a field are reduced to calculations of non-zero bilinear forms [4]. Moreover, homological properties like global
dimension and quasi-heredity for cellular algebras can be characterized by Cartan determinants (see [9,16]). Examples of
cellular algebras include all Hecke algebras of finite types, q-Schur algebras, Brauer algebras, Temperley-Lieb algebras,
partition algebras, Birman-Wenzl algebras and many other diagram algebras (see [3-5,11,13,14]). The theory of cellular
algebras also opens a way for a characteristic-free investigation of these algebras (for example, see [10] for Brauer algebras).
On the one hand, it is worth noticing that all these algebras just mentioned give us cellular semigroup algebras by specializing
their defining parameters. On the other hand, it is not difficult to see that for some semigroups, their semigroup algebras
over a field cannot be cellular, for example, the upper triangular 2 x 2 matrix algebra over a field can be considered as
a semigroup algebra, this algebra is not cellular by [8]. So, a natural question is: When is a semigroup algebra cellular?
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Another question is: how to get different cellular structures by deforming semigroup algebras? In [2], East investigated the
cellularity of inverse semigroup algebras, he gave a sufficient condition for a finite inverse semigroup algebra to be cellular.
Wilcox [12] extended the result in [2] and considered the cellularity of twisted finite regular semigroup algebras, he gave a
sufficient condition for a twisted finite regular semigroup algebra over a commutative ring R to be cellular with respect to
an involution which is determined by an involution on the semigroup itself and an involution on the ground ring R.

In the present paper, we continue to investigate the cellularity of twisted regular semigroup algebras. Since involution
is one of the substantial ingredients for a cellular algebra, we first analyze involutions of twisted semigroup algebras
and introduce the notion of J¢-type and g-type for involutions as well as the notion of g#¢-type for twisted semigroup
algebras. To answer our questions mentioned above, we show in Theorem 5.3 that the twisted semigroup algebra of a
regular semigroup is cellular of type g#¢ with respect to an involution on the twisted semigroup algebra if and only if
the twisted group algebras of certain maximal subgroups contained in the semigroup are cellular. For groups, it is known
that the group algebras of symmetric groups, dihedral groups, and the finite Coxeter groups are cellular (see [4,3]). We have
mentioned that the case of an inverse semigroup was considered by East in [2], and the case of a regular semigroup with the
assumption of existence of an involution on the semigroup is considered by Wilcox in [12]. Thus, comparing with the result
of Wilcox in [12], our result is obtained without the assumption that an involution of the twisted semigroup algebra of a
regular semigroup must be an involution of the semigroup itself. As is known, requiring a semigroup to have an involution is
a strong condition on the semigroup itself. Moreover, in our consideration we only assume the ground ring to be an integral
domain, and drop the restriction that a twisting takes values in the group of units of the ground ring. Thus, our result also
extends the main result of Wilcox in [12].

It is well-known in [4] that, for a cellular algebra with cell datum (I, M, C, §) (see Definition 2.3), the irreducible
representations can be indexed by a subset of the poset I. Moreover, it is shown in [9] that a cellular algebra has finite global
dimension if and only if its Cartan determinant is 1. Thus we may parameterize the irreducible representations of a cellular
semigroup algebra, and determine when a cellular semigroup algebra is of finite global dimension, or quasi-hereditary by
applying the general methods of cellular algebras (see [4,9,16,17]).

The paper is organized as follows: In Section 2, we recall some definitions and basic facts needed in later proofs, and
introduce the g-type and the g #-type for cellular twisted semigroup algebras. In Section 3, we discuss some properties of
a twisting on a semigroup. Section 4 is devoted to dealing with involutions on twisted semigroup algebras. Here we shall
introduce the notion of type g and type # for involutions, and give a characterization of such involutions. The main results,
Theorems 5.2 and 5.3, are stated and proved in Section 5. In Section 6, we apply the general theory of cellular algebras to
twisted semigroup algebras and give a criterion for a cellular twisted semigroup algebra to be semisimple.

2. Preliminaries

In this section, we shall first recall some basic definitions and facts on semigroups. For further information on semigroups
we refer to any standard text books, for example, the book by Howie [7]. After this, we recall the concept of a cellular algebra
in [4], and the notion of a twisting in [12]. Also, we shall introduce types for cellular twisted semigroup algebras.

2.1. Definitions and basic facts on semigroups

Let & be a semigroup, and &' the semigroup obtained from & by adding an identity if & has no identity, otherwise we
put &' = &. In the theory of semigroups, the Green’s relations £, R, g, # and £ on & are of fundamental importance [6].
They are defined in the following way: forx, y € &,

xLy & &'x =6y,

XRy < x6! =y&!;

xgy & 6'xe' = &'ys’;
H=L[|R;:
D=LVR=LoR=RoL.

If X is one of the Green’s relations and a € &, we denote by K, the K-class of & containing a, and by &/.X the set of all
K -classes of &. Further, we define

L, <L, if&'ac &',
Rs <R, ifas! C b&!,
Ja <) if6'as' C &'b&".

Then we have a partial order on each of the sets §/£, §/R and &/¢. It is well known that D = ¢ if & is a finite semigroup.
In this case, the set G/D of D-classes of G inherits a partial order defined by

D <D, & se&'tg!, fors, ted.
Clearly, Dy, < Dy forallx,y € &.
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We say that a semigroup & satisfies the condition min;, (respectively, ming or miny) if the partially ordered set /L
(respectively, 5/ R or G/ &) satisfies the descending chain condition.

By a 0-simple semigroup, we mean a semigroup with zero satisfying the condition that Ga& = & for everya € & \ {0}.
Note that 0-simple semigroups occur very often. The following is a method to get 0-simple semigroups:

Let & be a semigroup and a € &.ThenI(a) == {b € 6'a6'! | 6'b&' C G'a6'} is an ideal of G'a&!. It is clear that
&'as! = J,UI(a). Now we consider the set &, := J, ({0}, where 0 stands for a single element, and is not in J,. We define
an operation o on &, as follows: for all x, y € J,

_ Jxy ifxy €,
Xoy= {O otherwise,

where xy is the product of xand yin G,andx o 0 = 0o x = 0 0 0 = 0. It is easy to check that (&, o) is a semigroup with
zero element 0. This semigroup &, is called the principal factor of G determined by a. It is well known that each principal
factor of G is either a 0-simple semigroup or a null semigroup (that is, a semigroup & with zero and &% = {0}) (see [7] for
a detailed discussion).

An element a of a semigroup & is called regular if there exists b € & such that aba = a. Equivalently, a € & is regular if
and only if the .£-class L, (respectively, the R-class R, or the D-class D,) contains an idempotent element of &. A semigroup
G is regular if each element of & is regular. If a and b are two elements in a regular semigroup & and if X is a Green relation
on G, then, for all x, y € J,, we have a.Xb in & if and only if XKy in &,.

A regular semigroup & is called an inverse semigroup if each £-class and each R-class of & contains precisely one
idempotent element; and is called a completely 0-simple semigroup if & is a 0-simple semigroup satisfies the conditions
min; and ming.

Now let I and A be non-empty sets and G a group, and let P = (p;x) be a A x [-matrix with entries in the 0-group
G =G (J{0}. Suppose P is regular in the sense that no row and no column consist entirely of zero elements. More precisely,
for any k € I, there exists a A € A such that p;;, # 0, and for any A € A, there exists | € I such that p;; # 0. Let
& = (G x I x A)|J{0}. We define a composition on & by

| (apub, k, ) ifpu # 0;
(a,k, A)(b, I, n) = {0 ifpy=0

and
(a, k, 2)0 = 0(a, k, .) = 00 =0,

wherea,b € G, k,l € I,and A, u € A. One can verify that & becomes a completely 0-simple semigroup with respect to
the above composition. It is called the I x A Rees matrix semigroup over the 0-group G° with the regular sandwich matrix P,
and is denoted by M°(G, I, A; P). The Rees theorem says that each completely 0-simple semigroup is isomorphic to some
MO(G, I, A; P), and vice versa.

Similarly, in the above construction, we may replace G by an R-algebra A over a commutative ring R with identity and
use the above multiplication to define an R-algebra structure on P ; j¢;, 4 A With 0 as zero element, this algebra is called
a Munn algebra, and is denoted by [A, I, A; P].

Lemma 2.1 ([7, p. 62]).

(1) The following statements are equivalent for (a, k, A), (b, I, u) € M°(G, I, A; P):
(1) (a, k, A)L(b, I, w) ifand only if A = p.
(2) (a,k, A\)R(b, L, w)ifandonly if k = L
(3) (a, k,A)F (b, 1, n)ifandonly if k = land . = pu.
(2) Any non-zero elements of a completely 0-simple semigroup are in the same D-class, and any two non-zero maximal subgroups
contained in a completely 0-simple semigroup are isomorphic.

By [7, Theorem II1.2.8, p.66], we may assume in M°(G, I, A; P) thatI[) A = {0}, G = (G, 0,0) and ppo = e, where e
is the identity of G. In addition, for any non-zero maximal subgroup G’ of M°(G, I, A; P), we have that M°(G, I, A; P) =~
MO(G', I, A; P) as semigroups. In what follows, we always suppose that M°(G, I, A; P) satisfies the above assumptions.

Suppose that & is a finite regular semigroup. It follows from the regularity that the principal factor &, is a 0-simple
semigroup for every a € &. Observe that a finite semigroup satisfies the conditions min; and ming. So the semigroup &, is a
completely 0-simple semigroup. Thus each principal factor of a finite regular semigroup is a completely 0-simple semigroup.

Finally, let us mention the following facts on a semigroup, which will be used later in the proofs.

Lemma 2.2 ([7] p. 45, p. 59). Let & be an arbitrary semigroup.

(1) If a, x € &, then either xa € ], or xa € I(a).
(2) Suppose a, e = €% € &. If aLe, then a = ae. Similarly, if aRe, then a = ea.
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2.2. Cellular algebras and twisting maps of semigroups

Throughout this paper, R is a commutative ring with identity.
First, let us recall the original definition of cellular algebras introduced by Graham and Lehrer, which is given by means
of multiplicative properties of a basis.

Definition 2.3 (/4]). An associative R-algebra A (possibly without identity) is called a cellular algebra with cell datum
(I, M, C, $) if the following conditions are satisfied:

(C1) Iis a partially ordered set. Associated with each A € I there is a set M(}). The algebra A has an R-basis CQT, where A
runs through I, and where (S, T) runs through M(1) x M(}).

(C2) §é is an R-linear anti-automorphism of A of order 2, and sends C;T to CTA,S.

(C3) Ifx elandS, T € M(L), then, foreacha € A,

acl, = Z ra(U,S)Chp + 1,
UeM()

where the coefficients r,(U, S) € R do not depend on T, and where r’ is a linear combination of basis elements C)’éy
with upper index p strictly smaller than A.

Note that in the above definition we do not require that A and M(}) are finite sets. If they are finite sets and if the R-
algebra A has an identity, then the above definition of an cellular algebra coincides with the one in [4]. In the present paper,
a cellular R-algebra A with an identity is called a unitary cellular algebra. Examples of (unitary) cellular algebras include
Temperley-Lieb algebras, Brauer algebras, Hecke algebras of finite type, partition algebras and certain Birman-Wenzl
algebras (see [3,4,14,15]). The significance of cellular algebras is that the irreducible representations can be determined by
methods in linear algebra. For more details and further information on cellular algebras we refer to [4,9] and the references
therein.

In the following, an R-linear anti-automorphism & of A with 62 = id is called an R-involution.

Next, let us introduce some notations related to semigroup algebras.

Let G be a semigroup. We denote by R[S] the semigroup algebra of & over R. In general, if I is a subset of &, then
R[I] denotes the set of R-linear combinations of elements in I, that is, R[I] is a free R-module with I as a basis. So each
element of R[I] is a finite summation of the form ), rwx,rx € R,x € I. In particular, if I; and I, are subsets of &, then
R[I; N L] = R[I1] N R[L]. If & is a semigroup with zero @, then R[#] is an ideal of R[&], and we define Ry[S] = R[S]/R[O].
This R-algebra Rg[S] is called the contracted semigroup algebra of G over R. If G has no zero, then we define Ry[S] = R[&].
Clearly, an element a of Ro[&] is a finite linear combination a = )_ ;s of elements s € & \ {6}. The support of a € R[&],
denoted by supp(a), istheset {s € &\ {0} | rs #~ 0}.

Finally, we recall the definition of a twisting on a semigroup & in [12].

Definition 2.4. (1) A twisting of & into R is a map
T:6x6 —R, *,y) > 7(x,y) forx,y e &,
which satisfies

(TW) 7. y)m(xy, z) = (X, y2)m (¥, 2)

forx,y,z € 6.

(2) Atwisting  of & into R is called an £ R-twisting of & if it satisfies the following two properties forallx,y,z € & :
(LR1) IfxLy, then 7w (x,z) = 7 (y, 2).
(LR2) IfyRz, thenm (x,y) = 7 (x, 2).

(3) Let 7 be a twisting of & into R. The twisted semigroup algebra R™ [&] of & over R with respect to the twisting 7, is defined
to be an R-algebra with the R-basis & in which the multiplication e is defined by

xey=m(x,y)(xy) forallx,y € &,

and is extended by linearity.
(4) In case & has a zero element 0, the twisted contracted semigroup algebra of G over R with respect to a twisting 7 is
defined as R*[&]/R[6], denoted by R7 [S].

It is shown in [12] that Brauer algebras, Temperley-Lieb algebras and partition algebras are examples of twisted
semigroup algebras.

We end this section by introducing the notion of g-type and g #-type for twisted semigroup algebras. These types reflect
a relationship between a cellular basis and a Green relation on a semigroup.

Definition 2.5. Let R be a commutative ring with identity, and let & be a semigroup (with zero). A twisted (or contracted)
semigroup algebra R"[S] (or Rj[&]) is called a cellular algebra of type ¢ with cell datum (I, M, C, §) if the conditions
(C1)—(C3) in Definition 2.3 and the following additional condition are satisfied:

(C4) For every A € I, there exists a §-class J of & such that supp(CSfT) C JforallS, T € M(L). Note that the ] may depend
on the given A.
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Definition 2.6. A cellular twisted (contracted) semigroup algebra R™ [S](R] [&]) with datum (I, M, C, 8) is of type g # if it
isof type ¢, and foreach A € I and S, T € M (), there exists an #¢-class H of G such that supp(Cg\,T) C H.

We remark that R[&] and R™ [&] are equal as R-modules. So the notion of support in R* [G] makes sense with respect to
the canonical basis &. Also, we may speak of the support of an element in R} [S].

For a basis-free definition of a cellular algebra we refer to [8]. For properties and more examples of cellular algebras we
refer to [3,4,14,15] and the references therein. For further information about semigroup algebras, we refer the reader to [1].

3. Properties of a twisting of a semigroup

In this section, we investigate the structure of a semigroup algebra with a twisting.
Let ;v be a twisting of a semigroup & into R, and a € &. We define a multiplication ® on R[J,] as follows: for x, y € J,,

_ryxy  ifxy € Jo;
XOy = {0 otherwise

and x © 0 = 0 = 0 ©® x, where xy is the product of x and y in & and 0 is the zero element of the R-module R[J,]. Then we
extend this multiplication R-linearly to the whole R-module R[],]. We claim that R[J,] is an R-algebra with respect to the
multiplication ® (possibly without identity). In fact, it is sufficient to show that (R[J,], ®) is a twisted contracted semigroup
algebra of the semigroup &, := J, U {0} with multiplication o.

We define

Tyt 6y X &g —> R, x,9) = ma(x,y),
where

_)r&xy) ifxy €,
Ta(X,y) = {O ifxy & J,.

Now, we verify that 7, is a twisting of &, into R. By Definition 2.4, it suffices to verify that m, satisfies (TW). Suppose
X,Y,z € J,. We consider the following two cases:

(1) Ifxyz € J,, then 6'a&'= &'xyz&! € &lxys' € 6'x6! = &'a6’. This means that xy € J,. Similarly, yz € J,. Hence
Xoy =xy,yoz=yz Thus

T[G(Xa y)ﬂ'a(x Oya Z) = 7T(X, y)ﬂ(Xya Z) = 7T(X, yZ)T[(y, Z)
= ﬂa(x,yz)ﬂa(y, Z) = nﬂ(x9yoz)nﬂ(yv Z)'

(2) Ifxyz & J;,thenx oy oz = 0 = x o y o z. Thus we have to consider the following two cases:
(1) Ifxy & Jg, then 7y (x, y) = 0 and 74(X, ¥)7w4(x 0 y, z) = 0. On the other hand, we have
(i) Ifyz € Jo, then my(x, y 0 z) = ma(x, yz) = 0. Clearly, m,(x, y 0 2)7,(y,z) = 0.
(ii) Ifyz & J4, then m4(y, z) = 0 and w4 (X, y 0 2)mq(y, z) = 0.
(2) Ifxy € J5, then my(x oy, z) = 0 and 74 (x, y)7q(x o ¥, z) = 0. Further, we have
(i) Ifyz € Jo, then my(x,y 0 z) = 0 and 7, (X, ¥y 0 2)74(y, z) = 0. Thus w4 (x, y)wa(X 0y, 2) = ma(X,y 0 2)7a (¥, 2).
(ii) Ifyz & Jq, then w4(y, z) = 0 and 7, (X, y 0 )7 (¥, z) = 0. Thus 7w, (x, ¥)w (X 0y, 2) = m4(X, Yy 0 2) 70, (y, 2).

Hence, in any cases, the condition (TW) holds true. Thus 7, is a twisting of the semigroup (&g, o). By definition, we see that
the R-algebra (R[J,], ®) is the twisted contracted semigroup algebra of the semigroup (&,, o) over R with respect to the
twisting 4. This R-algebra (R[J,], ®) is denote by R™[J,]. Thus we have proved the following proposition.

Proposition 3.1. Let R be a commutative ring with identity and & a semigroup. If 7 is a twisting of & into R, then, for every
a € G, the map m, is a twisting of the semigroup (&, := J, U {0}, o) into R.

Note that if X is a Green relation on a regular semigroup & and ifa € & and x, y € J,, then XXy in & if and only if x.Ky
in (J; U {0}, o). The following is straightforward.

Proposition 3.2. Let R be a commutative ring with identity and G a semigroup. Suppose 7 is an L R-twisting on G into R. Then,
forevery a € &, the n, is an LR-twisting of &, into R.

Proposition 3.3. Let 7 be a twisting of & = MG, I, A;P) into R. Then m is an LR-twisting if and only if, for
(g,i, 1), (h,j,n) €e Gwithg,he G,i,jel,and :, u € A, we have t((g,i, A), (h,j, n)) = m((e, 0, 1), (e, j, 0)), where e is
the identity of G.

Proof. By Lemma 2.1, we have (g, i, 1)L(e, 0, A) and (h, j, w)R(e, j, 0). Thus  is an LR-twisting of & into R if and only if
7w ((g, i, A), (h,j, w)) = w((e,0,2), (h,j, w)) = ((e, 0, 4), (e,j,0)). T
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Proposition 3.4. Let R be a commutative ring with identity and & = MO (G, I, A; P), and let 7 be a twisting of & into R. Then
R} [&] is isomorphic to the Munn algebra [R[G], I, A; P], where P = (myipyi) with my; = 7w ((e, 0, 1), (e, i, 0)), where e is the
identity of G.
Proof. For an element a € R[G], let (a);; be the I x A matrix over R[G] such that the (i, A)-entry is g, and all other entries
are zero. We define a map ¢ by

@ :6 —> [RIG. I, A; P], (a,i,A) — (@), foraeG,iel, i e A,

and extend this map linearly to R} [&]. By Proposition 3.3, it is a routine calculation that ¢ is an algebra isomorphism of
Rj[&] onto [R[G], I, A; P]. O

4. Involutions on twisted semigroup algebras

The aim of this section is to characterize involutions on the twisted semigroup algebra R” [&] of a semigroup &, where
7 is a twisting of &. First, we introduce the following types for involutions.

Definition 4.1. Let § be an R-involution on the (contracted) twisted semigroup algebra R” [&].

(1) 4 is called an involution of type ¢ if, for every s € &, we have supp(§(s)) C Js.

(2) § is called an involution of type # if, for every s € &, there exists an #¢-class H of & such that supp(§(x)) € H for
every x € H;.

(3) § is called an involution of type #{ if § is of type #, and if, for each x € &, there exists at least one idempotent
element ey € J, such that §(ey) = ey.

The following proposition establishes a relationship between a cellular twisted semigroup algebra of type ¢ and an
involution of type 4.

Proposition 4.2. Let R be a commutative ring with identity and & a semigroup. If R* [&] is a cellular twisted semigroup algebra
of type g with cell datum (I, M, C, §), then § is an involution of type § on R [&].

Proof. For s € &, we write s as an R-linear combination of the basis elements CQT withA € A (CI)andS, T € M(A). Put
A= [A e AlJs ﬂ supp(CﬁT) # () for a basis element C;T] .

By Definition 2.5(C4), the support of each CSA_T belongs to a g-class. Since different g-classes in & are disjoint, we know that
s is in fact a linear combination of C} ; with A € A’,says = )", 1/ > ¢ ; 1&;Ctp with ¢ € R. Clearly, there must be at least
one basis element CQT in the expression such that s € supp(CQT) C J,where]isa ;Z-class in &. This implies that s € J and
J = Js. By Definition 2.5(C4), all C&T in the expression of s have support in J;. Now, by applying the involution, we infer that
8(5) = Y sen 2os.r e 1Cr 5. Thus 8(s) has support in J;. This is what we want to prove.

The following proposition gives a characterization of involutions of type ¢ on twisted semigroup algebras.

Proposition 4.3. Let & be a semigroup, and let 7 be a twisting of & into R. If there is an R-involution 8, on Rf [J,] for every
a € & such that

(1) 84 = 8, forevery x € J,; and
(2) for x,y € &, we have §,,(x @ y) = 6,(y) ® &x(x), where xy is the product in &, and where 5,(y) e &x(x) are defined in R*[&],
then the map & defined by
5:RS] — RISl Y rxr Y nd®
PSS xe6

is a unique R-involution of type g on R™ [&] such that, as R-linear maps, §(x) = §;(x) for every x € J; withs € &.
Conversely, any involution of type § on R™[&] can be obtained in this way.

Proof. Suppose that the conditions of Proposition 4.3 are satisfied. Then § is well-defined and R-linear. To verify that § is
an involution on R™[&], it suffices to show that §2 = id and § is an anti-endomorphism of the algebra R*[S]. Suppose
a=) . ,ksandb =), It are two elements of R*[&], where ki, I; € R, and where A and I" are finite subsets of &.
Then

S(aeb) = (Z Z kl; (s ® r)) = Z Z klo 7 (s, £)85t (SE)

seA tel’ seA tel’
=) D kli@Gsi(se ) =YY kil (8:(t) @ 85(s))
seA tel’ seA tel’

tel’ seA

= (Z ltSt(t)> . (Z Ics(Ss(s)) = §(b) ¢ 8(a).
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Observe that supp(ds(s)) < Js. We have 8, = §; for every x € supp(d;(s)) by (1), and hence §(85(s)) = §5(55(s)). Thus

8%(a) = 6 (Z ks@s(s))) =Y k(8(5:(5))

seA seA
=Y k(8:(5() = Y ks=a,
seA seA

that is, 62 = id.

Thus § is an involution on R* [&]. The uniqueness of § is clear. By definition, § is of type g.

Conversely, assume that § is an involution on R” [&] of type §. Take a € &, we define a map &, from R™[J,] into itself by
8q(w) = 8(w) for every w € R™[J,], and prove that §, is an R-involution on R*[],]. In fact, if x € J,, then §(x) € R[J,] since §
is an involution of type g. It follows that §, is well-defined. Moreover, it is easy to see that §, is R-linear and that §, = §, for
every x € J, since x € J, implies that J, = J,.

Now, we prove that §,(x ©® ¥) = §,(y) © 8,(x) for all x,y € J,. Suppose x,y € Ja, 8.(x) = §(x) = Zke]a rk and
S.(y) =48(y) = Zleja r/lwith the coefficients r, r/ € R.(Here the summations should be understood as a finite summations).
Since §(x o y) = §(y) @ §(x), we have

T(x,y)8(xy) = S(xey) = Y nr/lek
k,l€]q

Yo onrirk+ Y namd, bk,

k,l€ja;lke]a k,l€ja;ke]a

Suppose xy € J,. Since § is an involution of type &, we have supp(§(xy)) < J,. Thus Z,(_leju;,,<¢]u rerim (1, k)lk = 0. This
means that

S(xey) =m(x,y)8(xy) = Z reri (L, k)lk = Z neril O k.

k,l1€]q;kl€]q k.l€]a;kl€]q

By the definition of §,, we have

8a(x ©y) = Sa(a(X, ¥)XY) = 74 (X, ¥)8a(Xy) = 7w (X, y)3(xy) = S(x @ y)

= Y nrrlkk= Y nrlok

k,l€]q;kl€]q k,l€]q;kl€]q

On the other hand, we have } ;1. Tl © k = 0in (R[Jo], ©). Therefore

5. x0y) = Y nrwlklk+0

k,l€]q;kl€]q

= Z rrl O k+ Z nrl Ok
[EE k,lI€]a;kig]a

= D Ok =250 08 =8.) © &),
k,l€]q

thatis, §a(x ©y) = 8,(¥) © 8q(x).

Suppose xy & Jq, thatis, Jyy # Jo and J, N Jyy = @. In this case,x © y = 0 and §,(x © y) = ,(0) = 6(0) = 0. Since § is an
involution of type ¢, we have supp(8(xy)) C Jyy and supp(§(xy)) ()Ja = ¥. Thus Zk,,e]a;lke]a rer{m (1, k)lk = 0in R*[&], that
i, D 1 tegaskicgs L O k= Dy 1ejutkey, Tl (L K)Ik = 0/in R[J,]. On the other hand, it is clear that } ) ;. -y, k1! © k = 0in
R*[J,]. Thus

84(¥) @ 8a(x) = 8(y) @ 8(X) = Y _mur{lO k=0

k,l€jq

in R"[J,]. Consequently, §;(x ©y) = 0 = §,(¥) ® 84(x). Hence we have proved that §, is an anti-homomorphism from R” [J,]
into itself. Therefore §, is an R-involution on R™ [J,].

Finally, we show that the condition (2) is satisfied. Indeed, by the definition of §,, we have §,(x) = §(x) for everyx € &.
Further, since § is an involution on R* [&], we conclude that §(x e y) = 8(y) @ 8(x) forallx, y € &. So

Sy (x @y) = by (T (X, y)(XY)) = 7 (X, ¥) 8y (xy) = 7 (X, y)8(xy) = 8(x 0 y) = 5(y) @ 5(x) = &,(y) ® 5:(X)

for all x, y € &. Thus the proof is completed. O
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Proposition 4.4. Let & = M°(G, 1, 1; P) be a completely 0-simple semigroup, and R an integral domain. Let 7 be an LR-
twisting of & into R such that 7 (e, e) # 0, and * an R-involution on R*[G] such that e* = e, where e is the identity of G. Let m;;
stand for 7 ((e, 0, i), (e, I, 0)). Suppose that nl;,p;fl = mipyiforalli, | € I. Then the map

8 :R7[6] — RG[6&], (a,i,j) = (a*,j, i), wherea € R[G],i,j €,
is an R-involution on Rf [S] of type #.

Proof. Obviously, the map 6 can be extended linearly to R [&] which, as an R-module, is the same as R[G]. Note that * can be
considered as an R-linear map on R[G]. Since 7 is an £ R-twisting and since the F#¢-class of e is G, we have 7w (g, h) = 7 (e, e)
for all g, h € G by Definition 2.4(4).
For any (g, i, j) € &, we have

8%(g.1,j) = 8(g%.j. 1) = ((€9)*,i.) = (g.1.))
and 8% = idg. Let (h, k, [) € &.Then

(e, €)°8((g,i,j) o (h,k, 1)) = 7 (e, e)*m;8(gpjh, i, 1)
S(gepjeh,il)=mji((gepieh)”, 1 i
= 7jr(h* e pj e g*, i)
= m(e, e)*myj(h*pig*. 1) (since m;py; = 70jkDjk)
= n(e$ e)znk,j(h*v lv k)(g*v 17])
m(e,e)*(h*, 1, k) e (g%,]. 1)

= n(e,e)*8(h, k, 1)  5(g. i, ).

Here we identify G with the subgroup (G, 0, 0) of &. Hence 8((g, i, j) ® (h, k,1)) = 8(h, k,I) @ 6(g, i, j) since R is an integral

domain. Thus § is an anti-homomorphism. Altogether, we have shown that § is an R-involution of R [&]. By the definition
of § and Definition 4.1, we see from Lemma 2.1 that § is also of type #. The proof is completed. O

Now, let us consider the converse of Proposition 4.4. For a ring T with identity, we denote by U(T) the group of unitsinT.

Proposition 4.5. Let & = M%(G, I, A; P) be a completely 0-simple semigroup with e the identity of G, R an integral
domain, w an LR-twisting of & into R, and 8 an R-involution on R} [S] of type #. If § fixes the idempotent (e, 0, 0) and
if m((e,0,0),(e,0,0)) # O, then there exist an involution x on R*[G], amap ¢ : I — A, i i and a map
e : A —> U(R[G]), A+ ¢, suchthat

(1) @ is bijective and 0=0. _
(2) g0 = e, &} isinvertible in R[G] forevery A € A, and n;,,p;‘, = nj’i(sf)*lp,’ig;for alli, I € I, where ;| = 7 ((e, 0, i), (e, I, 0)).

Moreover, the § sends (g, i, j) to (ejg*(eg")”,j, 7).

Proof. Because § is an R-involution of type # on Rj [&], there is an #-class H of & such that supp((g, 0, 0)) € H for every
g € G. By assumption, we have §(e, 0, 0) = (e, 0, 0), this shows that (e, 0, 0) € Hand H = (G, 0, 0). Thus §(g, 0, 0) € R[G]
for every g € G. It follows that the restriction * := §|gc] is an involution on R™ [G]. Note that x is also an R-involution on the
group algebra R[G]. This follows from
7 ((e, 0,0), (e, 0,0)) ((g,0,0)(h, 0,0))* = 5((g,0,0) e (h, 0,0))
= §(h,0,0) «5(g,0,0)
7((e, 0,0), (e,0,0)) (3(h, 0,0) 5(g,0,0))
= 7((e,0,0), (e, 0,0)) ((h,0,0)* (g,0,0)%)
and ((g, 0, 0)(h, 0,0))* = (h, 0, 0)*(g, 0, 0)* since R is an integral domain.
Further, we claim that §(g, 0,0) = (5(g), 0, 0) for every g € G. To prove this, we pick an element g € G and write
8(8) = Y heo h withr, € Rand G’ a finite subset of G. Then

8(g) =Y m(h.0,0) = <Z rah, 0, o) = (5(g), 0,0).

hed hed

Note that we always identify G with (G, 0, 0).If (e, i, 0) € &, then we may suppose §(e, i, 0) = (a, k, A) with a € R[G] since
8 is of type J#¢. We put 7y o = 7 ((e, 0, 0), (e, 0, 0)) in R. Then 7 o # 0 and, by Proposition 3.3,

(70,00, k, 1) = 7o 0d(e, i, 0) = mp,08((e, i,0)(e, 0,0)) = ((e, i, 0) e (e, 0, 0))
= (e,0,0) o (a, k, 1) = 7o,k (Po,ka, 0, 1) = (70,kPo k0, 0, A).
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It follows that k = 0. Thus (7 0a,0,X) = (7o,0P0.0a, 0, X). Since R is an integral domain and poo = e, we haan
8(e,i,0) = (pooa, 0, 1) = (a, 0, A). This means that a and A are dependent only on i. So we can writea = g;and A = i.
Dually, for (e, 0, ) € &, thereexiste; € R[G]and A € I, which depend only on X, such that §(e, 0, A) = (gy, A, 0). It follows
from

mo.0(e, 1, 0) = 10,08°((e, 1, 0)) = 70,08((g4, 0, 1)) = 70,08 (91, 0, 0) (e, 0, 1))

= 5((5{)15 07 0) o (67 07;)) = (67’ ;7 0) L4 (pl*5 07 0) = 7-[0,0(87801'*’ ;7 0)

that (e, i, 0) = (5, i,0),i = iand g = e. Similarly, we compute the element 7o (e, 0, 1) for A € A and then get
8?*50,' = e. Moreover, since * is an involution on R[G], it follows from &;; = e that piag‘ =e.
Now we define
p: 1 — A, i i
and
ViA—1, At> A
Thus ¢y = id and ¢ = id. It follows that ¢ is bijective and |I| = | A|. It is easy to check that ¢ satisfies the condition (1).
Next, we define
e: A —> URI[G]), Ar>e¢.
Since § fixes (e, 0, 0), we have 0 = 0. From (€0,0,0) = (e, 0,0)* = (e, 0, 0) it follows that &g = e. On the other hand, we
have
77, (pf, 0,0) = ((e,0,1) o (e, 1,0))* = (e, 1,0) @ (e, 0, 1)
= ((e)71,0,1)  (&,1,0) = 7;,;((e]) " "py;£1, 0, 0).

Hence n;y,p;fl = n;_i(e;‘)*]myiaj-. This proves that ¢ satisfies the condition (2).

Finally, suppose (g, i, j) € RT[&] withg € G,i,j € . Then

7408(g.i,J) = 8((e,i,0) e (g,0,0) e (e,0,))) = (e, 0,]) ® (g,0,0)*  5(e, i, 0)
= (8f»j5 O) o (g*7 07 0) L ((8;‘*)715 Oa ;) = ng,o(gfg*(g?)ilvjv I)

and 8(g,i,J) = (58" (GO 1). This finishes the proof. O

Remark. Propositions 4.4 and 4.5 describe the structure of an involution of type #J on a twisted contracted completely
0-simple semigroup algebra. By Proposition 4.3, we can establish the structure of an involution of type #4 and type  on a
twisted semigroup algebra of a semigroups in which principal factors are completely 0-simple semigroups.

5. Cellularity of twisted semigroup algebras

In this section, we consider the cellularity of twisted regular semigroup algebras. One of the differences of our
investigation from the one in [12] is that the assumption on the twisting is weaker than the assumption in [12], namely we
do not require that a twisting decomposes into a constant part and an invertible part, in order to get cellularity of twisted
semigroup algebras (see [12, Assumption 8]). But we strengthen the ground ring to be a domain. This makes sense in the
representation theory of orders and Artin algebras, where one often assumes the ground ring to be a discrete valuation ring,
or a field. Moreover, since specializations preserve cellularity (see [4, (1.8) Specialization]), one may study the representation
theory of cellular twisted semigroup algebras over fields of characteristic zero and characteristic p in a uniform way by
suitable specializations of a cellular twisted semigroup algebra over an integral domain. Another difference is that the
involutions in our case are more general than that in [12]. This has been seen in the previous sections.

Proposition 5.1. Let R be a commutative ring with identity, & a semigroup and § an involution on R* [&]. If R [&] is a cellular
algebra of type g with cell datum (I, M, C, §), then, for each a € &, the R-algebra R™[],] is a cellular algebra with cell datum
(Ia, Mq, Cq, 84), where

el,={iel] supp(Cg',T) C J, for apair S, T € M(i)},

o M, = Uiela M),

o Co =, {Cir 1S, T € M(D)),
e §, is the restriction of § to R™[],] (see Proposition 4.3).
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Proof. To show that R”[J,] is a cellular algebra with cell datum (I, M,, Cg, §,), we verify all conditions in Definition 2.3. By
the definition of (I, My, Cg, 84), we have to prove the following two facts:

(MG | @ €14, S, T € M(a)} is an R-basis of R™ [J].

In fact, |, {C¢7 | S, T € M(a)} forms an R-basis of R [&]. So, for x € Jo, we canwritexas Y~ . > renqy (S, TVCp,
where r*(S, T) lies in R, and where A C I and N(,) € M()). By assumption, R*[&] is a cellular algebra of type 4.
Thus Us 7w, SupP(Cs ) is contained in some g-class of &. This means that 3, .\ qiv) 2osrenoy (S Gy = 0,
and therefore x = ZAeAﬂla D STeNM) (s, T)CSA,T € R[Jq]. It follows that R[J,] can be spanned R-linearly by elements
of {(r |« €14, S, T € M(@)}, namely we have proved that {C'; | o € I, S, T € M(«)} is an R-basis of R™ [J].

2)Ifa €1,,S, T € M(«) and x € J,, then

XOC = Y RS $)CE, modRU(< @),
S'eM(a)

where the coefficients r,(S’, S) € R do not depend on T.

In fact, by the definition of a cellular algebra of type ¢, we know that x @ C'r = » oy (S, S)C ; + X' for an
X € R*[8](< a), where the coefficients r,(S', S) € R do not depend on T. Now let X' = Y, _, >, vy Tv (U, VICG
with ry(U,V) € Rand A asubsetof {A € I | A < «a}. Since R"[&] is a cellular algebra of type g, the element
Xi =25 cqa e U, V)C y, belongs to R[Jo] and the element x; := 3 _ 4\, (U, V)Cjy, with supp(C; ) & Ja does not
belong to R[J,]. Note thatx’ = X} +x5. Thus 3 g o Te(S's ICE 14321, 4 T (U, V)G € RUal. Suppose C¢'p = 37,y 1t
Since xw € J, or xw € I(a) for w € supp(C§';) < Jg, we find that

XeClr =) mOXt= Y rxQt+ Y  rwlOxt

tejq te€jq,xtelq tefa. xtd]q
=x0 Cg‘j + Z e (X, t)Xt.
t€)a.xtéJa

Thus

( Z (S, S) §.T+x§) +X,=xe(l =xOC + Z o7 (x, DXL

S'eM(x) te)a.xtéJa

This means that

XxOC = Z (8", S)CS 1+ +x.
S'eM(e)

Note that x| € R™[Jo](< ). This finishes the proof. O

Theorem 5.2. Let R be an integral domain, & a completely 0-simple semigroup, w an LR-twisting of & into R, and § an R-
involution of type # on R™[&]. If § fixes an idempotent e of & \ {0} and 7 (e, e) # 0, then R} [&] is a cellular algebra of type
g # for the R-involution § if and only if the twisted group algebra R™ [G] is a cellular algebra with respect to the restriction of 8,
where G is the maximal subgroup of & with the identity e.

Proof. Let e and G be the same as in the theorem. We know that the number of .£-classes in a D-class A of G is the same
as the number of R-classes in A. Now, we may assume that & = M%(G, A, A; P) with pg o = e. We denote 7 (e, e) by g 0.
By the proof of Proposition 4.5, the restriction of § to R” [G] is an involution of R” [G].

Suppose that R] [&] is a cellular algebra of type §# with cell datum (I, M, C, §). We define

K={,el] supp(CSAJ) C G forapairS, T € M(A)}, with a partial order induced from (I, <);

NA) ={SeM®) | supp(CQT) C GforanelementT € M()A)} for A € K; and

D}, =Cipfori € K,andS, Tin N(}).

We claim that R” [G]is a cellular R-algebra with cell datum (K, N, D, * = §|gj¢;). To prove this, it is sufficient to show the
following two statements:

(1) R[G] can be represented as R-linear combinations of elements of D := {D;T |2 €eK,S, T e NQ)}

First, we point out that D C R[G]. Suppose S € N(}), so C;T € R[G] for an element T € M()). Since e is a left identity for
RIG],

ce C?,T =n(e, e)eCl = (e, e)C;T.
Now for any T" € M(A), Definition 2.3 (C3) implies

A s /
ce Cs,r/ =m(e e)Csp + 1,
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where 1’ is a linear combination of basis elements C)’{Y with & < A. The support of the left hand side is contained in R,.
Since the support of each basis element is contained in an #¢-class, any basis element w1th non-zero coefficient on the right
hand side must be contained in R[R.]. In particular, C} <1 € RIR.]. Applying 8, we have Cg; R[L.] for any S’ € M(A) and
T € N(1). Thus, if S, T € N(A), then

Cy € R[R] NR[L] = R[G].

Now we prove (1).If a € R[G], then we write a = a; 4 a, where a; is a linear combination of elements in D, thus in R[G],
and where a, is a linear combination of elements in C’ := {CQT |2 el,S, T € M(A)}\ D. Notice that supp(CéT) C G\ Gif
C;T € C'.Hence a; € R[& \ G]. On the other hand, a, = a — a; € R[G]. This implies that a, = 0 and that a can be expressed
as an R-linear combination of elements of D.

(2)Ifg € G,A €K, D} € D(A) :={Di | S.T € N(1)}, then

geDiy= > r(U.SDj;+a.
UeN(h)

where a € R*[G] is a linear combination of elements of Dﬁ,v with the upper index p strictly smaller than A, and where the
coefficients rg (U, S) € Rare independent of T.
In fact, since R [&] is a cellular algebra of type ¢, we have

geClr= Y rUSGr+ Y. 15U S +a,
UeN()) UeM(X)\N()

where qp is a linear combination of elements CLI;,V such that the upper indices  belongs to N and are strictly smaller than
A, and where the coefficients ry (U, S) € R do not depend on T. Note that both supp(Cﬁ_T) and supp(g e C;T) are contained
in G. So, we have Supp(ZUEM(A)\N(A) rg (U, S)CU r+a0) S Gand } ycyanwe e, S)C&T = 0 since the upper indices of
basis elements in the expression of qy is less than A. It follows from (1) that ag € R"[G] can be represented as an R-linear
combination of elements of D. Moreover, ay is a linear combination of elements of D with upper index p strictly smaller than
A. This proves the required claim.

Conversely, suppose that the twisted group algebra R™[G] of G is a cellular algebra with cell datum (K, M, C, *), where
* is the restriction of §. By assumption, we may suppose that & = M°(G, A, A; P). By Proposition 4.5, without loss of
generality, we can assume that § sends (a, i, j) to (g;a* ((‘3;")*1 ,J, 1), where ¢ is defined as in Proposition 4.5. For A € K, we
define N(A) = A x M(X) and D(X 9.0.7) = = (&C¢ 1, x,y) for (x,S), (v, T) € N(&). We shall prove that R} [M°(G, A, A; P)]is
a cellular algebra with cell datum (K, N, D, §).

Since ¢, is invertible in R[G] and since {C{; | A € K; S, T € M(1)} is a basis of R[G], we know that {,C}; | A € K;S,T €
M(A)} is also a basis of R[G]. Hence each element (a, x,y) € (R[G], x,y) can be represented as a linear combination of
elements from {D?x $.0.7) | A € K; (x,5), (y, T) € N(A)}. Since {sts*T | A € K;S,T € M(A)} is a basis for R*[G], we have
that {D<x $).0.T) | & € K; (x,5), (y, T) € N(1)} is R-linearly independent. Thus {D’; ) |2 eK, x,5), ¥, T) e NA}isa
basis of R} [&].

Next, let us consider the action of the involution 8 on the basis elements D

(*.9).(.T

.5).0.T)" Since

m0.0((exCe1)*,0,0) = [70,0(x, 0, 0)(CL 1, 0, 0)]* = [(&x, 0, 0) @ (CL 4, 0,0)]
= (C¢7.0,0)" @ (&,0,0)* = ((CZ1)*,0,0) @ (¢}, 0, 0) = 70,0((C¢ )¢}, 0, 0),

we have (sxcg = (Cg\’ r)*ex, where the multiplications in the both sides of the equality are in R[G]. Furthermore, the
following is true:

S(D(x S, 0, T)) = 8(€XC§T’ X,¥)
= (SY(SXC;T)*(S:)_l, Y, X)
= (&(C ) er(en) ™, 1. %)
A i
= (&5, ¥.%) =Dy 1) (x.5)-

Now, it remains to show that the condition (C3) in Definition 2.3 holds. In fact, if (g, u, v) € G withg € G, u, v € A, and
ifD’(Jx,S),(y.T) is a basis element, then

Dl(xx,s),(yj) e(g,u,v) = (chﬁfr, X,y)e(g,u,v) = (”y,ugxcgrpy,u g.X, V).

On the other hand, since (R*[G], e) is a cellular algebra, we have

Cromubyug = ) ToumusTTCGr+ D 1O, U NG,
T eM(a) A<a;reK;U,VeM())
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where the coefficients 1y, ,p, ,¢(T, T") of the first term of the right hand side are in R and do not depend on S. By the
definition of a twisted product, C'; ® 7y ypyu& = 70,0Cs 1 7y,uPy,ug, and the element C¢';7y ypy wg can be expressed as
a linear combination of basis elements C/; , of R"[G], say C¢ 7y upy.ug = D sekuvemoy Y@ S, T,y u, g4, U, )y
Now, by comparing the coefficients of the two expressions of C5'; e 7y, py 4g, we have mo oy (o, S, T,y, u,g; A, T, T') =
Tryupyug (T» T') and mo oy (e, S, T, y,u, g; A, U, V) =1(%, U, V) forevery T' € M(a), > < o, and U, V € M(4). This shows
that y(«, S, T, y, u, g; A, T, T') is independent of S and x for every T’ € M(«), A < a,and U, V € M(A). Thus

Dl s m ® (€ U V) = <€x > y@.S. T.y.uga T.T)C. X v) mod RZ [S](< @)
T'eM(x)

Y y@S. Ty uge, T, T)(eCE . x v) modRI[S](< a)

T eM(a)
= Y y@STyugeT T, modRI[S](<a).
(v,T")eN(a)

Note that the coefficients y («, S, T, y, u, g; «, T, T") do not depend upon (x, S). By applying the involution §, we see that
the condition (C3) in Definition 2.3 holds true. Thus the proof is completed. O

Now we arrive at our main result of the paper.

Theorem 5.3. Let R be an integral domain, & a regular semigroup with principal factors M°(Gy, I, I,;; Py), where o runs over
Y = &/§. Suppose that m is an LR-twisting of & into R and that § is an R-involution of type g and type # on R™[&]. Let E
betheset {e € G | 0 # e = 2, 8(e) = e, (e, e) # 0}. For e € E, let G, be the maximal subgroup of & with the identity e. If
E, := E(E(M®(Gq, Iy, I; Py)) # ¥ for every a € Y, then R*[&] is a cellular algebra of type g3 with respect to the involution
8 if and only if for each « € Y there is an element e € E, such that R*[G,] is a cellular algebra with respect to the R-involution §
restricted.

Proof. Suppose R™[&] is a cellular algebra of type g# with cell datum (I, M, C, §). By Proposition 5.1, R*[],] is a cellular
algebra with cell datum (I, Mg, Gy, 8,) foreverya € &.Pickana € Y.Then thereis J, such thatJ, = M%(G,, I, Aq; Py)\{0}.
This implies that &, is a completely 0-simple semigroup isomorphic to M°(G,, I, Aq; Py). From the definition of R [J,] we
see that R™[J,] is the twisted semigroup algebra of G, over R with respect to the twisting ;. Note that under the condition
of type #4, we have |I,| = | A,| by Proposition 4.5. Since E,, # §, there is an idempotent e € E,. As pointed out in Section 2,
Ga = M%(Ge, Iy, Ag: Py). It is easy to verify that 8, and (e, 0, 0) satisfy the conditions in Theorem 5.2 since we identify e
with (e, 0, 0). It follows from Theorem 5.2 that R"[G,] is a cellular algebra with respect to the R-involution § restricted.

Conversely, suppose that for each « € Y, there is an e € E, such that R7[G,] is a cellular algebra with respect to the
R-involution § restricted. Let a € &. We prove that R [],] is a cellular algebra of type §.#¢ for the R-involution §,: Since &
is a regular semigroup with principal factors M°(Gy, Iy, Is; P), there is an element o € Y such that the principal factor
(64 = Jq U {0}, o) determined by a is M°(Gy, I, I4; P,). Pick an e € E, such that R*[G,] is a cellular algebra with the
cell datum (K, M, C, %), where  is the restriction of § to R”[G,]. By the proof of Theorem 5.2, R [J,] is a cellular algebra
of type g# with cell datum (K,, My, 4, 8,), where K, := K, Mg(A) :== A x M(}), and Ca*;(xqs)‘(yj) = (&xClr.x,y) for
x,5), (v, T) € My()), where ¢ is defined as in Proposition 4.5.

Let 7 be a set of representatives of the g-classes of &.

In the following, we shall prove R*[&] is a cellular algebra of type g# with cell datum (I", N, D, §), where we define

I = UaeT (a, K;) endowed with a partial order <: Fora,b € 7,1 € K;, u € K and A # p,

(a, ) < (b, u) & either J; < Jp, orboth J, =J,and A < p in K.

For (a, ) € (a, K,), we define N(a, ») = Mq(%),and D"y = Cz:, ,, for U, V € N(a, A).
(a,h)

Because R™[J,] is a cellular algebra with cell datum (K, Mg, Cg, 8g), the U(a,A)e(a,Ku) {Dyy’ 1U,V € N(a, A)}is an R-basis

for R*[J4]. Thus Uaef’(aqk)e(G,Ka){D{fy’y | U,V € N(a, M)} is an R-basis of R"[&]. Thus the condition (C1) of Definition 2.3

is satisfied. The condition (C2) of Definition 2.3 is clear from Theorem 5.2. It remains to verify the condition (C3) in
Definition 2.3.
We notice the following fact: Supposea, b € 7.1fb € I(a), n € K, and @ € K;, then (b, 1) < (a, «).Indeed, b € I(a) if
and only if 6'b&! C G'a&! if and only if J, < J,. Thus, if b € I(a), then (b, 1) < (a, 1) for every . € K, and every A € K.
Now suppose A € Kg, (x,S), (¥, T) € My(}) and ¢ € &, we calculate c o DE)‘Z:Q))’(V‘T) =cCe Ca)\;(x,S),(y,S)' where C;\;(X’s),(yj)
is in R™[J,]. It is easy to see that supp(CSA,T) C G, and supp(Cj;(x,s)’(y.T)) C R[(G, x,y)], where G, = (G,, 0, 0). Since 7 is an
LR-twisting of & into R, we get that 77 (c, (g, x, y)) = 7 (c, (e, x, y)) for every g € Ge.
By Lemma 2.1(1), we have either c(e, x, 0) € J, or c(e, x, 0) € I(a). Thus we have to consider the following two cases:
Case 1. c(e, x, 0) € I(a). In this case, by the foregoing fact that 7w (c, (g, x,y)) = 7 (c, (e, X, y)) for every g € G,, we have
ce DE::Q)),@,T) =cCe Cc?;(x,S).(y,S) =n(c, (e, x, y))c(stQT, X, )

= n(c, (e, x,¥))c(e, X, 0)(exCl 1, 0, ).
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Thus c e Dzz”g‘))’(”) € R[I(a)] since I(a) is an ideal of &'as" and 7 (c, (e, x, y))c(e, x, 0)(6xCl 1, 0, y) € R[I(a)]. This shows
that there exists 77 C 7 such that 73 C I(a) and c e Dg:.’;)),(ﬂ) € Ube?1 R[Jp]. Note that if b € I(a), u € K and @ € K, then
(b, 1) < (a, ). Hence we have |, RUs] C R*[S](< (a, 1)), thatis, c e D§5) , 1) € RT[S](< (a, 1)).

Case 2. c(e,x,0) € J,. Since (e,x,0)(e,0,0) = (e, x,0), we have c(e,x,0) = [c(e,x,0)](e,0,0) € (G, A,DO0).

Note that 7 is an LR-twisting of & into R. Thus 7 ((g, x, 0), (h,0,y)) = m((e,0,0), (e,0,0)) forall g,h € G, and
m(c(e, x,¥),(g,0,y)) = m(c(ex,y),(e0,0) = m((0,0),(e0,0)). From m(e,e) # 0 it follows that mo =
((e, 0,0), (e, 0,0)) = 7 (e, e) # 0. Now, we have

To.oC ® C‘i(x’s)q(w) = mpC e (5XC§T, X,y) = mo.oC ® [(e, X, 0)(5xC§T, 0,y)1

= c e [moo(e, X, 0)(exC5r, 0, )] = c @ [(e,x,0) O (xC5 1, 0,)]
7w (c, (e, x,0))m(c(e, x, 0), (e, 0,0))c(e, x, O)(sXC;T, 0,y)
m(c, (e, x,0))m(c(e, x,0), (e, 0,0))c(e, x,0)(ex, O, 0)(C§\,T, 0,y)

(a,1)
7 (c, (e, x,0))m (c(e, x, 0), (e, 0, 0))c(e, X, 0)(ex, X, 0)Dg’s) (1)

7 (c. (e. x, 0)o 0 (e, X, 0) (£, X, O)DGS) 1)

7 (c. (e.x, 0)[c(e, X, 0)(&x. X, 0)] @ DTS 7

That is,

(#)  70.0C 8 Cys) gy = 7(C. (€%, 0))[c(e, X, 0)(ex x, 0] ®DSE 1.
Moreover, since R™ [J,] is a cellular algebra, we get

(k) 7(c. (e, x, 0))[c(e, X, 0)(ex. X, 0)] © D) 1)

)
= Z T (c.ex.0)lc(ex.0)(exx.0] (5, S, (0, SNCG s 1y o1y + 25
(s,S")ENg (1)

where z € R"[J,](< 1), and where the coefficients (¢, (e.x.0))[c(e.x.0)(e,.0.0)1((S, S'), (0, S)) € R do not depend on (y, T).

Since all DS’;é) form an R-basis of R [&], we write c ® Cj; , ¢, 1) as an R-linear combination of elements Dfﬁ’é), say

A A
coClis om = Z 15,5y, T)C g5y o) T2

with z’ a linear combination of elements C* where (b, ) # (a, A). This implies that

b;U’ V"
(* * *) 7T()’0C ) C;L;(X,S),(y,T) = Z 7'[0'0[()\., S, S’,y, T)C;\;(s,s’),(y.T) + Noon,.
By comparing the coefficients of the right hand sides of (**) and (***), we get

Tz (e, (ex,0)lc(ex,0)(ex,0,01 (5, S, (0, 8)) = mo 0l(A, 5, 5", y, T).
This means that 7g o divides 1z (c,e.x.0))c(e.x.0)(ex.0.00 ((5, S), (0, S)). Similarly, 7 o divides the coefficients of z. Hence
coChips on = Z (170,0) T e e 0D (.0 (60,01 ((5: S, (0, ) Cli s 51y 1y + (T0.0) "2
(5.5 eNa(3)

- A -
Z (170.0) ™ T (e ex 0D c(ex.0) (640,01 (5, S, (O, 5))DES’5/)),0,’T) + (70,0) 72,
(5,S")€Na(2)

where z is already in the lower terms. Thus we have proved that the condition (C3) in Definition 2.3 holds. This shows that
R™[&] is a cellular algebra with cell datum (I", N, D, §). It is not difficult to see that the involution § is of type gJ#¢. This
finishes the proof. O

Remarks. (1) The proof of Theorem 5.3 shows a little bit more: If R* [&] is a cellular algebra of type §#¢ with respect to the
involution § of both type ¢ and type # on R [&], then R™ [G,] is a cellular algebra for every idempotent e € E.

(2) In the proof of Theorem 5.3 we may replace “R is a domain” by an arbitrary ring R and require that (e, e) € Ris
torsion-free in R[&], that is, if 77 (e, e)m = 0 for some element m € R[&], then either 7 (e, e) = 0,or m = 0.

As an immediate consequence of Theorem 5.3 and Proposition 4.5, we have the following corollary which generalizes
some results in [12,2], respectively.

Corollary 5.4. Let R be an integral domain, S a finite regular semigroup, w an £LR-twisting of & into R, § an R-involution of
both type g and type ¥ on R*[&] and E the set of idempotents e of & such that §(e) = e and (e, e) # 0. For eache € E we
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denote by G, the maximum subgroup of & with the identity e. If E (" E(M°(Gy, Iy, Io; Py)) # @ foralla € Y, then R*[&] is
a cellular algebra of type g# for the involution § if and only if, for every e € E, the twisted group algebra R™ [G,] is a cellular
algebra with respect to the restriction of 4.

As typical examples of cellular algebras, partition algebras, Brauer algebras, Temperley-Lieb algebras and many other
algebras are investigated by many authors. As was pointed out in [12], all these algebras are cellular twisted semigroup
algebras with respect to an £ R-twisting.

For partition algebras and Brauer algebras we can get semigroup structures by just putting the parameter equal to the
identity of the ground ring. The corresponding semigroups obtained in this way are called partition semigroups and Brauer
semigroups, respectively. Then the usual involution of a Brauer or a partition semigroup fixes all idempotents. Note that
each maximal subgroup of a Brauer semigroup or a partition semigroup is isomorphic to a symmetric group. For further
information on Brauer algebras and partition algebras we refer to [4,10,11,15]

Thus the following corollary is a direct consequence of Theorem 5.3 since all ingredients for adapting Theorem 5.3 are
contained in [12].

Corollary 5.5. All partition algebras, Brauer algebras and Temperley-Lieb algebras over an integral domain are cellular twisted
semigroup algebras of partition, Brauer and Temperley-Lieb semigroups, respectively. All of them are of type g #¢ with an L R-
twisting.

Finally, we remark that Theorem 5.3 enables us to study both the representation theory and homological properties of
twisted semigroup algebras by applying the general methods of cellular algebras (see [4,9,16]).

6. Semi-simplicity of twisted semigroup algebras

In this section, we shall investigate when a twisted regular semigroup algebra of type g# is semisimple. The idea is
similar to that in [2,12], namely we use techniques from cellular algebras. First we recall the definition of cell modules for a
unitary cellular algebra in [4], and then interpret these cell modules by their matrix representations.

Let A be a unitary cellular R-algebra with cell datum (A, M, C, 8). For each A € A, the cell module W (}) corresponding
to X is the left A-module with R-basis {Cs | S € M (1)} and A-action

aGs = ) 1alS'.5)Cy
S'eM(x)

fora € AandS € M(A), wherer,(S’, S) is defined as in Definition 2.3. Let Maty ;) (R) be the algebra of M(A) x M (1) matrices
over R, and

p" : A — Matyg, (R)
the corresponding matrix representation of W (1) relative to the natural basis, that is, p*(a) = (o (a)sr) with

p*(@)st = 14(S, T)
fora € Aand S,T € M()). For each A € A, there is a bilinear form ¢* on W(A) defined on the basis elements so that
¢’ (Cs, Cr) is the unique element of R satisfying

ChCl = ¢*(Cs, Cr)Cop (mod A(< 1))

forS', T" € M(1). We denote by @* the Gram matrix of ¢” relative to the natural basis, that is, #* = (®&) € Maty,) (R)
with

@5 = ¢"(Cs, Cr)
for S, T € M()). The importance of ¢* is demonstrated by the following fact.

Lemma 6.1 ([4]). Let A be a finite-dimensional unitary cellular R-algebra over a field R with cell datum (A, M, C, §). Then the
following are equivalent:

(1) The algebra A is semisimple.

(2) The nonzero cell representations W (X) are irreducible and pairwise inequivalent.

(3) The form ¢™ is non-degenerate (that is, det (®*) # 0) for each A € A.

From now on, we assume the following:

e Ris a field with identity 1; & is a monoid with principal factors M° (Gd, Ig, Ig; Py = (pg)), where d runs over a set 7 of
representatives of the g-classes of ; |7| < oo and |I;| < oo. We denote by J; the set M°(Gy, Iy, Is; Py) \ {0}, and e, the
identity of the group Gj.

e § is an R-involution on R [&] of type ¢ and type F# such that §|z=(;,; = 84 as R-linear maps for every d € 7.
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e 1 is an LR-twisting of & into R, which satisfies that 7 (t,x) = 1 = m(x, ¢) for every idempotent element x € &,
where ¢ is the identity of &, and that 7 (e4, e4) 7~ O for every d € 7. We put n,{’j = m((eq, 0, i), (eg, j, 0)). In particular,
nd, = m((eq, 0,0), (eg, 0, 0)) = 7 (eq, €q)-

e foreachd € 7T, there is an R-involution §, of type # on (R [J4], ®) such that §;((eq, 0, 0)) = (eq, 0, 0) and §4((a, i, j)) =
(sja*(ei*)‘l,j, i) for every a € R*[Gg] and all i, j € Iy, where * = 84|z (¢, and & : I —> U(R[Gq]) is a bijection such that
g0 = eq and 7 (pf)* = m(e})""p{e; for alli, I € Iy. (Note that U(R[Gy]) stands for the group of units in the algebra
R[Gq]).

® R™[Gg] is a cellular algebra with cell datum (Kq, My, Cq4, 8qlg7(G,))- Thus the cellular basis of R"[Gg] is {C;;s,r | A e
K4,S, T € My(A)}. The corresponding bilinear form on the cell module W;()) with A € Kj is denoted by ¢g, and its
Gram matrix is denoted by ®;.

Since 7 is an LR-twisting of & into R and since for each a € & there is an idempotent x € & with aRx, we have
that 7 (t,a) = w(t,x) = 1foreverya € &. Similarly, w(a,t) = 1 for every a € &. Now, we can check that ¢ is an
identity of R*[&]. On the other hand, since 7 is an LR-twisting of & into R, the restriction of 7 to each #-class of & is
a constant. Thus R¥[Gy] is a unitary algebra with the identity 7 (eq, e4) ~'eq for every d € 7. Note that under the above
assumptions, we know from Theorem 5.2 that (R [Jy], ®) is a cellular algebra of type §J¢ with cell datum (Xg, Ng, Dy, 84),

where X; = {d} x Ky, Ny = Iy x My and Dés’sk)?g,r) = (ngé‘;s,T, i,j). Thus, by Theorem 5.3, R*[&] is a unitary cellular
algebra of type gJ¢ with cell datum (I, N, D; §), where I = [,y Xa, 8w 1,00 = 84, and where N(d, 1) = I4 x Mg(A) and
DE?,’SA)TO,T) = (&;Cj5.1- 1. J) for every (d, 1) € Xy

Lemma 6.2. Let (d, A) € Xgand (i,S), (j, T) € Ny. Then the bilinear form of ¢¢» on the cell R* [&]-module corresponding to
(d, ) is

d, ) (p(dA) dA)y d -2 P
d)( )(D(,‘,s) s D(j,T) ) = Z (770,0) rnilj?pggj U, T)¢d S, U).
UeM®)

Proof. Since R™[G4] is a unitary cellular algebra with cell datum (K, My, Cy4, %), we have
dod_ ~h d \—1,_d d N
7y PEiComr = (o)~ (P58 © Coupp

= D (150) Tt (U. DGy (modR7[Gal(< 1).
UeM(X) Y
Hence

(d,2) (d,2) A s A s
Di's).is) ® Dymy.g.ry = ErCoss i',i) @ (&Crpr, 4, J)

A _dd Aoy
= (ei/Cs,SnUpijng”,, i,j)

Z (ng,o)_lrﬂgpg.gj u, T)(Ei/C;/sCl)}T/, i/,j/)

UeM)
= D (o) gyt (U T Cis © G 1)
UueM) v
= D (100 ey (U DG Uer o 1)
UeM()) Y
_ d
= D @0) raty (U @GS UDGT), vy (mod RT[Gal(< 2))
UeM(L)

d.2) _
and ¢ @M (DY, D) = Yy cwey o) 2rﬂ§p3_€j(u, T)¢}(S,U). O
For (d, A) € N4, we form an Iy x Iq block matrix ®¢ = (6;;), where 6;; is an Mg(A) x Mq(A) matrix over R with (U, T)-entry
Fad i, (U, T). Obviously, O is an (Is x Mg(%)) x (Is x Mg(%)) matrix over R. Now, let r“» .= diag(®}, ..., ®}). Then
LTy

' isan (Is x Mg(1)) x (Is x Mg())) matrix over R and has |I5| blocks @} on the main diagonal.
Thus, by Lemma 6.2, we have the following corollary.

Corollary 6.3. @Y = (z{))"2I""Y @y, where & ** is the Gram matrix of ¢*» with (d, 1) € Xg.
By the general theory of unitary cellular algebras, we have the following result.
Theorem 6.4. With the above assumptions, R™ [&] is semi-simple if and only if the following conditions hold:

(1) Foreach d € T, ®q is invertible.
(2) Foreachd € 7, R*[Gq] is semi-simple.
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Proof. By Lemma 6.1, R*[&] is semi-simple if and only if det(®@?) = 0 for every (d, A) if and only if det(/"@*) = 0 and
det(®4) # 0 for every (d, 1) if and only if @ is invertible and R [G,4] is semi-simple for every d € 7. This completes the
proof. O
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