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Abstract

We show that the construction of mirror-reflective algebras inherits derived equivalences of gendo-
symmetric algebras. More precisely, suppose A and B are gendo-symmetric algebras with both Ae and
B f faithful projective-injective left ideals generated by idempotents e in A and f in B, respectively.
If A and B are derived equivalent, then the mirror-reflective algebras of (A,e) and (B, f ) are derived
equivalent.

1 Introduction

Given an (associative) algebra A over a commutative ring k, an idempotent e of A and an element λ in
the center of Λ := eAe, we introduced the mirror-reflective algebra R(A,e,λ) of A at level (e,λ) in [4].
Roughly speaking, this algebra has the underlying k-module structure A⊕Ae⊗Λ eA such that Ae⊗Λ eA is
an ideal in R(A,e,λ). The specialization of R(A,e,λ) at λ = e is called the mirror-reflective algebra of A
at e, denoted by R(A,e). In case that A is a finite-dimensional gendo-symmetric algebra over a field k and
e is an idempotent of A such that Ae is a faithful and projective-injective A-module, the algebra R(A,e) is
called simply the mirror-reflective algebra of A.

The introduction of mirror-reflective algebras is motivated by understanding the Tachikawa’s second
conjecture which states that a self-orthogonal module over a self-injective algebra should be projective
(see [23, p.115-116]). The procedure of forming mirror-reflective algebras can be iterated and thus sup-
plies a series of both higher Auslander algebras and recollements of derived module categories. It is
proved in [4, Theorem 1.1]) that the Tachikawa’s second conjecture for symmetric algebras holds true
if and only if indecomposable symmetric algebra has only trivial stratifying ideals. The proof of this
characterization relays on the iterated construction of mirror-reflective algebras (see [4, Section 5]).

Our purpose of this note is to show that the mirror-reflective algebras of derived equivalent, gendo-
symmetric algebras are again derived equivalent. More precisely, we have the following general result.

Theorem 1.1. Suppose that A and B are finite-dimensional gendo-symmetric algebras over a field k and
that AAe and BB f are faithful projective-injective modules generated by idempotents e ∈ A and f ∈ B,
respectively. If A and B are derived equivalent, then there is an isomorphism σ : Z(eAe)→ Z( f B f ) of
algebras from the center of eAe to the one of f B f such that, for any λ ∈ Z(eAe), the mirror-reflective
algebras R(A,e,λ) and R(B, f ,(λ)σ) are derived equivalent.

During the course of the proof of Theorem 1.1, we will give a general construction of derived equiva-
lences of mirror-reflective algebras of arbitrary algebras at any levels in Theorem 3.1. So Theorem 1.1 is
just its consequence.

This note is sketched as follows. In Section 2 we provide preliminaries for the proof of the main result.
This includes recalling basic definitions and proving facts on derived equivalences and on mirror-reflective
algebras . In Section 3 we prove Theorem 3.1.
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2 Preliminaries

Let k denote a commutative ring with identity. All algebras in the paper are associative k-algebras with
identity. For an algebra A, we denote by A-Mod the category of all left A-modules. Let A-mod and A-proj
be the full subcategories of A-Mod consisting of finitely generated A-modules and finitely generated pro-
jective A-modules, respectively.

Given an additive category A , C (A) stands for the category of all complexes X• = (X i,di
X) over A

with cochain maps as morphisms, and K (A) for the homotopy category of C (A). We write C b(A)
and K b(A) for the full subcategories of C (A) and K (A) consisting of bounded complexes over A ,
respectively. When A is abelian, the (unbounded) derived category of A is denoted by D(A), which is
the localization of K (A) at all quasi-isomorphisms.

For an algebra A, we simply write K (A) for K (A-Mod) and D(A) for D(A-Mod). Also, A-Mod
is often identified with the full subcategory of D(A) consisting of all stalk complexes concentrated in
degree 0. For an idempotent element e in A, the category K b(add(Ae)) is identified with its images in
D(A) under the localization functor K (A)→D(A).

The composition of two maps f : X → Y and g : Y → Z of sets is written as f g. Thus, for a map
f : X → Y , we write (x) f for the image of x ∈ X under f .

2.1 Derived equivalences of algebras with idempotents

In this subsection, all k-algebras over a commutative ring k are assumed to be projective as k-modules.
Let Ae := A⊗k A

op
be the enveloping algebra of an algebra A, and D be the functor Homk(−,k).

We first recall the definitions of tilting complexes and derived equivalences in [20, 22].

Definition 2.1. Let A and B be algebras.
(1) A complex P ∈K b(A-proj) is called a tilting complex if
(i) P is self-orthogonal, that is, HomK b(A-proj)(P,P[n]) = 0 for any n 6= 0,

(ii) add(P) generates K b(A-proj) as a triangulated category, that is, K b(A-proj) is the smallest
full triangulated subcateory of K b(A-proj) containing add(P) and being closed under isomorphisms.

(2) A complex T ∈ D(A⊗k Bop) is called a two-sided tilting complex if there is a complex T∨ ∈
D(B⊗k Aop) such that T ⊗L

B T∨ ' A in D(Ae) and T∨⊗L
A T ' B in D(Be). The complex T∨ is called the

inverse of T .
(3) Two algebras A and B are said to be derived equivalent if D(A) and D(B) are equivalent as

triangulated categories, or equivalently, K b(A-proj) and K b(B-proj) are equivalent as triangulated
categories.

Let T be a two-sided tilting complex in D(A⊗k Bop) with the inverse T∨. By [22, Section 3], we have
T∨ ' RHom A(T,A)' RHom Bop(T,B) in D(B⊗k Aop). Moreover, the functor T∨⊗L

A− : D(A)→D(B)
is a triangle equivalence with the quasi-inverse T ⊗L

B − : D(B)→ D(A). This implies that AT and TB

are isomorphic to tilting complexes in D(A) and D(Bop), respectively. By [22, Lemma 4.3], T∨⊗k T ∈
D(Ae⊗k (Be)op) is a two-sided tilting complex.

The following theorem is well known (see [9, 15, 20, 22]).

Theorem 2.2. Let A and B be k-algebras. The following are equivalent.
(1) A and B are derived equivalent.
(2) There is a tilting complex P ∈K b(A-proj) such that B' EndD(A)(P) as algebras.
(3) There is a two-sided tilting complex T ∈D(A⊗k Bop).

Comparing with recollement-tilting complexes related to idempotents in [17, Definition 3.6], we in-
troduce the definition of derived equivalences of algebras with idempotents.
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Definition 2.3. Let A and B be algebras with idempotent elements e = e2 ∈ A and f = f 2 ∈ B. The pairs
(A,e) and (B, f ) of algebras with idempotents are said to be derived equivalent provided that there is a
triangle equivalence D(A)→D(B) which restricts to an equivalence K b(add(Ae))→K b(add(B f )).

Clearly, A and B are derived equivalent if and only if so are the pairs (A,0) and (B,0) if and only if so
are the pairs (A,1A) and (B,1B). The following result is essentially implied in [17] and provides several
equivalent characterizations of derived equivalences of algebras with idempotents. For the convenience
of the reader, we provide a proof.

Lemma 2.4. ([17]) Let A and B be algebras with e2 = e∈A and f 2 = f ∈B. The following are equivalent.
(1) The pairs (A,e) and (B, f ) are derived equivalent.
(2) There is a tilting complex P ∈K b(A-proj) such that P = P1⊕P2 in K b(A-proj) satisfying

(a) B' EndD(A)(P) as algebras.
(b) P1 generates K b(add(Ae)) as a triangulated category.
(c) Under the isomorphism of (a), f ∈ B corresponds to the composite of the canonical projection

P→ P1 with the canonical inclusion P1→ P.
(3) There is a two-sided tilting complex T ∈D(A⊗k Bop) with the inverse T∨ ∈D(B⊗k Aop) such that

eT f ∈D(eAe⊗k ( f B f )op) is a two-sided tilting complex with the inverse f T∨e∈D( f B f ⊗k (eAe)op) and
that all 3 squares in the following diagram are commutative (up to natural isomorphism):

D(A)

F1
��

e· // D(eAe)

F2
��

je∗hh

je!

vv

D(B)
f · // D( f B f )
j f∗hh

j f !

vv

where F1 := T∨⊗L
A −, F2 := f T∨e⊗L

eAe−, je! := Ae⊗L
eAe−, je∗ := RHom eAe(eA,−), j f ! := Be⊗L

f B f
−, j f∗ :=RHom f B f ( f B,−), and the functors e· and f · denote the left multiplications by e and f , respec-
tively.

(4) There is a two-sided tilting complex T ∈D(A⊗k Bop) with the inverse T∨ ∈D(B⊗k Aop) such that

T∨⊗L
A (Ae⊗L

eAe eA)⊗L
A T ' B f ⊗L

f B f f B ∈D(Be).

Proof. (1)⇒ (2). Assume (1) holds. Then there is a triangle equivalence F1 : D(A)→ D(B) which
restricts to an equivalence K b(add(Ae))→K b(add(B f )). Let G1 : D(B)→ D(A) be the inverse of F1.
Define P := G1(B), P1 := G(B f ) and P2 := G(B(1− f )). Then P = P1⊕P2 and P1 ∈K b(add(Ae)). Since
B f generates K b(add(B f )) as a triangulated category, all conditions (a),(b) and (c) hold.

(2)⇒ (3). Let Λ := eAe. Recall that the adjoint pair (Ae⊗Λ−,e·) between Λ-Mod and A-Mod
induces a triangle equivalence K b(add(Ae)) '−→K b(Λ-proj). Since P1 is a direct summand of P and
generates K b(add(Ae)) as a triangulated category, the complex eP1 ∈K b(Λ-proj) is a tilting complex.
Let T be a two-sided tilting complex in D(A⊗k Bop) which is induced by AP. Then the argument in the
proof of [17, Theorem 3.5] shows that (2) implies (3).

(3)⇒ (1). Let Γ := f B f . Note that the image of the restriction of je! to K b(Λ-proj) coincides with
the image of K b(add(Ae)) in D(A). Similarly, the image in D(B) of the restriction of j f ! to K b(Γ-proj)
coincides with the image of K b(add(B f )) in D(B). Thus the equivalence F1 in (3) restricts to an equiv-
alence from K b(add(Ae)) to K b(add(B f )). Thus (1) holds.

(3)⇒ (4). By [17, Corollaries 3.7 and 3.8], there are isomorphisms in D(A⊗k Bop):

T ⊗L
B B f ⊗L

Γ f B' T f ⊗L
Γ f B' Ae⊗L

Λ eT ' Ae⊗L
Λ eA⊗L

A T.
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Applying T∨⊗L
A− : D(A⊗k Bop)→D(Be) to these isomorphisms yields

B f ⊗L
Γ f B' T∨⊗L

A T ⊗L
B B f ⊗L

Γ f B' T∨⊗L
A Ae⊗L

Λ eA⊗L
A T.

(4)⇒ (2). Since ATB is a two-sided tilting complex, it follows from (4) that there are isomorphisms
of complexes

(i) Ae⊗L
Λ

eA' T ⊗L
B B f ⊗L

Γ
f B⊗L

B T∨ ∈D(Ae),
(ii) Ae⊗L

Λ
eT f ' T ⊗L

B B f ⊗L
Γ

f B⊗L
B T∨⊗L

A T ⊗L
B B f ' T f ∈D(A⊗Γop),

(iii) f T∨e⊗L
Λ

eT f ' f T∨⊗L
A Ae⊗L

Λ
eA⊗L

A T f ' f B f ⊗L
Γ

f B f ' Γ ∈D(Γe),
(iv) eT f ⊗L

Γ
f T∨e' eT ⊗L

B B f ⊗L
Γ

f B⊗L
B T∨e' eAe⊗L

Λ
eAe' Λ ∈D(Λe).

Due to (iii) and (iv), Λ(eT f )Γ is a two-sided tilting complex with the inverse f T∨e. In particular, ΛeT f is
isomorphic to a tilting complex. Since je! induces a triangle equivalence K b(Λ-proj) '−→K b(add(Ae)),
the isomorphisms in (ii) imply that T f generates K b(add(Ae)) as a triangulated category. Clearly, AT
is isomorphic to a tilting complex and has a direct summand T f . Moreover, EndD(A)(T )' B as algebras
and HomD(A)(T,T f )' B f as B-modules. Thus (2) holds. �

Corollary 2.5. Assume that the pairs (A,e) and (B, f ) are derived equivalent. Then
(1) (Aop,eop) and (Bop, f op) are derived equivalent.
(2) (Ae,e⊗ eop) and (Be, f ⊗ f op) are derived equivalent.

Proof. Let (−)∗ :=HomA(−,A) and P be the tilting complex in Lemma 2.4(2). Then P∗ ∈K b(Aop-proj)
and P∗ = P∗1 ⊕P∗2 . By [20, Proposition 9.1], P∗ is a tilting complex over Aop.

(1) Since (−)∗ : K b(A-proj)→K b(Aop-proj) is a triangle equivalence sending Ae to eA, it follows
from Lemma 2.4(c) that P∗1 generates K b(add(eA)) as a triangulated category. By Lemma 2.4(a) and (c),
there is an algebra isomorphism Bop' EndD(Aop)(P∗) under which f op is the composition of the projection
P∗→ P∗1 with the inclusion P∗1 → P∗. Thus (P∗,eop) satisfies Lemma 2.4(2). This shows (1).

(2) Let Q := P⊗k P∗ ∈K b(Ae-proj). We will show that Q satisfies Lemma 2.4(2) for the pair (Ae,e⊗
eop) and (Be, f ⊗ f op).

In fact, by [22, Theorem 2.1], Q is a tilting complex over Ae and EndD(Ae)(Q)' Be. Clearly, P1⊗k P∗1
is a direct summand of P⊗k P∗ and there are canonical isomorphisms

HomD(Ae)(Q,P1⊗k P∗1 )' HomD(A)(P,P1)⊗k HomD(Aop)(P
∗,P∗1 )' B f ⊗k f B = Be( f ⊗ f op).

Thus Q satisfies Lemma 2.4(a)-(b). To show Lemma 2.4(c) for Q, we need the following general result:
If L : C →D is a triangle functor between triangulated categories C and D , then L(triaC (add(X)))⊆

triaD(add(L(X))) for any X ∈ C , where triaC (add(X)) denotes the smallest full triangulated subcategory
of C containing add(X).

Since eA ∈ K b(add(eA)) = triaK (Aop)(add(P∗1 )), we apply the functor Ae⊗k − : K b(add(eA))→
K b(add(Ae⊗k eA)) to the k-module eA and obtain Ae⊗k eA ∈ triaK (Ae)(add(Ae⊗k P∗1 )). Similarly, we
have Ae⊗P∗1 ∈ triaK (Ae)(add(P1⊗k P∗1 )) by the functor −⊗k P∗1 : K b(add(Ae))→K b(add(Ae⊗k eA)).
Thus Ae⊗k eA∈ tria(add(P1⊗k P∗1 )). By the equivalences of Lemma 2.4(1)-(2), the pairs (Ae,e⊗eop) and
(Be, f ⊗ f op) are derived equivalent. �

A finite-dimensional algebra A over a field k is called a gendo-symmetric algebra if A = EndΛ(Λ⊕M)
with Λ a symmetric algebra and M a finite-dimensional Λ-module. By [6, Theorem 3.2], A is gendo-
symmetric if and only if the dominant dimension of A is at least 2 and D(Ae) ' eA as eAe-A-bimodules,
where e ∈ A is an idempotent element such that Ae is a faithful projective-injective A-module.

Proposition 2.6. [8, Proposition 3.9] Suppose that A and B are gendo-symmetric algebras with Ae and
B f faithful projective-injective modules over A and B, respectively. If A and B are derived equivalent,
then the pairs (A,e) and (B, f ) are derived equivalent of algebras with idempotents.
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2.2 Mirror-reflective algebras

In this section, we recall the construction of mirror-reflective algebras in [4]. Assume that A is a k-algebra
over a commutative ring k, e = e2 ∈ A, Λ := eAe and λ lies in the center Z(Λ) of Λ. Recall that the mirror-
reflective algebra R(A,e,λ) of A at level (e,λ), defined in [4], has the underlying k-module A⊕Ae⊗Λ eA
as its abelian group. Its multiplication ∗ is given explicitly by

(a+be⊗ ec)∗ (a′+b′e⊗ ec′) := aa′+(ab′e⊗ ec′+be⊗ eca′+becb′e⊗λec′)

for a,b,c,a′,b′,c′ ∈ A. This can be reformulated as follows: Let ωλ be the composite of the natural maps:

(Ae⊗Λ eA)⊗A (Ae⊗Λ eA) '−→ Ae⊗Λ (eA⊗A Ae)⊗Λ eA '−→ Ae⊗Λ Λ⊗Λ eA
Id⊗(·λ)⊗Id−→ Ae⊗Λ Λ⊗Λ eA→ Ae⊗Λ eA,

where (·λ) : Λ→ Λ is the multiplication map by λ. Then(
(be⊗ ec)⊗ (b′e⊗ ec′)

)
ωλ = (be⊗ ec)∗ (b′e⊗ ec′).

Clearly, R(A,e,0) is exactly the trivial extension of A by Ae⊗Λ eA. To understand R(A,e,λ), we will
employ idealized extensions of algebras.

Definition 2.7. Let X be an A-A-bimodule. An idealized extension of A by X is defined to be an algebra
R such that A is a subalgebra (with the same identity) of R, X is an ideal of R, and R = A⊕X as A-A-
bimodules. Two idealized extensions R1 and R2 of A by X are said to be isomorphic if there exists an
algebra isomorphism φ : R1→ R2 such that the restriction of φ to A is the identity map of A and the one
of φ to X is an bijection from X to X.

Clearly, an algebra R is an idealized extension of A by X if and only if R contains A as a subalgebra and
there is an algebra homomorphism π : R→ A with X = Ker(π) such that the composite of the inclusion
A→R with π is the identity map of A. Hence a mirror-reflective algebra R(A,e,λ) is an idealized extension
of A by Ae⊗Λ eA.

Let
F := Ae⊗Λ−⊗Λ eA : Λ

e-Mod−→ Ae-Mod, M 7→ Ae⊗Λ M⊗Λ eA,

G := e(−)e : Ae-Mod−→ Λ
e-Mod, M 7→ eMe

for M ∈ Ae-Mod. Since e⊗ eop is an idempotent element of Ae and there are natural isomorphisms

F ' Ae(e⊗ eop)⊗Λe− and G' HomAe(Ae(e⊗ eop),−),

(F,G) is an adjoint pair and F is fully faithful. This implies the following.

Lemma 2.8. The functor F induces an algebra isomorphism

ρ : Z(Λ)−→ EndAe(Ae⊗Λ eA), λ 7→ ρλ := [ae⊗ eb 7→ aeλ⊗ eb]

for λ ∈ Z(Λ) and a,b ∈ A. Moreover, ωλ = ωeρλ.

The following result parameterizes the idealized extensions of A by Ae⊗Λ eA.

Proposition 2.9. Let Z(Λ)× be the group of units of Z(Λ), that is, Z(Λ)× is the group of all invertible
elements in Z(Λ). Then there exists a bijection from the quotient of the multiplicative semigroup Z(Λ)
modulo Z(Λ)× to the set S (A,e) of the isomorphism classes of idealized extensions of A by Ae⊗Λ eA:

Z(Λ)/Z(Λ)× '−→S (A,e), λZ(Λ)× 7→ R(A,e,λ) for λ ∈ Z(Λ).
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Proof. Let Z0(Λ) := Z(Λ)/Z(Λ)× = {λZ(Λ)× | λ ∈ Z(Λ)} and [λ] := λZ(Λ)× ∈ Z0(Λ) for λ ∈ Z(Λ).
By [4, Lemma 3.2(2)], if µ ∈ Z(Λ)×, then R(A,e,λ)' R(A,e,λµ) as algebras. This means that the map

ϕ : Z0(Λ)−→S (A,e), [λ] 7→ R(A,e,λ)

is well defined. Let R be an idealized extension of A by X := Ae⊗Λ eA. Then the multiplication of R
induces a homomorphism φ : X⊗A X→ X of Ae-modules. Recall that ωe : X⊗A X→ X is an isomorphism
of Ae-modules. Let φ′ := ω−1

e φ. Then φ′ ∈ EndAe(X) and φ = ωeφ′. By Lemma 2.8, φ′ = ρz for some
z ∈ Z(Λ) and φ = ωz. Thus R = R(A,e,z) and ϕ is surjective.

Now, we show that ϕ is injective. Suppose λi ∈ Z(Λ) for i = 1,2 and R(A,e,λ1) ' R(A,e,λ2) as
algebras. Set Ri := R(A,e,λi). By Definition 2.7, there is an algebra isomorphism f : R1→ R2 such that
f |A = IdA and α := f |X : X → X is an isomorphism of ideals. This implies that α is a homomorphism
of Ae-modules and (α⊗A α)ωλ2 = ωλ1α : X ⊗A X → X . Since ωλi = ωeρλi by Lemma 2.8, there holds
(α⊗A α)ωeρλ2 = ωeρλ1α. Let σ := ω−1

e (α⊗A α)ωe ∈ EndAe(X). Then σ is an isomorphism of Ae-
modules and ρλ1α = σρλ2 . Again by Lemma 2.8, α = ρc and σ = ρd for some c,d ∈ Z(Λ)×. It follows
that λ1c = dλ2, and therefore [λ1] = [λ2]. �

3 Derived equivalences of mirror-reflective algebras

In this section, k denotes a commutative ring, all algebras are k-algebras which are projective as k-
modules.

Assume that the pairs (A,e) and (B, f ) of algebras with idempotents are derived equivalent. By
Lemma 2.4, there is a two-sided tilting complex T ∈ D(A⊗k Bop) with the quasi-inverse T∨ such that
T ⊗k T∨ ∈D(Ae⊗k (Be)op) is a two-sided tilting complex with the inverse T∨⊗k T , and there is a derived
equivalence:

Φ := T∨⊗L
A−⊗L

A T ' (T∨⊗k T )⊗L
Ae− : D(Ae)−→D(Be)

which sends A to B up to isomorphism (see [22]). Let εA : T ⊗L
B T∨→ A and εB : T∨⊗L

A T → B be the
associated isomorphisms in D(Ae) and D(Be), respectively. Now, we introduce the notation

Λ = eAe, Γ = f B f , Ge = e(−)e, G f = f (−) f ,

Fe = Ae⊗Λ−⊗Λ eA : Λ
e-Mod−→ Ae-Mod, Ff = B f ⊗Γ−⊗Γ f B : Γ

e-Mod−→ Be-Mod,

LFe = Ae⊗L
Λ−⊗L

Λ eA : D(Λe)−→D(Ae), LFf = B f ⊗L
Γ−⊗L

Γ f B : D(Γe)−→D(Be),

Φ
′ = f T∨e⊗L

Λ−⊗L
Λ eT f : D(Λe)−→D(Γe),

∆0 = Ae⊗Λ eA, ∆ = Ae⊗L
Λ eA, Θ0 = B f ⊗Γ f B, Θ = B f ⊗L

Γ f B,

together with the identifications (up to isomorphism):

∆0 = H0(∆), Θ0 = H0(Θ), ∆ = LFe(Λ), Θ = LFf (Γ).

By Lemma 2.4 and Corollary 2.5, up to natural isomorphism, two squares in the diagram are commutative:

(]) D(Ae)

Φ

��

Ge // D(Λe)

Φ′

��

LFe

vv

D(Be)
G f // D(Γe)

LFf

vv
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where Φ′ is the derived equivalence associated with the two-sided tilting complex eT f ∈ D(Λ⊗k Γ).
Note that Φ,Φ′,LFe and LFf commute with derived tensor products. Namely, for U,V ∈D(Ae), there are
isomorphisms

Φ(U⊗L
A V )' T∨⊗L

A U⊗L
A A⊗L

A V ⊗L
A T ' T∨⊗L

A U⊗L
A T ⊗L

B T∨⊗L
A V ⊗L

A T = Φ(U)⊗L
B Φ(V )

where the second isomorphism follows from A' T ⊗L
B T∨ in D(Ae). This provides a natural isomorphism

φ−,− : Φ(−)⊗L
B Φ(−) '−→Φ(−⊗L

A−) : D(Ae)×D(Ae)−→D(Be).

Since Φ′(Λ)' Γ, there is an algebra isomorphism

σ : Z(Λ)−→ Z(Γ)

defined by the series of isomorphisms Z(Λ)' EndΛe(Λ)
'−→ EndΓe(Φ′(Λ))

'−→ EndΓe(Γ)' Z(Γ).
Our main result on derived equivalences of mirror-reflective algebras is the following.

Theorem 3.1. Suppose that there is a derived equivalence between (A,e) and (B, f ) of algebras with
idempotents, which gives rise to a two-sided tilting complex ATB. If the derived equivalence Φ : D(Ae)→
D(Be) associated with T between the enveloping algebras Ae and Be satisfies Φ(Ae⊗Λ eA) ' B f ⊗Γ f B
in D(Be), then there is an algebra isomorphism σ : Z(Λ)→ Z(Γ) such that, for each λ ∈ Z(Λ), the pairs(
R(A,e,λ),e

)
and

(
R(B, f ,(λ)σ), f

)
of algebras with idempotents are derived equivalent. In particular,

R(A,e) and R(B, f ) are derived equivalent.

Before starting with the proof of Theorem 3.1, we first fix notation on derived categories.
Let A be an abelian category. For each X := (X i,di

X)i∈Z ∈ C (A) and n ∈ Z, there are two truncated
complexes

τ
≤nX : · · · −→ Xn−3 dn−3

X−−→ Xn−2 dn−2
X−−→ Xn−1 dn−1

X−−→ Ker(dn
X)−→ 0,

τ
≥nX : 0−→ Coker(dn−1

X )
dn

X−→ Xn+1 dn+1
X−→ Xn+2 dn+2

X−→ Xn+3 −→ ·· · ,
where dn

X is induced from dn
X . Moreover, there are canonical chain maps in C (A):

λ
n
X : τ

≤nX ↪→ X and π
n
X : X � τ

≥nX ,

and a distinguished triangle in D(A):

τ
≤nX

λn
X−→ X

π
n+1
X−→ τ

≥n+1X −→ τ
≤nX [1].

Note that Hn(X) = τ≥nτ≤nX : D(A)→ A . Let D≤0(A) := {X ∈ D(A) | H i(X) = 0, i > 0}. For each
X ∈D≤0(A), it is clear that λ0

X is an isomorphism in D(A). In this case, we denote by ξX : X → H0(X)
the composition of the inverse X → τ≤0X of λ0

X with π0
τ≤0X : τ≤0X → H0(X). Clearly, if X i = 0 for all

i≥ 1, then X = τ≤0X and ξX = π0
X . Now, there is a natural transformation

ξ : IdD≤0(A) −→ H0 : D≤0(A)→D≤0(A).

When A = Ae-Mod and X ,Y ∈D≤0(A), we denote the composite of the following morphisms by

θX ,Y : X⊗L
A Y

ξX⊗L
AξY // H0(X)⊗L

A H0(Y )
ξH0(X)⊗LA H0(Y )

// H0(X)⊗A H0(Y ).

Then θX ,Y is natural in X and Y . This gives rise to a natural transformation

θ−,− : (−)⊗L
A (−)−→ H0(−)⊗A H0(−) : D≤0(A)×D≤0(A)−→ Ae-Mod.

We have the following result.
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Lemma 3.2. (1) For X ∈D≤0(A), the morphism H0(ξX) is an automorphism of H0(X).
(2) For a morphism f : X→Y in D≤0(A), there is a unique morphism f ′ : H0(X)→H0(Y ) in A such

that f ξY = ξX f ′. Moreover, f ′ = H0(ξX)
−1H0( f )H0(ξY ).

(3) Let A := Ae-Mod. Then the map H0(θX ,Y ) : H0(X ⊗L
A Y )→ H0(X)⊗A H0(Y ) is an isomorphism

and θX ,Y = ξX⊗L
AY H0(θX ,Y ). Thus there is a natural isomorphism of functors

H0(θ−,−) : H0(−⊗L
A−)

'−→ H0(−)⊗A H0(−) : D≤0(A)×D≤0(A)−→ Ae-Mod.

Proof. (1) and (2) follow from the construction of ξ. Note that H0(ξX ⊗L
A ξY ) and H0(ξH0(X)⊗L

AH0(Y ))

are isomorphisms. Since ξH0(X)⊗AH0(Y ) is the identity, (3) follows from (2). �

In the rest of this section, let ϕ : A→ A′ be a homomorphism of algebras. Define

W := Φ(A′), B′ := H0(W ), W ′ := τ
≤0W and ϕ

′ := H0(Φ(ϕ)) : B−→ B′.

Lemma 3.3. (1) A′⊗L
A T is isomorphic in D(A′) to a tilting complex if and only if Hn(W ) = 0 for all

n 6= 0.
(2) B′ is an algebra with the multiplication induced from

B′⊗B B′
H0(θW ′,W ′ )

−1

'
// H0(W ′⊗L

B W ′)
H0(λ0

W⊗L
Bλ0

W )
// H0(W ⊗L

B W )
H0(φA′,A′ )

'
// H0
(
Φ(A′⊗L

A A′)
)H0(Φ(π))// B′

where π : A′⊗L
A A′ → A′ is the composite of ξA′⊗L

AA′ : A′⊗L
A A′ → A′⊗A A′ with the multiplication map

A′⊗A A′→ A′.
(3) B′ and EndD(A′)(A′⊗L

A T ) are isomorphic as algebras. Moreover, ϕ′ is a homomorphism of alge-
bras.

Proof. (1) Since T is isomorphic in D(A) to a tilting complex P, we have A′⊗L
A T ' A′⊗A P in D(A′)

and A′⊗A P ∈K b(A′-proj). As add(P) generates K b(A-proj) as a triangulated category, add(A′⊗A P)
generates K b(A′-proj) as a triangulated category. This implies that A′⊗L

A T is isomorphic in D(A′) to a
tilting complex if and only if A′⊗L

A T is self-orthogonal in D(A′). Moreover, for n ∈ Z, it follows from
the isomorphism εB : T∨⊗L

A T → B in D(Be) that there is a series of isomorphisms

(∗) HomD(A′)(A
′⊗L

A T,A′⊗L
A T [n])' HomD(A)(T,A

′⊗L
A T [n])' HomD(B)(T

∨⊗L
A T,T∨⊗L

A A′⊗L
A T [n])

' HomD(B)(B,T
∨⊗L

A A′⊗L
A T [n]) = HomD(B)(B,W [n])' Hn(W ).

Thus A′⊗L
A T is self-orthogonal if and only if Hn(W ) = 0 for all n 6= 0. This shows (1).

(2) If taking n = 0 in (∗), we get an isomorphism EndD(A′)(A′⊗L
A T ) ' B′ of k-modules. Via the

isomorphism, we can transfer the algebra structure of EndD(A′)(A′⊗L
A T ) to the one of B′.

Let si ∈ HomD(B)(B,W ) for i = 1,2. By (∗), there are morphisms ti : T → A′⊗L
A T in D(A) such that

si = ε
−1
B (T∨⊗L

A ti). By the first isomorphism in (∗), we can define a multiplication on the abelian group
HomD(A)(T,A′⊗L

A T ), that is, the multiplication of t1 with t2 is given by the composition of the morphisms

t1 · t2 : T t1−→ A′⊗L
A T

A′⊗L
At2−→ A′⊗L

A A′⊗L
A T

π⊗L
AT
−→ A′⊗L

A T.

This yields the product s1 ·s2 ∈HomD(B)(B,W ) of s1 with s2, described by the composite of the morphisms

s1 · s2 : B
ε
−1
B−→ T∨⊗L

A T
T∨⊗L

At1−→ T∨⊗L
A A′⊗L

A T
T∨⊗L

AA′⊗L
At2−→ T∨⊗L

A A′⊗L
A A′⊗L

A T
Φ(π)−→ T∨⊗L

A A′⊗L
A T =W.

8



Since (AT ⊗L
B−,BT∨⊗L

A−) is an adjoint pair of functors between D(B) and D(A), the composite of the
morphisms

T can−→ T ⊗L
B B

T⊗L
Bε
−1
B−→ T ⊗L

B T∨⊗L
A T

εA⊗L
AT
−→ A⊗L

A T can−→ T

is the identity morphism of T , where the first and last morphisms are canonical isomorphisms. It follows
that t2 is the composite of the morphisms

AT can−→ T ⊗L
B B

T⊗L
Bε
−1
B−→ T ⊗L

B T∨⊗L
A T

T⊗L
BT∨⊗L

At2−→ T ⊗L
B T∨⊗L

A A′⊗L
A T

εA⊗L
AA′⊗L

AT
−→ A⊗L

A A′⊗L
A T can−→ AA′⊗L

A T,

and therefore the multiplication s1 · s2 is the composite of the morphisms

B
s1 //W can

'
//W ⊗L

B B
W⊗L

Bs2 //W ⊗L
B W = Φ(A′)⊗L

B Φ(A′)
φA′,A′

'
// Φ(A′⊗L

A A′)
Φ(π) //W .

Since the inclusion λ0
W : W ′→W induces an isomorphism HomD(B)(B,W ′)' HomD(B)(B,W ), there are

s′i ∈ HomD(B)(B,W ′) for i = 1,2 such that si = s′iλ
0
W . Let

s̃i := s′iπ
0
W ′ ∈ HomB(B,B′).

Since H0 induces an isomorphism HomD(B)(B,W )' HomB(B,B′)' B′ as k-modules, we have H0(si) =
s̃i. In the diagram

B
s1 //W can

'
//W ⊗L

B B
W⊗L

Bs2 //W ⊗L
B W

φA′,A′ Φ(π)
//W

B
s′1 //W ′ can

'
//

λ0
W

OO

π0
W ′

��

W ′⊗L
B B

W ′⊗L
Bs′2//

λ0
W⊗L

BB

OO

π0
W ′⊗

L
BB
��

W ′⊗L
B W ′

λ0
W⊗L

Bλ0
W

OO

π0
W ′⊗

L
Bπ0

W ′
��

W ′⊗L
B W ′

θW ′,W ′

��

OO

B
s̃1 // B′ can

'
// B′⊗L

B B

π0
B′⊗LB B

��

B′⊗L
B s̃2 // B′⊗L

B B′

π0
B′⊗LB B′
��

B
s̃1 // B′ can

'
// B′⊗B B

B′⊗B s̃2 // B′⊗B B′ B′⊗B B′

of morphisms in D(B), all the squares are commutative and H0(θW ′,W ′) is an isomorphism. Let µ : B→
B′⊗B B′ be the composite of the morphisms in the bottom line of the diagram. Then

H0(s1 · s2) = µH0(θW ′,W ′)
−1H0(λ0

W ⊗L
B λ

0
W )H0(φA′,A′)H0(Φ(π)) : B−→ B′.

Note that µ sends the identity 1 of B to (1)s̃1⊗ (1)s̃2. Now, by identifying B′ with HomD(B)(B,W ) and
also with HomB(B,B′), (2) can be proved.

(3) The isomorphism EndD(A′)(A′⊗L
A T ) ' B′ as algebras has been shown in the proof of (2). Now,

we denote by µB′ : B′⊗B B′ → B′ the composite of the morphisms in (2). Recall that Φ(A) ' B and
H0(Φ(A)) = B. If A′ = A and ϕ = IdA, then B′ = B and µB : B⊗B B→ B is the canonical isomorphism
induced by the multiplication of B. For a general ϕ : A→ A′, there is an equality µBϕ′ = (ϕ′⊗B ϕ′)µB′

which means that ϕ′ is an algebra homomorphism. Note that if B and B′ are identified with EndD(A)(T )
and EndD(A′)(A′⊗L

A T ), respectively, then ϕ′ : B→ B′ is exactly the algebra homomorphism induced from
A′⊗L

A− : D(A)→D(A′). �

The following result provides a method for constructing derived equivalences of algebras with idem-
potents from given ones. It also generalizes derived equivalences of trivial extensions of algebras by
bimodules (see [21, Corollary 5.4]).
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Proposition 3.4. Suppose Hn(W ) = 0 for all n 6= 0. Then the pairs (A′,(e)ϕ) and (B′,( f )ϕ′) of algebras
with idempotents are derived equivalent. In particular, A′ and B′ are derived equivalent.

Proof. By Lemma 3.3, A′⊗L
A T is isomorphic in D(A′) to a tilting complex and EndD(A′)(A′⊗L

A T )'B′

as algebras. It follows from Theorem 2.2 that A′ and B′ are derived equivalent. Clearly, T ⊗L
B B f ' T f ∈

add(AT ) and A′⊗L
A T f ∈ add(A′A′⊗L

A T ). Since (A,e) and (B, f ) are derived equivalent, T f generates
K b(add(Ae)) in D(A) by Lemma 2.4(2). Applying the functor A′⊗L

A − : D(A)→ D(A′) to T f and
K b(add(Ae)), we see from the general result in the proof of Lemma 2.5(2) that A′⊗L

A T f generates
K b(add(A′(e)ϕ)) in D(A′). Note that

HomD(A′)(A
′⊗L

A T,A′⊗L
A T f )' HomD(A)(T,A

′⊗L
A T f )' HomD(B)(T

∨⊗L
A T,T∨⊗L

A A′⊗L
A T f )

' HomD(B)(B,W ⊗B B f )' H0(W )⊗B B f ' B′( f )ϕ′.

By Lemma 2.4(2), the pairs (A′,(e)ϕ) and (B′,( f )ϕ′) are derived equivalent. �

Now, we turn to mirror-reflective algebras at any levels. Recall that, for each λ∈ Z(Λ), the multiplica-
tion map (·λ) : Λ→ Λ induces a homomorphism ωλ : ∆0⊗A ∆0→ ∆0 in Ae-Mod, which is the composite
of the maps

∆0⊗A ∆0
ωe−→ ∆0

Fe(·λ)−→ ∆0.

We define the derived version of ωλ to be the composite of the maps in D(Ae):

Lωλ : ∆⊗L
A ∆

'−→ ∆
LFe(·λ)−→ ∆

where the first isomorphism is canonical, due to eA⊗L
A Ae' Λ in D(Λe). Note that both ωe and Lωe are

isomorphisms since (·e) is the identity map of Λ, and that Fe and LFe are fully faithful functors. Thus we
have the following result.

Lemma 3.5. There are isomorphisms

ω(−) : Z(Λ) '−→ HomAe(∆0⊗A ∆0,∆0), λ 7→ ωλ = ωeFe(·λ),

Lω(−) : Z(Λ) '−→ HomD(Ae)(∆⊗L
A ∆,∆), λ 7→ Lωλ = (Lωe)LFe(·λ).

Moreover, ωλ is an isomorphism if and only if λ is invertible if and only if Lωλ is an isomorphism.

Similarly, for µ ∈ Z(Γ), there is a homomorphism ωµ : Θ0⊗A Θ0 → Θ0 in Be-Mod with its derived
version

Lωµ : Θ⊗L
B Θ

'−→Θ
LFf (·µ)−→ Θ

in D(Be). Following the diagram (]), let η : Φ ◦LFe → LFf ◦Φ′ be a natural isomorphism of functors
from D(Λe) to D(Be) and let τ : Φ′(Λ)→ Γ be an isomorphism in D(Γe).

Lemma 3.6. The following hold for λ ∈ Z(Λ) and µ := (λ)σ ∈ Z(Γ).
(1) There are commutative diagrams

∆⊗L
A ∆

Lωλ //

θ∆,∆

��

∆

ξ∆

��
∆0⊗A ∆0

ωλλ1 // ∆0,

Φ(∆)⊗L
B Φ(∆)

φ∆,∆ Φ(Lωλ) //

τ1⊗L
Bτ1
��

Φ(∆)

τ1

��
Θ⊗L

B Θ
Lωµµ1 // Θ
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where λ1 ∈ Z(Λ) and µ1 ∈ Z(Γ) are invertible, and τ1 := ηΛLFf (τ) : Φ(∆)→Θ is an isomorphism.
(2) Let

W0 := Φ(∆0), τ2 := τ
−1
1 Φ(ξ∆) : Θ−→W0, ψλ := ξ

∆0⊗L
A∆0

ωλλ1 : ∆0⊗L
A ∆0 −→ ∆0.

Then there is a commutative diagram in D(Be) :

Θ⊗L
B Θ

τ2⊗L
Bτ2
��

Lωµµ1 // Θ

τ2

��
W0⊗L

B W0
φ∆0 ,∆0 Φ(ψλ) //W0.

(3) If W0 lies in D≤0(Be), then there is a commutative diagram in Be-Mod :

Θ0⊗B Θ0

H0(τ2)⊗BH0(τ2)
��

ωµµ ′ // Θ0

H0(τ2)
��

H0(W0)⊗B H0(W0)
H0(θW0,W0 )

−1H0(φ∆0 ,∆0 )H0(Φ(ψλ))// H0(W0),

where µ ′ ∈ Z(Γ) is invertible. If, in addition, H0(Φ(ξ∆)) is an isomorphism, then there is an algebra
isomorphism

H0(
Φ(R(A,e,λ))

)
' R(B, f ,µ).

(4) If W0 'Θ0 in D(Be), then H0(Φ(ξ∆)) is an isomorphism of Be-modules.

Proof. (1) Note that Lωe is an isomorphism. By Lemma 3.2(2)-(3), LFe(·λ)ξ∆ = ξ∆Fe(·λ) and there is
a unique isomorphism α : ∆0⊗A ∆0→ ∆0 such that (Lωe)ξ∆ = θ∆,∆α. By the first isomorphism in Lemma
3.5, there is an element λ1 ∈ Z(Λ)× such that α = ωλ1 = ωeFe(·λ1). Thus

(Lωλ)ξ∆ = (Lωe)LFe(·λ)ξ∆ = θ∆,∆αFe(·λ) = θ∆,∆ωeFe(·λ1)Fe(·λ) = θ∆,∆ωeFe(·(λλ1)) = θ∆,∆ωλλ1 .

Hence the diagram in the left-hand side of (1) is commutative.
Since Lωe and τ are isomorphisms and η is a natural isomorphism, there is a unique isomorphism

β : Θ⊗L
B Θ→Θ such that all the squares in the diagram are commutative:

Φ(∆)⊗L
B Φ(∆)

φ∆,∆ //

ηΛ⊗L
BηΛ

��

Φ(∆⊗L
A ∆)

Φ(Lωe) // Φ(∆)

ηΛ

��

Φ◦LFe(·λ) // Φ(∆)

ηΛ

��
LFf ◦Φ′(Λ)⊗L

B LFf ◦Φ′(Λ)

LFf (τ)⊗L
BLFf (τ)

��

LFf ◦Φ′(Λ)

LFf (τ)

��

LFf ◦Φ′(·λ) // LFf ◦Φ′(Λ)

LFf (τ)

��
Θ⊗L

B Θ
β // Θ

LFf (·µ) // Θ

Further, by applying a similar isomorphism in Lemma 3.5 to the pair (B, f ), we have β = Lωµ1 =
(Lω f )LFf (·µ1) for some invertible element µ1 ∈ Z(Γ). This implies

βLFf (·µ) = (Lω f )LFf (·µ1)LFf (·µ) = (Lω f )LFf (·(µµ1)) = Lωµµ1 .

Thus the second diagram in (1) is commutative.
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(2) It follows from θ∆,∆ = (ξ∆⊗L
A ξ∆)ξ∆0⊗L

A∆0
and the first diagram in (1) that there is the commutative

diagram:

∆⊗L
A ∆

Lωλ //

ξ∆⊗L
Aξ∆

��

∆

ξ∆

��
∆0⊗L

A ∆0
ψλ // ∆0.

Applying Φ and the natural isomorphism φ−,− : Φ(−)⊗L
B Φ(−) '−→Φ(−⊗L

A−) to this diagram, we get
another commutative diagram:

Φ(∆)⊗L
B Φ(∆)

φ∆,∆ Φ(Lωλ) //

Φ(ξ∆)⊗L
BΦ(ξ∆)

��

Φ(∆)

Φ(ξ∆)

��
W0⊗L

A W0
φ∆0,∆0 Φ(ψλ) //W0.

Now, the commutative diagram in (2) follows from the second commutative diagram in (1).
(3) Note that H0 ◦LFe = Fe. Applying H0 to the diagram in (2), we see from Lemma 3.2(3) that the

squares in the diagram

(\1) Θ0⊗B Θ0

H0(τ2)⊗BH0(τ2)

��

H0(Θ⊗L
B Θ)

H0(θΘ,Θ)

'
oo

H0(τ2⊗L
Bτ2)
��

H0(Lωµµ1 ) // H0(Θ)

H0(τ2)
��

H0(W0)⊗B H0(W0) H0(W0⊗L
B W0)

H0(θW0 ,W0 )

'
oo

H0(φ∆0 ,∆0 )H0(Φ(ψλ)) // H0(W0)

are commutative, where the isomorphisms are due to Θ,W0 ∈D≤0(Be). Moreover, for the pair (B, f ) and
µµ1 ∈ Z(Γ), we obtain similarly the following commutative diagrams, in which the second one is obtained
from the first by the functor H0:

(\2) Θ⊗L
A Θ

Lωµµ1 //

θΘ,Θ

��

Θ

ξΘ

��
Θ0⊗A Θ0

ωµµ1µ2 // Θ0 ,

H0(Θ⊗L
A Θ)

H0(Lωµµ1 ) //

H0(θΘ,Θ)
��

Θ0

H0(ξΘ)

��
Θ0⊗A Θ0

ωµµ1µ2 // Θ0

where µ2 ∈ Z(Γ) is invertible and H0(ξΘ) is an automorphism by Lemma 3.2(1). Since the functor Ff

induces an algebra isomorphism Z(Γ)→ EndBe(Θ0), there is an invertible element µ3 ∈ Z(Γ) such that
H0(ξΘ) = Ff (·µ3). This implies

(\3) ωµµ1µ2H0(ξΘ)
−1 = ωµµ1µ2Ff (·µ−1

3 ) = ωµµ1µ2µ−1
3
.

Let µ ′ := µ1µ2µ−1
3 ∈ Z(Γ). Then µ′ is invertible. By (\1)-(\3), we obtain the commutative diagram in (3).

Next, we apply Lemma 3.3(2) to show the algebra isomorphism in (3).
Let A′ := R(A,e,λλ1), B′ := H0(Φ(A′)) and ϕ : A→ A′ be the canonical injection. By Lemma 3.3(2),

B′ is an algebra. Since A′ = A⊕∆0 and Φ(A)' B, there holds Φ(A′)' B⊕W0 in D(Be). Now, we identity
B′ with B⊕H0(W0) as Be-modules and describe the multiplication of B′ in terms of the one of A′ and the
one in Lemma 3.3(2):
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The multiplication of B with B′ (or B′ with B) is given by left (or right) multiplication since B′ is a
B-B-bimodule; while the multiplication on H0(W0) is induced from the composition

H0(W0)⊗B H0(W0)
H0(θW ′0 ,W

′
0
)−1

// H0(W ′0⊗L
B W ′0)

H0(λ0
W0
⊗L

Bλ0
W0

)
// H0(W0⊗L

B W0)

H0(φ∆0 ,∆0 )

��
H0(W0) H0

(
Φ(∆0⊗A ∆0)

)H0(Φ(ωλλ1 ))oo H0
(
Φ(∆0⊗L

A ∆0)
)H0(Φ(ξ

∆0⊗LA ∆0
))

oo

where W ′0 := τ≤0W0 and the injection λ0
W0

: W ′0→W0 is an isomorphism by W0 ∈D≤0(Be). It then follows
from

θW0,W0 =
(
(λ0

W0
)−1⊗L

B (λ0
W0
)−1)

θW ′0,W
′
0
=
(
λ

0
W0
⊗L

B λ
0
W0

)−1
θW ′0,W

′
0
,

that H0(θW0,W0)
−1 = H0(θW ′0,W

′
0
)−1H0(λ0

W0
⊗L

B λ0
W0
). Thus the multiplication of H0(W0) with H0(W0) in B′

is induced from

H0(θW0,W0)
−1H0(φ∆0,∆0)H0(Φ(ψλ)) : H0(W0)⊗B H0(W0)−→ H0(W0).

Suppose that H0(Φ(ξ∆)) is an isomorphism. Then H0(τ2) is an isomorphism and B′ ' B⊕Θ0 as Be-
modules. Moreover, the commutative diagram in (3) implies that H0(τ2) induces an algebra isomorphism
R(B, f ,µµ ′) ' B′ which lifts the identity map of B. Since λ1 ∈ Z(Λ) and µ ′ ∈ Z(Γ) are invertible, it
follows from [4, Lemma 3.2(2)] that A′ ' R(A,e,λ) and R(B, f ,µµ ′)' R(B, f ,µ) as algebras. Thus there
are algebra isomorphisms H0

(
Φ(R(A,e,λ))

)
' H0

(
Φ(A′)

)
= B′ ' R(B, f ,µ).

(4) Under the identifications Ge(∆0) = Λ and ∆ = LFe(Λ), we see that ξ∆ : ∆ = (LFe ◦Ge)(∆0)→ ∆0
is the counit adjunction morphism of ∆0 associated with the adjoint pair (LFe,Ge). Similarly, up to
isomorphism, ξΘ : Θ = (LFf ◦G f )(Θ0)→ Θ0 is the counit adjunction morphism of Θ0 associated with
the adjoint pair (LFf ,G f ). Now, recall that two morphisms fi : Xi→Yi for i = 1,2 in an additive category
are isomorphic if there are isomorphisms α1 : X1→ X2 and α2 : Y1→ Y2 such that f1α2 = α1 f2. By the
diagram (]), the functor Φ is an equivalence and there is a natural isomorphism

Φ◦LFe ◦Ge
'−→ LFf ◦G f ◦Φ : D(Ae)−→D(Be).

This implies that Φ(ξ∆) : Φ(∆)→W0 is isomorphic to the counit adjunction morphism of W0 associated
with (LFf ,G f ). If W0 ' Θ0 in D(Be), then ξΘ and Φ(ξ∆) are isomorphic as morphisms in D(Be). Since
H0(ξΘ) is an isomorphism by Lemma 3.2(1), H0(Φ(ξ∆)) is an isomorphism. This shows (4). �

Proof of Theorem 3.1. For each λ ∈ Z(Λ), let A′ := R(A,e,λ), ϕ : A→ A′ the canonical injection
and B′ := H0(Φ(A′)). Since A′ = A⊕∆0 and Φ(A) ' B, we have Φ(A′) ' B⊕Φ(∆0). By assumption,
Φ(∆0) ' Θ0 in D(Be). This implies Φ(A′) ' B⊕Θ0 in D(Be), and therefore B′ = B⊕H0(Φ(∆0)) '
B⊕Θ0 and Hn(Φ(A′)) = 0 for all n 6= 0. Now, let ϕ′ := H0(Φ(ϕ)) : B→ B′. By the multiplication of B′ in
Lemma 3.3(2), ϕ′ is the canonical injection. Then (e)ϕ = e ∈ A′ and ( f )ϕ′ = f ∈ B′. By Proposition 3.4,
(A′,e) and (B′, f ) are derived equivalent. Since Φ(∆0) ' Θ0 in D(Be), it follows from Lemma 3.6(3)(4)
that there is an algebra isomorphism B′ ' R(B, f ,(λ)σ) which lifts the identity map of B. Consequently,
(A′,e) and

(
R(B, f ,(λ)σ), f

)
are derived equivalent. Clearly, (e)σ = f since e and f are identities of Λ

and Γ, respectively. Thus
(
R(A,e),e

)
and

(
R(B, f ), f

)
are derived equivalent. �

A sufficient condition for the isomorphism in Theorem 3.1 to hold true is the vanishing of positive
Tor-groups over corner algebras.

Proposition 3.7. Suppose that there is a derived equivalence between (A,e) and (B, f ) of algebras with
idempotents, which is induced by a two-sided tilting complex ATB. If TorΛ

n (Ae,eA) = 0 = TorΓ
n (B f , f B)

for all n≥ 1, then the derived equivalence Φ : D(Ae)→D(Be) associated with T between the enveloping
algebras Ae and Be satisfies Φ(Ae⊗Λ eA)' B f ⊗Γ f B in D(Be).
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Proof. Since TorΛ
n (Ae,eA) = 0 for all n ≥ 1, we have Ae⊗L

Λ
eA ' Ae⊗Λ eA in D(Ae). Similarly,

B f ⊗L
Γ

f B' B f ⊗Γ f B in D(Be). Moreover, since (A,e) and (B, f ) are derived equivalent, it follows from
Lemma 2.4(4) that Φ(Ae⊗L

Λ
eA)' B f ⊗L

Γ
f B in D(Be) . Thus Φ(Ae⊗Λ eA)' B f ⊗Γ f B. �

Proof of Theorem 1.1. Suppose that A and B are derived equivalent, gendo-symmetric algebras.
Then the pair (A,e) and (B, f ) are derived equivalent by Proposition 2.6. Without loss of generali-
ty, we assume that the derived equivalence between (A,e) and (B, f ) is induced by a two-sided tilting
complex T ∈ D(A⊗k Bop). This gives rise to a derived equivalence between Ae and Be. Let Φ :=
T∨⊗L

A −⊗L
A T : D(Ae)→ D(Be) be the associated equivalence. Then Φ induces an algebra isomor-

phism σ : Z(eAe)→ Z( f B f ) (see the lines just before Theorem 3.1). Note that, for the gendo-symmetric
algebra (A,e), there is an isomorphism AAe⊗Λ eAA ' D(A) of A-A-bimodules by [7, Section 2.2] or [4,
Lemma 4.1(2)]. Similarly, BB f ⊗Γ f BB ' D(B) as B-B-bimodules. Since Φ(D(A))' D(B) in D(Be), we
have Φ(Ae⊗Λ eA)' B f ⊗Γ f B in D(Be). Now, Theorem 1.1 follows immediately from Theorem 3.1. �

Given an algebra A over a field k, the trivial extension of A has the underlying space A⊕D(A), where
D(A) = Homk(A,k) is the dual space of A, with the multiplication

(a, f )(b,g) := (ab,ag+ f b),a,b ∈ A, f ,g ∈ D(A).

As is known, if λ = 0 in Theorem 1.1, then the mirror-reflective algebra R(A,e,0) is just the trivial
extension of A (see [4, Section 5.1]). So we recover a result of Rickard in [21] for gendo-symmetric
algebras.

Corollary 3.8. Suppose that A and B are finite-dimensional gendo-symmetric algebras over a field k. If
A and B are derived equivalent, then so are their trivial extensions.

Proof. Let AAe and BB f be faithful projective-injective modules generated by idempotents e ∈ A and
f ∈ B, respectively. Then Ae⊗eAe eA ' D(A) and B f ⊗ f B f f B ' D(B) by [7, Section 2.2] or [4, Lemma
4.1(2)]. Thus Corollary 3.8 follows from Theorem 1.1 by taking λ = 0 ∈ Z(eAe). �

For an algebra A, we denote by Ωi
A the syzygy operator of A-mod if i≥ 0, and co-syzygy operator of

A-mod if i < 0.

Corollary 3.9. Let Λ be a finite-dimensional symmetric algebra over a field k, M ∈ Λ-mod a non-
projective module, A := EndΛ(Λ⊕M) and B := EndΛ(Λ⊕Ωi

Λ
(M)) for some i ∈ Z. Assume that AAe

and BB f are faithful projective-injective modules generated by idempotents e ∈ A and f ∈ B, respectively.
Then R(A,e) and R(B, f ) are derived equivalent.

Proof. By [12, Remark, p.132], A and B are derived equivalent and eAe ' f B f ' Λ. Moreover, this
derived equivalence between A and B is given by a tilting module (see [13, Corollary 3.7]). By Theorem
1.1, R(A,e) and R(B, f ) are derived equivalent. �

Finally, we show that two tame symmetric algebras D(3D)2 and D(3A)2 of dihedral types in [5, p.296
and p.295] can be realized as mirror-reflective algebras. They are derived equivalent by Theorem 1.1.

Example 3.10. We consider the truncated polynomial algebra Λ := k[x]/(x3) over a field k. Let X be the
simple Λ-module and Y := ΩΛ(X) be the indecomposable Λ-module of length 2. Then A := EndΛ(Λ⊕X)
and B := EndΛ(Λ⊕Y ) are derived equivalent, gendo-symmetric algebras. In this case, Ae = HomΛ(Λ⊕
X ,Λ) and B f = HomΛ(Λ⊕Y,Λ). Clearly, eAe' f B f 'Λ. Moreover, A and B are given by the following
quivers with relations, respectively:

A : 1•γ 88

β
))
•2,

α

hh B : 1•
β
))
•2,

α

hh
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γβ = αβ = αγ = 0, γ
2 = βα. αβαβ = 0.

Further, e and f are corresponding to the vertex 1 in the quivers, respectively. Note that R(A,e) and
R(B, f ) can be presented by the following quivers with relations, respectively.

R(A,e) : 1•γ 88

β
(( •2

α

hh
ᾱ

55 •1̄ γ̄ ,ff

β̄

vv
R(B, f ) : 1•

β
(( •2

α

hh
ᾱ

55 •1̄,
β̄

vv

βᾱ = β̄α = 0, γβ = γ̄β̄ = αγ = ᾱγ̄ = 0, βᾱ = β̄α = 0,

γ
2 = βα, γ̄

2 = β̄ᾱ, αβ+ ᾱβ̄ = 0. αβαβ+ ᾱβ̄ᾱβ̄ = 0.

By [5, p.296 and p.295], R(A,e) and R(B, f ) are tame symmetric algebras of dihedral types D(3D)2 and
D(3A)2, respectively. By Theorem 1.1, R(A,e) and R(B, f ) are derived equivalent.

Finally, we mention the following questions related to Theorem 1.1.
(1) Suppose that the mirror-reflective algebras

(
R(A,e),e

)
and

(
R(B, f ), f ) of gendo-symmetric ale-

bras (A,e) and (B, f ) are derived equivalent (see Definition 2.3). Is it true that A and B themselves are
derived equivalent?

(2) Suppose that gendo-symmetric algebras (A,e) and (B, f ) are stably equivalent of Morita type. Are
their mirror-reflective algebras also stably equivalent of Morita type?
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