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a b s t r a c t

In this paper, we present two methods, induction and restriction procedures, to construct
new stable equivalences of Morita type. Suppose that a stable equivalence of Morita type
between two algebras A and B is defined by a B-A-bimodule N . Then, for any finite admis-
sible set Φ and any generator X of the category of A-modules, the Φ-Auslander–Yoneda
algebras of X andN ⊗A X are stably equivalent ofMorita type.Moreover, under certain con-
ditions, we transfer stable equivalences of Morita type between A and B to ones between
eAe and fBf , where e and f are idempotent elements in A and B, respectively. Consequently,
for self-injective algebras A and B over a field without semisimple direct summands, and
for any A-module X and B-module Y , if the Φ-Auslander–Yoneda algebras of A ⊕ X and
B ⊕ Y are stably equivalent of Morita type for one finite admissible set Φ , then so are the
Ψ -Auslander–Yoneda algebras of A ⊕ X and B ⊕ Y for every finite admissible set Ψ . More-
over, two representation-finite algebras over a field without semisimple direct summands
are stably equivalent of Morita type if and only if so are their Auslander algebras. As an-
other consequence, we construct an infinite family of algebras of the same dimension and
the same dominant dimension such that they are pairwise derived-equivalent, but not sta-
bly equivalent of Morita type. This answers a question by Thorsten Holm.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the representation theory of algebras and groups, there are three fundamental equivalences:Morita, derived and stable
equivalences. Roughly speaking, the first two are induced from tensor products of bimodules or two-sided complexes, thus
there is a corresponding Morita theory for each (see [18,21,10]), while the last one seems still to be well understood in
this way, and therefore a Morita theory for stable equivalences is missing. Recently, a special class of stable equivalences,
called stable equivalences of Morita type, have been introduced by Broué in the modular representation theory of finite
groups. They are induced by bimodules, have features of a Morita theory, and are shown to be of great interest in modern
representation theory since they preserve many homological and structural invariants of algebras and modules (see, for
example, [3,4,11,12,19,23,24]). In order to understand this kind of equivalence, onehas to know, first of all, asmany examples
andbasic properties of stable equivalences ofMorita type as possible. So, one of the crucial questions in the course of studying
these equivalences is:

Question: How to construct stable equivalences of Morita type for finite-dimensional algebras?
Until now, only a few methods using trivial extensions, one-point extensions and endomorphism algebras have been

known in [20,15–17]. Of course, Rickard’s result that the existence of derived equivalences for self-injective algebras implies
the one of stable equivalences of Morita type provides another way to construct stable equivalences of Morita type. This
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method, however, is no longer true for general finite-dimensional algebras (see [8] for some new advances in this direction).
So, a systematical method for constructing stable equivalences of Morita type seems not yet to be available.

In this paper, we shall look for a more general and systematical answer to this question, and present twomethods, called
induction and restriction procedures, to construct new stable equivalences of Morita type for general finite-dimensional
algebras. Here our induction procedure has two flexibilities, one is the choice of generators, and the other is the one of finite
admissible sets. Thus this construction provides a large variety of stable equivalences of Morita type.

To state our first main result, let us recall the definition of Φ-Auslander–Yoneda algebras in [7]. Let A be a finite-
dimensional algebra and X an A-module. Then, for an admissible set Φ of natural numbers, there is defined an algebra
EΦA (X), called the Φ-Auslander–Yoneda algebra of X in [7], which is equal to


i∈Φ ExtiA(X, X) as a vector space, and its

multiplication is defined in a natural way (see Section 2.2 below for details). Our main result for inductions reads as follows:

Theorem 1.1 (The Induction Procedure). Suppose that A and B are finite-dimensional k-algebras over a field k. Assume that two
bimodules AMB and BNA define a stable equivalence of Morita type between A and B. Let X be an A-module which is a generator for
the category of A-modules. Then, for any finite admissible set Φ of natural numbers, there is a stable equivalence of Morita type
between EΦA (X) and EΦB (N ⊗A X).

Note that if Φ = {0}, then the above result was known in [17]. Thus Theorem 1.1 generalizes the main result in [17],
and providesmanymore possibilities for constructing stable equivalences of Morita type through the choices of differentΦ .
Also, our proof of Theorem 1.1 is different from that in [17].

Next, we shall exploit certain kinds of restrictions to construct stable equivalences of Morita type. Our result along this
line is the following theorem.

Theorem 1.2 (The Restriction Procedure). Suppose that A and B are finite-dimensional k-algebras over a field k such that neither
A nor B has semisimple direct summands. Further, suppose that AMB and BNA are bimodules without projective bimodules as
direct summands, and define a stable equivalence of Morita type between A and B. If e2 = e ∈ A such that M ⊗B Ne ∈ add(Ae),
and if f 2 = f ∈ B such that add(Bf ) = add(Ne), then the bimodules eMf and fNe define a stable equivalence of Morita type
between eAe and fBf . Moreover, if we define Λ = EndeAe(eA), Γ = EndfBf (fB), N ′

= HomfBf ((fB)Γ , fNe ⊗eAe (eA)Λ) and
M ′

= HomeAe((eA)Λ, eMf ⊗fBf (fB)Γ ), then Γ N ′
Λ and ΛM ′

Γ define a stable equivalence of Morita type betweenΛ and Γ .

In fact, under the assumptions of Theorem1.2, wemay have amore general formulation, namely, for any finite admissible
setΦ of natural numbers and for any eAe-module X , theΦ-Auslander–Yoneda algebras of eAe⊕ X and fBf ⊕ fNe⊗eAe X are
stably equivalent of Morita type. This is a consequence of Theorems 1.1 and 1.2.

Also, from Theorems 1.1 and 1.2 we have the following characterization of stable equivalences of Morita type for
representation-finite algebras as well as for self-injective algebras.

Corollary 1.3. Suppose that A and B are finite-dimensional k-algebras over a field k such that neither A nor B has semisimple
direct summands.

(1) Assume further that A and B are self-injective. Let X be an A-module and let Y be a B-module. If there is a finite admissible set
Φ of natural numbers such that EΦA (A⊕X) and EΦB (B⊕Y ) are stably equivalent of Morita type, then, for any finite admissible
set Ψ of natural numbers, the algebras EΨA (A ⊕ X) and EΨB (B ⊕ Y ) are stably equivalent of Morita type.

(2) Assume additionally that A and B are representation-finite. Then A and B are stably equivalent of Morita type if and only if so
are their Auslander algebras.

Note that the ‘‘only if’’ part of Corollary 1.3(2) follows from [17].
Of course, there are many important classes of algebras which are of the form EndA(A ⊕ Y ) with A self-injective and Y

an A-module. For example, Schur algebras or q-Schur algebras. Thus, as a consequence of Corollary 1.3, we know that the
global dimension of Endk[Sn](k[Sn] ⊕Ω i(Y )) is finite for i ∈ Z, where k[Sn] is the group algebra of the symmetric group Sn,
Y is the direct sum of non-projective indecomposable Young modules, andΩ is the usual syzygy operator.

As another byproduct of our considerations in this paper, we can construct a family of derived-equivalent algebras with
certain special properties.

Corollary 1.4. Suppose that k is a field with a non-zero element that is not a root of unity. Then, there is an infinite series of
k-algebras of the same dimension such that they have the same dominant and global dimensions, and are all derived-equivalent,
but pairwise not stably equivalent of Morita type.

The contents of this paper are organized as follows. In Section 2, we fix notations and prepare some basic facts for our
proofs. In Sections 3 and 4, we prove our main results, Theorems 1.1 and 1.2, as well as Corollary 1.3(2), respectively. In
Section 5, we concentrate our consideration on self-injective algebras, and establish some applications of our main results.
In particular, in this section we prove Corollary 1.3(1) and supply a sufficient condition, which is used in Section 6, to verify
when two algebras are not stably equivalent of Morita type. In Section 6, we apply our results in the previous sections to
Liu–Schulz algebras and give a proof of Corollary 1.4 which answers a question by Thorsten Holm.
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2. Preliminaries

In this section, we shall fix some notations, and recall some definitions and basic results which are needed in the proofs
of our main results.

2.1. Some conventions and homological facts

Throughout this paper, k stands for a fixed field. All categories and functors will be k-categories and k-functors,
respectively. Unless stated otherwise, all algebras considered are finite-dimensional k-algebras, and all modules are finitely
generated left modules.

Let C be a category. Given two morphisms f : X → Y and g : Y → Z in C, we denote the composition of f and g by fg
which is a morphism from X to Z , while we denote the composition of a functor F : C → D between categories C and D
with a functor G : D → E between categories D and E by GF which is a functor from C to E .

If C is an additive category and X is an object in C, we denote by add(X) the full subcategory of C consisting of all direct
summands of direct sums of finitely many copies of X . The object X is called an additive generator for C if add(X) = C.

Let A be an algebra.We denote by A-mod the category of all A-modules, by A-proj (respectively, A-inj) the full subcategory
of A-mod consisting of projective (respectively, injective) modules, by D the usual k-duality Homk(−, k), and by νA the
Nakayama functor DHomA(−, AA) of A. Note that νA is an equivalence from A-proj to A-inj with the inverse HomA(D(A),−).
We denote the global and dominant dimensions of A by gl.dim(A) and dom.dim(A), respectively.

As usual, by Db(A) we denote the bounded derived category of complexes over A-mod. It is known that A-mod is fully
embedded in Db(A) and that HomDb(A)(X, Y [i]) ≃ ExtiA(X, Y ) for all i ≥ 0 and all A-modules X and Y .

Let X be an A-module. We denote byΩ i
A(X) the i-th syzygy, by soc(X) the socle, and by rad(X) the Jacobson radical of X .

LetX be an additive generator forA-mod. The endomorphismalgebra ofX is called the Auslander algebra ofA. This algebra
is, up to Morita equivalence, uniquely determined by A. Note that Auslander algebras can be described by two homological
properties: An algebra A is an Auslander algebra if gl.dim(A)≤ 2 ≤ dom.dim(A).

An A-module X is called a generator for A-mod if add(AA) ⊆ add(X); a cogenerator for A-mod if add(D(AA)) ⊆ add(X),
and a generator–cogenerator for A-mod if it is both a generator and a cogenerator for A-mod. Clearly, an additive generator
M for A-mod is a generator–cogenerator for A-mod since we have add(M) = A-mod by definition for the additive generator
M for A-mod. But the converse is not true in general.

Let T be an arbitrary A-module, and let B be the endomorphism algebra of T . We consider the following full subcategories
of A-mod related to T .

Gen(AT ) := {X ∈ A-mod | there is a surjective homomorphism from Tm to Xwith m ≥ 1}.
Pre(AT ) := {X ∈ A-mod | there is an exact sequence T1 → T0 → X with all Ti ∈ add(AT )}.
App(AT ) := {X ∈ A-mod | there is a homomorphism g : T0 → X with T0 ∈ add(AT ) such that

Ker(g) ∈ Gen(AT ) and HomA(T ′, g) is surjective for all T ′
∈ add(T )}.

The following lemma is known, for a proof we refer for example to [25, Lemma 2.1].

Lemma 2.1. Let T be an A-module and B = End(AT ). Let X be an arbitrary A-module. Then:

(1) If Y is a right B-module, then the natural homomorphism δ: Y ⊗B HomA(T , X) → HomB(HomA(X, T ), Y ), given by
y ⊗ f → δy⊗f with δy⊗f (g) = y(fg) for y ∈ Y , f ∈ HomA(T , X), g ∈ HomA(X, T ), is an isomorphism if X ∈ add(AT ).

(2) If X ′
∈ add(AT ), or X ∈ add(AT ), then the composition map µ : HomA(X ′, T ) ⊗B HomA(T , X) → HomA(X ′, X) given by

f ⊗ g → fg is bijective.
(3) If X ∈ Gen(AT ), then the evaluation map eX : T ⊗B HomA(T , X) → X is surjective. If X ∈ App(AT ), then eX is bijective.

Conversely, if eX is bijective, then X ∈ App(AT ).

The next lemma is taken from [23, Lemma 2.1], which can also be verified directly.

Lemma 2.2 ([23]). (1) Let A, B, C and E be k-algebras, and let AXB and BYE be bimodules with XB projective. Put X∗
=

HomB(X, B). Then the natural homomorphism ϕ : AX ⊗B YE → HomB(BX∗

A , BYE), defined by x ⊗ y → ϕx⊗y, where
(f )ϕx⊗y = (fx)y for x ∈ X, y ∈ Y and f ∈ X∗, is an isomorphism of A-E-bimodules.

(2) In the situation (EPA, CXB, AUB), if PA is projective, or if XB is projective, then EP⊗AHomB(CXB, AUB) ≃ HomB(CXB, EP⊗AUB) as
E-C-bimodules. Dually, in the situation (APE, BXC , BUA), if AP is projective, or if BX is projective, thenHomB(BXC , BUA)⊗A PE ≃

HomB(BXC , BU ⊗A PE) as C-E-bimodules.

The following is a well-known result from Auslander (for example, see [2, Proposition 5.6, p. 214]).

Lemma 2.3. LetΛ be an Artin algebra such that gl.dim(Λ) ≤ 2 ≤ dom.dim(Λ). Let U be aΛ-module such that add(U) is the
full subcategory ofΛ-mod consisting of all projective-injectiveΛ-modules. Then

(1) A := EndΛ(U) is representation-finite.
(2) Λ is Morita equivalent to EndA(X), where X is an additive generator for A-mod.
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Finally, we recall the definition of D-split sequences from [6]. For our purpose, we just restrict our attention to module
categories.

Let D be a full subcategory of A-mod. A short exact sequence

0 −→ X
f

−→ M
g

−→ Y −→ 0

in A-mod is called a D-split sequence ifM ∈ D , HomA(D′, g) and HomA(f ,D′) are surjective for every object D′
∈ D .

Note that D-split sequences were used in [6] to construct tilting modules of projective dimension at most one.

2.2. Admissible sets and perforated orbit categories

In [7], a class of algebras, called Φ-Auslander–Yoneda algebras, were introduced, which include for example, Auslander
algebras, generalized Yoneda algebras, preprojective algebras and certain trivial extensions.

Let N be the set of natural numbers {0, 1, 2, . . .}. Recall that a subsetΦ of N is said to be admissible provided that 0 ∈ Φ

and that for any p, q, r ∈ Φ with p + q + r ∈ Φ we have p + q ∈ Φ if and only if q + r ∈ Φ .
As shown in [7], there are a lot of admissible subsets of N. For example, for any n ≥ 0, the set {0, 1, . . . , n} is clearly

an admissible subset of N; also, given any subset S of N containing 0, the set {xm | x ∈ S} is admissible for all m ≥ 3
(see [7, Proposition 3.1]). But, not every subset of N containing zero is admissible. A counterexample is the set {0, 1, 2, 4} or
the set {0, 1, 2, 3, 5}.

LetΦ be an admissible subset of N.
Let C be a k-category, and let F be an additive functor from C to itself. The (F ,Φ)-orbit category CF ,Φ of C is a category

in which the objects are the same as that of C, and the morphism set between two objects X and Y is defined to be

HomCF ,Φ (X, Y ) :=


i∈Φ

HomC(X, F iY ) ∈ k-Mod,

and the composition is defined in an obvious way, where k-Mod stands for the category of all vector spaces over k. SinceΦ is
admissible,CF ,Φ is an additive k-category. In particular, HomCF ,Φ (X, X) is a k-algebra (whichmay not be finite-dimensional),
and HomCF ,Φ (X, Y ) is an HomCF ,Φ (X, X)-HomCF ,Φ (Y , Y )-bimodule. Formore details, we refer the reader to [7]. In this paper,
the categoryCF ,Φ is simply called a perforated orbit category, and the algebra HomCF ,Φ (X, X) is called the perforated Yoneda
algebra of X without mentioning F andΦ .

In case C is the bounded derived category Db(A) with A a k-algebra, and F is the shift functor [1] of Db(A), we denote
simply by EΦA the (F ,Φ)-orbit category CF ,Φ , by EΦA (X, Y ) the set HomEΦA

(X, Y ), and by EΦA (X) the endomorphism algebra
HomEΦA

(X, X) of X in EΦA . The latter is called Φ-Auslander–Yoneda algebra of X . Note that each element in EΦA (X, Y ) can be
written as (fi)i∈Φ with fi ∈ HomDb(A)(X, Y [i]). The composition of morphisms in EΦA can be interpreted as follows: for each
triple (X, Y , Z) of objects in Db(A),

EΦA (X, Y )× EΦA (Y , Z) −→ EΦA (X, Z)
(fu)u∈Φ, (gv)v∈Φ


→ (hi)i∈Φ ,

where

hi :=

−
u,v∈Φ
u+v=i

fu(gv[u])

for each i ∈ Φ . Clearly, ifΦ is finite, then EΦA (X, Y ) is finite-dimensional for all X, Y ∈ A-mod.
Now, let us state some elementary properties of the Hom-functor EΦA (X,−).

Lemma 2.4. Suppose that A is an algebra, that X is an A-module, and thatΦ is a finite admissible subset of N.

(1) Let addΦA (X) stand for the full subcategory of EΦA consisting of all objects in add(AX). Then the Hom-functor EΦA (X,−) :

addΦA (X) −→ EΦA (X)-proj is an equivalence of categories;
(2) Let B be a k-algebra, and let P be a B-A-bimodule such that PA is projective. Then there is a canonical algebra homomorphism

αP : EΦA (X) −→ EΦB (P ⊗A X) defined by (fi)i∈Φ → (P ⊗A fi)i∈Φ for (fi)i∈Φ ∈ EΦA (X). Thus every left (or right) EΦB (P ⊗A X)-
module can be regarded as a left (or right) EΦA (X)-module via αP .

Proof. (1) Note that the objects of addΦA (X) are the same as the objects of add(X). Let C := addΦA (X). Then HomC(Y , Z) =

EΦA (Y , Z) for Y , Z ∈ add(X). Hence EΦA (X,−) : C −→ EndC(X)-proj is the Hom-functor HomC(X,−). Clearly, we
have rad(EndC(X)) = rad(EndA(X)) ⊕


0≠i∈Φ ExtiA(X, X) and HomC(X, Y ⊕ Z) ≃ HomC(X, Y ) ⊕ HomC(X, Z) for all

Y , Z ∈ add(X). Now, it is routine to verify that the functor in (1) is an equivalence of additive categories.
(2) Since the homomorphism αP is given explicitly, we can check (2) directly. �
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The following homological result plays an important role in proving Theorem 1.1.
Lemma 2.5. Suppose that A, B and C are k-algebras. Let AX be a module, and let AYB and BPC be bimodules with BP projective.
Then, for each i ≥ 0, we have ExtiA(X, Y ⊗B PC ) ≃ ExtiA(X, Y )⊗B PC as C

op
-modules. Moreover, for each admissible subsetΦ of

N, we have EΦA (X, Y ⊗B PC ) ≃ EΦA (X, Y )⊗B PC as EΦA (X)-C-bimodules.
Proof. First, let us recall the Yoneda product. Assume that U, Vand W are A-modules. Fix a minimal projective resolution
P•

U of AU:

· · · −→ Pn dn
−→ Pn−1

−→ · · · −→ P1 d1
−→ P0 d0

−→ U −→ 0,
with all P i projective. If g : U → V is a homomorphism, then there is a lifting of g , which is a chain map g•

: P•

U → P•

V .

Then, for each i ≥ 1, we have a short exact sequence 0 → Ω i
A(U)

λi
−→ P i−1 µi

−→ Ω i−1
A (U) → 0, which gives rise to a right

exact sequence of k-modules

HomA(P i−1, V )
(λi)∗
−→ HomA(Ω

i
A(U), V ) −→ ExtiA(U, V ) −→ 0.

Hence each element of ExtiA(U, V ) can be regarded as a homomorphism in HomA(Ω
i
A(U), V ) modulo the subspace of

HomA(Ω
i
A(U), V ) generated by all homomorphisms that factorize through λi, where i ≥ 0 and P−1

:= 0. In what follows,
we denote the image of f ∈ HomA(Ω

i
A(U), V ) by f ∈ ExtiA(U, V ).

Given i, j ∈ N, fi ∈ HomA(Ω
i
A(U), V ) and gj ∈ HomA(Ω

j
A(V ),W ), we know that the Yoneda product µ : ExtiA(U, V ) ⊗k

ExtjA(V ,W ) → Exti+j
A (U,W ) can be presented by fi ⊗k gj → Ω

j
A(fi)gj, whereΩ j

A(fi) is the j-th term of a lifting of fi. Note that
the Yoneda product is independent of the choice of a lifting of fi.

For each AW , there is a natural isomorphism θW : HomA(W , Y )⊗B PC → HomA(W , Y ⊗B PC ) of C
op
-modules, defined by

w

θW (f ⊗p)


= wf ⊗p for f ∈ HomA(W , Y ), p ∈ P, and w ∈ W . This is obtained by putting X := W ,U := Y in the second

statement of Lemma 2.2(2). In other words, we have a natural equivalence θ : HomA(−, Y )⊗B PC ≃ HomA(−, Y ⊗B PC ) of
functors from A-mod to C

op
-mod. Let

· · · −→ Q i
−→ Q i−1

−→ · · · −→ Q 1
−→ Q 0

−→ X −→ 0
be a minimal projective resolution of AX . Then, by definition, we have a right exact sequence of k-modules

HomA(Q i−1, Y ) −→ HomA(Ω
i
A(X), Y ) −→ ExtiA(X, Y ) −→ 0.

Since BP is projective, the following diagram is exact and commutative for i ≥ 0:

HomA(Q i−1, Y )⊗B PC

≀θQ i−1

��

// HomA(Ω
i
A(X), Y )⊗B PC

≀
θ
Ω i
A(X)

��

// ExtiA(X, Y )⊗B PC //

ϕi

���
�
�

0

HomA(Q i−1, Y ⊗B PC ) // HomA(Ω
i
A(X), Y ⊗B PC ) // ExtiA(X, Y ⊗B PC ) // 0,

where we set Q−1
:= 0. This induces an isomorphism ϕi : ExtiA(X, Y ) ⊗B PC → ExtiA(X, Y ⊗B PC ) defined by fi ⊗ p →

θΩ i
A(X)
(fi ⊗ p), where fi ∈ HomA(Ω

i
A(X), Y ) andp ∈ P . Clearly, ϕi is a C

op
-homomorphism for each i ≥ 0. Thus the first part

of Lemma 2.5 is proved.
Second, for each admissible subset Φ of N, we define a map ϕΦ : EΦA (X, Y ) ⊗B PC → EΦA (X, Y ⊗B PC ) by (fi) ⊗ p →

(ϕi(fi ⊗ p)), where p ∈ P , and fi ∈ HomA(Ω
i
A(X), Y ) with i ∈ Φ . By the above discussion, we know that ϕΦ is an

isomorphism of C
op
-modules. In order to prove that ϕΦ is an isomorphism of EΦA (X)-C-bimodules, it suffices to show that

ϕΦ is an isomorphism of left EΦA (X)-modules, or equivalently, we have to check that the following diagram commutes for
i, j ∈ Φ with i + j ∈ Φ:

ExtiA(X, X)⊗k Ext
j
A(X, Y )⊗B PC

µ⊗1

��

1⊗ϕj // ExtiA(X, X)⊗k Ext
j
A(X, Y ⊗B PC )

µ

��
Exti+j

A (X, Y )⊗B PC
ϕi+j // Exti+j

A (X, Y ⊗B PC ),

where µ is the usual Yoneda product. Let u ∈ HomA(Ω
i
A(X), X), v ∈ HomA(Ω

j
A(X), Y ) and p ∈ P . Then

(µ(1 ⊗ ϕj)) (u ⊗ v ⊗ p) = Ω
j
A(u) θΩ j

A(X)
(v ⊗ p) and (ϕi+j(µ⊗ 1)) (u ⊗ v ⊗ p) = θ

Ω
i+j
A (X) ((Ω

j
A(u)v)⊗ p).

By definition, for each x ∈ Ω
i+j
A (X), we get

x

Ω

j
A(u) θΩ j

A(X)
(v ⊗ p)


= x(Ω j

A(u) v)⊗ p = x

θ
Ω

i+j
A (X) ((Ω

j
A(u)v)⊗ p)


.

It follows that µ(1 ⊗ ϕj) = ϕi+j(µ ⊗ 1). This implies that ϕΦ is an isomorphism of EΦA (X)-C-bimodules. Thus the proof is
completed. �
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3. Inductions for stable equivalences of Morita type

In this section, we shall prove Theorem 1.1. First, we recall the definition of stable equivalences of Morita type in [3].

Definition 3.1. Let A and B be (arbitrary) k-algebras. We say that A and B are stably equivalent of Morita type if there is an
A-B-bimodule AMB and a B-A-bimodule BNA such that

(1) M and N are projective as one-sided modules, and
(2) M ⊗B N ≃ A ⊕ P as A-A-bimodules for some projective A-A-bimodule P , and N ⊗A M ≃ B ⊕ Q as B-B-bimodules for

some projective B-B-bimodule Q .

In this case, we say that M and N define a stable equivalence of Morita type between A and B. Moreover, we have two
exact functors TN := N ⊗A − : A-mod → B-mod and TM := M ⊗B − : B-mod → A-mod. Similarly, the bimodules P and Q
define two exact functors TP and TQ , respectively. Note that the images of TP and TQ consist of projective modules.

From now on, we assume that A, B,M,N, P and Q are fixed as in Definition 3.1, and that X is a generator for A-mod.
Moreover, we fix a finite admissible subsetΦ of N, and defineΛ := EΦA (X) and Γ := EΦB (N ⊗A X).

Since the functors TN and TM are exact, they preserve acyclicity, and can be extended to triangle functors T ′

N : Db(A) →

Db(B) and T ′

M : Db(B) → Db(A), respectively. Furthermore, T ′

N and T ′

M induce canonically two functors F : EΦA → EΦB
and G : EΦB → EΦA , respectively. More precisely, if X•

∈ Db(A), then F(X•) := (N ⊗A X i,N ⊗A diX ), and if f := (fj)j∈Φ ∈

HomEΦA
(X•, Y •)with Y •

∈ Db(A), then F(f ) := (N ⊗A fj)j∈Φ ∈ HomEΦB
(F(X•), F(Y •)). Similarly, we define the functor G.

The functor F gives rise to a canonical algebra homomorphism αN : EΦA (X
•) → EΦB (F(X

•)) for each object X•
∈ Db(A).

In particular, for any Z•
∈ Db(B), we can regard EΦB (Z

•, F(X•)) as an EΦB (Z
•)-EΦA (X

•)-bimodule via αN . Note that the
homomorphism αN coincides with the one defined in Lemma 2.4, when X• is an A-module.

Proof of Theorem 1.1. We define U := EΦA (X, TM(N ⊗A X)) and V := EΦB (N ⊗A X, TN(X)). In the following we shall prove
that U and V define a stable equivalence of Morita type betweenΛ and Γ .

First, we endow U with a right Γ -module structure by u · γ := uG(γ ) for u ∈ U and γ ∈ Γ , where uG(γ ) denotes the
composition of u with G(γ ) in the category EΦA , and endow V with a rightΛ-module structure by v · λ := vF(λ) for v ∈ V
and λ ∈ Λ. Then, U becomes aΛ-Γ -bimodule, and V becomes a Γ -Λ-bimodule.

By definition, we know V = Γ , and it is a projective left Γ -module. Since AX is a generator for A-mod and the image of
TP consists of projective modules, we conclude that TM(N ⊗A X) = M ⊗B (N ⊗A X) ≃ X ⊕ P ⊗A X ∈ add(X). Thus U is
projective as a leftΛ-module by Lemma 2.4.

(1) U ⊗Γ V , as aΛ-Λ-bimodule, satisfies the condition (2) in Definition 3.1.
Indeed,wewriteW := EΦA (X, (TMTN)(X)), and define a rightΛ-module structure onW byw·λ′

:= w(GF)(λ′) forw ∈ W
and λ′

∈ Λ. Then W becomes a Λ-Λ-bimodule. Note that there is a natural Λ-module isomorphism ϕ : U ⊗Γ V → W
defined by x ⊗ y → xG(y) for x ∈ U and y ∈ V . We claim that ϕ is an isomorphism of Λ-Λ-bimodules. In fact, it
suffices to show that ϕ respects the structure of right Λ-modules. However, this follows immediately from a verification:
for c ∈ U, d ∈ V and a ∈ Λ, we have

((c ⊗ d) · a)ϕ = (c ⊗ (dF(a))) = cG(dF(a))ϕ = cG(d)(GF)(a) = (c ⊗ d)ϕ · a.

Combining this bimodule isomorphism ϕ with Lemma 2.4, we get the following isomorphisms ofΛ-Λ-bimodules:

(∗) U ⊗Γ V ≃ EΦA (X, (TMTN)(X)) ≃ EΦA (X, X)⊕ EΦA (X, P ⊗A X) = Λ⊕ EΦA (X, P ⊗A X),

where the second isomorphism follows fromM⊗BN ≃ A ⊕ P as A-A-bimodules, andwhere the rightΛ-module structure on
EΦA (X, P ⊗A X) is induced by the canonical algebra homomorphismΛ → EΦA (P ⊗A X), which sends (fi)i∈Φ inΛ to (P ⊗A fi)i∈Φ
(see Lemma 2.4(2)).

Now, we show that EΦA (X, P ⊗A X) is a projective Λ-Λ-bimodule. In fact, since P ∈ add(AA ⊗k AA), we conclude that
EΦA (X, P ⊗A X) ∈ add(EΦA (X, (A ⊗k A) ⊗A X)). Thus, it is sufficient to prove that EΦA (X, (A ⊗k A) ⊗A X) is a projective
Λ-Λ-bimodule. For this purpose, we first note that the rightΛ-module structure on EΦA (X, (A⊗k A)⊗A X) is induced by the
canonical algebra homomorphism αA⊗kA : Λ → EΦA ((A ⊗k A)⊗A X), which sends g := (gi)i∈Φ inΛ to ((A ⊗k A)⊗A gi)i∈Φ .
Clearly, AA ⊗k A ⊗A X ∈ add(AA). It follows that ExtjA


(A ⊗k A) ⊗A X, (A ⊗k A) ⊗A X


= 0 for any j > 0, and therefore

(A ⊗k A) ⊗A gi = 0 for any 0 ≠ i ∈ Φ . Thus we have αA⊗kA(g) = (A ⊗k A) ⊗A g0. If π : Λ → EndA(X) is the canonical
projection and µ′ is the canonical algebra homomorphism EndA(X) → EndA


(A ⊗k A)⊗A X


, then αA⊗kA = πµ′. Thus the

rightΛ-module structure on EΦA (X, (A ⊗k A)⊗A X) is induced by EndA(X). Similarly, from the homomorphisms

Λ = EΦA (X)
π
−→ EndA(X)

µ
−→ EndA(A ⊗k X) = EΦA (A ⊗k X),

where µ : EndA(X) → EndA(A ⊗k X) is induced by the tensor functor A ⊗k −, we see that the rightΛ-module structure on
EΦA (X, A ⊗k X) is also induced by EndA(X). Thus EΦA (X, (A ⊗k A) ⊗A X) ≃ EΦA (X, A ⊗k X) as Λ-Λ-bimodules. Moreover, it
follows from Lemma2.5 that EΦA (X, A⊗kX) ≃ EΦA (X, A)⊗kX asΛ-EndA(X)-bimodule. Since the A-module X can be regarded
as a right Λ-module via the homomorphism π , we see that X is actually isomorphic to EΦA (A, X) as right Λ-modules. Thus
EΦA (X, A) ⊗k X ≃ EΦA (X, A) ⊗k EΦA (A, X) as Λ-Λ-bimodules. Since AA ∈ add(X), we know that EΦA (X, A) is a projective
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Λ-module and EΦA (A, X) is a projective right Λ-module. Hence EΦA (X, A) ⊗k X is a projective Λ-Λ-bimodule. This implies
that EΦA (X, P ⊗A X) is a projectiveΛ-Λ-bimodule.

(2) V ⊗Λ U , as a Γ -Γ -bimodule, fulfills the condition (2) in Definition 3.1.
Let Z := EΦB (N ⊗A X, TNTM(N ⊗A X)). Similarly, we endow Z with a right Γ -module structure defined by z ·b := z(FG)(b)

for z ∈ Z and b ∈ Γ . Then Z becomes a Γ -Γ -bimodule. Observe that, for each A-module Y , there is a homomorphism
ΨY : V ⊗Λ EΦA (X, Y ) → EΦB (N ⊗A X, TN(Y )) of Γ -modules, which is defined by g ⊗ h → gF(h) for g ∈ V and h ∈ EΦA (X, Y ).
This homomorphism is natural in Y . In other words, Ψ : V ⊗Λ EΦA (X,−) → EΦB (N ⊗A X, TN(−)) is a natural transformation
of functors from A-mod to Γ -mod. Clearly, ΨX is an isomorphism of Γ -modules. It follows from TM(N ⊗A X) ∈ add(X) that
Ψ TM (N⊗AX) : V ⊗Λ U → Z is a Γ -isomorphism. Similarly, we can check that Ψ TM (N⊗AX) preserves the structure of right Γ -
modules. Thus Ψ TM (N⊗AX) : V ⊗Λ U → Z is an isomorphism of Γ -Γ -bimodules, and there are the following isomorphisms
of Γ -Γ -bimodules:

(∗∗) V ⊗Λ U ≃ Z ≃ Γ ⊕ EΦB (N ⊗A X,Q ⊗B (N ⊗A X)),

where the second isomorphism is deduced from N ⊗A M ≃ B ⊕ Q as B-B-bimodules. By an argument similar to that in the
proof of (1), we can show that EΦB (N ⊗A X,Q ⊗B (N ⊗A X)) is a projective Γ -Γ -bimodule.

It remains to show that UΓ and VΛ are projective. This is equivalent to showing that the tensor functors TU := U ⊗Γ − :

Γ -mod → Λ-mod and TV := V ⊗Λ − : Λ-mod → Γ -mod are exact. Since tensor functors are always right exact, the
exactness of TU is equivalent to the property that TU preserve injective homomorphisms of modules. Now, suppose that
f : C → D is an injective homomorphism between Γ -modules C and D. Since EΦB (N ⊗A X,Q ⊗B (N ⊗A X)) is a right
projective Γ -module, we know from (∗∗) that the composition functor TV TU is exact. In particular, the homomorphism
(TV TU)(f ) : (TV TU)(C) → (TV TU)(D) is injective. Let µ : Ker (TU(f )) → TU(C) be the canonical inclusion. Clearly, we have
µTU(f ) = 0, which shows TV (µTU(f )) = TV (µ)(TV TU)(f ) = 0. It follows that TV (µ) = 0 and (TUTV )(µ) = 0. By (∗), we get
µ = 0, which implies that the homomorphism TU(f ) is injective. Hence TU preserves injective homomorphisms. Similarly,
we can show that TV preserves injective homomorphisms, too. Consequently, UΓ and VΛ are projective.

Thus, the bimodules U and V define a stable equivalence of Morita type between Λ and Γ . This finishes the proof of
Theorem 1.1. �

Remarks. (1) If we take Φ = {0} in Theorem 1.1, then we get [17, Theorem 1.1]. If we assume that A is a self-injective
algebra, then we get a stable equivalence of Morita type between EΦA (A ⊕ X) and EΦA (A ⊕ Ω i

A(X)) for any A-module X ,
any finite admissible subsetΦ of N, and any integer i ∈ Z. This follows from Theorem 1.1 and the fact thatΩA provides
a stable equivalence of Morita type between A and itself if A is self-injective. Thus we re-obtain the stable equivalence
of [7, Corollary 3.14].

(2) For any A-module X , we denote by proj.dim(AX) the projective dimension of X . Clearly, we have proj.dim(AX) ≤

proj.dim(AX ⊕ P ⊗A X) = proj.dim(AM ⊗B N ⊗A X) ≤ proj.dim(BN ⊗A X) ≤ proj.dim(AX). This implies that the global
and finitistic dimensions are invariant under stable equivalences of Morita type. In Section 4 of [17], it was shown that
the dominant dimension is also invariant under stable equivalences of Morita type. Thus, Theorem 1.1 asserts actually
also that these dimensions are equal for algebras EΦA (X) and EΦB (N ⊗A X).

Many important classes of algebras are of the form EndA(A ⊕ X) with A a self-injective algebra. Let k be a field with
infinitely many elements, and let V be an n-dimensional k-space and V⊗r the r-fold tensor space of V . Then the symmetric
group Sr of r letters acts on the tensor space from the right hand side by permutation. Now we assume n ≥ r . Following
[5, 2.6c], the Schur algebra S(n, r) is defined to be the endomorphism ring of the right k[Sr ]-module V⊗r . It is well known
that the Schur algebra S(n, r)with n ≥ r is Morita equivalent to Endk[Sn](k[Sn] ⊕ Y ) and has finite global dimension, where
Y is the direct sum of all non-projective Young modules. From the above remarks (see also [7, Corollary 3.14]), we may get
a series of algebras which are stably equivalent of Morita type to Schur algebras. For unexplained terminology in the next
corollary, we refer the reader to [5].

Corollary 3.2. Suppose that k is an algebraically closed field. Let Sn be the symmetric group of degree n. We denote by Y the direct
sum of all non-projective Young modules over the group algebra k[Sn] of Sn. Then,

(1) for every finite admissible subset Φ of N, the algebras EΦk[Sn](k[Sn] ⊕ Y ) and EΦk[Sn](k[Sn] ⊕ Ω i(Y )) are stably equivalent of
Morita type for all i ∈ Z.

(2) All algebras Endk[Sn](k[Sn] ⊕ Ω i(Y )) are stably equivalent of Morita type to the Schur algebra Sk(n, n). In particular,
gl.dim


Endk[Sn](k[Sn] ⊕Ω i(Y )


< ∞ for all i ∈ Z.

4. Restrictions for stable equivalences of Morita type

In this section, we shall consider the general question of how to transfer stable equivalences of Morita type between
algebras A and B over a field to the ones between eAe and fBf , where e and f are idempotent elements in A and B, respectively.
In particular, we shall prove Theorem 1.2 in this section.

Before we start with our proof of Theorem 1.2, we state the following facts, which are essentially known in the literature.
However, we would like to collect them together as a lemma for the convenience of the reader.
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Lemma 4.1. Suppose that A and B are k-algebras without semisimple direct summands. Assume that AMB and BNA define a stable
equivalence of Morita type between A and B, and that M and N do not have any projective bimodules as direct summands. Then,

(1) there are isomorphisms of bimodules: N ≃ HomA(M, A) ≃ HomB(M, B) and M ≃ HomA(N, A) ≃ HomB(N, B).
(2) Both (N ⊗A −,M ⊗B −) and (M ⊗B −,N ⊗A −) are adjoint pairs of functors.
(3) There are isomorphisms of bimodules: P ≃ HomA(P, A) and Q ≃ HomB(Q , B), where P and Q are the bimodules defined in

Definition 3.1. Moreover, the bimodules APA and BQB are projective-injective.
(4) If AI is injective, then so is the B-module N ⊗A I .

Proof. (1) Note that, if M and N are indecomposable bimodules, then all the statements in Lemma 4.1 have been proved
in [4, Theorem 2.7, Corollary 3.1, Lemma 3.2] under the hypothesis of separability on the semisimple quotient algebras
A/rad(A) and B/rad(B). One can check that they are still valid without the hypothesis of separability condition. In the
following, we shall use [14, Theorem 2.2] to show Lemma 4.1 under the weaker assumption that M and N do not have
any projective bimodules as direct summands.

Since A and B are stably equivalent of Morita type and do not have any semisimple direct summands, it follows from
[14, Proposition 2.1] that A and B have the same number of indecomposable direct summands (of two-sided ideals).
Suppose that A = A1 × A2 × · · ·× An and B = B1 × B2 × · · ·× Bn, where all Ai and all Bi themselves are indecomposable
algebras. By the proof of [14, Theorem 2.2], we know that, up to suitable reordering, for each 1 ≤ i ≤ n, there is an
Ai-Bi-bimodule Mi and a Bi-Ai-bimodule Ni such that Mi and Ni are direct summands of M and N as bimodules,
respectively, and that Mi and Ni define a stable equivalence of Morita type between Ai and Bi. Set M ′

:=


1≤i≤n Mi

and N ′
:=


1≤i≤n Ni. Clearly, M ′ and N ′ are direct summands of M and N , respectively. Further, one can check directly
that M ′ and N ′ also define a stable equivalence of Morita type between A and B. Since AMB and BNA do not have any
projective bimodules as direct summands, it follows from [16, Lemma 4.8] that M ≃ M ′ as A-B-bimodules and N ≃ N ′

as B-A-bimodules. Note that Ai and Bi are indecomposable algebras, andMi and Ni do not have any projective bimodules
as direct summands. Then, by [4, Lemma 2.1], we conclude that Mi and Ni are indecomposable bimodules. This implies
that Lemma 4.1 holds for the algebras Ai and Bi together with the bimodules Mi and Ni for each i. Consequently, there
are isomorphisms of B-A-bimodules: HomA(M, A) ≃ HomA(


1≤u≤n Mu,


1≤v≤n Av) ≃


1≤u≤n HomA(Mu, Au) ≃

1≤u≤n Nu ≃ N . Similarly, we can prove the other statements in (1).
(2) Note that the pair (N ⊗A −,M ⊗B −) is an adjoint pair of functors if and only if AMB ≃ HomB(N, B) as bimodules. Thus

(2) is a consequence of (1).
(3) It follows from the proof of [23, Lemma4.5] that the first part of (3)holds true, and that P andQ are injective as one-sided

modules. Furthermore, we claim that P is an injective bimodule. In fact, it suffices to show that, for any indecomposable
direct summand P ′ of P , the bimodule AP ′

A is injective. Since AP ∈ add(A⊗k Aop), there are primitive idempotents e1 and
e2 of A such that P ′

∈ add(Ae1 ⊗k e2A). This implies that Ae1 and e2A are injective modules because P ′ is injective as a
one-sidedmodule. Thus P ′ is an injective bimodule, and so is P . Similarly, we can prove that Q is injective as a bimodule.

(4) We observe that there is an isomorphism of B-modules: N ⊗A I ≃ HomA(M, I). SinceMB is projective and AI is injective,
we see that HomA(M, I) is an injective B-module, and so is N ⊗A I . This completes the proof of Lemma 4.1. �

By Lemma 4.1, we have the following corollary, which provides examples such that the conditions of Theorem 1.2 are
satisfied. Note that the last statement in Corollary 4.2 below follows also from the proof of [23, Lemma 4.5].

Corollary 4.2. Suppose that A and B are k-algebras. Assume that {e1, · · · , en} and {f1, . . . , fm} are complete sets of pairwise
orthogonal primitive idempotents in A and in B, respectively. Let e be the sum of all those ei for which Aei is projective-injective,
and let f be the sum of all those fj for which Bfj is projective-injective. If M and N are indecomposable bimodules that define a
stable equivalence of Morita type between A and B, then Ne ≃ N⊗AAe ∈ add(Bf ),Mf ≃ M⊗BBf ∈ add(Ae), and Pe ∈ add(Ae).

Proof of Theorem 1.2. Let us remark that if A and B have no separable direct summands, then we may assume that M and
N have no non-zero projective bimodules as direct summands. In fact, IfM = M ′

⊕M ′′ andN = N ′
⊕N ′′ such thatM ′ andN ′

have no non-zero projective bimodules as direct summands, and that M ′′ and N ′′ are projective bimodules, then it follows
from [16, Lemma 4.8] thatM ′ and N ′ also define a stable equivalence of Morita type between A and B.

Suppose that AMB and BNA do not have any non-zero projective bimodules as direct summands, and define a stable
equivalence ofMorita type between A and B. Then, it follows from Lemma4.1(2) that (M⊗B−,N⊗A−) and (N⊗A−,M⊗B−)
are adjoint pairs.

First, we note that add(Ae) = add(Mf ) and add(N ⊗A Mf ) = add(Bf ). In fact, this follows from the following equalities:
add(Ae) = add(M ⊗B N ⊗A Ae) = add(M ⊗B Bf ) = add(Mf ), and the fact that add(N ⊗A X) = add(N ⊗A add(X)) for any
A-module X .

Thus, if a statement for the idempotent element e holds true, then it can be proved similarly for f , and vice versa.
Second, we shall show that the bimodules eMf and fNe satisfy the conditions of a stable equivalence of Morita type

between eAe and fBf .

(1) fNe is projective as an fBf -module and as a right eAe-module, respectively.
In fact, we have fNe ≃ HomB(Bf , BNe) as fBf -eAe-bimodules. Since Ne ∈ add(Bf ) by the definition of f , we see

that HomB(Bf ,Ne) is projective as an fBf -module, that is, fNe is projective as an fBf -module. To see that fNe is a
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projective right eAe-module, we notice that add(Mf ) = add(M ⊗B Bf ) = add(M ⊗B Ne) = add(Ae), here we use
the assumptionM ⊗B Ne ∈ add(Ae). Since (M ⊗B −,N ⊗A −) is an adjoint pair, it follows from HomB(Bf , BN ⊗A Ae) ≃

HomA(M⊗BBf , Ae) ≃ HomA(Mf , Ae) that fNe is projective as a right eAe-module sinceMf ∈ add(Ae). Thus (1) is proved.
(2) eMf is projective as an eAe-module and as a right fAf -module, respectively. The proof of (2) is similar to that of (1), we

omit it here.
(3) eMf ⊗fBf fNe ≃ eAe ⊕ ePe as bimodules.

Indeed, by the associativity of tensor products, we have the following isomorphisms of eAe-eAe-bimodules:

eMf ⊗fBf fNe ≃ eM ⊗B Bf ⊗fBf fB ⊗B Ne
≃ eM ⊗B Bf ⊗fBf Hom(Bf , B)⊗B Ne
≃ eM ⊗B Bf ⊗fBf Hom(Bf , BNe) ( by Lemma 2.2)
≃ eM ⊗B Ne (by Lemma 2.1).

SinceM andN define the stable equivalence ofMorita type between A and B, we haveM⊗BN ≃ A⊕P as A-A-bimodules.
This implies that eMf ⊗fBf fNe ≃ eM ⊗B Ne ≃ e(A ⊕ P)e ≃ eAe ⊕ ePe as bimodules.

(4) ePe is a projective eAe-eAe-bimodule.
In fact, it suffices to show that, for any indecomposable direct summand P ′ of the A-A-bimodule P , the eAe-eAe-

bimodule eP ′e is projective. We assume eP ′e ≠ 0. Since P ∈ add(A ⊗k Aop), there are primitive idempotent elements
e1 and e2 of A such that P ′

∈ add(Ae1 ⊗k e2A). Then AP ′e ∈ add(Ae1 ⊗k e2Ae) ⊆ add(Ae1). This means that P ′e is a
direct sum of copies of Ae1. Since P ′e ∈ add(Pe) ⊆ add(Ae), we have Ae1 ∈ add(Ae). Consequently, eAe1 is a projective
eAe-module. Now, we show that e2Ae is a projective right eAe-module. Indeed, by Lemma 4.1(3), we have the following
isomorphisms of Aop-modules: eP ≃ HomA(Ae, P) ≃ HomA(Ae,HomA(P, A)) ≃ HomA(P ⊗A Ae, A) ≃ HomA(Pe, A). This
shows that eP ∈ add(eA) since APe ∈ add(Ae). Thus eP ′

∈ add(eA). Since the right A-module eP ′ is a direct sum of copies
of e2A, it follows that e2A ∈ add(eA) and e2Ae ∈ add(eAe). Consequently, e2Ae is a projective right eAe-module. Hence
eAe1 ⊗k e2Ae is a projective eAe-eAe-bimodule, and so is its direct summand eP ′e. This shows that ePe is a projective
eAe-eAe-bimodule.

(5) Similarly, we can prove that fNe ⊗ eMf ≃ fBf ⊕ fQf as bimodules, and that the fBf -fBf -bimodule fQf is projective.

Thus, by definition, the bimodules eMf and fNe define a stable equivalence of Morita type between eAe and fBf .
Finally, the last statement of Theorem 1.2 follows from Proposition 4.3 below, which emphasizes the view of functors.
Before we give the formulation of Proposition 4.3, we introduce here a few more notations: Set Λ = EndeAe(eA),

R = EndfBf (fN), Γ = EndfBf (fB), N ′
= HomfBf ((fB)Γ , fNe ⊗eAe (eA)Λ) and M ′

= HomeAe((eA)Λ, eMf ⊗fBf (fB)Γ ).
Let ϕ : A → Λ be the algebra homomorphism defined by sending a ∈ A to ϕa, where ϕa : eA → eA, ex → exa for x ∈ A.

Similarly, we define an algebra homomorphism ψ : B → Γ .
Recall that, given a diagram of functors between categories:

A
F //

H

��

B

G
��

C
K // D,

we say that this diagram is commutative if there is a natural isomorphism α : GF → KH.

Proposition 4.3. (1) The following diagram of functors is commutative

A-mod
N⊗A− //

e·

��

B-mod
M⊗B− //

f ·
��

A-mod

e·

��
eAe-mod

fNe⊗eAe− // fBf -mod
eMf⊗fBf − // eAe-mod.

In particular, fBf fNe ⊗eAe eA ≃fBf fN and eAeeMf ⊗fBf fB ≃eAe eM.
(2) We have the following commutative diagram of functors

A-mod
N⊗A− //

ΛΛ⊗A−

��

B-mod
M⊗B− //

Γ Γ⊗B−

��

A-mod

ΛΛ⊗A−

��
Λ-mod

Γ N ′
⊗Λ− // Γ -mod

ΛM ′
⊗Γ − // Λ-mod,

where the right A-module structure on Λ and the right B-module structure on Γ are induced by ϕ and ψ , respectively.
Moreover, Γ N ′

Λ and ΛM ′
Γ define a stable equivalence of Morita type betweenΛ and Γ .
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Proof. (1) To prove that the first square in (1) is commutative, it is sufficient to show that there is a natural transformation
Φ : fNe⊗eAe e(−) −→ fN ⊗A −, which is an isomorphism. Nowwe defineΦ to be the composition of the following two
natural transformations: for each X ∈ A-mod,

ΦX : fNe ⊗eAe eX
∼

−→ fN ⊗A Ae ⊗eAe eX
idfN⊗µ
−→ fN ⊗A X,

whereµ : Ae⊗eAeeX → X is themultiplicationmap. Clearly,weneed only to show that idfN⊗µ is a natural isomorphism,
that is, for each AX , we have to show that

fN ⊗A Ae ⊗eAe eX −→ fN ⊗A X

is an isomorphism.
Indeed, we shall first show that if Z ∈ A-mod and eZ = 0, then fN ⊗A Z = 0. To prove this, we observe that

fN ⊗A Z ≃ HomB(Bf ,N ⊗A Z) ≃ HomA(AM ⊗B Bf , Z), where the second isomorphism comes from the adjoint pair
(M ⊗B −, N ⊗A −). Since add(Bf ) = add(N ⊗A Ae) and Pe ∈ add(Ae), we have add(M ⊗B Bf ) = add(Ae). Thus eZ = 0
implies that fN ⊗A Z = 0. Next, we consider the exact sequence

0 −→ Ker(µ) −→ Ae ⊗eAe eX
µ

−→ X −→ X/AeX −→ 0.

Note that eKer(µ) = 0 = e(X/AeX) and that fNA ≃ fB ⊗B NA is a projective right A-module. By applying the tensor
functor fN ⊗A − to the above sequence, we deduce that

fN ⊗A Ae ⊗eAe eX
idfN⊗µ

−−−−→ fN ⊗A X

is an isomorphism. Thus we have proved the commutativity of the left square in (1).
Similarly, we can prove that the right square of the diagram in Proposition 4.3(1) commutes. In particular, we see

that fNe ⊗eAe eA ≃ fNA as fBf -A-bimodules, and eMf ⊗fBf fB ≃ eMB as eAe-B-bimodules.
(2) Note that the bimodules HomeAe(eAΛ, eMf ⊗fBf (fN)R) and HomfBf (fNR, fNe ⊗eAe (eA)Λ) have been constructed

in [17, Theorem 1.1], which induced a stable equivalence of Morita type between Λ and R. Since add(fN) = add(fB),
we see that HomfBf (fB, fN) and HomfBf (fN, fB) induce a Morita equivalence between R and Γ . As a result, N ′ and M ′

define a stable equivalence of Morita type between Λ and Γ . It can be checked directly that Γ N ′
⊗Λ ΛA ≃ Γ N ′

A and
ΛM ′

⊗Γ ΓB ≃ ΛM ′

B. So, we have

Γ N ′
⊗Λ ΛA ≃ Γ N ′

A ≃ HomfBf (fB, fNA)

≃ HomfBf (fB, fB ⊗B NA)

≃ Γ Γ ⊗B NA

and

ΛM ′
⊗Γ ΓB ≃ ΛM ′

B = HomeAe(eA, eMf ⊗fBf fBB)

≃ HomeAe(eAΛ, eMB)

≃ HomeAe(eAΛ, eA ⊗A MB)

≃ ΛΛ⊗A MB.

This implies that the diagram in (2) is commutative. Thus, we have proved Proposition 4.3. This also finishes the proof
of Theorem 1.2. �

Remarks. (1) In Theorem 1.2, the assumption that M and N do not have any projective bimodules as direct summands
is actually a very mild restriction. In fact, if M = X ′

⊕ X ′′ and N = Y ′
⊕ Y ′′ such that X ′ and Y ′ have no direct

summands of projective bimodules, and that X ′′ and Y ′′ are projective bimodules, then it follows from [16, Lemma
4.8] that the bimodules X ′ and Y ′ also define a stable equivalence of Morita type between A and B. Clearly, we have
X ′

⊗BY ′e ∈ add(Ae) and add(Y ′e) ⊆ add(Ne). Since AX ′
⊗BNe is a direct summandof AM⊗BNe, we getX ′

⊗BNe ∈ add(Ae),
and Y ′

⊗A X ′
⊗B Ne ∈ add(Y ′

⊗A Ae) = add(Y ′e). This gives Ne ∈ add(Y ′e). Hence add(Y ′e) = add(Ne). This means that
M and N in Theorem 1.2 can be replaced by the bimodules X ′ and Y ′.

(2) Note that M ⊗B Ne ∈ add(Ae) is equivalent to Pe ∈ add(Ae). In Theorem 1.2, if e is an idempotent element in A such
that every indecomposable projective-injective A-module is isomorphic to a summand of Ae, then Pe ∈ add(Ae). This
follows immediately from Lemma 4.1(3).

(3) As pointed out in [4, Section 4], if e is an idempotent in A and if f is an idempotent in B such that add(Ae) and add(Bf )
are invariant under Nakayama functors, then eAe and fBf are self-injective, and any stable equivalence of Morita type
between A and B induces a stable equivalence of Morita type between eAe and fBf . Note that we may recover this result
from Theorem 1.2 since the idempotents e and f satisfy the assumptions of Theorem 1.2 by [4, Lemma 4.1]. In general,
however, our algebras eAe and fBf in Theorem 1.2 may not be self-injective.
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Definition 4.4 ([1]). Let A be an algebra. A projective A-module W is called a minimal Wedderburn projective module if
add(νA(W )) = add(I0(A) ⊕ I1(A)), where νA is the Nakayama functor of A and 0 → A → I0(A) → I1(A) is the minimal
injective copresentation of AA. An idempotent element e ∈ A is called a minimal Wedderburn idempotent element if Ae is a
minimal Wedderburn projective module.

Auslander proved in [1] that, given e2 = e ∈ A, the canonical map ρ : A → EndeAe(eA) defined by the rightmultiplication
map is an isomorphism if and only if add(Ae) contains a minimal Wedderburn projective A-module.

The following result shows that stable equivalences of Morita type preserve minimalWedderburn projective modules or
minimal Wedderburn idempotent elements.

Lemma 4.5. Suppose that A and B are k-algebras such that A and B have no semisimple direct summands. Assume that AMB and
BNA do not possess any projective bimodules as direct summands, and induce a stable equivalence of Morita type between A and
B. Take a minimal Wedderburn idempotent e ∈ A and a minimal Wedderburn idempotent f ∈ B. Then we have

add(M ⊗B Bf ) = add(Ae) and add(N ⊗A Ae) = add(Bf ).

Proof. We assume that M ⊗B N ≃ A ⊕ P as A-A-bimodules for some projective A-A-bimodule P , and N ⊗A M ≃ B ⊕ Q as
B-B-bimodules for some projective B-B-bimodule Q . Note that, by Lemma 4.1, the images of the functors AP⊗A – and BQ⊗B
– consist of projective-injective modules.

Let 0 → A → I0 → I1 and 0 → B → J0 → J1 be minimal injective co-presentations of AA and BB, respectively. We claim
that

add(M ⊗B (J0 ⊕ J1)) = add(I0 ⊕ I1) and add(N ⊗A (I0 ⊕ I1)) = add(J0 ⊕ J1).

Clearly, for any A-module X , we have add(N ⊗A add(X)) = add(N ⊗A X). Since 0 → A → I0 → I1 is exact and NA is
projective, it follows that

0 −→ BN −→ N ⊗A I0 −→ N ⊗A I1

is exact. Since BN ⊗A DA is injective and add(BB) = add(BN), we see that add(J0 ⊕ J1) ⊆ add(N ⊗A (I0 ⊕ I1)). This
implies that add(M ⊗B (J0 ⊕ J1)) ⊆ add(M ⊗B N ⊗A (I0 ⊕ I1)). Since P ⊗A DA is projective-injective and since all
indecomposable projective-injective A-modules occur in I0, we have add(M ⊗B N ⊗A (I0 ⊕ I1)) = add(I0 ⊕ I1). Thus,
add(M ⊗B (J0 ⊕ J1)) ⊆ add(I0 ⊕ I1). Furthermore, it follows from the injectivity of the module AM ⊗B DB and add(AA) =

add(AM) that add(I0 ⊕ I1) ⊆ add(M ⊗B (J0 ⊕ J1)). Thus add(M ⊗B (J0 ⊕ J1)) = add(I0 ⊕ I1). Similarly, we can prove
that add(N ⊗A (I0 ⊕ I1)) = add(J0 ⊕ J1). Since e ∈ A and f ∈ B are minimal Wedderburn idempotents, we see that
add(I0 ⊕ I1) = add(νA(Ae)) and add(J0 ⊕ J1) = add(νB(Bf )). Consequently, add(N ⊗A νA(Ae)) = add(νB(Bf )). It follows
from N ⊗A νA(Ae) ≃ νB(N ⊗ AAe) that add(νB(N ⊗ AAe)) = add(νB(Bf )). Since the Nakayama functor νB is an equivalence
from B-proj to B-inj, we deduce that add(N ⊗A Ae) = add(Bf ). Similarly, we can show that add(M ⊗B Bf ) = add(Ae). �

In the following we shall see that stable equivalences of Morita type can be transferred to ‘‘corner’’ algebras of
Wedderburn type.

Corollary 4.6. Suppose that A and B are k-algebras such that A and B have no semisimple direct summands. Assume that AMB
and BNA have no projective bimodules as direct summands, and induce a stable equivalence of Morita type between A and B. Let
e ∈ A and f ∈ B be minimal Wedderburn idempotents. Then eMf and fNe define a stable equivalence of Morita type between eAe
and fBf such that fNe ⊗eAe eA ≃ fN and eMf ⊗fBf fB ≃ eM as bimodules.

Proof. By Lemma4.5,we see that the idempotents e and f satisfy the assumptions in Theorem1.2. Then Corollary 4.6 follows
from the first part of Theorem 1.2 together with Proposition 4.3. �

As a corollary of Corollary 4.6, we get the following result.

Corollary 4.7. Assume that A and B are k-algebras without semisimple direct summands. Let AX be a generator–cogenerator for
A-mod, and let BY be a generator–cogenerator for B-mod. If EndA(X) and EndB(Y ) are stably equivalent of Morita type, then there
exist bimodules AMB and BNA which define a stable equivalence ofMorita type between A and B such that add(AM⊗BY ) = add(AX)
and add(BN ⊗A X) = add(BY ).

Proof. Set R = EndA(X) and S = EndB(Y ). First, we show that if A does not have any semisimple direct summands, then
nor does R.

Suppose contrarily that R has a semisimple direct summand. Then R must have a simple projective-injective module
W . Since each indecomposable projective-injective R-module is isomorphic to a direct summand of HomA(X,DA), there
exists an indecomposable injective A-module I such that W ≃ HomA(X, I). Let AS be the socle of AI . Then HomA(X, S) can
be embedded into the simple R-module HomA(X, I), and therefore HomA(X, S) ≃ HomA(X, I) ≃ W as R-modules. Since
A ∈ add(X), we infer that S ≃ I . Let AP be the projective cover of AS. Then it follows fromHomR(HomA(X, P),HomA(X, S)) ≃

HomA(P, S) ≠ 0 that there is a non-zero homomorphism from HomA(X, P) to the simple projective R-module HomA(X, S),
which means that HomA(X, P) ≃ HomA(X, S). Consequently, we get P ≃ S ≃ I . Thus A has a simple projective-injective
module, and therefore it has a semisimple direct summand, which is a contradiction. This shows that R has no semisimple
direct summands. Similarly, we can prove that S has no semisimple direct summands.
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Note that, if X is a generator–cogenerator for A-mod, then HomA(X, A) is a minimal Wedderburn projective
R-module. Similarly, HomB(Y , B) is a minimal Wedderburn projective S-module. Clearly, EndR(HomA(X, A)) ≃ A and
EndS(HomB(Y , B)) ≃ B. Note that neither R nor S has semisimple direct summands. Then, by Corollary 4.6, there exist
bimodules AMB and BNA whichdefine a stable equivalence ofMorita type betweenA andB. Note thatHomR(HomA(X, A), R) ≃

AX and HomS(HomB(Y , B), S) ≃ BY . It follows from Corollary 4.6 that add(AM ⊗B Y ) = add(AX) and add(BN ⊗A X) =

add(BY ). �

Combining Corollary 4.7 with [17, Theorem 1.1], we have the following result on Auslander algebras.

Corollary 4.8. Let A and B be representation-finite k-algebras. Suppose that A and B have no semisimple direct summands. LetΛ
and Γ be the corresponding Auslander algebras of A and B, respectively. ThenΛ and Γ are stably equivalent of Morita type if and
only if so are A and B.

For an algebra A, we denote by [A] the class of all algebras B such that there is a stable equivalence ofMorita type between
B and A. It is known that [A] = [A × S] for any separable algebra S. Note that, if k is a perfect field, then the class of all
semisimple k-algebras is the same as that of all separable k-algebras.

The following result establishes a one-to-one correspondence, up to stable equivalence of Morita type, between
representation-finite algebras and Auslander algebras. This is an immediate consequence of Corollary 4.8.

Corollary 4.9. Suppose that k is a perfect field. Let F be the set of equivalence classes [A] of representation-finite k-algebras A
under stable equivalences of Morita type, and let A be the set of equivalence classes [Λ] of Auslander k-algebras Λ under stable
equivalences of Morita type. Then there is a one-to-one correspondence between F and A.

Finally, we remark that Corollary 4.8 is not true for derived equivalences. Nevertheless, it was shown in [7] that if
two representation-finite, self-injective algebras A and B are derived-equivalent then so are their Auslander algebras. The
converse of this statement is open. For further information on constructing derived equivalences, we refer the reader to the
current papers [6,7].

5. Stable equivalences of Morita type based on self-injective algebras

Of particular interest are stable equivalences of Morita type between self-injective algebras or between those related
to self-injective algebras. Since derived equivalences between self-injective algebras imply stable equivalences of Morita
type by a result of Rickard [20], this makes stable equivalences of Morita type closely related to the Broué abelian defect
group conjecture which essentially predicates a derived equivalence between two block algebras [3], and thus also a stable
equivalence of Morita type between them.

In this section, we will apply Theorems 1.1 and 1.2 to self-injective algebras. It turns out that the existence of a stable
equivalence of Morita type betweenΦ-Auslander–Yoneda algebras of generators for one finite admissible setΦ implies the
one for all finite admissible sets.

Throughout this section, we fix a finite admissible subset Φ of N, and assume that A and B are indecomposable, non-
simple, self-injective algebras. Let X be a generator for A-mod with a decomposition X := A ⊕


1≤i≤n Xi , where Xi is

indecomposable and non-projective such that Xi � Xt for 1 ≤ i ≠ t ≤ n, and let Y be a generator for B-mod with a
decomposition Y := B ⊕


1≤j≤m Yj, where Yj is indecomposable and non-projective such that Yj � Ys for 1 ≤ j ≠ s ≤ m.

Lemma 5.1. (1) The full subcategory of EΦA (X)-mod consisting of projective-injective EΦA (X)-modules is equal to add(EΦA (X, A)).
Particularly, if EΦA (X) ≠ EndA(X), then dom.dim(EΦA (X)) = 0.

(2) EΦA (X) has no semisimple direct summands.

Proof. (1) For convenience, we set Λ0 = EndA(X) andΛ = EΦA (X). Since A is self-injective, it follows from [7, Lemma3.5]
that νΛ(EΦA (X, A)) ≃ EΦA (X, νAA) ≃ EΦA (X,DA) ∈ add


EΦA (X, A)


. Consequently, EΦA (X, A) is a projective-injective

Λ-module.We claim that, up to isomorphism, each indecomposable projective-injectiveΛ-module is a direct summand
of EΦA (X, A). To prove this claim, it suffices to show that EΦA (X, Xi) is not injective for all 1 ≤ i ≤ n. We denote EΦA (X, Xi)

byXi for abbreviation.
First, we observe that rad(Λ) = rad(Λ0)⊕Λ+, whereΛ+ =


0≠i∈Φ Λi withΛi = ExtiA(X, X) = HomDb(A)(X, X[i]).

Since each summand HomDb(A)(X, X[j]) of Xi is a Λ0-module and since the socle of Xi is the set of all elements x in Xi

such that rad(Λ)x = 0, we see that the socle of Xi contains


j∈Φ{x ∈ socΛ0(Ext
j
A(X, Xi)) | Λ+x = 0}. By an argument

of graded modules, we can even see that socΛ(Xi) =


j∈Φ{x ∈ socΛ0(Ext
j
A(X, Xi)) | Λ+x = 0}.

Next, we shall show thatXm is not injective for 1 ≤ m ≤ n. Indeed, let f : Xm → I be an injective envelope of Xm with
I an injective A-module. Then f ∗ : HomA(X, Xm) → HomA(X, I) is an injective envelope of theΛ0-module HomA(X, Xm)
inΛ0-mod. Now, we consider the following two cases:
(a) If Xm = HomA(X, Xm), then Xm is annihilated by Λ+. Since Xm is not injective in A-mod, we conclude that

HomA(X, Xm) is not an injectiveΛ0-module, which implies thatXm is not injective as aΛ-module.
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(b) IfXm ≠ HomA(X, Xm), then there is a positive integer t ∈ Φ such that ExttA(X, Xm) ≠ 0. We may assume that t is
the maximal number in Φ with this property, that is, ExtsA(X, Xm) = 0 for any s ∈ Φ with t < s. It follows that
Λ+ExttA(X, Xm) = 0, which implies that 0 ≠ socΛ0(Ext

t
A(X, Xm)) ⊆ socΛ(Xm).

Nowwe consider socΛ0(HomA(X, Xm)). Since f ∗ is an injective envelope inΛ0-mod, we know that socΛ0(HomA(X, Xm))

≃ socΛ0(HomA(X, I)). Since νΛ0(HomA(X, A)) ∈ add

HomA(X, A)


and I ∈ add(AA), we see that HomΛ0(HomA(X, Xi),

socΛ0(HomA(X, I))) = 0 for 1 ≤ i ≤ n. If e is the idempotent in Λ0 corresponding to the direct summand A of X ,
then e socΛ0(HomA(X, I)) = socΛ0(HomA(X, I)). Consequently, e socΛ0(HomA(X, Xm)) = socΛ0(HomA(X, Xm)), that
is, eg = g whenever g ∈ socΛ0(HomA(X, Xm)), that is, g factorizes through the regular module AA, say g = g1g2
with g1 : X → AA and g2 : AA → Xm. Thus, for any element x ∈ HomDb(A)(X, X[i]) with 0 ≠ i ∈ Φ , we have
x · g = x(g1[i] g2[i]) = (x g1[i])g2[i] = 0 (g2[i]) = 0 since A is self-injective. Thus Λ+socΛ0(HomA(X, Xm)) = 0.
This implies that socΛ0(HomA(X, Xm)) ⊆ socΛ(Xm). Thus we have shown that theΛ-submodule socΛ0(HomA(X, Xm))⊕

socΛ0(Ext
t
A(X, Xm)) ofXm is contained in the socle ofXm. This implies thatXm is not injective since its socle is not simple.

Thus add(EΦA (X, A)) is just the full subcategory of EΦA (X)-mod consisting of projective-injective modules.
Finally, we consider the dominant dimension of dom.dim(EΦA (X)). Suppose EΦA (X) ≠ EndA(X). Since A is self-

injective, we have EΦA (X, A) = HomA(X, A). It follows that EΦA (X, A) is annihilated byΛ+. SinceΛ cannot be annihilated
byΛ+, we see thatΛ cannot be cogenerated by EΦA (X, A). This implies that dom.dim(EΦA (X)) = 0. We finish the proof.

(2) Contrarily, we suppose that the algebra EΦA (X) has a semisimple direct summand. Then EΦA (X) has a simple projective-
injective module S. According to (1), we know that S must be a simple projective-injective EndA(X)-module. Then
it follows from the first part of the proof of Corollary 4.7 that A has a semisimple direct summand. Clearly, this is
contrary to our initial assumption that A is indecomposable and non-simple. Thus EΦA (X) has no semisimple direct
summands. �

Theorem 5.2. If the algebras EΦA (X) and E
Φ
B (Y ) are stably equivalent ofMorita type, then n = mand there are bimodules AMB and

BNA which define a stable equivalence of Morita type between A and B such that, up to the ordering of indices, AM ⊗B Yi ≃ Xi ⊕ Pi
as A-modules, where APi is projective for all i with 1 ≤ i ≤ n. Moreover, for any finite admissible subset Ψ of N, there is a stable
equivalence of Morita type between EΨA (X) and EΨB (Y ).

Proof. For convenience, we setΛ0 = EndA(X), Λ = EΦA (X), Γ0 = EndB(Y ) and Γ = EΦB (Y ). By Lemma 5.1, the algebrasΛ
and Γ have no semisimple direct summands. Let e be the idempotent in Λ0 corresponding to the direct summand A of X ,
and let f be the idempotent in Γ0 corresponding to the direct summand B of Y . Note thatΛe ≃ EΦA (X, A) asΛ-modules and
Γ f ≃ EΦB (Y , B) as Γ -modules. Clearly, eΛe ≃ A and f Γ f ≃ B as algebras. Moreover, we see that eΛ ≃ X as A-modules, and
f Γ ≃ Y as B-modules. Suppose that a stable equivalences of Morita type between Λ and Γ is given. By Corollary 4.2 and
Lemma 5.1, we know that the idempotent e inΛ and the idempotent f in Γ satisfy the conditions in Theorem 1.2. It follows
from Theorem 1.2 and Proposition 4.3(1) that there are bimodules AMB and BNA which define a stable equivalence of Morita
type between A and B such that add(M ⊗B Y ) = add(X). By the given decompositions of X and Y , we conclude that n = m
and, up to the ordering of direct summands, we may assume that AM ⊗B Yi ≃ Xi ⊕ Pi as A-modules, where APi is projective
for all i with 1 ≤ i ≤ n. Now, the last statement in this corollary follows immediately from Theorem 1.1. Thus the proof is
completed. �

Usually, it is difficult to decide whether an algebra is not stably equivalent of Morita type to another algebra. The next
corollary, however, gives a sufficient condition to assert when two algebras are not stably equivalent of Morita type.

Corollary 5.3. Let n be a non-negative integer. LetW be an indecomposable non-projective A-module. Suppose thatΩ s
A(W ) ≄ W

for any non-zero integer s. Set Wn =


0≤i≤nΩ
i
A(W ). Then, for any finite admissible subset Ψ of N, the algebras EΨA (A ⊕ Wn ⊕

Ω l
A(W )) and EΨA (A ⊕ Wn ⊕Ωm

A (W )) are not stably equivalent of Morita type whenever m and l belong to N with n < m < l.

Proof. Suppose that there is a finite admissible subset Ψ of N such that EΨA (A ⊕ Wn ⊕Ωm
A (W )) and EΨA (A ⊕ Wn ⊕Ω l

A(W ))
are stably equivalent of Morita type for some fixed l,m ∈ N with n < m < l. Set Φ1 = {0, 1, . . . , n} ∪ {l} and
Φ2 = {0, 1, . . . , n} ∪ {m}. Then, by Theorem 5.2, we know that there exist bimodules AMA and ANA which define a stable
equivalence of Morita type between A and itself, and that there is a bijection σ : Φ1 → Φ2 such that M ⊗A Ω

j
A(W ) ≃

Ω
σ(j)
A (W ) ⊕ Pj as A-modules, where Pj is projective for each j ∈ Φ1. In particular, we have M ⊗A W ≃ Ω

σ(0)
A (W ) ⊕ P0.

Since M is projective as a one-sided module, we know that M ⊗A Ω
l
A(W ) ≃ Ω

σ(0)+l
A (W )⊕ P ′

l with P ′

l ∈ add(AA). Note that
M ⊗AΩ

l
A(W ) ≃ Ω

σ(l)
A (W )⊕Pl. It follows thatΩσ(0)+l

A (W ) ≃ Ω
σ(l)
A (W ). Consequently, we have σ(l) = σ(0)+ l ≥ l sinceW

is notΩ-periodic. Hence l ≤ σ(l) ≤ m < l, a contradiction. This shows that EΨA (A⊕Wn⊕Ω
m
A (W )) and EΨA (A⊕Wn⊕Ω

l
A(W ))

cannot be stably equivalent of Morita type whenever l and m ∈ N with n < m < l. �

This corollary will be used in the next section.
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6. A family of derived-equivalent algebras: Application to Liu–Schulz algebras

In this section, we shall apply our results in the previous sections to solve the following problem on derived equivalences
and stable equivalences of Morita type:

Problem. Is there any infinite series of finite-dimensional k-algebras such that they have the same dimension and are all
derived-equivalent, but not stably equivalent of Morita type?

This problem was originally asked by Thorsten Holm about ten years ago at a workshop in Goslar, Germany.
Recall that Liu and Schulz in [13] constructed a local symmetric k-algebra A of dimension 8 and an indecomposable

A-module M such that all the syzygy modules Ωn
A(M) with n ∈ Z are 4-dimensional and pairwise non-isomorphic. This

algebra A depends on a non-zero parameter q ∈ k, which is not a root of unity, and has an infinite DTr-orbit in which each
module has the same dimension. A thorough investigation of Auslander–Reiten components of this algebra was carried out
by Ringel in [22]. Based on this symmetric algebra and a recent result in [6] togetherwith the results in the previous sections,
we shall construct an infinite family of algebras, which provides a positive solution to the above problem.

From now on, we fix a non-zero element q in the field k, and assume that q is not a root of unity. The 8-dimensional
k-algebra A defined by Liu–Schulz is an associative algebra (with identity) over kwith

the generators: x0, x1, x2, and
the relations: x2i = 0, and xi+1xi + qxixi+1 = 0 for i = 0, 1, 2.

Here, and in what follows, the subscript is modulo 3.
Let n be an arbitrary but fixed natural number, and letΦ = {0} or {0, 1}. For j ∈ Z , set uj := x2 + qjx1, Ij := Auj, Jj := ujA,

I :=
n

i=0 Ii andΛ
Φ
j := EΦA (A ⊕ I ⊕ Ij).

With these notations in mind, the main result in this section can be stated as follows:

Theorem 6.1. For any m ≥ n + 4, we have

(1) dimk(Λ
Φ
m) = dimk(Λ

Φ
m+1).

(2) gl.dim(ΛΦ
m) = ∞.

(3) dom.dim(ΛΦ
m) =


2 ifΦ = {0},
0 ifΦ = {0, 1}.

(4) ΛΦ
m andΛΦ

m+1 are derived-equivalent.
(5) If l > m, thenΛΦ

l andΛΦ
m are not stably equivalent of Morita type.

An immediate consequence of Theorem 6.1 is the following corollary, which solves the above mentioned problem
positively.

Corollary 6.2. There exists an infinite series of finite-dimensional k-algebras Ai, i ∈ N, such that

(1) dimk(Ai) = dimk(Ai+1) for all i ∈ N,
(2) all Ai have the same global and dominant dimensions,
(3) all Ai are derived-equivalent, and
(4) Ai and Aj are not stably equivalent of Morita type for i ≠ j.

The proof of Theorem 6.1 will cover the rest of this section. Let us first introduce a few more notations and conventions.
Let B be an algebra and S a subset of B. Set R(S) := {b ∈ B | sb = 0 for all s ∈ S} for the right annihilator of S in B, and

L(S) := {b ∈ B | bs = 0 for all s ∈ S} for the left annihilator of S in B. In case x ∈ B, we write R(x) and L(x) for R({x}) and
L({x}), respectively. For y, z ∈ B, we set B(y, z) := {b ∈ B | L(y)bz = 0}, that is, B(y, z) = {b ∈ B | L(y)b ⊆ L(z)}. Note that
L(S) and R(S) are left and right ideals in B, respectively.

Let V be a k-vector space with yi ∈ V for 1 ≤ i ≤ n ∈ N. We denote by ⟨y1, . . . , yn⟩ the k-subspace of V generated by
all yi.

The following result is useful for our calculations, it may be of its own interest in describing the endomorphism rings of
direct sums of cyclic left ideals.

Lemma 6.3. Let B be a k-algebra, and let x , y and z be elements in B. Then the following statements hold:

(1) There is an isomorphism of k-vector spaces:

ϕx,y : HomB(Bx, By)
∼

−→ R(L(x)) ∩ By,

which sends f to xf for f ∈ HomB(Bx, By).
(2) There is an isomorphism of k-vector spaces:

θx,y : HomB(Bx, By)
∼

−→ B(x, y)/L(y),

which sends h to d + L(y) for h ∈ HomB(Bx, By), where d ∈ B such that xh = dy.
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(3) Let · be the map defined by
B(x, y)/L(y)


×

B(y, z)/L(z)


−→ B(x, z)/L(z)

a + L(y), b + L(z)


→ (a + L(y)) · (b + L(z)) := ab + L(z).

Then there is the following commutative diagram:

HomB(Bx, By)× HomB(By, Bz)

≀θx,y×θy,z

��

µx,y,z // HomB(Bx, Bz)

≀θx,z

��
(B(x, y)/L(y))× (B(y, z)/L(z)) · // B(x, z)/L(z),

where µx,y,z is the composition map.
(4) Let n be a positive integer, and let xi be elements in B for 1 ≤ i ≤ n. We define

MB(x1, x2, · · · , xn) := {(bi,j )1≤i,j≤n | bi,j ∈ B(xi, xj)/L(xj) for all 1 ≤ i, j ≤ n}.

Then MB(x1, x2, · · · , xn) becomes an associative k-algebra with the usual matrix addition and multiplication which is given
by the products · defined in (3). Moreover, there is an algebra isomorphism θ : EndB(


1≤i≤n Bxi) −→ MB(x1, x2, · · · , xn),

defined by (fij)1≤i,j≤n → ((fij)θxi xj)1≤i,j≤n for fij ∈ HomB(Bxi, Bxj).

Proof. (1) Let f ∈ HomB(Bx, By). Since f is a homomorphism of B-modules, we know b(xf ) = 0whenever b ∈ B and bx = 0.
This implies that xf ∈ R(L(x))∩ By. Thus the map ϕx,y is well-defined. It is not hard to check that ϕx,y is an isomorphism
of k-vector spaces.

(2) For x ∈ B, we denote by ρx the right multiplication map from B to itself, defined by b → bx for b ∈ B. Then there is a

canonical exact sequence of B-modules: δx : 0 → L(x)
λx

−→ B
πx

−→ Bx → 0, where λx is the inclusion, and πx is the
canonical multiplication of x. Note that if µx denotes the inclusion of Bx into B, then ρx = πxµx for all x ∈ B. By the
definition of B(x, y), an element w belongs to B(x, y) if and only if λxρwπy = 0, or equivalently, if and only if there is a
unique α ∈ HomB(Bx, By) such that ρwπy = πxα. Clearly,w ∈ L(y) if and only if ρwπy = 0. So, we have L(y) ⊆ B(x, y).

First, we show that θx,y is well-defined. In fact, if f ∈ HomB(Bx, By), then there is an element b ∈ B, which may not
be unique, such that the following diagram of left B-modules commutes:

0 // L(x)

ρ′
b

���
�
�

λx // B
πx //

ρb

���
�
� Bx

f

��

// 0

0 // L(y)
λy // B

πy // By // 0,

where ρ ′

b is the restriction of ρb to L(x). Hence b ∈ B(x, y). If there is another d in B also making the above diagram
commutative, then (ρb − ρd)πy = 0, and therefore ρb − ρd factorizes through L(y). This implies that b − d ∈ L(y) and
b + L(y) = d + L(y) in B(x, y)/L(y). Thus θx,y is well-defined.

Next, we shall prove that θx,y is an isomorphism of k-vector spaces. Indeed, if (f )θx,y = b + L(y) = 0 for some map
f ∈ HomB(Bx, By), then b ∈ L(y) and πxf = ρbπy = 0. Since πx is surjective, we get f = 0. Thus θx,y is injective. That
θx.y is surjective follows from the equivalent definitions of B(x, y) discussed above.

(3) Observe that B(x, y)B(y, z) ⊆ B(x, z), L(y)B(y, z) ⊆ L(z) and B(x, y)L(z) ⊆ L(z) for all x, y, z ∈ B. This implies that the
product in (3) is well-defined. We leave the verification of the commutative diagram in (3) to the reader.

(4) It follows from the commutative diagram in (3) that M(x1, . . . , xn) is an associative k-algebra with identity. To see that
θ is an isomorphism of algebras, we first observe that θ is a k-linear isomorphism. It remains to show that θ preserves
the multiplication. However, this follows straightforward from the commutative diagram in (3). �

Recall that, for i ∈ Z, we have defined ui := x2 + qix1, Ii := Aui and Ji := uiA. In the following lemma, we display a few
properties about the Liu–Schulz algebra A.

Lemma 6.4 ([13,22]). (1) The Liu–Schulz algebra A is an N-graded algebra, namely, A =


i≥0 Ai with

A0 = k, A1 = ⟨x0, x1, x2⟩, A2 = ⟨x0x1, x1x2, x2x0⟩, A3 = ⟨x0x1x2⟩, and Ai = 0 for all i ≥ 4.

Moreover, A2 is contained in the center of A. In particular, x0x1x2 = x1x2x0 = x2x0x1 in A.
(2) A is an 8-dimensional symmetric k-algebra.
(3) dimk(Ij) = dimk(Jj) = 4 for all j ∈ Z.
(4) ΩA(Ij) = Ij+1 andΩA(Jj+1) = Jj for all j ∈ Z.
(5) The A-modules Ij (respectively, Aop-modules Jj) are pairwise non-isomorphic for all j ∈ Z.

In the next lemma, we calculate dimensions of homomorphism groups related to the modules Ii and Ji.
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Lemma 6.5. Let i and j be integers. Then

(1) Ij has a basis {x2 + qjx1, x2x0 − qj−1x0x1, x1x2, x0x1x2}, and Jj has a basis {x2 + qjx1, x2x0 − qj+1x0x1, x1x2, x0x1x2}.
(2) L(uj) = Ij+1, R(uj+1) = Jj.
(3) Jj ≃ HomA(Ij, A).

(4) As k-vector spaces, HomA(Ij, Ii) ≃ Jj ∩ Ii =

⟨x2 + qjx1, x1x2, x0x1x2⟩ if j = i,
⟨x2x0 − qj+1x0x1, x1x2, x0x1x2⟩ if j = i − 2,
⟨x1x2, x0x1x2⟩ otherwise.

In particular, dimkHomA(Ij, Ii) =


3 if j = i or i − 2,
2 otherwise.

(5) dimkExt
1
A(Ij, Ii) =


1 if j ≤ i ≤ j + 3,
0 otherwise.

(6) A(1, ui) = A and A(ui, 1) = Ji.

(7) A(uj, ui) =


⟨1, x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩ if j = i,
⟨x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩ if j = i − 2,
⟨x0, x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩ otherwise.

Proof. (1) and (2). By definition, Ij = Auj. One can check directly that

x0uj = (−q)(x2x0 − qj−1x0x1), x2uj = −qj+1x1x2, x1uj = x1x2,

x1x2uj = x0x1x2uj = 0, x0x1uj = x0x1x2, x2x0uk = qjx0x1x2.

This implies that Ij = ⟨x2 + qjx1, x2x0 − qj−1x0x1, x1x2, x0x1x2⟩. Note that 0 → L(uj) → A → Auj → 0 is an exact sequence
of A-modules. Since uj+1uj = (x2 + qj+1x1)(x2 + qjx1) = 0, we have Ij+1 ⊆ L(uj). In addition, dimk Ij+1 = dimkL(uj) = 4. It
follows that L(uj) = Ij+1. Similarly, we can prove the other statements in (1) and (2) for Jj.

(3) It follows from (2) that R(L(uj)) = R(Auj+1) = R(uj+1) = Jj. By Lemma 6.3(1), we get an isomorphism ϕuj,1 :

HomA(Ij, A) ≃ Jj of k-vector spaces. In fact, we can check directly that ϕuj,1 is an isomorphism of Aop-modules. This proves
(3).

(4) Note that HomA(Ij, Ii) = HomA(Auj, Aui) ≃ ujA ∩ Aui = Jj ∩ Ii. To prove (4), there are three cases to be considered.
Case 1: j = i. By (1) and (2), we conclude that ⟨x2+qjx1, x1x2, x0x1x2⟩ ⊆ Ij∩ Jj. Since dimk(Ij) = 4 and x2x0−qj+1x0x1 ∉ Ij,

we get dimk(Ij ∩ Jj) = 3. As a result, Ij ∩ Jj = ⟨x2 + qjx1, x1x2, x0x1x2⟩.
Case 2: j = i − 2. Note that x2x0 − qj+1x0x1 = x2x0 − qi−1x0x1. But x2 + qjx1 /∈ Ii. It follows that Ii ∩ Jj =

⟨x2x0 − qj+1x0x1, x1x2, x0x1x2⟩.
Case 3: j ∉ {i, i − 2}. We claim that Ii ∩ Jj = ⟨x1x2, x0x1x2⟩. Obviously, ⟨x1x2, x0x1x2⟩ is contained in Ii ∩ Jj. Conversely, if

λ ∈ Ii∩Jj, then there are elements a1, a20, a21, a3, b1, b20, b21 and b3 ∈ k, such thatλ = a1(x2+qjx1)+a20(x2x0−qj+1x0x1)+
a21x1x2 + a3x0x1x2 = b1(x2 + qix1)+ b20(x2x0 − qi−1x0x1)+ b21x1x2 + b3x0x1x2. This implies that a1 = b1, a3 = b3, a20 =

b20, a21 = b21, a1qj = b1qi, and a20qj+1
= b20qi−1. Consequently, a1 = a20 = 0, which means that λ ∈ ⟨x1x2, x0x1x2⟩. Thus

Ii ∩ Jj = ⟨x1x2, x0x1x2⟩.
(5) The exact sequence 0 → Ij+1 → A → Ij → 0 of A-modules induces the following exact sequence of k-modules:

0 −→ HomA(Ij, Ii) −→ HomA(A, Ii) −→ HomA(Ij+1, Ii) −→ Ext1A(Ij, Ii) −→ 0.

By (4), we have

dimkHomA(Ij, Ii) =


3 if i ∈ {j, j + 2},
2 otherwise.

Since dimk(Ii) = 4, we have

dimkExt
1
A(Ij, Ii) =


1 if j ≤ i ≤ j + 3,
0 otherwise.

This proves (5).
(6) By definition, we know that A(1, ui) = A, and A(ui, 1) = R(ui+1) = Ji.
(7) It follows from (4) and Lemma 6.3(2) that

dimkA(uj, ui) =


7 if j = {i − 2, i},
6 otherwise.

By definition, we know that A(uj, ui) = {a ∈ A | uj+1aui = 0}. It is not hard to see that

⟨x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩ ⊆ A(uj, ui).
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Hence, if j ∉ {i − 2, i}, then A(uj, ui) = ⟨x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩. If j = i, then uj+1uj = 0, and therefore 1 ∈ A(uj, uj).
Thus A(uj, uj) = ⟨1, x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩. If j = i−2, thenwe can check that uj+1x0uj+2 = 0. Thus, x0 ∈ A(uj, uj+2).
This shows that A(uj, uj+2) = ⟨x0, x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩. �

For higher cohomological groups, we have the following estimation.

Lemma 6.6. Let t be an integer and j a positive integer. Then

(1) dimkExt
j
A(I0, It) =


1 if − 1 ≤ t − j ≤ 2,
0 otherwise.

(2) dimkExt
j
A(It , I0) =


1 if − 2 ≤ t + j ≤ 1,
0 otherwise.

(3) ExtjA(I0, I0) = 0 for j > 1.

Proof. By Lemma 6.4, we have ExtjA(I0, It) ≃ Ext1A(I0,Ω
−j+1
A (It)) ≃ Ext1A(I0, It−j+1). Now (1) follows from Lemma 6.5(5).

Similarly, we can prove (2). Clearly, (3) follows from (1) and (2). �

Here and subsequently, δj stands for the canonical exact sequence 0 → Ij+1 → A → Ij → 0 in A-mod for each j ∈ Z.

Lemma 6.7. Let l ∈ Z and n ∈ N. Then

{j ∈ Z | δj is an add(A ⊕ Il)-split sequence in A-mod} = {j ∈ Z | j > l + 2 or j < l − 3}.

In particular, we have
j ∈ Z | δj is an add


A ⊕

n
i=0

Ii


-split sequence in A-mod


= {j ∈ Z | j > n + 2 or j < −3}.

Proof. For any j ∈ Z, we know that δj is an add(A⊕ Il)-split sequence in A-mod if and only if Ext1A(Il, Ij+1) = Ext1A(Ij, Il) = 0,
which is equivalent to the condition that j + 1 ∉ [l, l + 3] and j ∉ [l − 3, l] by Lemma 6.5(5). Thus we have (1). Clearly, (2)
follows from (1) immediately. �

The following result can be directly deduced from the work in [6, Theorem 1.1] and [9, Theorem 4.1].

Lemma 6.8. Let B be a k-algebra. Let Y and M be B-modules with M a generator for B-mod. If Ext1B(M,ΩB(Y )) = Ext1B(Y ,M) =

0, then the endomorphism algebras EndB(M⊕Y ) and EndB(M⊕ΩB(Y )) are derived-equivalent. If, in addition, Ext2B(M,ΩB(Y )) =

Ext2B(Y ,M) = 0, then the {0, 1}-Auslander–Yoneda algebras E{0,1}
B (M ⊕ Y ) and E{0,1}

B (M ⊕ΩB(Y )) are derived-equivalent.

Having made the previous preparations, now we can prove Theorem 6.1.

Proof of Theorem 6.1. Letm ≥ n + 4. SetM := A ⊕ I with I =
n

i=0 Ii, and Vm := M ⊕ Im.
(1) By Lemma 6.5(5), we know that Ext1A(M, Im) = Ext1A(Im,M) = 0. Clearly, we have

dimk(Λ
{0}
m ) = dimkEndA(M)+ dimkHomA(M, Im)+ dimkHomA(Im,M)+ dimkEndA(Im)

and

dimk(Λ
{0,1}
m ) = dimk(Λ

{0}
m )+ dimkExt

1
A(M,M)+ dimkExt

1
A(Im, Im).

By Lemma 6.5, we get

dimkEndA(Im) = 3, dimkExt
1
A(Im, Im) = 1, dimkHomA(M, Im) = dimkHomA(Im,M) = 2n + 6.

It follows that dimk(Λ
Φ
m) = dimk(Λ

Φ
m+1).

(2) We first show that gl.dim(Λ{0}
m ) = ∞. By Lemma 6.5(5), we have Ext1A(Vm, Ij) = 0 for any j < 0. Note that, for any

t < j < 0, there is a long exact sequence

0 −→ Ij −→ A −→ A −→ · · · −→ A −→ It −→ 0.

It follows that the induced sequence

0 −→ HomA(Vm, Ij) −→ HomA(Vm, A) −→ · · · −→ HomA(Vm, A) −→ HomA(Vm, It) −→ 0

is exact. Since HomA(Vm, A) is a projective-injective indecomposable Λ{0}
m -module, we have inj.dim

Λ
{0}
m
HomA(Vm, Ij) = ∞

for all j < 0, where inj.dim denotes the injective dimension of modules. Hence gl.dim(Λ{0}
m ) = ∞. Note that there is a
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canonical surjective homomorphism π : Λ
{0,1}
m → Λ

{0}
m of algebras. Thus every Λ{0}

m -module can be regarded as a Λ{0,1}
m -

module. In addition, E{0,1}
A (Vm, A) = HomA(Vm, A). It follows that inj.dim

Λ
{0,1}
m

HomA(Vm, Ij) = ∞ for all j < 0. This yields

gl.dim(Λ{0,1}
m ) = ∞.

(3) Recall a classical result on dominant dimension: Let B an algebra and Y be a generator–cogenerator for B-mod. Suppose
that s is a non-negative integer. Then dom.dim(EndB(Y )) = s + 2 if and only if ExtiB(Y , Y ) = 0 for all i with 1 ≤ i ≤ s, but
Exts+1

B (Y , Y ) ≠ 0. In our case, we take Y := Vm and s = 0. By Lemma 6.5(5), we know that Ext1A(I0, I0) ≠ 0, which means
that Ext1A(Vm, Vm) ≠ 0. Note that Vm is a generator–cogenerator for A-mod. Thus dom.dim(Λ{0}

m ) = 2. By Lemma 5.1, we
have dom.dim(Λ{0,1}

m ) = 0.
(4) Consider the exact sequence

δm : 0 −→ Im+1 −→ A −→ Im −→ 0

in A-mod. Sincem ≥ n + 4, it follows from Lemmas 6.5(5) and 6.4(4) that Ext1A(M, Im+1) = Ext1A(Im+1,M) = Ext1A(Im,M) =

Ext1A(M, Im) = 0. Note that A is self-injective. By Lemma 6.8, we conclude that the algebras ΛΦ
m and ΛΦ

m+1 are derived-
equivalent forΦ = {0} or {0, 1}.

(5) It follows from Lemma 6.4 that ΩA(Ij) = Ij+1 for each j ∈ Z and that the A-modules Ij are pairwise non-isomorphic
for all j ∈ Z. Now, we define W := I0 and Wn := ⊕0≤j≤nIj. Then, by Corollary 5.3, the algebras ΛΦ

l and ΛΦ
m are not stably

equivalent of Morita type if l > m. Thus the proof is completed. �

In the rest of this section, we consider the special case: n = 0 and Φ = 0 in Theorem 6.1. For convenience, we set
Λm := EndA(A⊕I0⊕Im) form ∈ Z, anddefineC := ⟨1, x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩, T := ⟨x1, x2, x0x1, x1x2, x2x0, x0x1x2⟩,
and S := T ⊕ ⟨x0⟩. Note that they all are subspaces of A.

Proposition 6.9. Let m be an integer. Then
(1) If m ≠ 2, thenΛm is isomorphic to the algebra

MA(1, u0, um) :=

A A/I1 A/Im+1
J0 C/I1 T/Im+1
Jm T/I1 C/Im+1


.

(2)Λ2 is isomorphic to the algebra

MA(1, u0, u2) :=

A A/I1 A/I3
J0 C/I1 S/I3
J2 T/I1 C/I3


.

(3) Suppose m ≥ 3. Then, for any l > m, the algebrasΛl andΛm are derived-equivalent, but not stably equivalent of Morita
type.

Proof. (1) and (2) follow easily from Lemmas 6.3(4) and 6.5, while (3) can be concluded from Lemmas 6.7, 6.8 and
Corollary 5.3. �

For each positive integerm ≥ 3, the algebraΛm is given by the following quiver Q with relations ρm:

Q : •

γm //
•

δ3 1
oo

α

�� β //
•

γ0 2
oo

ρm : α2
= γ0βγ0αβ = γmαδγmδ = 0;
αβγ0
αδγm


=

1
q − qm+1


qm+2

− 1 1 − q2

qm+2
− qm qm − q2


βγ0α
δγmα


;

βγ0β

1 − q
=

δγmβ

qm − q
,

βγ0δ

1 − qm+1
=

δγmδ

qm − qm+1
;

γ0βγ0

1 − q
=

γ0δγm

1 − qm+1
,

γmβγ0

qm − q
=

γmδγm

qm − qm+1
.

The Cartan matrix ofΛm form ≥ 3 is

C =

8 4 4
4 3 2
4 2 3


,

which is symmetric. Moreover, there is an anti-automorphism onΛm for (m ≥ 3), which is given by

e1 → e1, e2 → e3, e3 → e2, β → γm, γm → qmβ, α → α, δ → γ0, γ0 → δ.
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It follows from Proposition 6.9 thatΛt , t ≥ 3, are pairwise derived-equivalent, but not stably equivalent of Morita type.
Note that the Cartan matrix of Λ2 is not symmetric. Thus Λ2 is not derived-equivalent to Λm for m ≥ 3 since the

Cartan matrices of two derived-equivalent algebras are congruent over Z, and therefore derived equivalences preserve the
symmetry of Cartan matrices. We don’t know whetherΛ1 andΛ3 are derived-equivalent or not.

It would be interesting to show that the family of algebras in Theorem 6.1 or in Proposition 6.9 are pairwise not stably
equivalent.
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