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Abstract. Tachikawa’s second conjecture predicts that a finitely generated,
self-orthogonal module over a finite-dimensional self-injective algebra is pro-
jective. This conjecture is an important part of the Nakayama conjecture.
Our principal motivation of this work is a systematic understanding of finitely
generated, self-orthogonal generators over a self-injective Artin algebra from
the view point of stable module categories. Consequently, we give equivalent
characterizations of Tachikawa’s second conjecture in terms of M -Gorenstein
categories, and establish a recollement of the M -relative stable categories for a
self-orthogonal generator M . Further, we show that the Nakayama conjecture
holds true for Gorenstein-Morita algebras.
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1. Introduction

Since about half a century homological conjectures form a core set of problems in
representation theory and homological algebra of finite-dimensional algebras. One
of the most prominent conjectures in this system of closely related conjectures is
the Nakayama conjecture posed by Nakayama in [29].

(NC) If a finite-dimensional algebra over a field has infinite dominant dimension,
then it is self-injective.
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This conjecture has been verified for a few classes of algebras, for which the
conjecture could be checked more or less directly by clever computations (see [19,
21,22]). Despite many efforts, taking various approaches, very little is known about
the homological conjectures and in particular about Nakayama’s conjecture.

To deal with the conjecture, Tachikawa proposed another two homological con-
jectures (see [35]), they are now called Tachikawa’s first and second conjectures.

(TC1) If a finite-dimensional algebra A over a field k satisfies ExtnA(D(A), A) = 0
for all n ≥ 1, then A is self-injective, where D = Homk(−, k) is the usual
duality.

(TC2) Let A be a finite-dimensional self-injective algebra and M a finitely gener-
ated A-module. If M is self-orthogonal, that is, ExtnA(M,M) = 0 for all
n ≥ 1, then M is projective.

Concerning (TC1) and (TC2), there are only a few cases verified. For instance,
(TC1) holds for algebras of radical cube zero [23], special local algebras and com-
mutative algebras (see [2] and [4, 21], respectively), while (TC2) holds true for
self-injective algebras of finite representation type, symmetric algebras with radical
cube zero, and local self-injective algebras with radical cube zero (see [22, 34, 35],
respectively). For further information on these conjectures, we refer to [5, 39].

The validity of both (TC1) and (TC2) is equivalent to the one of (NC). Moreover,
by a result of Mueller [28], a pair (A,M), with A a self-injective algebra and M
a finitely generated A-module, satisfies (TC2) if and only if the endomorphism
algebra EndA(A⊕M) satisfies (NC).

Thus it is of significant interest to understand self-orthogonal modules of the
form A ⊕ M for a self-injective algebra A and finitely generated A-modules M .
Generally, self-orthogonal modules of the form B⊕Y over an Artin algebra B with
Y a finitely generated B-module are termed self-orthogonal generators.

In this paper, we investigate self-orthogonal generators over self-injective alge-
bras from the point of view of stable categories. More precisely, we first establish
a general theory for arbitrary (not necessarily self-orthogonal) generators by con-
structing two pairs of triangle endofunctors for stable module categories, and then
establish specially a recollement of the relative stable categories for a self-orthogonal
generator. Finally, we describe compact objects of the right term of the recollement
by the heart of a torsion pair in the stable module category. Based on these investi-
gations, we give equivalent characterizations of (TC2) and show that the Nakayama
conjecture holds true for Gorenstein-Morita algebras.

1.1. Equivalent characterizations of Tachikawa’s second conjecture. In
this section, we present our equivalent characterizations of (TC2) in terms of per-
pendicular categories or special modules associated with self-orthogonal generators.
We then introduce the notion of Gorenstein-Morita algebras and state one of our
main results, namely (NC) holds for Gorenstein-Morita algebras.

We begin with recalling a few notation and terminology.
Let A be an Artin algebra. We denote by A -Mod (respectively, A -mod) the

category of (respectively, finitely generated) left A-modules, by D the usual duality
on A -mod and by νA the Nakayama functor AD(A) ⊗A −. For M ∈ A -Mod, let
Add(M) (respectively, add(M)) be the full subcategory of A -Mod consisting of
direct summands of (respectively, finite) direct sums of copies of M , and let M⊥1

be the full subcategory of A -Mod consisting of modules X with Ext1A(M,X) = 0.
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We say that M is self-orthogonal if ExtiA(M,M) = 0 for all i ≥ 1; Nakayama-
stable if add(M) = add(νA(M)); and a generator if A ∈ add(M). Clearly, AA is
Nakayama-stable if A is a self-injective algebra. Every module over a symmetric
algebra A (that is, A � D(A) as A-A-bimodules) is Nakayama-stable. Further, we
denote by Ω−

A(M) the cokernel of an injective envelope M ↪→ E of M with E an
injective A-module.

Let A be a self-injective algebra, M ∈ A -mod a self-orthogonal generator and
Λ := EndA(M). Our strategy is to understand the relation between the category
of Gorenstein-projective Λ-modules and the perpendicular category G of M , where

G := {X ∈ A -Mod | ExtnA(M,X) = 0 = ExtnA(X,M) for all n ≥ 1}
consists of A-modules that are left and right orthogonal to AM . These two cate-
gories are all Frobenius and equivalent (see Lemma 3.17). This builds a new bridge
between (TC2) and (NC). Following [33], G is called an M -Gorenstein subcategory
in A -Mod. Then the quotient category of G modulo Add(AM), denoted by

C := G /[M ],

is a triangulated category and equivalent to the stable category of Gorenstein-
projective Λ-modules. The category C is called an M -Gorenstein stable category.
In particular, if M = A, then C is the usual stable module category of A, denoted
by A-Mod.

Next, we introduce two classes of A-modules determined by M .

Definition 1.1. Let X be an A-module.

(i) X is M -compact if it is a compact object in the category C , that is, X ∈ G
and the functor HomC (X,−) : C → Z -Mod commutes with coproducts.

(ii) X is M -filtered if it has a filtration 0 = X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xn ⊆ · · · ⊆
X in A -Mod such thatX =

⋃∞
n=0 Xn and the subquotientXn+1/Xn ofX is

isomorphic to a finite direct sum of A-modules in the set {AA}∪{Ω−i
A (M) |

i ∈ N} for n ∈ N. If X = Xn for an integer n in the filtration, then X is
said to be finitely M -filtered.

Finitely generated modules in G are M -compact, and finitely M -filtered A-
modules are exactly finitely generated, M -filtered A-modules. Further, M -compact,
finitely M -filtered A-modules lie in add(M) by Lemma 4.16. Clearly, A-compact
modules are exactly A-modules that are isomorphic in A-Mod to finitely generated
modules.

Now, our characterizations of (TC2) for Nakayama-stable generators read as
follows.

Theorem 1.2. Let A be a self-injective Artin algebra and M a self-orthogonal and
Nakayama-stable generator for A -mod. The following are equivalent.

(1) M is a projective A-module.
(2) G coincides with the full subcategory of A -Mod consisting of all filtered

colimits of finitely generated modules in G .
(3) Any M -compact and M -filtered A-module lies in Add(M).
(4) The minimal left G -approximation W of Ω−

A(M) is a filtered colimit of
finitely generated modules in G .

(5) The minimal left G -approximation W of Ω−
A(M) has the property: the cat-

egory W⊥1 is closed under countable direct sums in A -Mod of finitely M -
filtered A-modules.
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In Theorem 1.2, (2) is equivalent to saying that the algebra Λ is virtually Goren-
stein (see Proposition 3.18) in the sense of Beligiannis; Add(M) contains finitely
generated, M -compact and M -filtered A-modules; (4) and (5) hold true if the mod-
ule W is the direct sum of finitely generated A-modules. Moreover, Theorem 1.2
implies that (TC2) holds for symmetric algebras of finite representation type be-
cause (2)-(5) in Theorem 1.2 are satisfied. This can be seen from a classical result,
due to Auslander and Ringel–Tachikawa, that any module over an Artin algebra
of finite representation type is a direct sum of finitely generated modules. Thus
Theorem 1.2 provides a different approach to studying (TC2).

1.2. Nakayama conjecture for Gorenstein-Morita algebras. As indicated by
the relation between (TC2) and (NC), we can apply Theorem 1.2 to discuss (NC)
for strongly Morita algebras which are, by definition, the endomorphism algebras of
Nakayama-stable generators over self-injective algebras. For this purpose, we focus
on two classes of modules that are associated with compact objects in some stable
categories. This leads to introducing the notions of compactly Gorenstein algebras
and Gorenstein-Morita algebras in terms of these modules.

Definition 1.3. Let B be an Artin algebra and Y a B-module.

(i) The B-module Y is compactly filtered if it has a filtration 0 = Y0 ⊆ Y1 ⊆
Y2 ⊆ · · · ⊆ Yn ⊆ · · · ⊆ Y of B-modules such that Y =

⋃∞
n=0 Yn and the

subquotient Yn+1/Yn of Y is isomorphic to a finitely generated B-module
of finite projective dimension for all n ∈ N; and compactly Gorenstein-
projective if it is a compact object in the stable category of Gorenstein-
projective B-modules.

(ii) The algebra B is compactly Gorenstein if any compactly filtered, compactly
Gorenstein-projective B-module is projective; and Gorenstein-Morita if B
is both strongly Morita and compactly Gorenstein.

Clearly, finitely generated and compactly filtered modules are exactly finitely
generated modules of finite projective dimension, while finitely generated Goren-
stein-projective modules are compactly Gorenstein-projective. Compactly Goren-
stein algebras include virtually Gorenstein algebras (see [10, 11]) and algebras of
finite finitistic dimension (see Lemma 5.1). Moreover, compactly Gorenstein alge-
bras over a field are closed under derived equivalences and stable equivalences of
adjoint type by Corollary 5.3. Since the Nakayama functor of a symmetric algebra
is the identity functor, strongly Morita algebras capture gendo-symmetric algebras
which are, by definition, the endomorphism algebras of generators over symmet-
ric algebras (see [17, 20]). Examples of gendo-symmetric algebras include Hecke
algebras, (quantized) Schur algebras, and blocks of the Bernstein-Gelfand-Gelfand
category O of semisimple complex Lie algebras.

As a consequence of Theorem 1.2, we show that (NC) holds for Gorenstein-Morita
algebras.

Corollary 1.4. Let B be a Gorenstein-Morita algebra. If B has infinite dominant
dimension, then it is self-injective. In particular, any gendo-symmetric, virtually
Gorenstein algebra with infinite dominant dimension is symmetric.

As is known, not all Artin algebras are virtually Gorenstein (see [13]), however,
we would like to conjecture that all Artin algebras are compactly Gorenstein. If



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

HOMOLOGICAL THEORY OF SELF-ORTHOGONAL MODULES 7291

this is true, then (NC) holds for strongly Morita algebras, and in particular for
gendo-symmetric algebras.

In [18], we discuss (TC2) for symmetric algebras in terms of recollements of
derived module categories and stratifying ideals of algebras. Consequently, it is
shown that the validity of (TC2) for symmetric algebras is equivalent to saying that
no indecomposable symmetric algebras have stratifying ideals apart from themselves
and 0.

1.3. Recollements of relative stable categories from self-orthogonal
modules. To prove Theorem 1.2, we first investigate an arbitrary (not necessarily
self-orthogonal) generator over a self-injective algebra, and construct two pairs of
triangle endofunctors for the stable module category of the self-injective algebra.
This enables us to establish a recollement of the relative stable categories for a
self-orthogonal generator. By employing the heart of a torsion pair in the stable
module category, we then characterize the compact objects of the right term of this
recollement.

Let A be a self-injective algebra and M a generator for A -mod. For a full sub-
category X of A -Mod, we denote by X /[M ] the quotient category of X modulo
Add(M). In particular, A -Mod /[A] is the stable module category A-Mod. For
simplicity, we denote by Hom(X,Y ) the Hom-set in A-Mod for A-modules X and
Y , and define Γ := EndA(M), called the stable endomorphism algebra of AM . Let

M⊥ := {X ∈ A-Mod | HomA(M,X[n]) = 0 for all n ∈ Z}.

Given the pair (A,M), we construct explicitly two pairs of triangle endofunctors of
A-Mod (see Section 3.2 for details):

(Φ,Ψ) and (Φ′,Ψ′) : A-Mod −→ A-Mod,

and define S := {X ∈ A -Mod | Ψ(X) = 0}. If AM is additionally self-orthogonal
or Ω-periodic (that is, Ωn

A(X) � X in A-Mod for a positive integer n), then S
is the smallest thick subcategory of A -Mod containing M and being closed under
direct sums (see Corollary 3.13), and the above endofunctors contribute to building
the recollement of A-Mod in Theorem 3.14. Note that S contains all projective
A-modules and the quotient S , as a full subcategory of A-Mod, is well defined.

Now, suppose that M is a self-orthogonal and Nakayama-stable generator for
A -mod. Further, we consider the following two categories associated with M :

H := {X ∈ S | HomA(M,X[n]) = 0 for n 
= 0} and

E := {X ∈ G | HomA(M,X), HomA(M [1], X) ∈ Γ -mod},

where H is the heart of a torsion pair in A-Mod determined by M , and thus an
abelian category (see the beginning of Section 4).

The main result on constructing recollements of relative stable categories reads
as follows.

Theorem 1.5. Let A be a self-injective Artin algebra and M a self-orthogonal and
Nakayama-stable generator for A -mod. Then the following hold.

(1) There exists a recollement of triangulated categories:

M⊥ �� C��
��

��

��
(G ∩ S )/[M ]����

��
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7292 HONGXING CHEN AND CHANGCHANG XI

(2) The recollement in (1) restricts to a recollement of triangulated categories:

M⊥ �� E /[M ]��
��

��

��
(E ∩ S )/[M ].

����

��

(3) dim
(
(E ∩S )/[M ]

)
≤ min{2 LL(Γ)−1, 2 gl. dim(Γ)+1}, where LL(Γ) and

gl. dim(Γ) denote the Loewy length and global dimension of the algebra Γ,
respectively, and where dim(T ) is the dimension of a triangulated category
T .

Of importance are the compact objects for triangulated categories. Since C is
compactly generated, it follows from basic properties of recollements that M⊥ has
compact objects. It seems, however, to be unclear that (G ∩ S )/[M ] has compact
objects. In the following, we gives a complete description of its compact objects
(see also Corollary 4.18 for details).

Let T be a triangulated category and U a set of objects in T . For integers i ≤ j

and n ≥ 0, we denote by 〈U〉[i,j]n+1 the full subcategory of T consisting of all objects
obtained by taking (n+1)-fold extensions of finite direct sums of objects in the set
{U [−s] | U ∈ U , s ∈ Z, i ≤ s ≤ j}.

Proposition 1.6. Let A be a self-injective Artin algebra and M a self-orthogonal
and Nakayama-stable generator. Then the following hold.

(1) Each object X of E ∩ S is M -compact and isomorphic in A-Mod to an
M -filtered module. Moreover, X ∈ E ∩ S is finitely generated if and only
if X ∈ add(AM).

(2) The category (G ∩ S )/[M ] is a compactly generated triangulated category
and has (E ∩S )/[M ] as its full subcategory consisting of all compact objects.

(3) Let S be the set of isomorphism classes of simple objects of H , and let n be
the Loewy length of the algebra Γ. Then S is a finite set,

(
G ∩ S

)
/[M ] =

〈Add(S)〉[−1,0]
2n and (E ∩ S )/[M ] = 〈S〉[−1,0]

2n .

Under the assumption of Theorem 1.5, the module AM is projective if and only
if (G ∩ S )/[M ] = 0 if and only if (E ∩ S )/[M ] = 0 (see Corollary 4.9). Thus
(TC2) is true for the pair (A,M) exactly when the recollements in Theorem 1.5 are
trivial. Hence, to construct a counterexample to (TC2), our results, Theorem 1.5
and Proposition 1.6, provide necessary homological information on self-orthogonal
modules.

1.4. Overview of the contexts. The contents of this article are sketched as fol-
lows. In Section 2 we briefly recall definitions of quotient categories, recollements
and Gorenstein-projective modules over algebras. In Section 3 we construct two
pairs of triangle endofunctors of the stable module category A-Mod for a self-
injective algebra A with a generator AM . With these endofunctors, we establish
the recollement in Theorem 3.14 of A-Mod determined by M . Moreover, we show
that the subcategory G of A -Mod relative to M is equivalent to the category of
Gorenstein-projective modules over the endomorphism algebra of M (see Lemma
3.17). In Section 4 we prove Theorem 1.5 and establish a representability theo-
rem for a series of homological functors (see Theorem 4.14). In Section 5 we show
Theorem 1.2 and Corollary 1.4.
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2. Preliminaries

In this section we briefly recall definitions, basic facts and notation used in this
paper.

2.1. Quotient categories and recollements. Let C be an additive category.
A full subcategory B of C is always assumed to be closed under isomorphisms,

that is, if X ∈ B and Y ∈ C with Y � X, then Y ∈ B.
Let X be an object in C. The full subcategory of C consisting of all direct

summands of finite coproducts of copies of X is denoted by add(X). If C admits
coproducts (that is, coproducts indexed over sets exist in C), then Add(X) denotes
the full subcategory of C consisting of all direct summands of coproducts of copies
of X. Dually, if C admits products, then Prod(X) denotes the full subcategory of
C consisting of all direct summands of products of copies of X.

For morphisms f : X → Y and g : Y → Z in C, the composition of f and g is
written by fg, a morphism from X to Z. The induced morphisms HomC(Z, f) :
HomC(Z,X) → HomC(Z, Y ) and HomC(f, Z) : HomC(Y, Z) → HomC(X,Z) are
denoted by f∗ and f∗, respectively.

For functors F : C → D and G : D → E , the composition of F and G is
denoted by G ◦ F which is a functor from C to E . Let Ker(F ) and Im(F ) be the
kernel and image of the functor F , respectively. In particular, Ker(F ) is closed
under isomorphisms in C. In this paper, we require that Im(F ) is closed under
isomorphisms in D.

Suppose that B is a full subcategory of C. A morphism f : X → Y in C is
called a right B-approximation of Y if X ∈ B and HomC(B, f) : HomC(B,X) →
HomC(B, Y ) is surjective for any B ∈ B; and right minimal if α ∈ EndC(X) is an
isomorphism whenever f = αf . If f is both a right minimal morphism and a right
B-approximation of Y , then f is called a minimal right B-approximation of Y . In
this case, the object X is unique up to isomorphism and is called the minimal right
B-approximation of Y (without mentioning f). If each object of C admits a right
B-approximation, then B is said to be contravariantly finite in C. Dually, there are
the notions of (minimal) left approximations and covariantly finite subcategories
in C. If B is both contravariantly and covariantly finite in C, then it is said to be
functorially finite in C.

We recall Wakamatsu’s Lemma (see [7, Proposition 1.3]): Let S be a class of
R-modules over a ring R closed under extensions. If f : C → X is a minimal
right S-approximation of an R-module X, then Ext1R(L,Ker(f)) = 0 for L ∈ S.
Dually, if g : X → C ′ is a minimal left S-approximation of an R-module X, then
Ext1R(Coker(g),M) = 0 for M ∈ S.

Next, we recall the definition of quotient categories of additive categories.
Let D be a full subcategory of C. Denote by C/D the quotient category of C

modulo D. It has the same objects as C, but its morphism set for any two objects
X and Y is given by HomC/D(X,Y ) := HomC(X,Y )/D(X,Y ) where D(X,Y ) is the
subgroup of HomC(X,Y ) consisting of all morphisms factorizing through objects in
D. The canonical quotient functor q : C → C/D sends a morphism f : X → Y in C
to f +D(X,Y ) in C/D. Clearly, if C is idempotent complete, then Ker(q) consists
of all direct summands (in C) of objects of D.

Suppose that C admits coproducts. An object X is said to be compact in C if
the functor HomC(X,−) from C to the category of abelian groups commutes with
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coproducts. The full subcategory of C consisting of compact objects is denoted by
Cc. A set U of objects of C is called a compact generating set of C if each object of
U is compact in C and an object X ∈ C is zero whenever HomC(U,X) = 0 for all
U ∈ U . When C is a triangulated category, it is said to be compactly generated if
it has a compact generating set. If U is a set of compact objects of C closed under
shifts, then U is a compact generating set of C if and only if C itself is the smallest
full triangulated subcategory of C containing U and being closed under coproducts.

The following result is elementary.

Lemma 2.1.

(1) Let C and D be additive categories, and let X ⊆ C and Y ⊆ D be full
subcategories. Suppose that F : C → D and G : D → C form an adjoint
pair (F,G) of additive functors. If F (X ) ⊆ Y and G(Y) ⊆ X , then the
adjoint pair (F,G) induces an adjoint pair (F0, G0) of additive functors
F0 : C/X → D/Y and G0 : D/Y → C/X .

(2) Suppose that an additive category C admits coproducts and X is a full sub-
category of C closed under coproducts. Then C/X admits coproducts, and
the quotient functor C → C/X preserves coproducts and compact objects.

We denote by C (C) the category of all complexes over C with chain maps, and
K (C) the homotopy category of C (C). For a chain map f• : X• → Y • in C (C),
we denote by Con(f•) the mapping cone of f•. There is a distinguished triangle
X• → Y • → Con(f•) → X•[1] in K (C). When C is a full subcategory of an abelian
category A, we denote by Kac(C) the full subcategory of K (A) consisting of acyclic
complexes of C. Clearly, if f• is a quasi-isomorphism, then Con(f•) is acyclic. If
C is an abelian category, we denote by D(C) the unbounded derived category of
C, which is the localization of K (C) by inverting all quasi-isomorphisms. Clearly,
K (A) and D(C) are triangulated categories.

Next, we recall the notion of recollements of triangulated categories, introduced
in [9] for studying derived categories of perverse sheaves over singular spaces.

Definition 2.2. Let T , T ′ and T ′′ be triangulated categories. T is called a rec-
ollement of T ′ and T ′′ (or there is a recollement among T ′, T and T ′′) if there are
six triangle functors

T ′′ i∗=i! �� T j!=j∗ ��

i!

��

i∗

		
T ′

j∗

��

j!





among the three categories such that

(1) (i∗, i∗), (i!, i
!), (j!, j

!) and (j∗, j∗) are adjoint pairs,
(2) i∗, j∗ and j! are fully faithful functors,
(3) j!i! = 0 (and thus also i!j∗ = 0 and i∗j! = 0), and
(4) for an object X ∈ T , there are two triangles i!i

!(X) → X → j∗j
∗(X) →

i!i
!(X)[1] and j!j

!(X) → X → i∗i
∗(X) → j!j

!(X)[1] in T induced by the
counits and units of the adjunctions, where [1] denotes the shift functor
of T .

By a half recollement among T ′, T and T ′′, we mean that i∗, i∗, j! and j! satisfy
the corresponding properties (1)-(4) involved in Definition 2.2. Note that there
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is a one-to-one correspondence between equivalence classes of half recollements
(respectively, recollements) of triangulated categories and hereditary torsion pairs
(respectively, TTF triples) of triangulated categories. Recall that a torsion pair in
T is a pair (X ,Y) of full subcategories X ,Y of T satisfying the three conditions:

(a) HomT (X,Y ) = 0 for X ∈ X and Y ∈ Y ;
(b) X [1] ⊆ X and Y [−1] ⊆ Y ; and
(c) for any M ∈ T , there is a triangle X → M → Y → X[1] in T with X ∈ X

and Y ∈ Y .

A torsion pair (X ,Y) of T is said to be hereditary if X (or equivalently, Y) is a
full triangulated subcategory of T . In this case, the inclusion X → T has a right
adjoint, the inclusion Y → T has a left adjoint, and there is a half recollement
among X , T and Y . If (X ,Y) and (Y ,Z) are hereditary torsion pairs in T , then
(X ,Y ,Z) is called a TTF (torsion-torsionfree) triple in T . In this case, there is
a recollement among X , T and Y . Conversely, the recollement in Definition 2.2
gives a TTF triple (Im(j!), Im(i∗), Im(j∗)) in T . For more details, see [30, Chap.
9], [12, Chap. I. 2] or [16, Section 2.3].

Hereditary torsion pairs can be constructed in compactly generated triangulated
categories as follows.

Let T be a compactly generated triangulated category. Then coproducts and
products indexed by sets exist in T . Let S be a set of objects in T . Denote by
LocT (S), ColocT (S) and thickT (S) the smallest full triangulated subcategories of T
containing S and being closed under coproducts, products and direct summands,
respectively. If T is clearly understood in the context, we shall write Loc(S),
Coloc(S) and thick(S) for LocT (S), ColocT (S) and thickT (S), respectively. By
S⊥ we denote the right orthogonal full subcategory of T with respect to S, that is,
S⊥ = {C ∈ T | HomT (S[n], C) = 0, ∀ S ∈ S, n ∈ Z}. Then S⊥ is a triangulated
subcategory of T closed under products. Similarly, ⊥S stands for the left orthogonal
full subcategory of T with respect to S.

In general, the opposite category of a compactly generated triangulated category
is not compactly generated, but is perfectly generated in the sense of Krause (see
[26]). It is worth mentioning that perfectly generated triangulated categories not
only generalize compactly generated triangulated categories, but also satisfy the
Brown representability theorem in [26, Theorem A]. This implies the following
result:

If a triangle functor from a perfectly generated triangulated category to another
triangulated category preserves coproducts, then it has a right adjoint.

The next result seems to be known. For the convenience of the reader, we include
here a proof.

Proposition 2.3. If T is a compactly generated triangulated category and S is a
set of objects in T , then (Loc(S),S⊥) and (⊥S,Coloc(S)) are hereditary torsion
pairs in T .

Proof. The Verdier localization QS : T → T /Loc(S) preserves coproducts and
Ker(QS) = Loc(S). Since T is compactly generated, it is perfectly generated. Thus
QS has a right adjoint and (Loc(S),Loc(S)⊥) is a torsion pair in T by [30, Theorem
9.1.13]. Hence (Loc(S),S⊥) is a torsion pair in T , due to Loc(S)⊥ = S⊥. Moreover,
it is hereditary because Loc(S) is a full triangulated subcategory of T . This proof
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also implies that (Loc(S),S⊥) is a hereditary torsion pair in T whenever T is
perfectly generated.

Clearly, Coloc(S) can be regarded as a localizing subcategory of T op, that is,
ColocT (S) = LocT op(Sop), where Sop := {Xop ∈ T op | X ∈ S}. Since T op is

perfectly generated, (Loc(Sop), (Sop)⊥) is a hereditary torsion pair in T op, that is,
(⊥S,Coloc(S)) is a hereditary torsion pair in T . �

Let F , G and H be triangle endofunctors of T . We say that a sequence of natural
transformations

F
τ−→ G

η−→ H
σ−→ F [1] : T −→ T

is exact if for each X ∈ T the sequence F (X)
τX−→ G(X)

ηX−→ H(X)
σX−→ F (X)[1] is

a triangle in T .

2.2. Cotorsion pairs and Gorenstein-projective modules. In the subsection
we recall the definitions of cotorsion pairs in abelian categories and Gorenstein-
projective modules over algebras.

Let A be an abelian category and n ≥ 1 a natural number. Given a class S of
objects in A, we define

⊥nS := {X ∈ A | ExtnA(X,S) = 0 for S ∈ S}, ⊥>0S :=
⋂
n≥1

⊥nS,

S⊥n := {X ∈ A | ExtnA(S,X) = 0 for S ∈ S} and S⊥>0 :=
⋂
n≥1

S⊥n.

Definition 2.4.

(1) A pair (U ,V) of full subcategories of A is called a cotorsion pair in A if the
following hold.
(i) U = ⊥1V and V = U⊥1.

(ii) For each object X ∈ A, there are exact sequences 0 → VX → UX
πX−→

X → 0 and 0 → X
λX−→ V X → UX → 0 in A such that UX , UX ∈ U

and VX , V X ∈ V .
(2) A cotorsion pair (U ,V) in A is hereditary if U = ⊥>0V and V = U⊥>0.

Let (U ,V) be a cotorsion pair in A. Then πX is a right U-approximation ofX and
λX is a left V-approximation of X. Let E = U ∩V . Then UX and V X are unique up
to isomorphism in the quotient category A/E . Further, the inclusion U/E → A/E
has a right adjoint sending X to UX , while the inclusion V/E → A/E has a left
adjoint sending X to V X . Moreover, X has a U-resolution and a V-coresolution in
the following sense.

Definition 2.5. Let C be a full subcategory of A. A C-resolution of an object
U ∈ A is a complex X• := (Xi)i∈Z ∈ C (C) with Xi = 0 for all i ≥ 1, together with
a chain map π• : X• → U (regarded as a stalk complex), such that Hom•

A(C, π
•) :

Hom•
A(C,X

•) → Hom•
A(C,U) is a quasi-isomorphism for any C ∈ C. In this case,

π• is called a C-resolution of U for simplicity. Dually, a C-coresolution of U can be
defined.

Let A be an Artin algebra. We denote by A -Proj and A -Inj the full subcategories
of A -Mod consisting of projective and injective A-modules, respectively. Moreover,
we write K (A), Kac(A) and D(A) for K (A -Mod), Kac(A -Mod) and D(A -Mod),
respectively.
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An A-module X is said to be Gorenstein-projective if there is an exact complex
P • : · · · → P−2 → P−1 → P 0 → P 1 → P 2 → · · · of projective A-modules such that
X � Ker(P 0 → P 1) and the complex Hom•

A(P
•, A) is exact. The complex P • is

then called a complete projective resolution ofX. Dually, one can define Gorenstein-
injective modules and complete injective coresolutions. Let A -GProj and A -GInj
be the full subcategories of all Gorenstein-projective and Gorenstein-injective A-
modules, respectively. By [12, Theorem X. 2.4], (A -GProj, A -GProj⊥>0) and
(⊥>0A -GInj, A -GInj) are hereditary cotorsion pairs in A -Mod. Moreover, each
A-module admits a minimal right A -GProj-approximation and also a minimal left
A -GInj-approximation by [10, Proposition 3.8(iv) and Corollary 6.8].

An Artin algebra A is said to be virtually Gorenstein (see [10, Definition 8.1])

if A -GProj⊥>0 = ⊥>0A -GInj. Virtually Gorenstein algebras include Gorenstein
algebras and algebras of finite representation type, and are closed under derived
equivalences and stable equivalences of Morita type.

By filtered colimits of A-modules we mean colimits of filtered diagrams I →
A -Mod with I an essentially small, filtered category.

3. Recollements of stable module categories

In this section, we investigate an arbitrary (not necessarily self-orthogonal) gen-
erator over a self-injective algebra, and construct two pairs of triangle endofunctors
for the stable module category by means of the endomorphism algebra of the gen-
erator. When the generator is additionally self-orthogonal or Ω-periodic, we show
that these endofunctors coincidentally appear in a recollement of the stable module
category determined by the generator (see Theorem 3.14 and Corollary 3.15). This
recollement will be restricted to the one of a relative Gorenstein stable category in
the next section. Finally, we describe the category of Gorenstein-projective modules
over the endomorphism algebra of a self-orthogonal generator in terms of a relative
Gorenstein category (see Lemma 3.17), and provide equivalent characterizations for
the endomorphism algebra to be virtually Gorenstein (see Proposition 3.18).

Throughout this section, let A denote a self-injective Artin algebra. Then
A-Mod is a triangulated category with a shift functor [1] : A-Mod → A-Mod, given
by the cosyzygy functor Ω−

A. Clearly, ExtnA(X1, X2) � HomA(X1, X2[n]) for all
n ≥ 1 and X1, X2 ∈ A -Mod. Let q : A -Mod → A-Mod be the canonical functor.
By Lemma 2.1(2) and its dual, q preserves direct sums and direct products. To
emphasize objects in A-Mod, the image of X ∈ A -Mod under q is denoted by X.

A full subcategory U of A -Mod is called a thick subcategory if it is closed under
direct summands in A -Mod and has the two out of three property : if two terms of
an exact sequence 0 → X → Y → Z → 0 in A -Mod belong to U , then so does
the third. If U contains all projective A-modules, then U is a thick subcategory of
A -Mod if and only if U is a full triangulated subcategory of A-Mod closed under
direct summands.

From now on, let M = A ⊕ M0 be a generator in A -mod such that M0 con-
tains no nonzero projective direct summands. As M is finitely generated, we know
Add(M) = Prod(M).

3.1. Endomorphism algebras of generators over self-injective algebras. In
this subsection, we establish additive equivalences between the subcategories of the
module category of a self-injective algebra and the ones of the module category of
the endomorphism algebra of a generator over the self-injective algebra.
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Let Λ = EndA(M) and e be the idempotent element of Λ such that Λe =
HomA(M,A). Then A � eΛe as algebras. Let Se : Λ -Mod → A -Mod, Y �→ eY be
the Schur functor determined by e. This functor has a fully faithful left and right
adjoint functors F := Λe ⊗A − and G := HomA(eΛ,−) from A -Mod to Λ -Mod,
respectively. Both F and G commute with direct products and direct sums. Due
to eΛ � M as A-Λ-bimodules, the functor G can be identified with HomA(M,−).
Moreover, there is a canonical natural transformation δ : F → G defined by

δX : F (X) −→ G(X), ae⊗ x �→ [eb �→ ebaex],

where X ∈ A -Mod, a, b ∈ Λ and x ∈ X. For a full subcategory X ⊆ A -Mod and
Y ⊆ Λ -Mod, we define

Kac(X ) := {X• ∈ K (X ) | X• ∈ Kac(A)}
and Ke-ac(Y) := {Y • ∈ K (Y) | Se(Y

•) ∈ Kac(A)}.

Since the functor Se is exact, Ke-ac(Y) consists of those Y • ∈ K (Y) with Hi(Y •) ∈
(Λ/ΛeΛ) -Mod for all i ∈ Z.

Given an Artin algebra B with the usual duality D, we denote by νB and ν−B
the Nakayama functor D(B)⊗B −: B -Mod → B -Mod and its right adjoint func-
tor HomB(D(B),−), respectively. By restriction to B -mod, we have natural iso-
morphisms νB � D ◦ HomB(−, B) and ν−B � HomBop(−, B) ◦ D. As D(B) is a
finitely presented module, HomB(D(B),−) commutes with filtered colimits, while
D(B) ⊗B − commutes always with filtered colimits. Since a projective B-module
is always a direct sum of finitely generated projective B-modules (see [1, Theo-
rem 27.11, p.306], we can show by projective presentations of modules that, for a
self-injective Artin algebra B, both νB and ν−B are exact and auto-equivalent on
B -Mod.

Lemma 3.1.

(1) The restriction of δ to A -Proj is a natural isomorphism, that is, δX is an
isomorphism for any X ∈ A -Proj.

(2) There are natural isomorphisms of additive functors:

D ◦ F ◦ νA � HomA(−,M) : A -Mod → Λop -Mod,

νΛ ◦G � F ◦ νA and ν−Λ ◦ F � G ◦ ν−A : A -Mod → Λ -Mod .

In particular, F (νA(M)) � D(Λ) as Λ-Λ-bimodules.
(3) The functor Se restricts to equivalences of additive categories:

Add(Λe)
�−→ A -Proj, Λ -Proj

�−→ Add(AM) and Λ -Inj
�−→ Add(νA(M)).

(4) Let X ⊆ A -Mod and Y ⊆ Λ -Mod be additive, full subcategories. If the

functor Se induces an equivalence Y �−→ X of additive categories, then

there is an equivalence Ke-ac(Y)
�−→ Kac(X ) of triangulated categories.

Proof. (1) holds because δA is an isomorphism and both F and G commute with
direct sums.

(2) We need the following result, its proof is left to the reader:

(∗) Let A1, A2 and A3 be Artin algebras and let F1, F2 : A1 -Mod → A2 -Mod be
(covariant) additive functors. If X is an A1-A3-bimodule, then F1(X) is an A2-A3-
bimodule, where the right A3-module structure is given by the composition of as-
sociated ring homomorphisms A3 → EndA1

(X) and EndA1
(X) → EndA2

(F1(X)).
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Additionally, if η : F1 → F2 is a natural transformation, then ηX : F1(X) → F2(X)
is a homomorphism of A2-A3-bimodules.

Note that D◦(F ◦νA) = D
(
Λe⊗A νA(−)

)
� HomA(νA(−), D(Λe)) and D(Λe) =

DHomA(M,A) � D(A) ⊗A M = νA(M) as A-Λ-bimodules by (∗). Since νA :
A -Mod → A -Mod is an auto-equivalence, there are isomorphisms D ◦ (F ◦ νA) �
HomA

(
νA(−), νA(M)

)
� HomA(−,M) : A -Mod → Λop -Mod. This implies D ◦

(F ◦ νA)(M) � Λ as Λop-modules. Since M is an A-Λ-bimodule, it follows from (∗)
that D ◦ (F ◦ νA)(M) � Λ as Λ-Λ-bimodules. This leads to D(Λ) � F (νA(M)) as
Λ-Λ-bimodules. Consequently, there are natural isomorphisms:

νΛ ◦G = D(Λ)⊗Λ G(−) � Λe⊗A D(A)⊗A M ⊗Λ HomA(M,−)

� Λe⊗A D(A)⊗A − = F ◦ νA,
ν−Λ ◦ F � HomΛ(Λe⊗A νA(M),Λe⊗A −) � HomA(νA(M),−)

� HomA(M, ν−A (−)) = G ◦ ν−A .

(3) The restrictions of Se and G to the corresponding subcategories give the first
and second equivalences since Se and G commutes with direct sums. Now, we claim
that (F, Se) restricts to equivalences between Λ -Inj and Add(νA(M)).

In fact, Se(D(ΛΛ)) = eD(Λ) � D(Λe) = νA(M). As Se commutes with direct
sums and Λ -Inj = Add(D(ΛΛ)) = Prod(D(ΛΛ)), the Schur functor Se restricts to a
functor from Λ -Inj to Add(νA(M)). Moreover, by (2), we have F (νA(M)) � D(Λ)
as Λ-modules. As F commutes with direct sums, it also restricts to a functor
from Add(νA(M)) onto Λ -Inj. Recall that (F, Se) is an adjoint pair and F is fully
faithful. Thus F : Add(νA(M)) → Λ -Inj is an equivalence with the quasi-inverse
Se.

(4) Since Se : Y → X is an equivalence, it induces an equivalence K (Y) �
K (X ). Then (4) follows from the definition of Ke-ac(Y). �

Remark 3.2.

(1) Let P1(Λe) (respectively, I1(Λe)) be the full subcategory of Λ -Mod consist-
ing of all modules Y such that there is an exact sequence E1 → E0 → Y → 0
(respectively, 0 → Y → E0 → E1) in Λ -Mod with E0, E1 ∈ Add(Λe). By
[3, Lemma 3.1], there are additive equivalences F : A -Mod → P1(Λe) and
G : A -Mod → I1(Λe). Thus, by Lemma 3.1(2), the functor νΛ restricts to
an additive equivalence I1(Λe) → P1(Λe), with the inverse ν−Λ .

(2) Each A-module admits a minimal right and left Add(M)-approximations.
This property will be used in Section 3.4.

Indeed, since Λ is an Artin algebra, each Λ-module admits a projective
cover. For any A-module X, let fX : Q → G(X) be a projective cover
of ΛG(X). Since G is fully faithful and restricts to an equivalence from
Add(M) to Λ -Proj by Lemma 3.1(3), there is a homomorphism rX : MX →
X of A-modules such that MX ∈ Add(M) and G(rX) = fX . Then rX is a
minimal right Add(M)-approximation of X.

Let F = F ◦ νA : A -Mod → Λ -Mod be the composition of νA with F .
Then F is fully faithful. By Lemma 3.1(3), F restricts to an equivalence
from Add(M) to Λ -Inj. Thus, if gX : F (X) → I is an injective envelop
of F (X), then there is a homomorphism 	X : X → MX in A -Mod with
MX ∈ Add(M) such that gX = F (	X). One can check that 	X is a minimal
left Add(M)-approximation of X.
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Finally, we recall some notation and facts on homotopy and derived categories
of rings.

Let K (Λ)P (respectively, K (Λ)I) be the smallest full triangulated subcategory
of K (Λ) which

(i) contains all bounded above (respectively, bounded below) complexes of pro-
jective (respectively, injective) Λ-modules, and

(ii) is closed under arbitrary direct sums (respectively, direct products).
Note that K (Λ)P ⊆ K (Λ -Proj) and K (Λ)I ⊆ K (Λ -Inj). Moreover, the

compositions K (Λ)P ↪→ K (Λ) → D(Λ) and K (Λ)I ↪→ K (Λ) → D(Λ) are equiv-
alences. This means that, for any Y • ∈ D(Λ), there exists a complex pY

• ∈ K (Λ)P
together with a quasi-isomorphism pY

• → Y •. Dually, there is a complex iY
• ∈

K (Λ)I together with a quasi-isomorphism Y • → iY
•. Moreover, pY

• and iY
• are

unique up to isomorphism in K (Λ). As usual, pY
• and iY

• are called the projective
resolution and injective coresolution of Y • in K (Λ), respectively. For example, if
Y is a Λ-module, then pY is a deleted projective resolution of Y .

Let Q : K (Λ) → D(Λ) be the localization functor. Then Q has a left adjoint
Qλ and a right adjoint Qρ defined by

Qλ = p(−) : D(Λ) → K (Λ) and Qρ = i(−) : D(Λ) → K (Λ).

It is known that Im(Qλ) = K (Λ)P and Im(Qρ) = K (Λ)I .

Lemma 3.3 ([27]). (K (Λ)P ,Kac(Λ -Proj)) and (Kac(Λ -Inj),K (Λ)I) are heredi-
tary torsion pairs in K (Λ -Proj) and K (Λ -Inj), respectively. In other words, there
are half recollements of triangulated categories:

Kac(Λ -Proj)
I

�� K (Λ -Proj)
Q

��

Iλ

��
D(Λ)

Qλ

��

and D(Λ)
Qρ

�� K (Λ -Inj)
Jρ

��

Q

��
Kac(Λ -Inj)

J

��
,

where I and J are the inclusion functors, and Q denotes restrictions of the local-
ization functor.

3.2. Construction of triangle endofunctors of stable module categories.
In this subsection we introduce two pairs of triangle endofunctors of stable module
categories for self-injective algebras, and then discuss two relevant thick subcate-
gories of module categories.

Let ε : Qλ ◦Q → Id and η : Id → I ◦ Iλ be the counit and unit adjunctions with
respect to the adjoint pairs (Qλ, Q) and (Iλ, I) in Lemma 3.3, respectively, where
Id denotes the identity functor.

Lemma 3.4.

(1) There is a half recollement of triangulated categories:

Kac(Λ -Proj)
I

�� Ke-ac(Λ -Proj)
Qλ◦Q

��

Iλ

��
Ke-ac(Λ -Proj) ∩ K (Λ)P

inc

��
,

where inc is the inclusion functor.
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(2) There is an exact sequence of triangle endofunctors of Ke-ac(Λ -Proj):

Qλ ◦Q ε−→ Id
η−→ I ◦ Iλ −→ Qλ ◦Q[1],

Proof. Since Kac(Λ -Proj) ⊆ Ke-ac(Λ -Proj) and (K (Λ)P ,Kac(Λ -Proj)) is a hered-
itary torsion pair in K (Λ -Proj), the pair (Ke-ac(Λ -Proj) ∩K (Λ)P ,Kac(Λ -Proj))
is a hereditary torsion pair in Ke-ac(Λ -Proj). By Lemma 3.3, each object Y • ∈
K (Λ -Proj) is endowed with a canonical triangle

Qλ ◦Q(Y •)
εY •−→ Y • ηY •−→ I ◦ Iλ(Y •) −→ Qλ ◦Q(Y •)[1].

If Y • ∈ Ke-ac(Λ -Proj), then it follows from I ◦ Iλ(Y
•) ∈ Kac(Λ -Proj) and the

exactness of Se that Qλ ◦ Q(Y •) ∈ Ke-ac(Λ -Proj) ∩ K (Λ)P . Thus (1) and (2)
hold. �

Now, let 	 : K (A) → K (A -Inj) be a left adjoint of the inclusion K (A -Inj) ↪→
K (A). By [14, Corollary 1.3], 	 is given by taking the total complexes of Cartan-
Eilenberg injective coresolutions of complexes over A -Mod. Moreover, it has the
following property.

Lemma 3.5. The functor 	 restricts to a triangle functor 	ac : Kac(A)→Kac(A -Inj)
and the composition

	M : Kac(Add(M)) ↪→ Kac(A)
	ac−→ Kac(A -Inj) = Kac(A -Proj)

is a left adjoint of the inclusion Kac(A -Proj) ↪→ Kac(Add(M)).

Proof. Clearly, (Ker(	),K (A -Inj)) and (Kac(A),K (A)I) are hereditary torsion
pairs in K (A). Since K (A)I ⊆ K (A -Inj), we have Ker(	) ⊆ Kac(A). This
implies that (Ker(	),Kac(A -Inj)) is a hereditary torsion pair in Kac(A). Conse-
quently, 	 restricts to a functor Kac(A) → Kac(A -Inj). Since AM is a generator,
Kac(A -Proj) ⊆ Kac(Add(M)). Now the second part of Lemma 3.5 holds because
	 is a left adjoint of the inclusion K (A -Inj) → K (A). �

Let X be an A-module. We denote by π•
X : P •

X → X and λ•
X : X → I•X a

minimal projective resolution and injective coresolution of X, respectively. Then
there exists a triangle equivalence

S : A-Mod
�−→ Kac(A -Proj), X �→ S(X) := Con(π•

Xλ•
X).

This functor S is called the stabilization functor of A (for example, see [27]), while
S(X) is a complete projective resolution of X. A quasi-inverse of S is given by
taking the 0-th cocycle of complexes:

Z0 : Kac(A -Proj) −→ A-Mod, I• �→ Z0(I•) := Ker(I0 → I1).

Further, let 	M : Kac(Add(M)) → Kac(A -Proj) be the triangle functor defined in
Lemma 3.5, and let μ : Ke-ac(Add(Λe)) → Ke-ac(Λ -Proj) be the inclusion induced
from Add(Λe) ⊆ Λ -Proj.

By Lemmas 3.4 and 3.5, we can define a pair of triangle endofunctors of A-Mod
by

Φ = Z0 ◦ 	M ◦ Se ◦ (Qλ ◦Q) ◦ μ ◦G ◦ S : A-Mod −→ A-Mod,

Ψ = Z0 ◦ 	M ◦ Se ◦ (I ◦ Iλ) ◦ μ ◦G ◦ S : A-Mod −→ A-Mod.
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They are illustrated by the following diagram

A-Mod

Id




Φ

��
Ψ

��

S

�
�� Kac(A -Proj)

G

�
�� Ke-ac(Add(Λe)) �

� μ �� Ke-ac(Λ -Proj)

Id




Qλ◦Q

��
I◦Iλ

��
A-Mod Kac(A -Proj)

Z0

�
�� Kac(Add(M))

	M�� Ke-ac(Λ -Proj)
Se

�
��

where the equivalences of G and Se follow from Lemma 3.1(3)-(4). There is the
natural isomorphism

Z0 ◦ 	M ◦ Se ◦ Id ◦ μ ◦G ◦ S � Id : A-Mod −→ A-Mod.

This follows from the equivalence Se : Ke-ac(Add(Λe))
�−→ Kac(A -Proj) given by

Lemma 3.1(3)-(4), together with the fact that the restriction of 	M to Kac(A -Proj)
is isomorphic to Id.

Dually, we can construct another pair (Φ′,Ψ′) of endofunctors of A-Mod. Here,
we only list some key points of this construction, and omit the details.

By Lemma 3.3, there is a half recollement of triangulated categories:

Ke-ac(Λ -Inj) ∩ K (Λ)I
inc �� Ke-ac(Λ -Inj)

Jρ ��

Qρ◦Q
��

Kac(Λ -Inj)

J

��
.

This implies an exact sequence of endofunctors of Ke-ac(Λ -Inj):

J ◦ Jρ ε′−→ Id
η′

−→ Qρ ◦Q −→ J ◦ Jρ[1] : Ke-ac(Λ -Inj) −→ Ke-ac(Λ -Inj),

where ε′ and η′ are counit and unit adjunctions of the adjoint pairs (J, Jρ) and
(Q,Qρ), respectively (see Lemma 3.3). Let r : K (A) → K (A -Proj) be a right
adjoint of the inclusion K (A -Proj) → K (A). It is given by taking the total
direct product complexes of Cartan-Eilenberg projective resolutions of complexes
over A -Mod, due to [14, Corollary 1.3]. Moreover, it restricts to a triangle functor
rac : Kac(A) → Kac(A -Proj). Let

rM : Kac(Add(νA(M))) ↪→ Kac(A)
rac−→ Kac(A -Proj)

be the composition of the inclusion with rac, and let μ′ : Ke-ac(Add(Λe)) ↪→
Ke-ac(Λ -Inj) be the inclusion induced from Add(Λe) ⊆ Λ -Inj. Now we define
the two endofunctors Φ′ and Ψ′ of A-Mod by

Φ′ = Z0 ◦ rM ◦ Se ◦ (Qρ ◦Q) ◦ μ′ ◦ F ◦ S : A-Mod −→ A-Mod,

Ψ′ = Z0 ◦ rM ◦ Se ◦ (J ◦ Jρ) ◦ μ′ ◦ F ◦ S : A-Mod −→ A-Mod,

which are illustrated by the diagram

A-Mod

Id




Ψ′

��
Φ′

��

S

�
�� Kac(A -Proj)

F

�
�� Ke-ac(Add(Λe)) �

� μ′
�� Ke-ac(Λ -Inj)

Id




J◦Jρ

��
Qρ◦Q

��
A-Mod Kac(A -Proj)

Z0

�
�� Kac(Add(νA(M)))

rM�� Ke-ac(Λ -Inj).
Se

�
��

Similarly, there is a natural isomorphism of functors:

Z0 ◦ rM ◦ Se ◦ Id ◦ μ′ ◦ F ◦ S � Id : A-Mod −→ A-Mod.
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By construction, Φ and Ψ commute with direct sums, while Φ′ and Ψ′ commute
with direct products. Clearly, if M = A, then Φ = Φ′ = 0 and Ψ = Id = Ψ′. In
general, we have the result.

Proposition 3.6. There exist exact sequences of triangle endofunctors of A-Mod:

Φ
ε̃−→ Id

η̃−→ Ψ −→ Φ[1] and Ψ′ ˜ε′−→ Id
˜η′

−→ Φ′ −→ Ψ′[1],

where ε̃, η̃, ε̃′ and η̃′ are induced from ε, η, ε′ and η′, respectively.

Next, we investigate two full subcategories ofA -Mod associated with the functors
Ψ and Ψ′.

S := {X ∈ A -Mod | Ψ(X) = 0} and T := {X ∈ A -Mod | Ψ′(X) = 0}.
Since Ψ is a triangle functor commutating with direct sums, S is a thick subcat-
egory of A -Mod containing all projective modules and being closed under direct
sums. Dually, T is a thick subcategory of A -Mod containing all projective mod-
ules and being closed under direct products. Also, S and T are full triangulated
subcategories of A-Mod.

Recall that an A-module X is said to be Ω-periodic if Ωn
A(X) � X in A-Mod for

a positive integer n.

Lemma 3.7.

(1) If X ∈ Add(AM) is Ω-periodic, then X ∈ S and νA(X) ∈ T .
(2) If Λ has finite global dimension, then both Φ and Φ′ are isomorphic to the

identity functor, and therefore S = T = A -Mod.

Proof. For an A-module X, we write G ◦ S(X) = Y • := (Y n, dn)n∈Z and F ◦
S(νA(X)) = Z• := (Zn, hn)n∈Z. Then Y •, Z• ∈ Ke-ac(Add(Λe)). Since the Λ-
module Λe is projective-injective, both Y n and Zn are projective-injective. As G is

left exact, Ker(dn) = G(Ω−n
A (X)). Dually, Coker(hn) = F ◦ Ω−(n+2)

A (νA(X)) since
F is right exact.

(1) Suppose X ∈ Add(M) and X � Ωs
A(X) in A-Mod for some s ≥ 1. Then

X � Ω−sm
A (X) in A-Mod for any m ∈ N and G(X) ∈ Λ -Proj by Lemma 3.1(3).

It follows that Ker(dsm) = G(Ω−sm
A (X)) � G(X) = Ker(d0) ∈ Λ -Proj. Here, the

isomorphism is regarded in the stable category. Let τ≤sm(Y •) be the subcomplex
of Y •:

· · · −→ Y −1 −→ · · · −→ Y sm−2 −→ Y sm−1 −→ Ker(dsm) −→ 0.

Then τ≤sm(Y •) ∈ K −(Λ -Proj). Since Y • is isomorphic in K (Λ -Proj) to the ho-
motopy colimit of the sequence of inclusions: τ≤0(Y

•) ↪→ τ≤s(Y
•) ↪→ τ≤2s(Y

•) ↪→
· · · ↪→ τ≤sm(Y •) ↪→ · · · , there is a canonical triangle in K (Λ -Proj):

∞⊕
m=0

τ≤sm(Y •) −→
∞⊕

m=0

τ≤sm(Y •) −→ Y • −→
∞⊕

m=0

τ≤sm(Y •).

As K −(Λ -Proj) ⊆ K (Λ)P and K (Λ)P is closed under direct sums in K (Λ -Proj),
we get Y • ∈ K (Λ)P . Since (K (Λ)P ,Kac(Λ -Proj)) is a hereditary torsion pair in
K (Λ -Proj), we obtain Qλ ◦Q(Y •) � Y • and I ◦ Iλ(Y •) = 0. Thus Ψ(X) = 0 and
X ∈ S .

Set U := νA(X). It follows from X ∈ Add(M) and Lemma 3.1(3) that F (U) ∈
Λ -Inj. Since X � Ω−s

A (X) for some s ≥ 1 and νA is an auto-equivalence on A -Mod,
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we have U � Ωsm
A (U) for all m ∈ N. Thus Coker(h−2−sm) = F ◦Ωsm

A (U) � F (U) =
Coker(h−2) and the truncated quotient complex of Z•

τ≥−1−sm(Z•) : · · · −→ 0 −→ Coker(h−2−sm) −→ Z−sm −→ Z−sm+1 −→ · · ·
is in K +(Λ -Inj). Dually, Z• is isomorphic in K (Λ -Inj) to a homotopy limit of the
canonical surjections:

· · · � τ≥−1−sm(Z•) � · · · � τ≥−1−2s(Z
•) � τ≥−1−s(Z

•) � τ≥−1(Z
•).

We can show Z• ∈ K (Λ)I . Hence Qρ ◦ Q(Z•) � Z• and J ◦ Jρ(Z
•) = 0. Thus

Ψ′(U) = 0 and U ∈ T .
(2) Suppose that Λ has finite global dimension. Then Kac(Λ -Proj) = 0,

Kac(Λ -Inj) = 0, K (Λ -Proj) = K (Λ)P and K (Λ -Inj) = K (Λ)I . Hence Qλ ◦ Q
and Qρ ◦Q are naturally isomorphic to Id. This implies that Φ and Φ′ are naturally
isomorphic to Id, while Ψ and Ψ′ are zero functor. �

Proposition 3.8. Let X be an A-module. Then the following hold.

(1) If X ∈ M⊥>0, then X ∈ S if and only if for any A-module Y ,
HomK (A)(Con(μ

•
X),Con(π•

Y )) = 0, where μ•
X : M•

X → X is an Add(M)-
resolution of X.

(2) If X ∈ ⊥>0M , then νA(X) ∈ T if and only if for any A-module Y ,
HomK (A)(Con(λ

•
Y ),Con(σ

•
X)) = 0 where σ•

X : X → M•
X is an Add(M)-

coresolution of X.

Proof. (1) Let π• := π•
X , λ• := λ•

X and μ• := μ•
X . Then S(X) = Con(π•λ•). Since

μ• is an Add(M)-resolution of X (see Definition 2.5), G(μ•) : G(M•
X) → G(X) is

a quasi-isomorphism; equivalently, Con(G(μ•)) is exact. Moreover, Con(G(μ•)) =
G(Con(μ•)). As AM is a generator, Con(μ•) is exact. It follows from P •

X ∈
K −(A -Proj) that the identity map of X can be lifted to a unique morphism
h• : P •

X → M•
X in K (A) such that h•μ• = π•. This implies G(h•)G(μ•λ•) =

G(π•λ•). By the octahedral axiom for triangulated categories, there exists a trian-
gle in Ke-ac(Λ -Proj):

(∗) : Con(G(h•)) −→ μ ◦G ◦ S(X) −→ Con(G(μ•λ•)) −→ Con(G(h•))[1],

where μ ◦ G ◦ S(X) = Con(G(π•λ•)). Since X lies in M⊥>0, the morphism
G(λ•) : G(X) → G(I•X) is a quasi-isomorphism. Thus G(μ•λ•) = G(μ•)G(λ•) is a
composition of two quasi-isomorphisms. This means Con(G(μ•λ•)) ∈ Kac(Λ -Proj).
It follows from Con(G(h•)) ∈ K −(Λ -Proj) ⊆ K (Λ)P that

Qλ ◦Q(μ ◦G ◦ S(X)) � Con(G(h•)) and I ◦ Iλ(μ ◦G ◦ S(X)) � Con(G(μ•λ•)).

Since the composition of G with Se is isomorphic to the identity functor, we apply
Se to the triangle (∗) and get another triangle Con(h•) → S(X) → Con(μ•λ•) →
Con(h•)[1] in Kac(Add(M)). Further, by applying the functor 	M (see Lemma 3.5)
to this triangle, we are led to a triangle in Kac(A -Proj):

	M (Con(h•)) −→ 	M ◦ S(X) −→ 	M (Con(μ•λ•)) −→ 	M (Con(h•))[1].

Clearly, 	M ◦ S(X) = S(X) since S(X) ∈ Kac(A -Proj). From Z0 ◦ S(X) � X, we
obtain a triangle in A-Mod:

Z0 ◦ 	M (Con(h•)) −→ X −→ Z0 ◦ 	M (Con(μ•λ•)) −→ Z0 ◦ 	M (Con(h•))[1].

Thus Φ(X) = Z0 ◦ 	M (Con(h•)) and Ψ(X) = Z0 ◦ 	M (Con(μ•λ•)). Note that Z0 :
Kac(A -Proj) → A-Mod is an equivalence. Hence Ψ(X) = 0 (equivalently, X ∈ S )
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if and only if 	M (Con(μ•λ•)) = 0 if and only if HomK (A)(Con(μ
•λ•), Q•) = 0 for

any Q• ∈ Kac(A -Proj).
Since Con(λ•) ∈ K +

ac (A) and K +
ac (A) ⊆ ⊥K (A -Inj), there holds

HomK (A)(Con(λ
•), Q•[n]) = 0 for any n ∈ Z. Applying HomK (A)(−, Q•[n]) to

the triangle

Con(μ•) → Con(μ•λ•) → Con(λ•) → Con(μ•)[1]

in Kac(A), we get HomK (A)(Con(μ
•λ•), Q•) � HomK (A)(Con(μ

•), Q•). Now, let
Y be the kernel of the 0-th differential of Q•. Taking the canonical truncation on Q•

at degree 0, we obtain a subcomplex τ≤0Q
• of Q•, which is acyclic and isomorphic

to Con(π•
Y ) in K (A). Since the inclusion τ≤0Q

• ⊆ Q• induces

HomK (A)(Con(μ
•), τ≤0Q

•) � HomK (A)(Con(μ
•), Q•),

it follows that HomK (A)(Con(μ
•),Con(π•

Y )) � HomK (A)(Con(μ
•λ•), Q•). So X ∈

S if and only if HomK (A)(Con(μ
•),Con(π•

Y )) = 0. This shows (1).

(2) Let ν := νA, Z := ν(X) and σ• := σ•
X . Then F ◦S(Z) = F

(
Con(ν(π•λ•))

)
=

Con
(
F (νπ•)F (νλ•)

)
. Since X ∈ ⊥>0M and ν is an auto-equivalence of A -Mod,

there hold DTorAi (Λe, Z) � ExtiA(Z,D(Λe)) � ExtiA(Z, νM) � ExtiA(X,M) = 0
for any i ≥ 1. Hence F (νπ•) is a quasi-isomorphism, that is, Con(F (νπ•)) is exact.
Thus F ◦ S(Z) � Con(F (νλ•)) in D(Λ), where νλ• : Z → ν(I•X) is an injective
coresolution of Z. To calculate Qρ ◦Q ◦μ′(Con(F (νλ•))) in Ke-ac(Λ -Inj), we show
that F (νσ•) : F (Z) → F ◦ ν(M•

X) is an injective coresolution of F (Z), and then
replace F (Z) by its deleted injective coresolution.

In fact, by the proof of Lemma 3.1(3), the adjoint pair (F, Se) induces an equiv-

alence Add(νM)
�−→ Λ -Inj. This implies F (ν(M•

X)) ∈ K +(Λ -Inj). It remains
to show that F (νσ•) is a quasi-isomorphism. Since D : Λ -Mod → Λop -Mod is
exact and detects zero objects, we only need to show that DF (νσ•) is a quasi-
isomorphism. However, by Lemma 3.1(2), DF (νσ•) � HomA(σ

•,M) which is a
quasi-isomorphism by the construction of σ. Thus F (νσ•) is an injective coresolu-
tion of F (Z).

Now, let f• : M•
X → I•X be a chain map which lifts the identity map of X. Then

there is a canonical triangle

Con(F ◦ ν(π•σ•)) −→ μ′ ◦ F ◦ S(Z) −→ Con(F ◦ ν(f•)) −→ Con(F ◦ ν(π•σ•))[1]

in Ke-ac(Λ -Inj), where the first term lies in Kac(Λ -Inj) and the third one lies in
K +(Λ -Inj). Thus

J◦Jρ◦μ′◦F ◦S(Z) � Con(F ◦ν(f•)) and Qρ◦Q◦μ′◦F ◦S(Z) � Con(F ◦ν(π•σ•)).

Since the composition of F with Se is isomorphic to the identity functor, it follows
that

Ψ′(Z) = Z0 ◦ rM (Con(ν(π•σ•))) and Φ′(Z) = Z0 ◦ rM (Con(νf•)).

Dually, by the equivalence of Z0 and the inclusion K +
ac (A) ⊆ K (A -Proj)⊥, we

can show that Z ∈ T if and only if HomK (A)(Con(λ
•
U ),Con(νσ

•)) = 0 for any
A-module U . Since ν is an auto-equivalence of A -Mod, it follows that

HomK (A)(Con(λ
•
U ),Con(νσ

•)) � HomK (A)(Con(λ
•
U ), ν(Con(σ

•)))

� HomK (A)(Con(λ
•
Y ),Con(σ

•))

with Y := ν−(U). Thus (2) holds. �
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The following result is a consequence of Lemma 3.7(1) and Proposition 3.8.

Corollary 3.9. If AM is self-orthogonal or Ω-periodic, then M ∈ S and
νA(M) ∈ T .

3.3. Recollements of stable module categories induced by self-orthogonal
modules. In this subsection, we apply the triangle endofunctors in Section 3.2 to
construct a recollement of the stable module category of a self-injective algebra from
a generator with conditions that are satisfied for a self-orthogonal or an Ω-periodic
generator.

As is known, A-Mod is compactly generated and the inclusion of A -mod →
A -Mod induces a triangle equivalence from A-mod to the full subcategory of A-Mod
consisting of all compact objects. Since AM is finitely generated, M is compact in
A-Mod. For a set Δ of integers, let

M⊥Δ := {X ∈ A-Mod | HomA(M,X[n]) = 0 for any n ∈ Δ},
⊥ΔM := {X ∈ A-Mod | HomA(X,M [n]) = 0 for any n ∈ Δ}.

For simplicity, we write M⊥ and ⊥M for M⊥Z and ⊥ZM , respectively. Then M⊥

is a full triangulated subcategory of A-Mod closed under direct sums and direct
products.

Lemma 3.10. Let X be an A-module.

(1) X ∈ M⊥ if and only if G ◦ S(X) (equivalently, F ◦ S(X)) is an exact
complex.

(2) If X ∈ M⊥, then Φ(X) = 0 and Φ′(X) = 0.

Proof. By Lemma 3.1(1), F and G are naturally isomorphic on A -Proj. Thus
G ◦ S(X) � F ◦ S(X) as complexes. So we show (1) for G ◦ S(X). Let 0 →
X1 → P → X0 → 0 be an exact sequence of A-modules with P ∈ A -Proj. Then
0 → G(X1) → G(P ) → G(X0) → 0 is exact if and only if HomA(M,X0) = 0. This
implies (1). Moreover, (2) follows from (1) and the definitions of Φ and Φ′. �

We need the following result which is concluded from the Auslander-Reiten for-
mula (see [6]).

Lemma 3.11. If X ∈ A -mod, then there is a natural isomorphism

DHomA(X,−) � HomA(−, νA(X)[−1]) : A-Mod −→ EndA(X)op -Mod .

Proof. Since X is finitely generated, it follows from [6, Proposition 2.2] that

DHomA(X,−) � Ext1A(−, DTr(X)) : A-Mod −→ EndA(X)op -Mod,

where DTr is the Auslander-Reiten translation on A-mod. Since A is self-injective,
DTr � Ω2

A◦νA as functors on A-mod (see [8, Proposition 3.7, p. 126]). This implies
that

Ext1A(−, DTr(X)) � Ext1A(−,Ω2
A ◦ νA(X)) � HomA(ΩA(−),Ω2

A ◦ νA(X))
� HomA(−,ΩA ◦ νA(X)) = HomA(−, νA(X)[−1])

on A-Mod. Thus Lemma 3.11 holds. �

To construct recollements of A-Mod from compact objects, we establish a result
on torsion pairs.
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Lemma 3.12.

(1)
(
Loc(M), M⊥) and

(
M⊥,Coloc(νA(M))

)
are hereditary torsion pairs in

A-Mod.
(2) If AM ∈ S , then S = Im(Φ) = Loc(M) and Im(Ψ) = M⊥.

(3) If νA(M) ∈ T , then T = Im(Φ′) = Coloc(νA(M)) and Im(Ψ′) = M⊥.

Proof. (1) Since AM is finitely generated, we have M⊥ = ⊥νA(M) ⊆ A-Mod by
Lemma 3.11. Clearly, A-Mod is compactly generated by simple modules because
each A-module has a radical series of length less than or equal to the Loewy length
of A. Thus (1) holds by Proposition 2.3.

(2) Let X := Loc(M) and Y := M⊥. Suppose M ∈ S . Then X ⊆ S because
S is a full triangulated subcategory of A-Mod closed under direct sums. By Lemma
3.10(2), Y ⊆ Ker(Φ).

Let N ∈ A -Mod. By (1), up to isomorphism, there is a unique triangle XN →
N → Y N → XN [1] in A-Mod such that XN ∈ X and Y N ∈ Y . This yields
Ψ(XN ) = 0 = Φ(Y N ). Now, we apply Proposition 3.6 to the triangle and obtain
the commutative diagram in A-Mod:

Φ(XN )
� ��

�ε̃XN





Φ(N) ��

ε̃N





0 ��





Φ(XN )[1]

�




XN
��





N ��

η̃N





Y N ��

�η̃Y N





XN [1]




0 ��





Ψ(N)
� ��





Ψ(Y N ) ��





Ψ(XN )[1]




Φ(XN )[1]

� �� Φ(N)[1] �� 0 �� Φ(XN )[2]

where all rows and columns are triangles. Thus Φ(N) � XN ∈ X and Ψ(N) �
Y N ∈ Y . This implies Im(Φ) ⊆ X and Im(Ψ) ⊆ Y . Note that if N ∈ X , then
N � XN , and therefore N � Φ(N) ∈ Im(Φ). Similarly, if N ∈ Y , then N � Y N ,
and therefore N � Ψ(N) ∈ Im(Ψ). Thus Im(Φ) = X and Im(Ψ) = Y . Since
X ⊆ S ⊆ Im(Φ), we have S = Im(Φ).

(3) Similarly, we can show (3) by Lemma 3.10(2), together with the pair
(
M⊥,

Coloc(νA(M))
)
in (1). �

A consequence of Lemma 3.12 and Corollary 3.9 is the following.

Corollary 3.13. Suppose that AM is self-orthogonal or Ω-periodic. Then S is the
smallest thick subcategory of A -Mod containing M and being closed under direct
sums, while T is the smallest thick subcategory of A -Mod containing νA(M) and
being closed under direct products.

Now, we are in position to prove the following main result of this section.

Theorem 3.14. Suppose A is a self-injective Artin algebra and AM is genera-
tor in A -mod. If AM ∈ S and νA(M) ∈ T , then there exists a recollement of
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triangulated categories:

M⊥ inc �� A-Mod
˜Ψ′��

˜Φ ��
��

˜Ψ

��
Loc(M)

Φ′′����

inc

��

such that

Φ = inc ◦ Φ̃, Ψ = inc ◦ Ψ̃, Ψ′ = inc ◦ Ψ̃′ and Φ′′ = Φ′ ◦ inc.
Moreover, Φ′′ restricts to a triangle equivalence Loc(M)

�−→ Coloc(νA(M)).

Proof. Suppose AM ∈ S . By Lemma 3.12(2), we have the factorization of Φ and
Ψ:

Φ : A-Mod
˜Φ−→ Loc(M) ↪→ A-Mod

and Ψ : A-Mod
˜Ψ−→ M⊥ ↪→ A-Mod.

By Lemma 3.12(1),
(
Loc(M), M⊥) is a hereditary torsion pair in A-Mod. Then

the proof of Lemma 3.12(2) together with [12, Chapter I, Prop. 2.3] implies that

Φ̃ is a right adjoint of the inclusion Loc(M) → A-Mod and that Ψ̃ is a left adjoint

of the inclusion M⊥ → A-Mod.
Suppose νA(M) ∈ T . Dually, from the torsion pair

(
M⊥,Coloc(νA(M))

)
in

Lemma 3.12(1) and from Lemma 3.12(3), we obtain the factorizations of Φ′ and
Ψ′:

Φ′ : A-Mod
˜Φ′
−→ Coloc(νA(M)) ↪→A-Mod and Ψ′ : A-Mod

˜Ψ′
−→ M⊥ ↪→A-Mod

such that Φ̃′ is a left adjoint of the inclusion Coloc(νA(M)) → A-Mod and Ψ̃′ is

a right adjoint of the inclusion M⊥ → A-Mod. Recall that there is a correspon-
dence between TTF (torsion-torsionfree) triples and recollements of triangulated
categories (see, for example, [12, Chapter I. 2] or [16, Section 2.3]). Thus Theorem
3.14 follows from Lemma 3.12(1) and [16, Lemma 2.6]. �

Combining Theorem 3.14 with Corollary 3.9, we obtain the corollary.

Corollary 3.15. Let A be a self-injective algebra. If AM is self-orthogonal or
Ω-periodic, then there exists a recollement of triangulated categories:

M⊥ inc �� A-Mod
˜Ψ′��

˜Φ ��
��

˜Ψ

��
Loc(M),

Φ′′����

inc

��

in which the functors are the same as the ones in Theorem 3.14.

Later we will see that the above recollement restricts to the one of relative stable
categories.

3.4. Categories of Gorenstein-projective modules. In this subsection we de-
scribe the category of Gorenstein-projective modules over the endomorphism alge-
bra of a self-orthogonal generator.

Recall that the M -stable category A -Mod /[M ] of A -Mod is defined to be the
quotient category of A -Mod modulo Add(M). From now on, we set

D := A -Mod /[M ] and HomM (X1, X2) := HomD(X1, X2)
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for X1, X2 ∈ A -Mod. We say that X1 and X2 are M -stably isomorphic if they are
isomorphic in D . For a full subcategory U of A -Mod, we denote by U /[M ] the
full subcategory of D consisting of all objects X which are M -stably isomorphic to
objects of U .

As M is finitely generated and Add(M) = Prod(M), we know that Add(M) is
a functorially finite subcategory in A -Mod. According to [12, Chap. II. 1], D is a
pretriangulated category mainly consisting of the following data:

(1) An adjoint pair (Ω−
M ,ΩM ) of additive endofunctors Ω−

M ,ΩM : D → D .

For an A-module X, Ω−
M (X) is defined to be the cokernel of a minimal left

Add(M)-approximation 	X : X → MX of X, while ΩM (X) is defined to be the
kernel of a minimal right Add(M)-approximation rX : MX → X of X. The exis-
tence of minimal approximations follows from Remark 3.2. Moreover, Ω−

M (X) and
ΩM (X) are unique up to isomorphism.

(2) A collection of right triangles (up to isomorphism) of the form X
f−→ Y

g−→
Z

h−→ Ω−
M (X) arising from an exact commutative diagram in A -Mod:

0 �� X
f �� Y





g �� Z ��

h





0

0 �� X
	X �� MX �� Ω−

M (X) �� 0

where HomA(f,M) : HomA(Y,M) → HomA(X,M) is surjective.
(3) A collection of left triangles (up to isomorphism) of the form ΩM (Z) → X →

Y → Z which is defined in a dual way as in (2).
(4) Right triangles (respectively, left triangles) satisfy all the axioms for trian-

gulated categories, except that Ω−
M (respectively, ΩM ) is not necessarily an equiv-

alence.

In the following, ΩM is called the M -syzygy functor on D . For an A-module X,
we put Ω0

M (X) := X, and Ωn
M (X) := ΩM (Ωn−1

M (X)) for n ≥ 1. The functor Ωn
M

is called the n-th M -syzygy functor on D . Dually, Ω−
M is called the M -cosyzygy

functor and the n-th M -cosyzygy functor Ω−n
M is defined dually. If M is a self-

orthogonal generator for A -mod, then (Ω−n
M ,Ωn

M ) : D → D is an adjoint pair for
n ≥ 2, see [15, Lemmas 3.2 and 3.3].

The following simple observation will be used in later discussions.

Lemma 3.16.

(1) Let X and Y be A-modules. Then X and Y are M -stably isomorphic if
and only if there are M1,M2 ∈ Add(M) such that X ⊕ M1 � Y ⊕ M2 in
A -Mod.

(2) Let X
f→ Y

g→ Z → X[1] be a triangle in A-Mod. If Z ∈ ⊥1M , then there

is a right triangle X
f→ Y

g→ Z → Ω−
M (X) in D .

Proof. (1) This can be proved similarly as done in A-Mod.
(2) Up to isomorphism of triangles in A-Mod, we can assume that the sequence

0 → X
f→ Y

g→ Z → 0 is exact. If Z ∈ ⊥1M , then HomA(f,M) is surjective. This
implies (2). �
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By Lemma 3.16, if U is a full subcategory of A -Mod containing Add(M) and
being closed under both direct summands and finite direct sums, then U /[M ] is
closed under direct summands in D .

Let
G := M⊥>0 ∩ ⊥>0M, C := G /[M ], G0 := G ∩ (A -mod).

Then G is always closed under filtered colimits in A -Mod, that is, colimits of filtered
diagrams I → A -Mod with I an essentially small, filtered category.

In fact, since M is finitely generated, the functor ExtnA(M,−) commutes with
filtered colimits for each n ≥ 0. Then M⊥>0 ⊆ A -Mod is closed under filtered
colimits. Thanks toM � D(DM) as A-modules, M is pure-injective. It follows that
ExtnA(−,M) sends filtered colimits to filtered limits, and therefore ⊥>0M ⊆ A -Mod
is also closed under filtered colimits. Thus G ⊆ A -Mod is closed under filtered
colimits.

Let lim
−→

G0 denote the full subcategory of A -Mod consisting of all filtered colimits

of modules in G0. Then lim
−→

G0 ⊆ G .

In the rest of this subsection, we assume that AM is self-orthogonal.
The following result is an unbounded version of [15, Lemma 3.5].

Lemma 3.17.

(1) The category G (respectively, G0) is a Frobenius category with the shift
functor given by Ω−

M . The full subcategory of projective-injective objects of
G (respectively, G0) equals Add(M) (respectively, add(M)). In particular,
G /[M ] is a triangulated category.

(2) The functor G : A -Mod → Λ -Mod restricts to equivalences of Frobenius
categories:

G
�−→ Λ -GProj and G0

�−→ Λ -Gproj .

In particular, there are equivalences of triangulated categories:

C
�−→ Λ-GProj and G0/[M ]

�−→ Λ-Gproj.

Proof. For n ≥ 1, we define

Gn := {X ∈ A -mod | ExtiA(M,Ω−j
M (X)) = 0 = ExtiA(Ω

j
M (X),M)

for any j ≥ 0 and 1 ≤ i ≤ n}
(see also [15, Definition 3.4]). Then Gn is a Frobenius category and there is a chain
of full subcategories of A -mod: G1 ⊇ G2 ⊇ · · · ⊇ Gn ⊇ Gn+1 ⊇ · · · . Moreover,

G restricts to an equivalence of Frobenius categories: Gn
�−→ Λ -Gproj for n ≥ 1.

It follows that the inclusions Gn+1 → Gn are equivalences of additive categories.
Since Gn are closed under isomorphisms in A -mod, we have Gn = Gn+1 for all
n ≥ 1. As M is self-orthogonal, G0 is closed under taking ΩM and Ω−

M in A -mod.
Consequently, G0 ⊆

⋂∞
n≥1 Gn ⊆ G0. This implies G0 = Gn, and thus Lemma 3.17

holds for G0.
Note that the functor G commutes with direct sums and restricts to an equiva-

lence Add(M)
�−→ Λ -Proj. As in the proof of [15, Lemma 3.5], we can show that

Lemma 3.17 holds first for

Gn := {X ∈ A -Mod |ExtiA(M,Ω−j
M (X)) = 0 = ExtiA(Ω

j
M (X),M)

for j ≥ 0 and 1 ≤ i ≤ n}
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and then for G . �

Consequently, we get a characterization of virtually Gorenstein algebras in terms
of compact objects.

Proposition 3.18. Let A be a self-injective algebra and M a self-orthogonal gener-
ator for A -mod. Then EndA(M) is virtually Gorenstein if and only if G = lim

−→
G0 if

and only if each compact object of C is M -stably isomorphic to a finitely generated
A-module.

Proof. By [13, Theorem 5] and [10, Theorem 8.2], Λ := EndA(M) is virtually
Gorenstein if and only if Λ -GProj = lim

−→
(Λ -Gproj) if and only if each compact

object of Λ-GProj is isomorphic to an object of Λ-Gproj. Note that the functor G :
A -Mod → Λ -Mod is fully faithful and commutes with filtered colimits. Moreover,
since AM is a generator, two A-modules X and Y are isomorphic if and only if
G(X) and G(Y ) are isomorphic. Now the equivalences in Proposition 3.18 follow
from Lemmas 3.17 and 3.16. �

A complex P • ∈ K (Λ -Proj) is called totally acyclic if both P • and Hom•
Λ(P

•,Λ)
are acyclic. Let Ktac(Λ -Proj) be the full subcategory of K (Λ -Proj) consisting
of totally acyclic complexes. It is known that there is a triangle equivalence

Λ-GProj
�−→ Ktac(Λ -Proj) which sends a Gorenstein-projective Λ-module to its

complete projective resolution. Composing this equivalence with the equivalence

C
�−→ Λ-GProj in Lemma 3.17(2), we obtain a triangle equivalence

HomA(M,M•
−) : C

�−→ Ktac(Λ -Proj), X �→ HomA(M,M•
X),

where M•
X := (Mn

X)n∈Z ∈ Kac(Add(M)) is defined by concatenating an Add(M)-

resolution · · · → M−2
X → M−1

X → M0
X → X → 0 of X with an Add(M)-

coresolution 0 → X → M1
X → M2

X → M3
X → · · · of X at the position X. The

complex M•
X is called a complete Add(M)-resolution of X. For each n ∈ Z, there

is an additive functor

Ψn := Hn
(
HomA(M,M•

−)
)
: C −→ Γ -Mod, X �→ Hn

(
HomA(M,M•

X)
)

which is homological in the sense that applying Ψn to every triangle X1 → X2 →
X3 → Ω−

M (X1) in C yields an exact sequence · · · → Ψn(X1) → Ψn(X2) →
Ψn(X3) → Ψn+1(X1) → · · · .

Remark 3.19. By Lemma 3.17(1) and Remark 3.2(2), we have the following obser-
vation.

For each X ∈ G , there are isomorphisms X � Ω−
MΩM (X)⊕M0 � ΩMΩ−

M (X)⊕
M1 in A -Mod with M0,M1 ∈ Add(M) such that Ω−

MΩM (X) and ΩMΩ−
M (X) have

no nonzero direct summands in Add(M). Thus, ifX ∈ G has no nonzero direct sum-
mands in Add(M), then we can choose the n-th differential dnX : Mn

X → Mn+1
X such

that the induced map Mn
X → Im(dnX) is a minimal right Add(M)-approximation of

Im(dnX).

Lemma 3.20.

(1) The functor F ◦ νA : A -Mod → Λ -Mod restricts to an equivalence: G
�−→

Λ -GInj of Frobenius categories.
(2) (G ,G⊥1) and (⊥1G ,G ) are cotorsion pairs in A -Mod such that G ∩G ⊥1 =

Add(M) = ⊥1G ∩ G . In particular, G is functorially finite in A -Mod.
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(3) The inclusion C ↪→ D admits a left adjoint T : D → C which is induced
from minimal left G -approximations of modules. Moreover, T preserves
compact objects, sends right triangles to triangles and commutes with the
functor Ω−

M .
(4) The set {T (X) | X ∈ A -mod} is a compact generating set of C .

Proof. (1) Since the adjoint pair (νΛ, ν
−
Λ ) induces quasi-inverse equivalences

Λ -GProj
�−→ Λ -GInj, (1) follows from Lemmas 3.17(2) and 3.1(2) together with

Remark 3.2(1).

(2) Since Ω−
M (G ) ⊆ G by Lemma 3.17(1), the sequence 0 → X

	X−→ MX →
Ω−

M (X) → 0 splits whenever X ∈ G ∩ G ⊥1. This implies G ∩ G ⊥1 ⊆ Add(M).
Clearly, Add(M) ⊆ G ∩ G ⊥1. Thus G ∩ G ⊥1 = Add(M). Dually, ⊥1G ∩ G =
Add(M).

Next, we show that (G ,G ⊥1) is a cotorsion pair in A -Mod. Since A -Mod is an
abelian category with enough projectives and injectives, it suffices to show that, for
any A-module X, there is an exact sequence 0 → X2 → X1 → X → 0 in A -Mod
such that X1 ∈ G and X2 ∈ G ⊥1 (for example, see [12, Lemma V. 3.3]).

Since each Λ-module admits a minimal right Λ -GProj-approximation, we take
a minimal right Λ -GProj-approximation of G(X), say g : Y → G(X). By Lemma
3.17(2), we can assume Y = G(X1) for some X1 ∈ G . As G is fully faithful and
M is a generator, there is a surjective map f : X1 → X of A-modules such that
g = G(f) and f is a minimal right G -approximation of X. Since G is closed under
extensions in A -Mod, it follows from Wakamatsu’s Lemma that Ker(f) ∈ G ⊥1.
Hence the sequence 0 → Ker(f) → X1 → X → 0 is a desired one.

Similarly, to show that (⊥1G ,G ) is a cotorsion pair in A -Mod, it is enough to
prove that there is an exact sequence 0 → X → TX → CX → 0 of A-modules such
that TX ∈ G and CX ∈ ⊥1G .

Let F = F ◦ νA : A -Mod → Λ -Mod. Then F is fully faithful and restricts to

an equivalence G
�−→ Λ -GInj by (1). Since each Λ-module admits a minimal left

Λ -GInj-approximation, there is a map hX : X → TX in A -Mod with TX ∈ G such
that F (hX) is a minimal left Λ -GInj-approximation of F (X). This implies that hX

is a minimal left G -approximation of X. Moreover, hX is injective. This is due to
D(A) ∈ G and Coker(hX) ∈ ⊥1G by the dual of Wakamatsu’s Lemma. Thus the
sequence 0 → X → TX → Coker(hX) → 0 is the one as desired.

(3) Since (⊥1G ,G ) is a cotorsion pair with ⊥1G ∩G = Add(M) by (2), the functor
T : D → C exists (see the comments after Definition 2.4). As the inclusion functor
C → D preserves direct sums, we know that T preserves compact objects. It is
known that C is a triangulated category, D is a pretriangulated category and C is
a pretriangulated subcategory of D . Thus the last assertion follows from the dual
version of [12, Proposition II. 2.6].

(4) We show that A -mod /[M ] is a compact generating set of D . Clearly, if
X ∈ A -mod, then X is compact in A -Mod, and also compact in D by Lemma
2.1(2). Let Y ∈ A -Mod such that HomM (X,Y ) = 0 for all X ∈ A -mod. Then each
map fromX to Y factorizes through an object of Add(M), and particularly, through
MY via the minimal right Add(M)-approximation rY : MY → Y of Y . Recall that,

for an Artin algebra B, an exact sequence 0 → X1 → X2
g−→ X3 → 0 of B-modules

is called pure-exact if HomB(Z, g) is surjective for any Z ∈ B -mod; equivalently,
0 → L ⊗B X1 → L ⊗B X2 → L ⊗B X3 → 0 is exact for any L ∈ Bop -Mod. This
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implies that 0 → ΩM (Y ) → MY → Y → 0 is pure-exact in A -Mod. Note that
there is a natural isomorphism HomΛ(U,G(−)) � HomA(M ⊗Λ U,−) for any Λ-
module U and that AM ⊗Λ U ∈ A -mod if U ∈ Λ -mod. Hence 0 → G(ΩM (Y )) →
G(MY ) → G(Y ) → 0 is pure-exact in Λ -Mod. Since G(MY ) is projective, there

holds TorΛ1 (V,G(Y )) = 0 for all V ∈ Λop -Mod. Thus G(Y ) is flat, and therefore
projective since Λ is an Artin algebra. It follows that G(Y ) is a direct summand
of G(MY ). Then Y ∈ Add(M) due to A ∈ add(AM). Hence Y = 0 in D and
A -mod /[M ] is a compact generating set of D .

By (3), if X ∈ A -mod, then T (X) is compact in C . Moreover, since T is a left
adjoint of the inclusion C → D , one can check that T always preserves generating
sets. This shows (4). �

4. Restrictions of recollements to relative stable categories

In this section we prove Theorem 1.5. As a preparation of the proof, we first show
that the recollement in Corollary 3.15 restricts to a recollement of C . Throughout
this section we set up the following.

Assumption. Let A be a self-injective Artin algebra and AM a self-orthogonal
and Nakayama-stable generator for A -mod.

We set Γ := EndA(M). By Lemma 3.11, there exists a natural isomorphism of
additive functors:

(♦) DHomA(M,−) � HomA(−, νA(M)[−1]) : A-Mod −→ Γop -Mod .

We define the following categories related to M :

Y := {Y ∈ A-Mod | HomA(M,Y [n] = 0 for any n ≤ 0},
X := {X ∈ A-Mod | HomA(X,Y ) = 0 for any Y ∈ Y },

H := X ∩ Y [1].

Then X is the smallest full subcategory of A-Mod containing M and being closed
under [1], extensions and direct sums, (X ,Y ) is a torsion pair in A-Mod, and H
is an abelian category and called the heart of (X ,Y ) (see [9]). Clearly, M⊥ ⊆ Y
and X ⊆ Loc(M). In general, X has not to be a triangulated subcategory of
A-Mod since it is not necessarily closed under [−1].

Proposition 4.1. X = M⊥>0 ∩ S , Y = ⊥≥−1M and H = M⊥�=0 ∩ S .

Proof. Since AM is self-orthogonal, it follows from Lemma 3.12(2) that S =

Loc(M). As M⊥>0 contains M and is closed under [1], extensions and direct

sums in A-Mod, we have X ⊆ M⊥>0. Thanks to X ⊆ Loc(M), we obtain X ⊆
M⊥>0∩Loc(M). To show the converse inclusion, we pick up X ∈ M⊥>0∩Loc(M)
and show HomA(X,Y ) = 0 for any Y ∈ Y .

Actually, it follows from M⊥>0 = M⊥>0 that X ∈ M⊥>0. Note that X lies
in S . Let μ•

X : M•
X → X be an Add(M)-resolution of X. It follows from

Proposition 3.8(1) that HomK (A)(Con(μ
•
X),Con(π•

Y )) = 0 for any Y ∈ Y . Since
HomA(M,Ωn

A(Y )) = HomA(M,Y [−n]) = 0 for any n ≥ 0, the chain map π•
Y :

P •
Y → Y is an Add(M)-resolution of Y . Thus each homomorphism f : X → Y in

A -Mod can be lifted to a chain map f• : Con(μ•
X) → Con(π•

Y ) in K (A). From
HomK (A)(Con(μ

•
X),Con(π•

Y )) = 0, we see that f factorizes through the projective

module P 0
Y . Thus f = 0 in A-Mod and HomA(X,Y ) = 0.
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By definition, Y = M⊥≤0. It follows from add(νA(M)) = add(AM) and (♦)
that Y = ⊥≥−1M . Since H = X ∩ Y [1] and Y [1] = M⊥<0, one gets H =

M⊥�=0 ∩ Loc(M) = M⊥�=0 ∩ S . �

4.1. Restrictions of recollements. In this subsection we consider the restriction
of the recollement in Corollary 3.15 to relative stable categories. This leads to a
part of the proof of Theorem 1.5.

We begin with the following preparation.

Lemma 4.2.

(1) M⊥ = ⊥M, G = M⊥�=0,−1 = ⊥�=0,−1M and H ⊆ G ∩ S ⊆ X .
(2) Let π : G → C be the canonical quotient functor. Then the following are

true.
(a) The composition M⊥ ↪→ G

π−→ C is a fully faithful triangle func-
tor. In particular, the image of this composition is a full triangulated
subcategory of C .

(b) The composition H ↪→ G ∩ S
π−→ (G ∩ S )/[M ] is a fully faithful

additive functor.

Proof. (1) Since add(νA(M)) = add(AM), (1) follows from (♦) and Proposition
4.1.

(2) If X ∈ M⊥, then X ∈ ⊥M by (1). In this case, HomA(M,X) = 0 =
HomA(X,M), and therefore HomA(M0, X)=0=HomA(X,M0) for M0 ∈ Add(M).
This implies that ΩA(X) � ΩM (X), Ω−

A(X) � Ω−
M (X) in D and HomA(X,X ′) =

HomM (X,X ′) for any A-module X ′. Thus the composition in (a) is fully faithful.

It is a triangle functor since M⊥ is a full triangulated subcategory of A-Mod. This
shows (a).

Now, let X ∈ H . Then HomA(M,X[−1]) = 0. Since DHomA(M,X[−1]) �
HomA(X, νA(M)) by (♦) and add(νA(M)) = add(M), we have HomA(X,M) =
0. It then follows from Add(M) = Prod(M) that HomA(X,M ′) = 0 for M ′ ∈
Add(M). Thus HomA(X,Y ) = HomM (X,Y ) for any A-module Y . This implies
(b). �

Proposition 4.3. The recollement in Corollary 3.15 induces a recollement of tri-
angulated categories:

M⊥ π◦inc �� C
˜Ψ′��

˜Φ ��
��

˜Ψ
��

(G ∩ S )/[M ].
Φ′′����

inc

��

Proof. We first show that the recollement in Corollary 3.15 can be restricted to a
“recollement” of additive categories with six additive functors:

(
) M⊥ inc �� G
˜Ψ′��

˜Φ ��
��

˜Ψ
��

G ∩ S
Φ′′����

inc

��

which satisfy the conditions (1)-(3) in Definition 2.2. Obviously, inc : M⊥ → G has

left and right adjoints which are the restriction of the functors Ψ̃ and Ψ̃′ in Corollary

3.15 to G , respectively. Now, we claim that Φ̃(G ) ⊆ G ∩ S and Φ′′(G ∩ S ) ⊆ G .

Then (inc, Φ̃) and (Φ̃,Φ′′) in (
) are adjoint pairs.
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By Corollary 3.13, S = Loc(M). By Theorem 3.14, each A-module X is en-
dowed with a triangle Ψ(X)[−1] → Φ(X) → X → Ψ(X) in A-Mod such that

Φ(X) ∈ S and Ψ(X) ∈ M⊥. Note that G contains M⊥ and is closed under exten-
sions of triangles in A-Mod, due to Lemma 4.2. Since Ψ(X) and Ψ(X)[−1] lie in

M⊥, we see that X ∈ G if and only if Φ(X) ∈ G . Thus Φ̃(G ) = Φ(G ) ⊆ G ∩ S .
Similarly, by the triangle Ψ′(X) → X → Φ′(X) → Ψ′(X)[1] in Proposition 3.6,
X ∈ G if and only if Φ′(X) ∈ G . This implies Φ′′(G ∩ S ) = Φ′(G ∩ S ) ⊆ G .

Next, we show that the functors in (
) induce triangle functors among quotient
categories.

By Corollary 3.13, S contains Add(M) and is closed under taking ΩM and Ω−
M

in A -Mod. Since Add(M) ⊆ G and C is a triangulated category by Lemma 3.17,
(G ∩ S )/[M ] is a full triangulated subcategory of C . Note that Φ(Add(M)) =
Add(M) and Ψ(Add(M)) = 0 due to M ∈ S . By Lemma 2.1(1), the adjoint pairs

(inc, Φ̃) and (Ψ̃, inc) in (
) induce adjoint pairs (inc, Φ̃0) and (Ψ̃0, π◦ inc) of additive
functors among triangulated categories:

(�) M⊥ π◦inc �� C
˜Φ0 ��

˜Ψ0

��
(G ∩ S )/[M ]

inc

��
.

In this diagram, both inc and π ◦ inc (see Lemma 4.2(2)) are fully faithful triangle
functors. It is known that any left or right adjoint of a triangle functor between

triangulated categories is again a triangle functor. Thus Φ̃0 and Ψ̃0 are triangle

functors. In the following, we show that both π ◦ inc and Φ̃0 have right adjoints.
According to Lemma 3.12(3), T = Coloc(νA(M)) = Im(Φ′). By the definition

of T , if X ∈ T , then Ψ′(X) = 0 and Φ′(X) � X. This means that

Ψ′(Prod(νA(M))) = 0 and Φ′(Prod(νA(M))) = Prod(νA(M)).

Since add(νA(M)) = add(M) and AM ∈ A -mod, there holds Prod(νA(M)) =

Prod(M)=Add(M). It follows that Ψ′(Add(M)) = 0 and Φ′(Add(M)) = Add(M).
Since Add(M) ⊆ G ∩ S and Φ′′ = Φ′ ◦ inc, we have Φ′′(Add(M)) = Add(M). Due
to Lemma 2.1(1), Φ′′ : G ∩ S → G induces a functor Φ′′

0 : (G ∩S )/[M ] → C which

is a right adjoint of Φ̃0, while Ψ̃′ : G → M⊥ induces a functor Ψ̃′
0 : C → M⊥ which

is a right adjoint of π ◦ inc.
When acting on objects, Φ̃0 and Φ̃ are the same. So we denote Φ̃0 by Φ̃ for

simplicity. Similarly, we denote Ψ̃0, Ψ̃′
0 and Φ′′

0 by Ψ̃, Ψ̃′ and Φ′′, respectively.
To show the existence of the recollement of C in Proposition 4.3, it remains

to show the existence of two canonical triangles in Definition 2.2(4). Let X ∈
G . We have shown that there is a canonical triangle inc ◦ Φ̃(X) → X → inc ◦
Ψ̃(X) → inc ◦ Φ̃(X)[1] in A-Mod such that Φ̃(X) ∈ G ∩ S and Ψ̃(X) ∈ M⊥. Since

M⊥ = ⊥M ⊆ ⊥1M by Lemma 4.2(1), it follows from Lemma 3.16(2) that this

triangle induces a triangle inc ◦ Φ̃(X) → X → inc ◦ Ψ̃(X) → Ω−
M (inc ◦ Φ̃(X)) in C ,

which is the required second triangle in Definition 2.2(4). Similarly, by the triangle

Ψ′(X) → X → Φ′(X) → Ψ′(X)[1] with Ψ′(X) ∈ M⊥ and Φ′(X) ∈ G and by the

inclusion M⊥ ⊆ M⊥1, we can obtain the first triangle in Definition 2.2(4). Thus
the proof of Proposition 4.3 is completed. �

Now, we define a full subcategory E of G , which contains both G0 and A -Proj.

E := {X ∈ G | HomA(M,X), HomA(M [1], X) ∈ Γ -mod}.
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Lemma 4.4.

(1) E = {X ∈ G | HomA(M,X) ∈ Γ -mod, HomA(X,M) ∈ Γop -mod}.
(2) E is a thick subcategory of G and E /[M ] is a full triangulated subcategory

of C .

Proof. (1) As A is an Artin algebra over a commutative Artin ring R and AM is a
finitely generated A-module, Γ is an Artin algebra over R. Moreover, a Γ-module N
is finitely generated if and only if RN is finitely generated as an R-module. Thus (1)
follows from DHomA(M [1], X) � HomA(X, νA(M)) and add(νA(M)) = add(M).

(2) Clearly, E is closed under direct summands in G . Now, let 0 → X1 →
X2 → X3 → 0 be an exact sequence in A -Mod with Xi ∈ G for 1 ≤ i ≤ 3. Since
G = M⊥�=0,−1 by Lemma 4.2, there is a long exact sequence in R -mod:

0 → HomA(M [1], X1) → HomA(M [1], X2) → HomA(M [1], X3) → HomA(M,X1)

→ HomA(M,X2) → HomA(M,X3) → 0.

This implies that E has the two out of three property in G . Thus E is a thick
subcategory of G .

By definition, E /[M ] consists of all objects X ∈ C which is M -stably isomorphic
to an object of E . To show that E /[M ] is a full triangulated subcategory of C , it
suffices to show that E /[M ] is closed under taking ΩM and Ω−

M in C .
Let X ∈ E . Due to HomA(M,X) ∈ Γ -mod, we see that X has a right Add(M)-

approximation f : M0 ⊕ P0 → X such that M0 ∈ add(M) and P0 ∈ A -Proj.
Note that E contains add(M) and A -Proj. This forces M0 ⊕ P0 ∈ E , and further
Ker(f) ∈ E . It follows from ΩM (X) � Ker(f) in C that ΩM (X) ∈ E /[M ]. Since
HomA(X,M) is a Γop-module, we can show Ω−

M (X) ∈ E /[M ].
The proof of (2) also implies that if X ∈ G , then X ∈ E if and only if it has a

complete Add(M)-resolution M•
X := (M i

X)i∈Z satisfying that M i
X = N i ⊕ P i with

N i ∈ add(M) and P i ∈ A -Proj. �

Corollary 4.5. The recollement in Proposition 4.3 can be restricted a recollement
of E /[M ]:

M⊥ π◦inc �� E /[M ]
˜Ψ′��

˜Φ ��
��

˜Ψ
��

(E ∩ S )/[M ].
Φ′′����

inc

��

Proof. Note that
(
(G ∩ S )/[M ]

)
∩ (E /[M ]) = (E ∩ S )/[M ] and the image of

the functor π ◦ inc : M⊥ → C is contained in E /[M ]. Thus Corollary 4.5 is a
consequence of Proposition 4.3. �

4.2. Compacts objects and representability of homological functors. In
this subsection, we find out a special compact object in C (or even in a bigger
relative stable category) and establish a series of homological functors from C to
Γ -Mod (see Theorem 4.14).

From now on, let L : A-Mod → Y be the left adjoint of the inclusion Y ⊆ A-Mod
and let R : A-Mod → X be the right adjoint of the inclusion X ⊆ A-Mod. Define

H0
∗ := [1] ◦ L ◦ [−1] ◦R : A-Mod −→ H , N := H0

∗ (M) ∈ H and

H fg := {X ∈ H | HomA(M,X) ∈ Γ -mod}.
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Then H0
∗ is a homological functor, that is, for a triangle X1 → X2 → X3 →

X1[1] in A-Mod, the sequence H0
∗ (X1) → H0

∗ (X2) → H0
∗ (X3) is exact in H .

Moreover, H fg = H ∩ E by Proposition 4.1 and Lemma 4.2(1). Note that
DHomA(M,N [−1]) � HomA(N, νA(M)) by (♦). Since add(νA(M)) = add(M)
and N ∈ H , we get HomA(N,M) = 0. This implies EndA(N) = EndC (N).

Lemma 4.6. Let X ∈ X .

(1) There is a canonical triangle [1] ◦R ◦ [−1](X) → X
τX−→ H0

∗ (X) → [2] ◦R ◦
[−1](X) in A-Mod.

(2) If Y ∈ Y [1], then HomA(τX , Y ) : HomA(H
0
∗(X), Y ) → HomA(X,Y ) is an

isomorphism. In particular, there is a natural isomorphism

HomA(τM ,−) : HomA(N,−)
�−→ HomA(M,−) : H −→ Γ -Mod .

Proof. Since (X ,Y ) is a torsion pair in A-Mod, each A-module W is endowed with
a triangle R(W ) → W → L(W ) → R(W )[1] in A-Mod. We take W = X[−1] and
get a triangle R(X[−1]) → X[−1] → L(X[−1]) → R(X[−1])[1] in A-Mod. Shifting
this triangle by [1] yields another triangle

(†) R(X[−1])[1] → X → L(X[−1])[1] → R(X[−1])[2].

Due to X ∈ X , we have R(X) � X. Thus H0
∗ (X) = [1] ◦ L ◦ [−1] ◦ R(X) �

L(X[−1])[1]. Then the triangle (†) can be rewritten as [1] ◦R ◦ [−1](X) → X
τX−→

H0
∗ (X) → [2] ◦R ◦ [−1](X). This shows (1).
Since X ⊆ A-Mod is closed under [1], it follows from R(X[−1]) ∈ X that both

[1] ◦ R ◦ [−1](X) and [2] ◦ R ◦ [−1](X) belong to X . As HomA(X,Y ) = 0 for
X ∈ X and Y ∈ Y , the first part of (2) holds by (1), while the second part of (2)
follows from both M ∈ X and H ⊆ Y [1]. �

The next result follows from [12, Chap. III, Lemma 3.3 and Theorem 3.4]; see
also [24, Theorem 1.3(3)] for the assertion (3).

Lemma 4.7.

(1) For any X ∈ X , the morphism τX in Lemma 4.6(1) induces an isomor-
phism of Γ-modules:

HomA(M, τX) : HomA(M,X)
�−→ HomA(M,H0

∗(X)).

(2) The functor H0
∗ induces an isomorphism Γ

�−→ EndA(N) of algebras such
that γ τM = τMH0

∗ (γ) for any γ ∈ Γ. In this sense, Γ can be identified with
EndA(N).

(3) The object N is a small projective generator of H and the functor
HomA(N,−) : H → Γ -Mod is an equivalence of abelian categories.

An easy observation is the following result, of which (2) conveys that N has only
finitely many indecomposable direct summands in C .

Corollary 4.8.

(1) There is a fully faithful functor Θ : Γ -mod → (E ∩ S )/[M ] which sends Γ
to N .

(2) Let M = A⊕
⊕m

i=1 Mi, where m ∈ N and Mi are indecomposable and non-
projective. Then N �

⊕m
i=1 H

0
∗ (Mi) in C and H0

∗ (Mi) are indecomposable
in C .
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(3) Let X ∈ G ∩ S . Then there is a triangle X0 → X → H0
∗ (X) → Ω−

M (X0)
in C such that X0 ∈ G ∩ S and ΩM (X0) ∈ H . Further, if X ∈ E ∩ S ,
then ΩM (X0), H

0
∗ (X) ∈ H fg.

Proof. (1) By Lemma 4.2(2)(b), the composition U : H fg = H ∩ E ↪→ E ∩ S →
(E ∩ S )/[M ] is fully faithful. Moreover, from Lemmas 4.6(2) and 4.7(3) it follows
that HomA(M,−) � HomA(N,−) : H fg → Γ -mod, which is an equivalence of
abelian categories sending N to Γ. In particular, N ∈ H fg. Now, let Θ : Γ -mod →
(E ∩ S )/[M ] be the composition of a quasi-inverse of HomA(M,−) with U . Then
Θ is fully faithful and sends Γ to N .

(2) By Lemmas 4.6(2) and 4.7(1), H0
∗ induces an isomorphism HomA(M,Mi) �

HomA(N,H0
∗(Mi)). Thus EndA(Mi) � EndA(H

0
∗(Mi)) as algebras. It then follows

from H0
∗ (Mi) ∈ H that EndA(H

0
∗(Mi)) � EndC (H0

∗(Mi)) as algebras by Lemma
4.2(2). As Mi is indecomposable and non-projective, it is also indecomposable in
A-Mod. Thus H0

∗ (Mi) is indecomposable in C .
(3) Let X0 := R(X[−1])[1]. Then X0[−1] ∈ X and there is a triangle X0 →

X
τX−→ H0

∗ (X) → X0[1] in A-Mod by Lemma 4.6(1). Thus HomA(M,X0[n]) = 0
for all n ≥ 0 by Proposition 4.1. In particular, Ext1A(M,X0) = 0. Since both X
and H0

∗ (X) lie in G ∩ S , we see that X0 ∈ G ∩ S and the above triangle induces
a triangle X0 → X → H0

∗ (X) → Ω−
M (X0) in C by Lemma 3.16(2). Further,

HomA(M,X0[−2]) = 0 by Lemma 4.2(1), and X0[−1] = ΩA(X0) � ΩM (X0) ∈ G
by HomA(M,X0) = 0. Thus X0[−1] ∈ H by Proposition 4.1. Suppose that X
is in E ∩ S . Then HomA(M [1], X0) � HomA(M,X0[−1]) � HomA(M,R(X[−1]))
� HomA(M,X[−1]) ∈ Γ -mod, where the last isomorphism follows from the fact
that R : A-Mod → X is the right adjoint of the inclusion X ⊆ A-Mod. Now, it
follows from X0 ∈ G and HomA(M,X0) = 0 that X0 ∈ E . Thus X0 ∈ E ∩ S . By
Lemma 4.4(2), both ΩM (X0) and H0

∗ (X) belong to H fg. �
Corollary 4.9. AM is projective if and only if (E ∩ S )/[M ] = 0 if and only if
(G ∩ S )/[M ] = 0.

Proof. If AM is projective, then S consists of projective A-modules by Corollary
3.13, which implies (E ∩ S )/[M ] = 0 = (G ∩ S )/[M ]. If (E ∩ S )/[M ] = 0, then
Γ -mod = 0 by Corollary 4.8(1), that is, Γ = 0, and therefore AM is projective. �
Lemma 4.10. The object N has a complete Add(M)-resolution:

· · · −→ M−3 −→ M−2 −→ P−1 ∂−→ M ⊕ P 0 −→ P 1 −→ M2 −→ M3 −→ · · ·
satisfying

(1) N = Coker(∂), M i ∈ Add(M) for all |i| ≥ 2 and P i ∈ AddA(A) for all
|i| ≤ 1; and

(2) Ker(∂)∈H and HomA(M,Ker(∂))�D
(
HomA(M, νA(M))

)
as Γ-modules.

Proof. (1) Let τM : M → N be the morphism in A-Mod in Lemma 4.6(1). Up to
projective direct summand, we may assume that τM is a homomorphism in A -Mod
and a preimage of the τM in A-Mod. Let f : P 0 → Coker(τM ) be a projective
cover of Coker(τM ). Then there exists a homomorphism f0 : P 0 → N such that
f is the composition of f0 with the quotient map N → Coker(τM ). Moreover,
the map π0 := (τM , f0) : M ⊕ P 0 → N is a right Add(M)-approximation of N .
Let K := Ker(π0) with a projective cover π1 : P−1 → K. Then K � ΩM (N) in
D . By the proof of Corollary 4.8(3), we see that K ∈ G ∩ S , HomA(M,K) = 0
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and K[−1] = ΩA(K) � ΩM (K) ∈ H . Consequently, π1 is a right Add(M)-
approximation of K. Now, let ∂ : P−1 → M ⊕ P 0 be the composition of π1 with
the inclusion λ1 : K → M ⊕ P 0. Then Coker(∂) = N and Ker(∂) � K[−1] in
A-Mod. Since HomA(N,M) = 0 and Add(M) = Prod(M), a minimal injective
envelope N → P 1 is a left Add(M)-approximation of N . Thus (1) holds.

(2) Thanks to N ∈ H , there holds HomA(M,N [−1]) = 0 = HomA(M,N [−2])
by Proposition 4.1. This implies that HomA(M,λ1[−1]) : HomA(M,K[−1]) →
HomA(M,M [−1]) is an isomorphism. By (♦),

HomA(M,M [−1]) � D
(
HomA(M [−1], νA(M)[−1])

)
� D

(
HomA(M, νA(M))

)
as Γ-modules. Thus HomA(M,Ker(∂)�HomA(M,K[−1])�D(HomA(M, νA(M))).

�
Corollary 4.11. If A is a symmetric algebra and Γ is a Frobenius algebra, then
Ω2

M (N) � N in C .

Proof. Since A is symmetric, νA(M) � M as A-Λ-bimodules. By Lemma 4.10(2),
HomA(M,Ker(∂)) � D

(
HomA(M,M)

)
= D(Γ) as Γ-modules. Note that

HomA(M,N) � Γ by Lemmas 4.6(2) and 4.7(2). Since Γ is a Frobenius alge-
bra, Γ � D(Γ) as Γ-modules. Moreover, Ker(∂) ∈ H and Ker(∂) � Ω2

M (N) in C
by Lemma 4.10. It follows from Lemmas 4.6(2) and 4.7 that Ker(∂) � N in H .
Thus Ω2

M (N) � N in C . �
Lemma 4.12. Let X ∈ ⊥>0M and lX : X → MX be a left Add(M)-approximation
of X. Then there is an exact sequence of Γ-modules:

0 −→ HomA(N,X)
(τM )∗−→ HomA(M,X)

(lX)∗−→ HomA(M,MX).

Proof. Keep all notations introduced in the proof of Lemma 4.10. Recall that
Prod(M) = Add(M) and HomA(N,M) = 0. If M0 ∈ Add(M), then HomA(N,M0)
= 0. It follows from MX ∈ Add(M) that HomA(N,MX) = 0. This implies that
the composition of (τM )∗ with (lX)∗ is 0. Thus Im((τM )∗) ⊆ Ker((lX)∗).

Applying HomA(−, X) to the triangle K → M
τM−→ N → K[1] in A-Mod yields

an exact sequence HomA(K[1], X) → HomA(N,X)
(τM )∗−→ HomA(M,X). By (♦),

we have ⊥>0M = M⊥≤−2 = Y [2]. Moreover, K[−1] ∈ H ⊆ X by the proof of
Lemma 4.10. Thus K[1] ∈ X [2]. Since X ∈ ⊥>0M and (X ,Y ) is a torsion pair in
A-Mod, we have HomA(K[1], X) = 0. Thus (τM )∗ is injective. It remains to show
Ker((lX)∗) ⊆ Im((τM )∗).

Suppose that g ∈ HomA(M,X) = HomA(M ⊕ P0, X) with glX = 0. Let 0 →
X

λ0−→ Q0 μ0−→ Ω−
A(X) → 0 be a short exact sequence of A-modules in which λ0 is

an injective envelope. We claim that the pair (gλ0, 0) with gλ0 : M ⊕ P 0 → Q0

and 0 : N → Ω−
A(X) can be completed into the commutative diagram

· · · �� M−3 ��

f−3



�
�
� M−2 ��

f−2



�
�
� P−1 ∂ ��

f−1



�
�
� M ⊕ P 0 π0 ��

gλ0





N ��

0





0

· · · �� Q−3 �� Q−2 �� Q−1 �� Q0 μ0 �� Ω−
A(X) �� 0,

in which the first arrow is an Add(M)-resolution of N (see Lemma 4.10) and the
second arrow is a minimal projective resolution of Ω−

A(X). In other words, there is
a chain map f• := (· · · , f−3, f−2, f−1, gλ0, 0). To show the existence of the chain
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map, one splits the long exact sequences into a series of short exact sequences,
and then construct relevant homomorphisms together with commutative diagrams
between these sequences. We carry out the details as follows.

For K := Ker(π0), let λ1 : K → M ⊕ P 0 be the canonical inclusion, and let
α : K → X be the composition of λ1 with g : M ⊕ P 0 → X. Since P−1 is
projective, there exists a map f−1 : P−1 → Q−1 making the diagram commute:

0 �� ΩA(K) ��

ΩA(α)



�
�
�

P−1 ��

f−1



�
�
� K ��

α



�
�
� 0

0 �� ΩA(X) �� Q−1 μ1 �� X �� 0.

To construct f−2, we will show that HomA(M,α[−1]) : HomA(M,K[−1]) →
HomA(M,X[−1]) is 0, where [−1] denotes ΩA in A-Mod.

By the proof of Lemma 4.10(2), HomA(M,λ1[−1]) is an isomorphism.
It is enough to show that the map HomA(M, g[−1]) : HomA(M,M [−1]) →
HomA(M,X[−1]) is zero. Applying D : Γ -Mod → Γop -Mod to this map, we
see that (♦) yields DHomA(M, g[−1]) � HomA(g, νA(M)) : HomA(X, νA(M)) →
HomA(M, νA(M)). Although D may not be an equivalence in general, it is al-
ways exact and reflects zero objects. Thus HomA(M, g[−1]) = 0 if and only if
HomA(g, νA(M)) = 0. Since add(νA(M)) = add(M) ⊆ Prod(M), HomA(g, νA(M))
= 0 is equivalent to saying that HomA(g,M

′) : HomA(X,M ′) → HomA(M,M ′) is
0 for any M ′ ∈ Prod(M). By assumption, lX is a left Add(M)-approximation of X
and glX = 0 in A-Mod. This leads to HomA(g,M

′) = 0. Thus HomA(M,α[−1]) =
0, and therefore HomA(M

−2, α[−1]) = 0, due to M−2 ∈ Add(M). Hence there are
two homomorphisms f−2 and β such that the diagram is commutative:

0 �� ΩM (ΩA(K)) ��

β



�
�
�

M−2 ��

f−2



�
�
� ΩA(K) ��

ΩA(α)



�
�
�

0

0 �� Ω2
A(X) �� Q−2 �� ΩA(X) �� 0.

Since X ∈ ⊥>0M = M⊥≤−2, we have HomA(M,Ωn
A(X)) = HomA(M,X[−n]) =

0 for all n ≥ 2. Then HomA(M
−n−1,Ωn

A(X)) = 0, due to M−n−1 ∈ Add(M).
Consequently, the components f−n−1 : M−n−1 → Q−n−1 for n ≥ 2 in f• can be
constructed.

Since N ∈ H ⊆ M⊥>0 ∩ S by Proposition 4.1, it follows from Proposition
3.8(1) that f• = 0 in K (A). Therefore there are homomorphisms h : N → Q0

and s0 : M ⊕ P 0 → Q−1 such that gλ0 = s0μ1λ0 + π0h and hμ0 = 0. Since
λ0 is the kernel of μ0, there is a unique map h0 : N → X satisfying h = h0λ0.
Since λ0 is injective, g = s0μ1 + π0h0. This forces g = τMh0 in A-Mod and
shows g ∈ Im((τM )∗). Thus Ker((lX)∗) ⊆ Im((τM )∗). Finally, via the isomorphism
Γ � EndA(N) in Lemma 4.7(2), HomA(N,X) becomes a Γ-module and (τM )∗ is a
homomorphism of Γ-modules. �

Corollary 4.13. The object N is compact in ⊥>0M .

Proof. It suffices to show that the functor HomA(N,−) : ⊥>0M → Γ -Mod com-
mutes with direct sums. Let {Xi}i∈I be a set of A-modules in ⊥>0M with I
an index set. For each i, let gi : Xi → Mi be a left Add(M)-approximation of
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Xi. According to Add(M) = Prod(M), the direct sum g = (gi)i∈I :
⊕

i∈I Xi →⊕
i∈I Mi of all these gi is a left Add(M)-approximation of

⊕
i∈I Xi. Note that

HomA(M,−) : A-Mod → Γ -Mod commutes with direct sums since M is compact
in A-Mod. By Lemma 4.12, we can construct the following commutative diagram
with exact arrows and canonical vertical maps:

0 �� ⊕
i∈I HomA(N,Xi) ��





⊕
i∈I HomA(M,Xi) ��

�




⊕
i∈I HomA(M,Mi)

�




0 �� HomA(N,
⊕

i∈I Xi) �� HomA(M,
⊕

i∈I Xi) �� HomA(M,
⊕

i∈I Mi).

Thus the first vertical map is an isomorphism. �

Theorem 4.14.

(1) The object N belongs to (E ∩ S )/[M ] and is compact in (⊥>0M)/[M ]. In
particular, N is compact in C .

(2) For each n ∈ Z, there exists a natural isomorphism of homological functors:

Hn
(
HomA(M,M•

−)
) �−→ HomM

(
Ωn

M (N),−
)
: C −→ Γ -Mod,

where M•
X is a complete Add(M)-resolution of X ∈ C .

Proof. (1) By Lemma 4.2, N ∈ (G ∩ S )/[M ]. Note that HomA(M [1], N) = 0
by Proposition 4.1 and HomA(M,N) � HomA(M,M) by Lemma 4.7(1). This
shows N ∈ E . Since ⊥>0M contains Add(M) and is closed under direct sums in
A -Mod, we see that ⊥>0M , as an additive category, has coproducts. Moreover, by
Lemma 2.1(2), the quotient functor ⊥>0M → (⊥>0M)/[M ] preserves coproducts
and compact objects. Now (1) follows from Corollary 4.13.

(2) Let M•
X := (Mn

X , dnX)n∈Z be a complete Add(M)-resolution of X. Then

X � Coker(d−1
X ) and HomA(M,M•

X) is acyclic. Clearly, there is a canonical ring
homomorphism Λ � Γ and the functor HomA(M,−) : A -Mod → Γ -Mod is nat-
urally isomorphic to the composition of G with Γ ⊗Λ −. Then HomA(M,M•

X) �
Γ⊗Λ HomA(M,M•

X) as complexes. Since Γ⊗Λ − is right exact, the sequence

HomA(M,Mn−1
X )

(dn−1
X )∗−→ HomA(M,Mn

X) −→ HomA(M,Ω−n
M (X)) −→ 0

is exact for all n. As the inclusion λn : Ω−n
M (X) → Mn+1

X is a left Add(M)-

approximation of Ω−n
M (X), it follows from Lemma 4.12 that the sequence

0 −→ HomA(N,Ω−n
M (X))

(τM )∗−→ HomA(M,Ω−n
M (X))

(λn)
∗

−→ HomA(M,Mn+1
X )

is exact. Consequently, Hn(HomA(M,M•
X)) � Hn(Γ ⊗Λ HomA(M,M•

X)) �
HomA(N,Ω−n

M (X)). Since HomA(N,M ′) = 0 for any M ′ ∈ Add(M), we have

HomA(N,Ω−n
M (X)) = HomM (N,Ω−n

M (X)) � HomM (Ωn
M (N), X).

This shows (2). �

4.3. Compact objects from left approximations. In this subsection, we char-
acterize compact objects in C in terms of M -filtered modules (see Proposition 4.17)
and show that all objects of (E ∩ S )/[M ] are compact in C . We then establish a
connection between (G ∩S )/[M ] and (E ∩S )/[M ] by employing strong generators
(see Corollary 4.18).
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As a preparation, we recall the constructions of L(X) and R(X) from the proof
of [12, Theorem III.2.3].

Let A := {M [n] | n ≥ 0} ⊆ X . Denote by Add(A) the full subcategory of
A-Mod consisting of direct summands of arbitrary direct sums of objects of A. For
a full subcategory U of A-Mod, we denote by U 
n = U � U � · · · � U (n-factors)
the category of n-extensions of U by U in A-Mod.

Let X ∈ A -Mod. We construct a right Add(A)-approximation f1 : Q1 → X
of X as follows: Consider the set IX of the union of HomA(P,X) with P running
over A, define Q1 =

⊕
λ∈IX

Pλ and take f1 to be the morphism induced by IX ,
where λ is a morphism from Pλ to X with Pλ ∈ A. Then we extend f1 to a triangle

Q1
f1−→ X

g1−→ X1 −→ Q1[1] in A-Mod. Now, we can repeat this construction
by replacing X by X1 ∈ A -Mod. In general, for each n ≥ 0, we can inductively
construct a triangle

Qn+1
fn+1−→ Xn

gn+1−→ Xn+1 −→ Qn+1[1]

in A-Mod such that fn+1 is a right Add(A)-approximation of Xn with X0 := X.
Setting T1 := Q1 and h1 := f1, we then construct inductively a tower of objects

T1
τ1−→ T2

τ2−→ T3 −→ · · · which is embedded into the following tower of triangles
in A-Mod:

T1
h1 ��

τ1





X
g1 �� X1

��

g2





T1[1]

τ1[1]




(��) T2

h2 ��

τ2





X
g1g2 �� X2

��

g3





T2[1]

τ2[1]




T3

h3 ��





X
g1g2g3 �� X3

��





T3[1]




...

...
...

...

Applying the octahedral axiom for triangulated categories for each n yields a series
of triangles

(��) Tn
τn−→ Tn+1

σn−→ Qn+1 −→ Tn[1].

This implies Tn ∈ Add(A)
n ⊆ X for n ≥ 1.
Let Hocolim−−−−−→(Tn) be the homotopy colimit in A-Mod of the tower of objects

T1
τ1−→ T2

τ2−→ T3
τ3−→ · · · −→ Tn

τn−→ Tn+1 −→ · · ·
defined by the triangle

(
)
⊕
n≥1

Tn
(1−τ∗)−→

⊕
n≥1

Tn −→ Hocolim−−−−−→(Tn) −→
⊕
n≥1

Tn[1],

where the morphism (1−τ∗) is induced by (IdTn
,−τn) : Tn → Tn⊕Tn+1↪→

⊕
n≥1 Tn.

Now, we choose τn as a representative in A -Mod and denote by lim
−→

Tn the colimit

of the direct system {(Tn, τn) | n ≥ 1} of A-modules. Then there is a short exact
sequence

0 −→
⊕
n≥1

Tn
(1−τ∗)−→

⊕
n≥1

Tn −→ lim
−→

Tn −→ 0
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which induces a canonical triangle in A-Mod:
⊕
n≥1

Tn
(1−τ∗)−→

⊕
n≥1

Tn −→ lim
−→

Tn −→
⊕
n≥1

Tn[1].

This implies that Hocolim−−−−−→(Tn) � lim
−→

Tn in A-Mod. Since the homotopy colimit of

a tower of triangles in A-Mod is a triangle (for example, see [31, Lemma 4.2]), there
is a triangle in A-Mod:

(‡) Hocolim−−−−−→(Tn) −→ X −→ Hocolim−−−−−→(Xn) −→ Hocolim−−−−−→(Tn)[1].

By the proof of [12, Theorem III.2.3 and Remark III.2.7], we can show Hocolim−−−−−→(Tn)

∈ X and Hocolim−−−−−→(Xn) ∈ Y . Since (X ,Y ) is a torsion pair in A-Mod, there are

isomorphisms

R(X) � Hocolim−−−−−→(Tn) and L(X) � Hocolim−−−−−→(Xn).

Recall that T : D → C stands for the left adjoint of the inclusion C → D (see
Lemma 3.20(3)) and N is defined to be H0

∗ (M).

Lemma 4.15.

(1) If X ∈ ⊥>0M , then R(X) lies in G ∩ S and is isomorphic in C to T (T3).

(2) If X ∈ G , then L(X) ∈ M⊥. If further X ∈ E , then T3 ∈ A-mod.
(3) Ω−

M (N) � Ω−
A(N) � T (Ω−

A(M)) in C .

Proof. (1) Recall from Section 4.2 that X = M⊥>0 ∩ S and Y = ⊥≥−1M ⊆
⊥>0M = ⊥>0M . Let X ∈ ⊥>0M . Since there is a triangle R(X) → X → L(X) →
R(X)[1] in A-Mod with R(X) ∈ X and L(X) ∈ Y , we see that R(X) lies in
⊥>0M , and therefore in G ∩ S .

Set Λn := {i ∈ N | HomA(M [i], Xn) 
= 0} for n ≥ 0. Since add(AM) =

add(νA(M)), it is clear that ⊥>0M = M⊥≤−2 by (♦). This implies Λ0 ⊆ {0, 1}.
So we can choose Q1 = M (I1,0) ⊕M [1](I1,1) in A-Mod for some index sets I1,0 and
I1,1. For a natural number n, we apply HomA(M [i],−) for i ≥ 0 to the triangle

Qn+1
fn+1−→ Xn

gn+1−→ Xn+1 −→ Qn+1[1]

in A-Mod. This yields an exact sequence of abelian groups:

HomA(M [i], Qn+1)
(fn+1)

∗

−→ HomA(M [i], Xn)
(gn+1)

∗

−→ HomA(M [i], Xn+1)

−→ HomA(M [i], Qn+1[1]).

Since fn+1 is a right Add(A)-approximation of Xn, the map (fn+1)
∗ is always

surjective, and so there is an injection HomA(M [i], Xn+1) ↪→ HomA(M [i], Qn+1[1])

for i ≥ 0. Using the fact Add(M) ⊆ G = M⊥�=0,−1, we then can show Λn ⊆ {i ∈
N | n ≤ i ≤ 2n+ 1} by induction on n and choose Qn+1 =

⊕
j∈Λn

M [j](In+1,j) for
some index sets In+1,j .

Consider n ≥ 3. Then HomA(Qn+1,M [1]) = 0. It follows from (��) and Lemma
3.16(2) that there is a triangle Tn → Tn+1 → Qn+1 → Ω−

M (Tn) in D . We apply
the functor T to this triangle and produce another triangle T (Tn) → T (Tn+1) →
T (Qn+1) → Ω−

M (T (Tn)) in C . Since HomA(M [m],G ) = 0 for any m ≥ 2, the
minimal injective envelope M [m] → Im of M [i] is a left G -approximation of M [m].
This means T (M [m]) � Im = 0 in C for any m ≥ 2. Since T commutes with
direct sums by Lemma 3.20(3) and [37, Theorem 2.6.10], we have T (Qn+1) �
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⊕
j∈Λn

T (M [j])(In+1,j) = 0. Thus T (Tn) � T (Tn+1). Consequently, the homotopy

colimit Hocolim−−−−−→(T (Tn)) in C of {(T (Tn), T (τn) | n ≥ 1} is isomorphic to T (T3).

Moreover, due to R(X) ∈ ⊥1M , we see from Lemma 3.16(2) that R(X) is also
the homotopy colimit in D of {Tn}. Since R(X) ∈ G and T commutes with
homotopy colimits by Lemma 3.20(3), there are isomorphisms R(X) � T (R(X)) �
Hocolim−−−−−→(T (Tn)) � T (T3) in C .

(2) If X ∈ G , then L(X) ∈ M⊥>0. This implies L(X) ∈ M⊥ because L(X) ∈
Y = M⊥≤0. Let

A := {U ∈ A-Mod |
∞⊕

n=0

HomA(M [n], U) ∈ Γ -mod}.

Since Γ is an Artin algebra over a commutative Artin ring R, a Γ-module N is
finitely generated if and only if N is finitely generated as an R-module. This im-
plies that an A-module U lies in A if and only if

⊕∞
n=0 HomA(M [n], U) ∈ R -mod.

The latter is equivalent to saying that there is a non-negative integer δU such that
HomA(M [n], U) = 0 for n > δU and HomA(M [n], U) ∈ R -mod for 0 ≤ n ≤ δU .
Moreover, A is closed under direct summands, finite direct sums, the shift [−1]

and extensions of triangles in A-Mod. Now, it follows from M ∈ M⊥�=0,−1 and
HomA(M [1],M) � DHomA(M, νA(M)) that M [j] ∈ A for any j ∈ Z. Conse-
quently, for U ∈ A , there is a right Add(A)-approximation fU : QU → U of U such
that QU ∈ add(

⊕m
n=0 M [n]) for some m ≥ 0 and the third term CU of the triangle

QU
fU−→ U → CU → QU [1] in A-Mod still lies in A .

By Lemma 4.2, there holds E ⊆ A . If X ∈ E , then In+1,j can be chosen to be
finite sets and Qn+1 ∈ add(

⊕
j∈Λn

M [j]) ⊆ A-mod.

(3) In the proof of (1), we take X = N . Then X ∈ E by Theorem 4.14(1). Recall

that X ∈ H ⊆ M⊥�=0 by Proposition 4.1 and that HomA(M,M) � HomA(M,X)
by Lemma 4.7(1). Further, we even have

(a) Λ0 ⊆ {0}, Q1 = M and X1[−2] ∈ H (see the proof of Lemma 4.10), and

(b) Λn ⊆ {i ∈ N | n+ 1 ≤ i ≤ 2n} and Qn+1 ∈ add(
⊕2n

i=n+1 M [i]) ∈ A-mod for
n ≥ 1.

Since M lies in G = M⊥�=0,−1, there holds HomA(Q3,M [1]) = 0. By Lemma

3.16(2), there exists a right triangle T2
τ2−→ T3

σ2−→ Q3 → Ω−
M (T2) in D . This gives

rise to another triangle T (T2) → T (T3) → T (Q3) → Ω−
M (T (T2)) in C . Clearly,

T (Q3) = 0 by Q3 ∈ add(M [3] ⊕M [4]). Thus T (T2) � T (T3). It then follows from
(1) and X ∈ H ⊆ X that X � R(X) � T (T2) in C .

By Lemma 4.10, X[1] = Ω−
A(X) � Ω−

M (X) in C . Further, we will show T2[1] =

Ω−
A(T2) � Ω−

M (T2) in C . Actually, it suffices to prove that any homomorphism
from T2 to a module in Add(M) factorizes through the injective envelope of T2, or
equivalently, HomA(T2,M) = 0. Thanks to add(M) = add(νA(M)), we will show
HomA(T2, νA(M)) = 0.

Indeed, HomA(T2, νA(M))�DHomA(M [1], T2) by (♦). We apply HomA(M [1],−)
to the triangle X2[−1] → T2 → X → X2 (see the diagram (��)) and obtain an iso-
morphism HomA(M [1], X2[−1]) � HomA(M [1], T2). Here, we use the fact X ∈
H ⊆ M⊥�=0. So it is enough to show HomA(M [1], X2[−1]) = 0. Recall that the

triangle Q2
f2−→ X1 → X2 → Q2[1] has the following properties: Q2 ∈ add(M [2])

by (b), X1 ∈ H [2] by (a), and there exists an injection HomA(M [2], X2) ↪→
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HomA(M [2], Q2[1]) by the proof of (1). It follows from HomA(M,M [1]) = 0 that
HomA(M [1], X2[−1]) � HomA(M [2], X2) = 0. Thus HomA(M [1], T2) = 0, and
therefore HomA(T2, νA(M)) = 0.

By the facts that Q2 ∈ add(M [2]) and HomA(M [2],M) = 0, we have

Ext1A(Q2[1],M) � HomA(Q2[1],M [1]) � HomA(Q2,M) = 0.

By Lemma 3.16(2), the triangle M [1]
τ1[1]−→ T2[1]

σ1[1]−→ Q2[1] −→ M [2] in A-Mod can

be extended to a right triangle M [1]
τ1[1]−→ T2[1]

σ1[1]−→ Q2[1] −→ Ω−
M (M [1]) in D . This

yields the triangle in C

T (M [1])
T (τ1[1])−→ T (T2[1])

T (σ1[1])−→ T (Q2[1]) −→ Ω−
M (T (M [1]))

by Lemma 3.20(3). It then follows from T (M [3]) = 0 that T (Q2[1]) = 0 and
T (M [1]) � T (T2[1]) in C . Moreover, T (T2[1]) � T (Ω−

M (T2)) � Ω−
M (T (T2)) �

Ω−
M (X) in C , where the second isomorphism is due to the fact that T commutes

with Ω−
M . Thus T (Ω−

A(M)) = T (M [1]) � Ω−
M (X) in C . �

Now, we state a property of finitely M -filtered A-modules introduced in Defini-
tion 1.1.

Lemma 4.16. If X is a finitely M -filtered A-module, then X ∈ G ⊥>0 and has an
add(M)-resolution of finite length. Moreover, if the A-module X lies in G , then
X ∈ add(M).

Proof. Since G ⊥>0 contains M and is closed under both cosyzygies and extensions
in A -Mod, we have X ∈ G ⊥>0. Now, let M be the full subcategory of A -mod
consisting of all those modules having an add(M)-resolution of finite length. Then
Y ∈ M if and only if HomA(M,Y ) ∈ P<∞(Λ), the category of all finitely generated
Λ-modules of finite projective dimension. Since AM is a self-orthogonal generator,
Y ∈ M if and only if there is an exact sequence 0 → Mn → Mn−1 → · · · → M0 →
Y → 0 in A -mod for some n ∈ N such that Mj ∈ add(M) for all 0 ≤ j ≤ n. Clearly,
M ⊆ M⊥>0 ⊆ M⊥1. As P<∞(Λ) is always closed under extensions in Λ -mod, M
is closed under extensions in A -mod. So, to show that the finitelyM -filtered module
X belongs to M , it suffices to show Ω−i

A (M) ∈ M for each i ≥ 0. However, this

follows from the exact sequence 0 → M → I0 → · · · → Ii−1 → Ω−i
A (M) → 0, where

Ij is injective and therefore in add(M) for 0 ≤ j ≤ i−1. As to the last statement in
the lemma, we notice M∩⊥>0M = add(M), G ⊆ ⊥>0M and G ∩M = add(M). �

In the following, we describe zero objects and compact objects in C . This is re-
lated to pure-projective modules. It is known that a module over an Artin algebra is
pure-projective if and only if it is a direct sum of finitely generated, indecomposable
modules.

Proposition 4.17. The following hold for X ∈ E ∩ S .

(1) X is compact in C and isomorphic in A-Mod to an M -filtered module.
(2) If X⊥1 is closed under direct sums of countably many, finitely M -filtered

A-modules in A -Mod, then X ∈ Add(M). In particular, if X is pure-
projective, then X ∈ Add(M).

(3) If X ∈ H ∩ (A-mod), then X is projective.
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Proof. Let X ∈ E ∩ S . We keep all notations in the proof of Lemmas 4.15(1)-(2).
(1) By Lemma 4.2, X ∈ X and X � R(X) in A-Mod. Moreover, by Lemmas

4.15(1)-(2), R(X) � T (T3) in C with T3 ∈ A-mod. Each object of A-mod is
compact in A-Mod and the quotient functor A-Mod → D preserves compact objects
by Lemma 2.1(2). Hence T3 is compact in D . As T preserves compact objects by
Lemma 3.20(3), both T (T3) and X are compact in C .

It follows from X ∈ E that the proofs of Lemma 4.15(1)-(2) yield Qn+1 =⊕
j∈Λn

M [j](In+1,j), where Λn ⊆ {i ∈ N | n ≤ i ≤ 2n + 1}, M [j] = Ω−j
A (M)

and In+1,j are finite sets. This implies Tn ∈ A-mod for n ≥ 1. Since triangles
in A-mod (up to isomorphism) are induced from short exact sequences, we can
add finitely generated projective modules to Tn and assume that the associated
map τn : Tn → Tn+1 is injective and Coker(τn) is isomorphic to a finite direct
sum of modules in {AA} ∪ {Ω−i

A (M) | i ∈ N}. Now, let X ′ be the colimit of the
direct system {(Tn, τn) | n ≥ 1} in A -Mod. Then the canonical map Tn → X ′ is
injective. Thus Tn can be regarded as a submodule ofX ′ and Tn ⊆ Tn+1. Moreover,
X ′ =

⋃∞
n=0 Tn and is M -filtered. Now (1) follows from X � R(X) � X ′ in A-Mod.

(2) Since all Tn are finitely M -filtered and X ∈ G , we have Tn ∈ X⊥1 by Lemma
4.16. Let Z :=

⊕
n≥1 Tn. The assumption of (2) implies Ext1A(X,Z) = 0. So

the exact sequence 0 → Z
(1−τ∗)−→ Z → X ′ → 0 induced by {τn | n ≥ 1} splits, and

thereforeX ′ is isomorphic to a direct summand of Z. Since Tn is a finitely generated
A-module, it is a direct sum of finitely many indecomposable submodules with the
local endomorphism rings. Thus, by [1, Corollary 26.6], we have X ′ �

⊕
n≥1 T

′
n,

where T ′
n is a direct summand of Tn. Moreover, by Lemma 4.16, Tn has an add(M)-

resolution of finite length, and so does T ′
n. It follows from X ∈ G and X � X ′ in

A-Mod that X ′ ∈ G , and therefore T ′
n ∈ G . Consequently, T ′

n ∈ add(M) by the
proof of Lemma 4.16. Hence X ′ ∈ Add(M) and X ∈ Add(M).

For any V ∈ A -mod, V is clearly finitely presented, and therefore V ⊥1 is always
closed under arbitrary direct sums in A -Mod. This implies that if X is pure-
projective, then X⊥1 is closed under arbitrary direct sums in A -Mod, and therefore
X ∈ Add(M).

(3) By Lemmas 4.2(1) and 4.4(1), H ∩ (A-mod) ⊆ E ∩ S . It follows from
X ∈ A-mod that X⊥1 is closed under arbitrary direct sums in A -Mod. Further,
X ∈ Add(M) by (2), and HomA(N,M) = 0 by Lemma 4.10. Due to Add(M) =
Prod(M), we have HomA(N,X) = 0. It follows from Lemma 4.7(3) and X ∈ H
that X � 0 in A-Mod. Thus X is projective. �

Now, we describe compact generators of the right-hand side in the recollement
of Theorem 1.5.

Let T be a triangulated category. For a full subcategory U of T , we denote by
〈U〉 the smallest full subcategory of T containing U and being closed under finite
coproducts, direct summands and shifts. Let V be another full subcategory of T .
Recall that U �V is the full subcategory of T consisting of objects X such that there
is a triangle U → X → V → U [1] with U ∈ U and V ∈ V . Following [32, 3.1], we
set U � V := 〈U � V〉, and then define 〈U〉0 := 0 and 〈U〉n+1 := 〈U〉n � 〈U〉 for n ≥ 0
inductively. Clearly, the objects of 〈U〉n+1 are the direct summands of the objects
obtained by taking (n+ 1)-fold extensions of finite direct sums of shifts of objects
of U . Following [32, Definition 3.1], the dimension of T , denoted by dim(T ), is
defined to be the minimal natural number n such that there is an object X ∈ T
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with T = 〈X〉n+1. If no such X exists, one defines dim(T ) = ∞. If dim(T ) is
finite, then such an object X is called a strong generator of T .

For a pair of integers i ≤ j, we denote by 〈U〉[i,j]n+1 the full subcategory of 〈U〉n+1

consisting of all objects which are obtained by taking (n + 1)-fold extensions of
finite direct sums of objects in the class {U [−s] | U ∈ U , s ∈ Z, i ≤ s ≤ j}. Here,

we do not require taking both direct summands and arbitrary shifts in 〈U〉[i,j]n+1.

Corollary 4.18.

(1) Let S be the finite set of isomorphism classes of simple objects of H , and
let n be the Loewy length of the algebra Γ. Then (G ∩S )/[M ] is a compactly
generated triangulated category:(

G ∩ S
)
/[M ] = 〈Add(S)〉[−1,0]

2n and
(
(G ∩ S

)
/[M ])c = (E ∩ S )/[M ] = 〈S〉[−1,0]

2n .

(2) If A is symmetric and Γ is semisimple, then there are triangle equivalences

(G ∩ S )/[M ] = Add
(
N ⊕ Ω−

A(N)
) �−→ (Γ× Γ) -Mod,

(E ∩ S )/[M ] = add
(
N ⊕ Ω−

A(N)
) �−→ (Γ× Γ) -mod,

where (Γ×Γ) -Mod, as a triangulated category, has the shift functor induced
from the automorphism of the algebra Γ × Γ by permutating the first and
second coordinates.

(3) If T (X) lies in E /[M ] for all X ∈ A -mod, then the recollement in Propo-
sition 4.3 restricts to a half recollement of triangulated categories:

(M⊥)c
π◦inc �� C c

˜Φ ��

˜Ψ

��
(E ∩ S )/[M ].

inc

��

Proof. (1) Let R := (G ∩S )/[M ]. By Lemma 4.2(2)(b), we can identify H with its
(essential) image in R under the quotient functor G ∩ S → R. It follows from the
first part of Corollary 4.8(3) that R = H [1]�H , where [1] denotes the functor Ω−

M .
To characterize R in terms of S, we use the functor HomA(N,−) : H → Γ -Mod
which is an equivalence of abelian categories and sends N to Γ by Lemma 4.7(2)-
(3). Recall that H fg := {X ∈ H | HomA(M,X) ∈ Γ -mod} = H ∩ E . By
the proof of Corollary 4.8(1), the functor HomA(N,−) restricts to an equivalence:

H fg �−→ Γ -mod. This equivalence clearly sends simple objects of H to simple
Γ-modules. Since Γ is an Artin algebra, it has only finitely many isomorphism
classes of simple modules and each (respectively, finitely generated) Γ-module is
generated by simple modules under arbitrary (respectively, finite) direct sums and
taking n-fold extensions. Consequently, S is a finite set and each object of H
(respectively, H fg) is generated by S under arbitrary (respectively, finite) direct
sums and taking n-fold extensions. Note that each short exact sequence in H
induces a triangle in R by Lemma 3.16(2). Now, thanks to R = H [1] � H ,
the first equality in (1) holds, and therefore R = Loc(S). Similarly, from the
equality (E ∩ S )/[M ] = H fg[1] � H fg by the second part of Corollary 4.8(3), we
see that (E ∩ S )/[M ] is generated by S under taking the shifts [i] for i = 0, 1
and (2n)-fold extensions. This implies the third equality in (1). By Proposition
4.17(1), each object of H fg is compact in C and thus also in R. Hence R is
compactly generated. By [30, Theorem 4.4.9], we have Rc = thick(S). Clearly,

thick(S) ⊆ (E ∩ S )/[M ] = 〈S〉[−1,0]
2n ⊆ thick(S). Thus Rc = 〈S〉[−1,0]

2n .
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(2) Suppose that A is symmetric and Γ is semisimple. Then Γ is symmetric. By
Corollary 4.11, Ω2

M (N) � N in C . Moreover, by Lemma 4.10, Ω−
M (N) � Ω−

A(N)

in C . It follows that Ω2i
M (N) � N and Ω2i+1

M (N) � Ω−
A(N) for any i ∈ Z. Let

W := N ⊕ Ω−
A(N) and W := Add(W ). Then W = ΩM (W ). Clearly, W contains

N and is closed under direct sums in C . As Γ is semisimple, there holds add(N) =
add(S) ⊆ R. To show R = W , it suffices to show that W is a triangulated
subcategory of C . Since W is closed under ΩM , we only need to show that, for any

morphism f : X1 → X2 in W and triangle X1
f→ X2 → X3 → Ω−

M (X1) in C , the
term X3 belongs to W .

Since H is the heart of the torsion pair (X ,Y ) in A-Mod, ExtjH (U, V ) �
HomA(U, V [j]) for any U, V ∈ H and j = 0, 1. Since N is a projective object
in H by Lemma 4.7(3), we have HomA(N,N [1]) � Ext1H (N,N) = 0. Further,
by Lemma 3.17 and [15, Lemma 3.5], if V1 and V2 lie in G , then
HomA(V1, V2[n]) � HomM (V1,Ω

−n
M (V2)) for all n ≥ 1. This implies HomA(N,N [1])

� HomM (N,Ω−
M (N)), and therefore HomM (N,Ω−

M (N)) = 0 = HomM (Ω−
M (N), N).

Let B := EndA(W ). Then B � Γ⊕ Γ as algebras. Since B is semisimple and W is
compact in C by Theorem 4.14(1), the functor HomM (W,−) : W → B -Mod is an
additive equivalence. By this equivalence and the fact that B -Mod is a semisimple
abelian category, it can be proved that f as a morphism in W is isomorphic to a
direct sum of the identity map of Z1 with the zero map Z2 → Z3, where Zi lies
in W for 1 ≤ i ≤ 3. Consequently, X3 � Ω−

M (Z2) ⊕ Z3. It then follows from
W = ΩM (W ) that X3 ∈ W . Thus W is a triangulated subcategory of C , and
therefore R = W . By (1), Rc = add(W ).

(3) By Lemma 3.20(4) and [30, Theorem 4.4.9], the assumption of Corollary
4.18(3) implies C c ⊆ E /[M ]. Combining Corollary 4.5 with Proposition 4.17(1),

we see that Φ̃ sends compact objects of C to objects of (E ∩S )/[M ] which are also

compact in C . Note that Ψ̃ : C → M⊥ always preserves compact generating sets.
Thus the first two lines of functors in the recollement of Corollary 4.5 restrict to
the half recollement in Corollary 4.18(3). �

Corollary 4.19.

(1) dim
(
(E ∩ S )/[M ]

)
≤ 2 LL(Γ)− 1, where LL(Γ) is the Loewy length of Γ.

(2) dim
(
(E ∩ S )/[M ]

)
≤ 2 gl. dim(Γ) + 1, where gl. dim(Γ) is the global di-

mension of Γ .

Proof. (1) follows from Corollary 4.18(1).
(2) If gl. dim(Γ) is infinite, then the inequality in (2) holds trivially. Now, let

m := gl. dim(Γ) < ∞. In the following, we follow the notation in the proof of

Corollary 4.18(1) and show that (E ∩ S )/[M ] = 〈add(N)〉[−m−1,0]
2m+2 . This implies

dim
(
(E ∩ S )/[M ]

)
≤ 2m+ 1.

By the second part of Corollary 4.8(3), (E ∩ S )/[M ] = H fg[1] � H fg. So, it
suffices to control the objects of H fg by N . We take an object X ∈ H fg. Since
the functor HomA(N,−) : H fg → Γ -mod is an equivalence of abelian categories
sending N to Γ and since each finitely generated Γ-module has a projective resolu-
tion of length m by finitely generated projective Γ-modules, there is a long exact
sequence (∗) : 0 → Nm → · · · → N1 → N0 → X → 0 in H fg with Ni ∈ add(N) for
0 ≤ i ≤ m. Note that each short exact sequence 0 → X → Y → Z → 0 in H gives
rise to a triangle X → Y → Z → Ω−1

A (X) in A-Mod with the terms X,Y, Z ∈ H .
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Since H ⊆ G ∩ S ⊆ ⊥1M by Lemma 4.2(1), this triangle induces a triangle
X → Y → Z → X[1] in C by Lemma 3.16(2). So, we divide the sequence (∗) into a

series of short exact sequences in H fg and then obtain X ∈ 〈add(N)〉[−m,0]
m+1 . Thus

(E ∩ S )/[M ] = 〈add(N)〉[−m−1,0]
2m+2 . �

Proof of Theorem 1.5. The existence of the recollement in (1) follows from Propo-
sition 4.3, while (2) and (3) are exactly Corollaries 4.5 and 4.19, respectively. �

Proof of Proposition 1.6. (2) and (3) follow from Corollary 4.18(1), while the first
part of (1) is Proposition 4.17(1). Let E0 := E ∩S ∩ (A -mod). Clearly, add(M) ⊆
E0. If X ∈ E0, then X ∈ Add(M) by Proposition 4.17(2) because all finitely
generated A-modules are pure-projective. As X is finitely generated, it lies in
add(M). Thus E0 = add(M). This implies the second part of (1). �

5. Tachikawa’s second conjecture

In this section we prove Theorem 1.2 and Corollary 1.4. As a consequence, we
show that the Nakayama conjecture is true for Gorenstein-Morita algebras (see Def-
inition 1.3(ii)). Moreover, we introduce two homological conditions (CI) and (CII).
They are connected with finitistic dimension (see Lemma 5.1). Also, the invari-
ance of (CII) under different types of equivalences between algebras is discussed in
Corollary 5.3.

Let B be an Artin algebra. The dominant dimension of B, denoted by
dom. dim(B), is by definition the largest natural number n or ∞ such that, in
a minimal injective coresolution 0 → BB → I0 → I1 → · · · → In → · · · , all these
module Ii are projective for 0 ≤ i < n. The unsolved Nakayama Conjecture says
that an Artin algebra is self-injective whenever its dominant dimension is infinite.
Related to this conjecture, Tachikawa proposed two conjectures in [35, p. 115-116].

(TC1) If an Artin algebra B satisfies ExtnB(D(B), B) = 0 for all n ≥ 1, then B is
self-injective.

(TC2) Let B be a self-injective algebra and Y a finitely generated B-module. If
ExtnB(Y, Y ) = 0 for all n ≥ 1, then Y is projective.

As pointed in Section 1, the two conjectures (TC1) and (TC2) hold true for all
algebras if and only if so does the Nakayama conjecture for all algebras. Moreover,
it was shown in [28] that, given a pair (B, Y ) with B a self-injective algebra and Y
a finitely generated, self-orthogonal B-module, the algebra EndB(B ⊕ Y ) satisfies
the Nakayama conjecture if and only if Y is projective.

By [28], algebras of dominant dimension at least 2 are exactly endomorphism
algebras of generator-cogenerators over algebras. Recall that a finitely generated
module X over an algebra C is called a generator-cogenerator if C ⊕ D(C) ∈
add(CX). If B is the endomorphism algebra of a generator-cogenerator X over an
algebra C, then, by Müller’s theorem (see [28, Lemma 3]), dom. dim(B) = n > 1 if
and only if ExtiC(X,X) = 0 for 1 ≤ i < n− 1. In particular, dom. dim(B) = ∞ if
and only if X is self-orthogonal, that is, ExtiC(X,X) = 0 for all i ≥ 1.

Proof of Theorem 1.2. (1)⇒ (2)–(5). Suppose the module AM is projective. Then
G = A -Mod and W = Ω−

A(M) = 0. This implies (4) and (5). Since each A-module
is always a filtered colimit of finitely generated A-modules, (2) holds. Note that
A-filtered modules are projective. Thus (3) holds.

(2)⇒ (4). This is clear since W ∈ G .
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(4)⇒ (5). Let f : Ω−
A(M) → W be the minimal left G -approximation of Ω−

A(M)
with W ∈ G . Assume that W is a filtered colimit of {Wi | i ∈ I} with I an
essentially small, filtered category and with all Wi ∈ G0. We show that W⊥1 is
closed under countable direct sums in A -Mod. This implies (4).

Let λi : Wi → W be the canonical homomorphism of the colimit W . Since
Ω−

A(M) is finitely generated and even finitely presented, the canonical map

lim
−→

HomA(Ω
−
A(M),Wi) → HomA(Ω

−
A(M),W ) induced by {HomA(Ω

−
A(M), λi) | i ∈

I} is an isomorphism. As I is a filtered category, the colimit lim
−→

HomA(Ω
−
A(M),Wi)

of abelian groups is a quotient group of the direct sum
⊕

i∈I HomA(Ω
−
A(M),Wi) and

each of its elements can be represented by a homomorphism of HomA(Ω
−
A(M),Wi)

for some index i ∈ I. Consequently, there is an index i ∈ I and a homomorphism
fi : Ω

−
A(M) → Wi such that f = fiλi. Further, due to Wi ∈ G , the approximation

implies that there is a homomorphism gi : W → Wi such that fi = fgi. It follows
that f = fgifi. Since f is left minimal, gifi is an isomorphism. Thus gi is split-
injective. Since Wi is finitely generated, W is also finitely generated (presented).
Hence, W⊥1 is closed under arbitrary direct sums in A -Mod.

(5)⇒ (1). By Lemma 4.15(3), T (Ω−
A(M)) � Ω−

M (N) in C . Thus W � Ω−
M (N)

in C . By Lemma 3.16(1), there are M1,M2 ∈ Add(M) such that W ⊕ M1 �
Ω−

M (N)⊕M2. Let M be the full subcategory of A -mod consisting of modules with
add(M)-resolutions of finite length. It follows from M ∈ G ⊥>0 and W ∈ G that
M ⊆ G ⊥>0 ⊆ W⊥1. For X ∈ Add(M), since AM is self-orthogonal and finitely
presented, X⊥1 contains M and is closed under arbitrary direct sums in A -Mod.
Thus (3) implies that Ω−

M (N)⊥1 is closed under countable direct sums in A -Mod of

modules in M . By Lemma 4.16, Ω−
M (N)⊥1 is closed under countable direct sums

in A -Mod of finitely M -filtered A-modules. Further, it follows from N ∈ E ∩ S ,
Corollary 3.13 and Lemma 4.4(2) that Ω−

M (N) ∈ E ∩ S . By Proposition 4.17(2),

Ω−
M (N) ∈ Add(M). This shows Ω−

M (N) = 0 (and thus also N = 0) in C . By
EndA(N) = EndM (N), we have N = 0 in A-Mod. Since EndA(M) � EndA(N) by
Lemma 4.7(2), M = 0 in A-Mod. In other words, AM is projective.

(3)⇒ (1). By Proposition 1.6(1), the module N is M -compact (that is, compact
in C ) and isomorphic in A-Mod to an M -filtered module X. Then there are pro-
jective A-modules P and Q with N ⊕ P � X ⊕Q. Since projective A-modules are
zero in C , X is M -compact. By (3), X lies in Add(M), and therefore N = 0 in C .
By Lemma 4.7(2), we have M = 0 in A-Mod. Thus AM is projective. �

Recall that P<∞(B) denotes the category of finitely generated B-modules with
finite projective dimension. Let B -GProjω be the category of countably gen-
erated, compactly Gorenstein-projective B-modules. Clearly, finitely generated,
Gorenstein-projective B-modules are in B -GProjω. Note that the category of
countably generated B-modules is a Serre subcategory of B -Mod. This is due
to the fact: A ring R has the property that each submodule of each countably
generated left R-module is countably generated if and only if each left ideal of R is
countably generated.

We consider the following two homological conditions:

(CI) The direct sum of countably many B-modules from P<∞(B) belongs to

B -GProj ⊥>0
ω .

(CII) Any compactly Gorenstein-projective, compactly filtered B-module is pro-
jective.
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The finitistic dimension of an Artin algebra B is the supremum of projective
dimensions of all B-modules in P<∞(B). The well-known finitistic dimension con-
jecture says that an Artin algebra B should always have finite finitistic dimension.
The validity of this conjecture for B implies the one of the Nakayama conjecture
for B. However, the finitistic dimension conjecture is still open.

Lemma 5.1.

(1) If (CI) holds, then so does (CII).
(2) If an Artin algebra B has finite finitistic dimension or is a virtually Goren-

stein algebra, then (CI) holds.

Proof. (1) Let Y be a compactly Gorenstein-projective B-module which is com-
pactly filtered by a sequence {Yi | i ∈ N} of submodules of Y . Set X :=

⊕
i∈N

Yi.
Then there is a canonical exact sequence 0 → X → X → Y → 0 in B -Mod. Since
Yi is finitely generated for all i, the module Y is countably generated. This im-
plies Y ∈ B -GProjω. Moreover, since Yi ∈ P<∞(B) for all i ∈ N, the condition
(CI) implies that the sequence splits and Y is isomorphic to a direct summand of
X. Note that Yi is a direct sum of finitely many indecomposable submodules with
the local endomorphism rings. By [1, Corollary 26.6], Y �

⊕
i∈N

Y ′
i , where Y ′

i is
a direct summand of Yi for each i. Since P<∞(B) ∩ B -GProj = add(B), Y ′

i is
projective for all i. Thus Y is projective. This shows that (CII) holds.

(2) Clearly, B -GProj⊥>0 contains all B-modules of finite projective dimension.

For a virtually Gorenstein algebra B, B -GProj⊥>0 = ⊥>0B -GInj, and therefore
B -GProj⊥>0 is closed under arbitrary direct sums in B -Mod. Thus (2) holds. �

Lemma 5.2. Let B and C be Artin algebras and X a finitely generated C-B-
bimodule. Suppose that CX and XB are projective and the tensor functor X⊗B −:
B -Mod → C -Mod induces a triangle equivalence B−GProj → C−GProj. If C
satisfies (CII), then so does B.

Proof. Let F := CX ⊗B −. Since both CX and XB are projective, the functor
F : B -Mod → C -Mod is exact and preserves projective modules. This yields
F (P<∞(B)) ⊆ P<∞(C). Since F commutes with filtered colimits, it sends com-
pactly filtered B-modules to compactly filtered C-modules. Further, since F in-
duces a triangle equivalence B−GProj → C−GProj, it reflects projective modules
and sends compactly Gorenstein-projective B-modules to compactly Gorenstein-
projective C-modules. This implies Lemma 5.2. �

Next, we point out that the condition (CII) is preserved by several classes of
equivalences between algebras. For the unexplained notions below of stable equiva-
lences of adjoint type and singular equivalences of Morita type with level, we refer
to [38] and [36], respectively. Given a finitely generated B-module N , we denote
by thick(BN) the smallest thick subcategory of B -mod which contains N .

Corollary 5.3. Let B and C be finite-dimensional algebras over a field. Suppose
that

(a) B and C are derived equivalent, or
(b) B and C are stably equivalent of adjoint type, or
(c) B and C are singularly equivalent of Morita type with level defined by a

pair of bimodules (CXB,BYC) such that HomC(X,C) ∈ thick(BB⊕D(B))
and HomB(Y,B) ∈ thick(CC ⊕D(C)).
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Then B satisfies (CII) if and only if so does C.

Proof. (a) follows from Lemma 5.2 and [25, Example 4.7 and Corollary 5.4]. The
case (b) is a special case of (c). In the case (c), the modules CX and XB are finitely
generated and projective by the definition of singular equivalences of Morita type
with level. By Lemma 5.2, it suffices to show that the functor F := CX⊗B −:
B -Mod → C -Mod induces a triangle equivalence B−GProj → C−GProj. Note
that for finitely generated Gorenstein-projective modules, the triangle equivalence
B−Gproj → C−Gproj is known in [36, Proposition 4.5] under a stronger assump-

tion that HomC(X,C) ∈ P<∞(B) and HomB(Y,B) ∈ P<∞(C). Since our discus-
sions involve infinitely generated Gorenstein-projective modules, we have to check
whether F and G can be regraded as functors between B -GProj and C -GProj.

Let U ∈ B -GProj with a complete projective resolution P •. Then F (P •) :=
(F (P i)i∈Z) is an exact complex of projective C-modules. Moreover, Hom•

C(F (P •), C)
� Hom•

B(P
•,HomC(X,C)) as complexes. By [13, Theorem 2], thick(BB⊕D(B)) =

B -GProj⊥>0 ∩B -mod. Since each cocycle of P • lies in B -GProj and HomC(X,C)
∈ thick(BB⊕D(B)), the complex Hom•

B(P
•,HomC(X,C)) is exact. Consequently,

F (P •) is a compete projective resolution of F (U), and therefore F (U) ∈ C -GProj.
In other words, F restricts to a functor B -GProj → C -GProj. Similarly, the func-
tor G := BY⊗C −: C -Mod → B -Mod also restricts to a functor C -GProj →
B -GProj.

Recall that B−GProj is a triangulated category with the shift functor ΣB which
is a quasi-inverse of the syzygy functor ΩB. This implies Y ⊗C X⊗B − � Ωn

B(−) �
Σ−n

B : B−GProj −→ B−GProj, where n is the level of the singular equivalence
in (c) and Σn

B denotes the n-th shift functor of B−GProj. Similarly, there are

equivalences X ⊗B Y ⊗C − � Ωn
C(−) � Σ−n

C : C−GProj → C−GProj. Thus F
induces a triangle equivalence B−GProj −→ C−GProj with a quasi-inverse Σn

B ◦G:
C−GProj → B−GProj. �

Recall from Definition 1.3(ii) that an algebra B is said to be compactly Gorenstein
if (CII) holds; and Gorenstein-Morita if B is both strongly Morita and compactly
Gorenstein. By Lemma 5.1, a strongly Morita algebra is Gorenstein-Morita if it is
virtually Gorenstein or has finite finitistic dimension.

Proof of Corollary 1.4. Suppose that Λ is a Gorenstein-Morita algebra. Then there
is a self-injective algebra A and a finitely generated A-module M which is a gen-
erator such that Λ = EndA(M) and add(M) = add(νA(M)). Further, suppose
dom. dim(Λ) = ∞. Then AM is self-orthogonal by [28, Lemma 3].

In the following, we show N := H0
∗ (M) = 0 in C (see Section 4.2). If it is

the case, then EndA(M) � EndA(N) by Lemma 4.7(2), and therefore M = 0 in
A-Mod, that is, AM is projective. Thus Λ is Morita equivalent to A and must be
self-injective, and therefore the first part of Corollary 1.4 is proved.

Now, let M = A ⊕
⊕m

i=1 Mi with m ∈ N and Mi indecomposable and non-
projective for 1 ≤ i ≤ m. By Corollary 4.8(2), N �

⊕m
i=1 H

0
∗ (Mi) in C andH0

∗ (Mi)
is indecomposable in C for 1 ≤ i ≤ m. Clearly, H0

∗ (Mi) as an A-module does not
contain nonprojective direct summands in Add(M), due to HomA(N,M) = 0. So
we can assume that H0

∗ (Mi) = Pi ⊕ Ni as A-modules, where Pi is a projective
A-module, and Ni is either zero or an indecomposable A-module that does not lie
in Add(M). Now, we turn to showing Ni = 0 for all i. This implies that N is
projective, and thus N = 0 in C .
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By Theorem 4.14(1) and Proposition 4.17(1), Ni is isomorphic in A-Mod to an
M -filtered A-module X. Now, suppose that X is filtered by a sequence {Xn | n ∈
N} of submodules of X (see Definition 1.1). Then X = lim

n→∞
Xn =

⋃∞
n=0 Xn. By

Lemma 4.16, Xn ∈ M⊥>0 and has an add(M)-resolution of finite length. Applying
G := HomA(M,−) to the inclusions Xn → Xn+1, we obtain G(Xn) ∈ P<∞(Λ)
and injective homomorphisms G(Xn) → G(Xn+1). Since AM is finitely pre-
sented, G commutes with filtered colimits. It follows that G(X) = lim

n→∞
G(Xn) =⋃∞

n=0 G(Xn). In other words, G(X) is compactly filtered.
Assume Ni 
= 0. Then Ni is indecomposable and does not belong to Add(M).

It follows from X � Ni in A-Mod and Ni ∈ G that X ∈ G and Ω−
MΩM (X) �

Ω−
MΩM (Ni). By Remark 3.19, Ω−

MΩM (Ni) � Ni, and therefore X � Ni ⊕ M0

for some M0 ∈ Add(M). As N is compact in C by Theorem 4.14(1), X is also
compact in C . It follows from Lemma 3.17(2) that G(X) is compactly Gorenstein-
projective, but not projective. Since Λ is compactly Gorenstein, G(X) must be
projective. This leads to a contradiction. Thus Ni = 0.

If Λ is gendo-symmetric, then A can be assumed to be symmetric. Since gendo-
symmetric, virtually Gorenstein algebras are Gorenstein-Morita, the second part of
Corollary 1.4 follows from the first part of Corollary 1.4. �

To end this section, we mention the following questions related to the results in
this paper.

Question 1. Find necessary and sufficient conditions for Artin algebras to be
compactly Gorenstein.

Finitely generated Gorenstein-projective modules over an Artin algebra are com-
pactly Gorenstein-projective. The next question is about countably generated
Gorenstein-projective modules.

Question 2. Describe the class of countably generated, compactly Gorenstein-
projective modules over an Artin algebra.

Question 3. Find more new examples of Gorenstein-Morita algebras.
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