Derived equivalences for mirror-reflective algebras

Hongxing Chen and Changchang Xi*

Abstract

We show that the construction of mirror-reflective algebras inherits derived equivalences of gendosymmetric algebras. More precisely, suppose A and B are gendo-symmetric algebras with both $A e$ and $B f$ faithful projective-injective left ideals generated by idempotents e in A and f in B, respectively. If A and B are derived equivalent, then the mirror-reflective algebras of (A, e) and (B, f) are derived equivalent.

1 Introduction

Given an (associative) algebra A over a commutative ring k, an idempotent e of A and an element λ in the center of $\Lambda:=e A e$, we introduced the mirror-reflective algebra $R(A, e, \lambda)$ of A at level (e, λ) in [4]. Roughly speaking, this algebra has the underlying k-module structure $A \oplus A e \otimes_{\Lambda} e A$ such that $A e \otimes_{\Lambda} e A$ is an ideal in $R(A, e, \lambda)$. The specialization of $R(A, e, \lambda)$ at $\lambda=e$ is called the mirror-reflective algebra of A at e, denoted by $R(A, e)$. In case that A is a finite-dimensional gendo-symmetric algebra over a field k and e is an idempotent of A such that $A e$ is a faithful and projective-injective A-module, the algebra $R(A, e)$ is called simply the mirror-reflective algebra of A. Such a construction can be iterated and thus supplies a series of both higher Auslander algebras and recollements of derived module categories. It turns out that a new characterisation of Tachikawa's second conjecture for symmetric algebras can be formulated in terms of stratifying ideals and recollements of derived categories (see [4]).

Our purpose of this note is to show that the construction of mirror-reflective algebras preserves derived equivalences. More precisely, we have the following.

Theorem 1.1. Suppose that A and B are finite-dimensional gendo-symmetric algebras over a field k and that ${ }_{A} A e$ and ${ }_{B} B f$ are faithful projective-injective modules generated by idempotents $e \in A$ and $f \in B$, respectively. If A and B are derived equivalent, then there is an isomorphism $\sigma: Z(e A e) \rightarrow Z(f B f)$ of algebras from the center of eAe to the one of fBf such that, for any $\lambda \in Z(e A e)$, the mirror-reflective algebras $R(A, e, \lambda)$ and $R(B, f,(\lambda) \sigma)$ are derived equivalent.

During the course of the proof of Theorem we will give a general construction of derived equivalences of mirror-reflective algebras of arbitrary algebras at any levels in Theorem 3.1. So Theorem 1.1 is just its consequence.

This note is sketched as follows. In Section2]we provide preliminaries for the proof of the main result. This includes recalling basic definitions and proving facts on derived equivalences and on mirror-reflective algebras. In Section 3 we prove Theorem 3.1.

Acknowledgements. The research work was supported partially by the National Natural Science Foundation of China (Grants 12031014 and 12122112).

[^0]
2 Preliminaries

Let k denote a commutative ring with identity. All algebras in the paper are associative k-algebras with identity. For an algebra A, we denote by A-Mod the category of all left A-modules. Let A-mod and A-proj be the full subcategories of A-Mod consisting of finitely generated A-modules and finitely generated projective A-modules, respectively.

Given an additive category $\mathcal{A}, \mathscr{C}(\mathcal{A})$ stands for the category of all complexes $X^{\bullet}=\left(X^{i}, d_{X}^{i}\right)$ over \mathcal{A} with cochain maps as morphisms, and $\mathscr{K}(\mathscr{A})$ for the homotopy category of $\mathscr{C}(\mathcal{A})$. We write $\mathscr{C}^{b}(\mathcal{A})$ and $\mathscr{K}^{b}(\mathscr{A})$ for the full subcategories of $\mathscr{C}(\mathscr{A})$ and $\mathscr{K}(\mathscr{A})$ consisting of bounded complexes over \mathcal{A}, respectively. When \mathcal{A} is abelian, the (unbounded) derived category of \mathcal{A} is denoted by $\mathscr{D}(\mathcal{A})$, which is the localization of $\mathscr{K}(\mathscr{A})$ at all quasi-isomorphisms.

For an algebra A, we simply write $\mathscr{K}(A)$ for $\mathscr{K}(A-\mathrm{Mod})$ and $\mathscr{D}(A)$ for $\mathscr{D}(A-\mathrm{Mod})$. Also, A-Mod is often identified with the full subcategory of $\mathscr{D}(A)$ consisting of all stalk complexes concentrated in degree 0 . For an idempotent element e in A, the category $\mathscr{K}^{b}(\operatorname{add}(A e))$ is identified with its images in $\mathscr{D}(A)$ under the localization functor $\mathscr{K}(A) \rightarrow \mathscr{D}(A)$.

The composition of two maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ of sets is written as $f g$. Thus, for a map $f: X \rightarrow Y$, we write $(x) f$ for the image of $x \in X$ under f.

2.1 Derived equivalences of algebras with idempotents

In this subsection, all k-algebras over a commutative ring k are assumed to be projective as k-modules. Let $A^{\mathrm{e}}:=A \otimes_{k} A^{\mathrm{op}}$ be the enveloping algebra of an algebra A, and D be the functor $\operatorname{Hom}_{k}(-, k)$.

We first recall the definitions of tilting complexes and derived equivalences in [18, 20].
Definition 2.1. Let A and B be algebras.
(1) A complex $P \in \mathscr{K}^{b}(A$-proj) is called a tilting complex if
(i) P is self-orthogonal, that is, $\operatorname{Hom}_{\mathscr{K}^{b}(A \text {-proj })}(P, P[n])=0$ for any $n \neq 0$,
(ii) $\operatorname{add}(P)$ generates $\mathscr{K}^{b}\left(A\right.$-proj) as a triangulated category, that is, $\mathscr{K}^{b}(A$-proj $)$ is the smallest full triangulated subcateory of $\mathscr{K}^{b}(A-p r o j)$ containing $\operatorname{add}(P)$ and being closed under isomorphisms.
(2) A complex $T \in \mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$ is called a two-sided tilting complex if there is a complex $T^{\vee} \in$ $\mathscr{D}\left(B \otimes_{k} A^{\mathrm{op}}\right)$ such that $T \otimes_{B}^{\mathbb{L}} T^{\vee} \simeq A$ in $\mathscr{D}\left(A^{\mathrm{e}}\right)$ and $T^{\vee} \otimes_{A}^{\mathbb{L}} T \simeq B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. The complex T^{\vee} is called the inverse of T.
(3) Two algebras A and B are said to be derived equivalent if $\mathscr{D}(A)$ and $\mathscr{D}(B)$ are equivalent as triangulated categories, or equivalently, $\mathscr{K}^{b}(A-\operatorname{proj})$ and $\mathscr{K}^{b}(B-\mathrm{proj})$ are equivalent as triangulated categories.

Let T be a two-sided tilting complex in $\mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$ with the inverse T^{\vee}. By [20, Section 3], we have $T^{\vee} \simeq \mathbb{R} \operatorname{Hom}_{A}(T, A) \simeq \mathbb{R} \operatorname{Hom}_{B^{\text {op }}}(T, B)$ in $\mathscr{D}\left(B \otimes_{k} A^{\text {op }}\right)$. Moreover, the functor $T^{\vee} \otimes_{A}^{\mathbb{L}}-: \mathscr{D}(A) \rightarrow \mathscr{D}(B)$ is a triangle equivalence with the quasi-inverse $T \otimes_{B}^{\mathbb{L}}-: \mathscr{D}(B) \rightarrow \mathscr{D}(A)$. This implies that ${ }_{A} T$ and T_{B} are isomorphic to tilting complexes in $\mathscr{D}(A)$ and $\mathscr{D}\left(B^{\circ \mathrm{p}}\right)$, respectively. By [20, Lemma 4.3], $T^{\vee} \otimes_{k} T \in$ $\mathscr{D}\left(A^{\mathrm{e}} \otimes_{k}\left(B^{\mathrm{e}}\right)^{\mathrm{op}}\right)$ is a two-sided tilting complex.

The following theorem is well known (see [8, 13, 18, 20]).
Theorem 2.2. Let A and B be k-algebras. The following are equivalent.
(1) A and B are derived equivalent.
(2) There is a tilting complex $P \in \mathscr{K}^{b}\left(A\right.$-proj) such that $B \simeq \operatorname{End}_{\mathscr{D}(A)}(P)$ as algebras.
(3) There is a two-sided tilting complex $T \in \mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$.

Comparing with recollement-tilting complexes related to idempotents in [15, Definition 3.6], we introduce the definition of derived equivalences of algebras with idempotents.

Definition 2.3. Let A and B be algebras with idempotent elements $e=e^{2} \in A$ and $f=f^{2} \in B$. The pairs (A, e) and (B, f) of algebras with idempotents are said to be derived equivalent provided that there is a triangle equivalence $\mathscr{D}(A) \rightarrow \mathscr{D}(B)$ which restricts to an equivalence $\mathscr{K}^{b}(\operatorname{add}(A e)) \rightarrow \mathscr{K}^{b}(\operatorname{add}(B f))$.

Clearly, A and B are derived equivalent if and only if so are the pairs $(A, 0)$ and $(B, 0)$ if and only if so are the pairs $\left(A, 1_{A}\right)$ and $\left(B, 1_{B}\right)$. The following result is essentially implied in [15] and provides several equivalent characterizations of derived equivalences of algebras with idempotents. For the convenience of the reader, we provide a proof.

Lemma 2.4. ([15]) Let A and B be algebras with $e^{2}=e \in A$ and $f^{2}=f \in B$. The following are equivalent.
(1) The pairs (A, e) and (B, f) are derived equivalent.
(2) There is a tilting complex $P \in \mathscr{K}^{b}\left(A\right.$-proj) such that $P=P_{1} \oplus P_{2}$ in $\mathscr{K}^{b}(A$-proj) satisfying
(a) $B \simeq \operatorname{End}_{\mathscr{D}(A)}(P)$ as algebras.
(b) P_{1} generates $\mathscr{K}^{b}(\operatorname{add}(A e))$ as a triangulated category.
(c) Under the isomorphism of (a), $f \in B$ corresponds to the composite of the canonical projection $P \rightarrow P_{1}$ with the canonical inclusion $P_{1} \rightarrow P$.
(3) There is a two-sided tilting complex $T \in \mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$ with the inverse $T^{\vee} \in \mathscr{D}\left(B \otimes_{k} A^{\mathrm{op}}\right)$ such that $e T f \in \mathscr{D}\left(e A e \otimes_{k}(f B f)^{\mathrm{op}}\right)$ is a two-sided tilting complex with the inverse $f T^{\vee} e \in \mathscr{D}\left(f B f \otimes_{k}(e A e)^{\mathrm{op}}\right)$ and that all 3 squares in the following diagram are commutative (up to natural isomorphism):

where $F_{1}:=T^{\vee} \otimes_{A}^{\mathbb{L}}-, F_{2}:=f T^{\vee} e \otimes_{e A e}^{\mathbb{L}}-, j_{e!}:=A e \otimes_{e A e}^{\mathbb{L}}-, j_{e *}:=\mathbb{R} \operatorname{Hom}_{e A e}(e A,-), j_{f!}:=B e \otimes_{f B f}^{\mathbb{L}}$ $-, j_{f *}:=\mathbb{R} \operatorname{Hom}_{f B f}(f B,-)$, and the functors e and f. denote the left multiplications by e and f, respectively.
(4) There is a two-sided tilting complex $T \in \mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$ with the inverse $T^{\vee} \in \mathscr{D}\left(B \otimes_{k} A^{\mathrm{op}}\right)$ such that

$$
T^{\vee} \otimes_{A}^{\mathbb{L}}\left(A e \otimes_{e A e}^{\mathbb{L}} e A\right) \otimes_{A}^{\mathbb{L}} T \simeq B f \otimes_{f B f}^{\mathbb{L}} f B \in \mathscr{D}\left(B^{\mathrm{e}}\right) .
$$

Proof. (1) \Rightarrow (2). Assume (1) holds. Then there is a triangle equivalence $F_{1}: \mathscr{D}(A) \rightarrow \mathscr{D}(B)$ which restricts to an equivalence $\mathscr{K}^{b}(\operatorname{add}(A e)) \rightarrow \mathscr{K}^{b}(\operatorname{add}(B f))$. Let $G_{1}: \mathscr{D}(B) \rightarrow D(A)$ be the inverse of F_{1}. Define $P:=G_{1}(B), P_{1}:=G(B f)$ and $P_{2}:=G(B(1-f))$. Then $P=P_{1} \oplus P_{2}$ and $P_{1} \in \mathscr{K}^{b}(\operatorname{add}(A e))$. Since $B f$ generates $\mathscr{K}^{b}(\operatorname{add}(B f))$ as a triangulated category, all conditions $(a),(b)$ and (c) hold.
$(2) \Rightarrow(3)$. Let $\Lambda:=e A e$. Recall that the adjoint pair $\left(A e \otimes_{\Lambda}-, e \cdot\right)$ between Λ-Mod and A-Mod induces a triangle equivalence $\mathscr{K}^{b}(\operatorname{add}(A e)) \xrightarrow{\simeq} \mathscr{K}^{b}(\Lambda$-proj $)$. Since P_{1} is a direct summand of P and generates $\mathscr{K}^{b}(\operatorname{add}(A e))$ as a triangulated category, the complex $e P_{1} \in \mathscr{K}^{b}(\Lambda$-proj) is a tilting complex. Let T be a two-sided tilting complex in $\mathscr{D}\left(A \otimes_{k} B^{\text {op }}\right)$ which is induced by ${ }_{A} P$. Then the argument in the proof of [15, Theorem 3.5] shows that (2) implies (3).
$(3) \Rightarrow(1)$. Let $\Gamma:=f B f$. Note that the image of the restriction of $j_{e!}$ to $\mathscr{K}^{b}(\Lambda$-proj) coincides with the image of $\mathscr{K}^{b}(\operatorname{add}(A e))$ in $\mathscr{D}(A)$. Similarly, the image in $\mathscr{D}(B)$ of the restriction of j_{f} ! to $\mathscr{K}^{b}(\Gamma$-proj) coincides with the image of $\mathscr{K}^{b}(\operatorname{add}(B f))$ in $\mathscr{D}(B)$. Thus the equivalence F_{1} in (3) restricts to an equivalence from $\mathscr{K}^{b}(\operatorname{add}(A e))$ to $\mathscr{K}^{b}(\operatorname{add}(B f))$. Thus (1) holds.
$(3) \Rightarrow(4)$. By [15, Corollaries 3.7 and 3.8], there are isomorphisms in $\mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$:

$$
T \otimes_{B}^{\mathbb{L}} B f \otimes_{\Gamma}^{\mathbb{L}} f B \simeq T f \otimes_{\Gamma}^{\mathbb{L}} f B \simeq A e \otimes_{\Lambda}^{\mathbb{L}} e T \simeq A e \otimes_{\Lambda}^{\mathbb{L}} e A \otimes_{A}^{\mathbb{L}} T
$$

Applying $T^{\vee} \otimes_{A}^{\mathbb{L}}-: \mathscr{D}\left(A \otimes_{k} B^{\text {op }}\right) \rightarrow \mathscr{D}\left(B^{\mathrm{e}}\right)$ to these isomorphisms yields

$$
B f \otimes_{\Gamma}^{\mathbb{L}} f B \simeq T^{\vee} \otimes_{A}^{\mathbb{L}} T \otimes_{B}^{\mathbb{L}} B f \otimes_{\Gamma}^{\mathbb{L}} f B \simeq T^{\vee} \otimes_{A}^{\mathbb{L}} A e \otimes_{\Lambda}^{\mathbb{L}} e A \otimes_{A}^{\mathbb{L}} T .
$$

$(4) \Rightarrow(2)$. Since ${ }_{A} T_{B}$ is a two-sided tilting complex, it follows from (4) that there are isomorphisms of complexes

$$
\begin{aligned}
& \text { (i) } A e \otimes_{\Lambda}^{\mathbb{L}} e A \simeq T \otimes_{B}^{\mathbb{L}} B f \otimes_{\Gamma}^{\mathbb{L}} f B \otimes_{B}^{\mathbb{L}} T^{\vee} \in \mathscr{D}\left(A^{\mathrm{e}}\right), \\
& \text { (ii) } A e \otimes_{\Lambda}^{\mathbb{L}} e T f \simeq T \otimes_{B}^{\mathbb{L}} B f \otimes_{\Gamma}^{\mathbb{L}} f B \otimes_{B}^{\mathbb{L}} T^{\vee} \otimes_{A}^{\mathbb{L}} T \otimes_{B}^{\mathbb{L}} B f \simeq T f \in \mathscr{D}\left(A \otimes \Gamma^{\mathrm{op}}\right), \\
& \text { (iii) } f T^{\vee} e \otimes_{\Lambda}^{\mathbb{L}} e T f \simeq f T^{\vee} \otimes_{A}^{\mathbb{L}} A e \otimes_{\Lambda}^{\mathbb{L}} e A \otimes_{A}^{\mathbb{L}} T f \simeq f B f \otimes_{\Gamma}^{\mathbb{L}} f B f \simeq \Gamma \in \mathscr{D}\left(\Gamma^{\mathrm{e}}\right), \text {, } \\
& \text { (iv) } e T f \otimes_{\Gamma}^{\mathbb{L}} f T^{\vee} e \simeq e T \otimes_{B}^{\mathbb{L}} B f \otimes_{\Gamma}^{\mathbb{L}} f B \otimes_{B}^{\mathbb{L}} T^{\vee} e \simeq e A e \otimes_{\Lambda}^{\mathbb{L}} e A e \simeq \Lambda \in \mathscr{D}\left(\Lambda^{e}\right) .
\end{aligned}
$$

Due to (iii) and $(i v), \Lambda_{\Lambda}(e T f)_{\Gamma}$ is a two-sided tilting complex with the inverse $f T^{\vee} e$. In particular, $\Lambda e T f$ is isomorphic to a tilting complex. Since $j_{e!}$ induces a triangle equivalence $\mathscr{K}^{b}(\Lambda-\operatorname{proj}) \xrightarrow{\simeq} \mathscr{K}^{b}(\operatorname{add}(A e))$, the isomorphisms in $(i i)$ imply that $T f$ generates $\mathscr{K}^{b}(\operatorname{add}(A e))$ as a triangulated category. Clearly, ${ }_{A} T$ is isomorphic to a tilting complex and has a direct summand $T f$. Moreover, $\operatorname{End}_{\mathscr{D}(A)}(T) \simeq B$ as algebras and $\operatorname{Hom}_{\mathscr{D}(A)}(T, T f) \simeq B f$ as B-modules. Thus (2) holds.

Corollary 2.5. Assume that the pairs (A, e) and (B, f) are derived equivalent. Then
(1) $\left(A^{\mathrm{op}}, e^{\mathrm{op}}\right)$ and $\left(B^{\mathrm{op}}, f^{\mathrm{op} \mathrm{p}}\right)$ are derived equivalent.
(2) ($\left.A^{\mathrm{e}}, e \otimes e^{\mathrm{op}}\right)$ and $\left(B^{\mathrm{e}}, f \otimes f^{\mathrm{op} \mathrm{p}}\right)$ are derived equivalent.

Proof. Let $(-)^{*}:=\operatorname{Hom}_{A}(-, A)$ and P be the tilting complex in Lemma 2.4(2). Then $P^{*} \in \mathscr{K}^{b}\left(A^{\text {op }}-\mathrm{proj}\right)$ and $P^{*}=P_{1}^{*} \oplus P_{2}^{*}$. By [18, Proposition 9.1], P^{*} is a tilting complex over $A^{\text {op }}$.
(1) Since $(-)^{*}: \mathscr{K}^{b}(A-$ proj $) \rightarrow \mathscr{K}^{b}\left(A^{\mathrm{op}}\right.$-proj) is a triangle equivalence sending $A e$ to $e A$, it follows from Lemma[2.4(c) that P_{1}^{*} generates $\mathscr{K}^{b}(\operatorname{add}(e A))$ as a triangulated category. By Lemma 2.4(a) and (c), there is an algebra isomorphism $B^{\mathrm{op}} \simeq \operatorname{End}_{\mathscr{D}\left(A^{\mathrm{op})}\right.}\left(P^{*}\right)$ under which f^{op} is the composition of the projection $P^{*} \rightarrow P_{1}^{*}$ with the inclusion $P_{1}^{*} \rightarrow P^{*}$. Thus (P^{*}, e^{op}) satisfies Lemma 2.4(2). This shows (1).
(2) Let $Q:=P \otimes_{k} P^{*} \in \mathscr{K}^{b}\left(A^{\mathrm{e}}\right.$-proj). We will show that Q satisfies Lemma 2.4(2) for the pair ($A^{\mathrm{e}}, e \otimes$ $\left.e^{\mathrm{op}}\right)$ and $\left(B^{\mathrm{e}}, f \otimes f^{\mathrm{op}}\right)$.

In fact, by [20, Theorem 2.1], Q is a tilting complex over A^{e} and $\operatorname{End}_{\mathscr{D}\left(A^{\mathrm{e}}\right)}(Q) \simeq B^{\mathrm{e}}$. Clearly, $P_{1} \otimes_{k} P_{1}^{*}$ is a direct summand of $P \otimes_{k} P^{*}$ and there are canonical isomorphisms

$$
\operatorname{Hom}_{\mathscr{D}\left(A^{\mathrm{e}}\right)}\left(Q, P_{1} \otimes_{k} P_{1}^{*}\right) \simeq \operatorname{Hom}_{\mathscr{D}(A)}\left(P, P_{1}\right) \otimes_{k} \operatorname{Hom}_{\mathscr{D}\left(A^{\mathrm{op}}\right)}\left(P^{*}, P_{1}^{*}\right) \simeq B f \otimes_{k} f B=B^{\mathrm{e}}\left(f \otimes f^{\mathrm{op}}\right) .
$$

Thus Q satisfies Lemma $2.4(a)-(b)$. To show Lemma $2.4(c)$ for Q, we need the following general result:
If $L: \mathcal{C} \rightarrow \mathcal{D}$ is a triangle functor between triangulated categories \mathcal{C} and \mathcal{D}, then $L\left(\operatorname{tria}{ }_{\mathcal{C}}(\operatorname{add}(X)) \subseteq\right.$ $\operatorname{tria}_{\mathcal{D}}(\operatorname{add}(L(X)))$ for any $X \in \mathcal{C}$, where $\operatorname{tria}_{\mathcal{C}}(\operatorname{add}(X))$ denotes the smallest full triangulated subcategory of C containing $\operatorname{add}(X)$.

Since $e A \in \mathscr{K}^{b}(\operatorname{add}(e A))=\operatorname{tria}_{\mathscr{K}\left(A^{\text {op })}\right.}\left(\operatorname{add}\left(P_{1}^{*}\right)\right)$, we apply the functor $A e \otimes_{k}-: \mathscr{K}^{b}(\operatorname{add}(e A)) \rightarrow$ $\mathscr{K}^{b}\left(\operatorname{add}\left(A e \otimes_{k} e A\right)\right)$ to the k-module $e A$ and obtain $A e \otimes_{k} e A \in \operatorname{tria} \mathscr{K}_{\left(A^{c}\right)}\left(\operatorname{add}\left(A e \otimes_{k} P_{1}^{*}\right)\right)$. Similarly, we have $A e \otimes P_{1}^{*} \in \operatorname{tria} \mathscr{K}_{\left(A^{e}\right)}\left(\operatorname{add}\left(P_{1} \otimes_{k} P_{1}^{*}\right)\right)$ by the functor $-\otimes_{k} P_{1}^{*}: \mathscr{K}^{b}(\operatorname{add}(A e)) \rightarrow \mathscr{K}^{b}\left(\operatorname{add}\left(A e \otimes_{k} e A\right)\right)$. Thus $A e \otimes_{k} e A \in \operatorname{tria}\left(\operatorname{add}\left(P_{1} \otimes_{k} P_{1}^{*}\right)\right)$. By the equivalences of Lemma 2.4(1)-(2), the pairs ($\left.A^{\mathrm{e}}, e \otimes e^{\mathrm{op}}\right)$ and ($B^{\mathrm{e}}, f \otimes f^{\text {op }}$) are derived equivalent.

A finite-dimensional algebra A over a field k is called a gendo-symmetric algebra if $A=\operatorname{End}_{\Lambda}(\Lambda \oplus M)$ with Λ a symmetric algebra and M a finite-dimensional Λ-module. By [5], Theorem 3.2], A is gendosymmetric if and only if the dominant dimension of A is at least 2 and $D(A e) \simeq e A$ as $e A e-A$-bimodules, where $e \in A$ is an idempotent element such that $A e$ is a faithful projective-injective A-module.
Proposition 2.6. [7, Proposition 3.9] Suppose that A and B are gendo-symmetric algebras with $A e$ and $B f$ faithful projective-injective modules over A and B, respectively. If A and B are derived equivalent, then the pairs (A, e) and (B, f) are derived equivalent of algebras with idempotents.

2.2 Mirror-reflective algebras

In this section, we recall the construction of mirror-reflective algebras in [4]. Assume that A is a k-algebra over a commutative ring $k, e=e^{2} \in A, \Lambda:=e A e$ and λ lies in the center $Z(\Lambda)$ of Λ. Recall that the mirrorreflective algebra $R(A, e, \lambda)$ of A at level (e, λ), defined in [4], has the underlying k-module $A \oplus A e \otimes_{\Lambda} e A$ as its abelian group. Its multiplication $*$ is given explicitly by

$$
(a+b e \otimes e c) *\left(a^{\prime}+b^{\prime} e \otimes e c^{\prime}\right):=a a^{\prime}+\left(a b^{\prime} e \otimes e c^{\prime}+b e \otimes e c a^{\prime}+b e c b^{\prime} e \otimes \lambda e c^{\prime}\right)
$$

for $a, b, c, a^{\prime}, b^{\prime}, c^{\prime} \in A$. This can be reformulated as follows: Let ω_{λ} be the composite of the natural maps:

$$
\left(A e \otimes_{\Lambda} e A\right) \otimes_{A}\left(A e \otimes_{\Lambda} e A\right) \xrightarrow{\simeq} A e \otimes_{\Lambda}\left(e A \otimes_{A} A e\right) \otimes_{\Lambda} e A \xrightarrow{\simeq} A e \otimes_{\Lambda} \Lambda \otimes_{\Lambda} e A \xrightarrow{\mathrm{Id} \otimes(\cdot \lambda) \otimes \mathrm{Id}} A e \otimes_{\Lambda} \Lambda \otimes_{\Lambda} e A \rightarrow A e \otimes_{\Lambda} e A,
$$

where $(\cdot \lambda): \Lambda \rightarrow \Lambda$ is the multiplication map by λ. Then

$$
\left((b e \otimes e c) \otimes\left(b^{\prime} e \otimes e c^{\prime}\right)\right) \omega_{\lambda}=(b e \otimes e c) *\left(b^{\prime} e \otimes e c^{\prime}\right)
$$

Clearly, $R(A, e, 0)$ is exactly the trivial extension of A by $A e \otimes_{\Lambda} e A$. To understand $R(A, e, \lambda)$, we will employ idealized extensions of algebras.

Definition 2.7. Let X be an A-A-bimodule. An idealized extension of A by X is defined to be an algebra R such that A is a subalgebra (with the same identity) of R, X is an ideal of R, and $R=A \oplus X$ as $A-A$ bimodules. Two idealized extensions R_{1} and R_{2} of A by X are said to be isomorphic if there exists an algebra isomorphism $\phi: R_{1} \rightarrow R_{2}$ such that the restriction of ϕ to A is the identity map of A and the one of ϕ to X is an bijection from X to X.

Clearly, an algebra R is an idealized extension of A by X if and only if R contains A as a subalgebra and there is an algebra homomorphism $\pi: R \rightarrow A$ with $X=\operatorname{Ker}(\pi)$ such that the composite of the inclusion $A \rightarrow R$ with π is the identity map of A. Hence a mirror-reflective algebra $R(A, e, \lambda)$ is an idealized extension of A by $A e \otimes_{\Lambda} e A$.

Let

$$
\begin{gathered}
F:=A e \otimes_{\Lambda}-\otimes_{\Lambda} e A: \Lambda^{\mathrm{e}}-\operatorname{Mod} \longrightarrow A^{\mathrm{e}}-\operatorname{Mod}, M \mapsto A e \otimes_{\Lambda} M \otimes_{\Lambda} e A \\
G:=e(-) e: A^{\mathrm{e}}-\operatorname{Mod} \longrightarrow \Lambda^{\mathrm{e}}-\operatorname{Mod}, M \mapsto e M e
\end{gathered}
$$

for $M \in A^{\mathrm{e}}$-Mod. Since $e \otimes e^{\mathrm{op}}$ is an idempotent element of A^{e} and there are natural isomorphisms

$$
F \simeq A^{\mathrm{e}}\left(e \otimes e^{\mathrm{op}}\right) \otimes_{\Lambda^{\mathrm{e}}}-\quad \text { and } \quad G \simeq \operatorname{Hom}_{A^{\mathrm{e}}}\left(A^{\mathrm{e}}\left(e \otimes e^{\mathrm{op}}\right),-\right)
$$

(F, G) is an adjoint pair and F is fully faithful. This implies the following.
Lemma 2.8. The functor F induces an algebra isomorphism

$$
\rho: Z(\Lambda) \longrightarrow \operatorname{End}_{A^{\mathrm{e}}}\left(A e \otimes_{\Lambda} e A\right), \quad \lambda \mapsto \rho_{\lambda}:=[a e \otimes e b \mapsto a e \lambda \otimes e b]
$$

for $\lambda \in Z(\Lambda)$ and $a, b \in A$. Moreover, $\omega_{\lambda}=\omega_{e} \rho_{\lambda}$.
The following result parameterizes the idealized extensions of A by $A e \otimes_{\Lambda} e A$.
Proposition 2.9. Let $Z(\Lambda)^{\times}$be the group of units of $Z(\Lambda)$, that is, $Z(\Lambda)^{\times}$is the group of all invertible elements in $Z(\Lambda)$. Then there exists a bijection from the quotient of the multiplicative semigroup $Z(\Lambda)$ modulo $Z(\Lambda)^{\times}$to the set $\mathscr{S}(A, e)$ of the isomorphism classes of idealized extensions of A by $A e \otimes_{\Lambda} e A$:

$$
Z(\Lambda) / Z(\Lambda)^{\times} \xrightarrow{\simeq} \mathscr{S}(A, e), \quad \lambda Z(\Lambda)^{\times} \mapsto R(A, e, \lambda) \text { for } \lambda \in Z(\Lambda)
$$

Proof. Let $Z_{0}(\Lambda):=Z(\Lambda) / Z(\Lambda)^{\times}=\left\{\lambda Z(\Lambda)^{\times} \mid \lambda \in Z(\Lambda)\right\}$ and $[\lambda]:=\lambda Z(\Lambda)^{\times} \in Z_{0}(\Lambda)$ for $\lambda \in Z(\Lambda)$. By [4, Lemma 3.2(2)], if $\mu \in Z(\Lambda)^{\times}$, then $R(A, e, \lambda) \simeq R(A, e, \lambda \mu)$ as algebras. This means that the map

$$
\varphi: Z_{0}(\Lambda) \longrightarrow \mathscr{S}(A, e),[\lambda] \mapsto R(A, e, \lambda)
$$

is well defined. Let R be an idealized extension of A by $X:=A e \otimes_{\Lambda} e A$. Then the multiplication of R induces a homomorphism $\phi: X \otimes_{A} X \rightarrow X$ of A^{e}-modules. Recall that $\omega_{e}: X \otimes_{A} X \rightarrow X$ is an isomorphism of A^{e}-modules. Let $\phi^{\prime}:=\omega_{e}^{-1} \phi$. Then $\phi^{\prime} \in \operatorname{End}_{A^{\mathrm{e}}}(X)$ and $\phi=\omega_{e} \phi^{\prime}$. By Lemma 2.8, $\phi^{\prime}=\rho_{z}$ for some $z \in Z(\Lambda)$ and $\phi=\omega_{z}$. Thus $R=R(A, e, z)$ and φ is surjective.

Now, we show that φ is injective. Suppose $\lambda_{i} \in Z(\Lambda)$ for $i=1,2$ and $R\left(A, e, \lambda_{1}\right) \simeq R\left(A, e, \lambda_{2}\right)$ as algebras. Set $R_{i}:=R\left(A, e, \lambda_{i}\right)$. By Definition 2.7, there is an algebra isomorphism $f: R_{1} \rightarrow R_{2}$ such that $\left.f\right|_{A}=\operatorname{Id}_{\mathrm{A}}$ and $\alpha:=\left.f\right|_{X}: X \rightarrow X$ is an isomorphism of ideals. This implies that α is a homomorphism of A^{e}-modules and $\left(\alpha \otimes_{A} \alpha\right) \omega_{\lambda_{2}}=\omega_{\lambda_{1}} \alpha: X \otimes_{A} X \rightarrow X$. Since $\omega_{\lambda_{i}}=\omega_{e} \rho_{\lambda_{i}}$ by Lemma 2.8, there holds $\left(\alpha \otimes_{A} \alpha\right) \omega_{e} \rho_{\lambda_{2}}=\omega_{e} \rho_{\lambda_{1}} \alpha$. Let $\sigma:=\omega_{e}^{-1}\left(\alpha \otimes_{A} \alpha\right) \omega_{e} \in \operatorname{End}_{A^{\mathrm{e}}}(X)$. Then σ is an isomorphism of $A^{\mathrm{e}}-$ modules and $\rho_{\lambda_{1}} \alpha=\sigma \rho_{\lambda_{2}}$. Again by Lemma 2.8, $\alpha=\rho_{c}$ and $\sigma=\rho_{d}$ for some $c, d \in Z(\Lambda)^{\times}$. It follows that $\lambda_{1} c=d \lambda_{2}$, and therefore $\left[\lambda_{1}\right]=\left[\lambda_{2}\right]$.

3 Derived equivalences of mirror-reflective algebras

In this section, k denotes a commutative ring, all algebras are k-algebras which are projective as k modules.

Assume that the pairs (A, e) and (B, f) of algebras with idempotents are derived equivalent. By Lemma 2.4, there is a two-sided tilting complex $T \in \mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$ with the quasi-inverse T^{\vee} such that $T \otimes_{k} T^{\vee} \in \mathscr{D}\left(A^{\mathrm{e}} \otimes_{k}\left(B^{\mathrm{e}}\right)^{\mathrm{op}}\right)$ is a two-sided tilting complex with the inverse $T^{\vee} \otimes_{k} T$, and there is a derived equivalence:

$$
\Phi:=T^{\vee} \otimes_{A}^{\mathbb{L}}-\otimes_{A}^{\mathbb{L}} T \simeq\left(T^{\vee} \otimes_{k} T\right) \otimes_{A^{\mathrm{e}}}^{\mathbb{L}}-: \mathscr{D}\left(A^{\mathrm{e}}\right) \longrightarrow \mathscr{D}\left(B^{\mathrm{e}}\right)
$$

which sends A to B up to isomorphism (see [20]). Let $\varepsilon_{A}: T \otimes_{B}^{\mathbb{L}} T^{\vee} \rightarrow A$ and $\varepsilon_{B}: T^{\vee} \otimes_{A}^{\mathbb{L}} T \rightarrow B$ be the associated isomorphisms in $\mathscr{D}\left(A^{\mathrm{e}}\right)$ and $\mathscr{D}\left(B^{\mathrm{e}}\right)$, respectively. Now, we introduce the notation

$$
\begin{gathered}
\Lambda=e A e, \Gamma=f B f, G_{e}=e(-) e, G_{f}=f(-) f, \\
F_{e}=A e \otimes_{\Lambda}-\otimes_{\Lambda} e A: \Lambda^{\mathrm{e}}-\operatorname{Mod} \longrightarrow A^{\mathrm{e}}-\operatorname{Mod}, \quad F_{f}=B f \otimes_{\Gamma}-\otimes_{\Gamma} f B: \Gamma^{\mathrm{e}}-\operatorname{Mod} \longrightarrow B^{\mathrm{e}}-\operatorname{Mod}, \\
\mathbb{L} F_{e}=A e \otimes_{\Lambda}^{\mathbb{L}}-\otimes_{\Lambda}^{\mathbb{L}} e A: \mathscr{D}\left(\Lambda^{\mathrm{e}}\right) \longrightarrow \mathscr{D}\left(A^{\mathrm{e}}\right), \quad \mathbb{L} F_{f}=B f \otimes_{\Gamma}^{\mathbb{L}}-\otimes_{\Gamma}^{\mathbb{L}} f B: \mathscr{D}\left(\Gamma^{\mathrm{e}}\right) \longrightarrow \mathscr{D}\left(B^{\mathrm{e}}\right), \\
\Phi^{\prime}=f T^{\vee} e \otimes_{\Lambda}^{\mathbb{L}}-\otimes_{\Lambda}^{\mathbb{L}} e T f: \mathscr{D}\left(\Lambda^{\mathrm{e}}\right) \longrightarrow \mathscr{D}\left(\Gamma^{\mathrm{e}}\right), \\
\Delta_{0}=A e \otimes_{\Lambda} e A, \Delta=A e \otimes_{\Lambda}^{\mathbb{L}} e A, \quad \Theta_{0}=B f \otimes_{\Gamma} f B, \quad \Theta=B f \otimes_{\Gamma}^{\mathbb{L}} f B,
\end{gathered}
$$

together with the identifications (up to isomorphism):

$$
\Delta_{0}=H^{0}(\Delta), \quad \Theta_{0}=H^{0}(\Theta), \quad \Delta=\mathbb{L} F_{e}(\Lambda), \quad \Theta=\mathbb{L} F_{f}(\Gamma)
$$

By Lemma2.4 and Corollary 2.5, up to natural isomorphism, two squares in the diagram are commutative:

where Φ^{\prime} is the derived equivalence associated with the two-sided tilting complex $e T f \in \mathscr{D}\left(\Lambda \otimes_{k} \Gamma\right)$. Note that $\Phi, \Phi^{\prime}, \mathbb{L} F_{e}$ and $\mathbb{L} F_{f}$ commute with derived tensor products. Namely, for $U, V \in \mathscr{D}\left(A^{\mathrm{e}}\right)$, there are isomorphisms

$$
\Phi\left(U \otimes_{A}^{\mathbb{L}} V\right) \simeq T^{\vee} \otimes_{A}^{\mathbb{L}} U \otimes_{A}^{\mathbb{L}} A \otimes_{A}^{\mathbb{L}} V \otimes_{A}^{\mathbb{L}} T \simeq T^{\vee} \otimes_{A}^{\mathbb{L}} U \otimes_{A}^{\mathbb{L}} T \otimes_{B}^{\mathbb{L}} T^{\vee} \otimes_{A}^{\mathbb{L}} V \otimes_{A}^{\mathbb{L}} T=\Phi(U) \otimes_{B}^{\mathbb{L}} \Phi(V)
$$

where the second isomorphism follows from $A \simeq T \otimes_{B}^{\mathbb{L}} T^{\vee}$ in $\mathscr{D}\left(A^{\mathrm{e}}\right)$. This provides a natural isomorphism

$$
\phi_{-,-}: \Phi(-) \otimes_{B}^{\mathbb{L}} \Phi(-) \xrightarrow{\simeq} \Phi\left(-\otimes_{A}^{\mathbb{L}}-\right): \quad \mathscr{D}\left(A^{\mathrm{e}}\right) \times \mathscr{D}\left(A^{\mathrm{e}}\right) \longrightarrow \mathscr{D}\left(B^{\mathrm{e}}\right)
$$

Since $\Phi^{\prime}(\Lambda) \simeq \Gamma$, there is an algebra isomorphism

$$
\sigma: Z(\Lambda) \longrightarrow Z(\Gamma)
$$

defined by the series of isomorphisms $Z(\Lambda) \simeq \operatorname{End}_{\Lambda^{e}}(\Lambda) \xrightarrow{\simeq} \operatorname{End}_{\Gamma^{e}}\left(\Phi^{\prime}(\Lambda)\right) \xrightarrow{\simeq} \operatorname{End}_{\Gamma^{e}}(\Gamma) \simeq Z(\Gamma)$.
Our main result on derived equivalences of mirror-reflective algebras is the following.
Theorem 3.1. Suppose that there is a derived equivalence between (A, e) and (B, f) of algebras with idempotents, which gives rise to a two-sided tilting complex $A_{A} T_{B}$. If the derived equivalence $\Phi: \mathscr{D}\left(A^{\mathrm{e}}\right) \rightarrow$ $\mathscr{D}\left(B^{\mathrm{e}}\right)$ associated with T between the enveloping algebras A^{e} and B^{e} satisfies $\Phi\left(A e \otimes_{\Lambda} e A\right) \simeq B f \otimes_{\Gamma} f B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$, then there is an algebra isomorphism $\sigma: Z(\Lambda) \rightarrow Z(\Gamma)$ such that, for each $\lambda \in Z(\Lambda)$, the pairs $(R(A, e, \lambda), e)$ and $(R(B, f,(\lambda) \sigma), f)$ of algebras with idempotents are derived equivalent. In particular, $R(A, e)$ and $R(B, f)$ are derived equivalent.

Before starting with the proof of Theorem 3.1, we first fix notation on derived categories.
Let \mathcal{A} be an abelian category. For each $X:=\left(X^{i}, d_{X}^{i}\right)_{i \in \mathbb{Z}} \in \mathscr{C}(\mathcal{A})$ and $n \in \mathbb{Z}$, there are two truncated complexes

$$
\begin{aligned}
\tau^{\leq n} X: & \cdots \longrightarrow X^{n-3} \xrightarrow{d_{X}^{n-3}} X^{n-2} \xrightarrow{d_{X}^{n-2}} X^{n-1} \xrightarrow{d_{X}^{n-1}} \operatorname{Ker}\left(d_{X}^{n}\right) \longrightarrow 0 \\
\tau^{\geq n} X: & 0 \longrightarrow \operatorname{Coker}\left(d_{X}^{n-1}\right) \xrightarrow{\overline{d_{X}^{n}}} X^{n+1} \xrightarrow{d_{X}^{n+1}} X^{n+2} \xrightarrow{d_{X}^{n+2}} X^{n+3} \longrightarrow \cdots,
\end{aligned}
$$

where $\overline{d_{X}^{n}}$ is induced from d_{X}^{n}. Moreover, there are canonical chain maps in $\mathscr{C}(\mathscr{A})$:

$$
\lambda_{X}^{n}: \tau^{\leq n} X \hookrightarrow X \text { and } \pi_{X}^{n}: X \rightarrow \tau^{\geq n} X
$$

and a distinguished triangle in $\mathscr{D}(\mathcal{A})$:

$$
\tau^{\leq n} X \xrightarrow{\lambda_{X}^{n}} X \xrightarrow{\pi_{X}^{n+1}} \tau^{\geq n+1} X \longrightarrow \tau^{\leq n} X[1] .
$$

Note that $H^{n}(X)=\tau^{\geq n} \tau \leq n X: \mathscr{D}(\mathcal{A}) \rightarrow \mathcal{A}$. Let $\mathscr{D} \leq 0(\mathcal{A}):=\left\{X \in \mathscr{D}(\mathcal{A}) \mid H^{i}(X)=0, i>0\right\}$. For each $X \in \mathscr{D} \leq 0(\mathscr{A})$, it is clear that λ_{X}^{0} is an isomorphism in $\mathscr{D}(\mathscr{A})$. In this case, we denote by $\xi_{X}: X \rightarrow H^{0}(X)$ the composition of the inverse $X \rightarrow \tau^{\leq 0} X$ of λ_{X}^{0} with $\pi_{\tau \leq 0}^{0}: \tau^{\leq 0} X \rightarrow H^{0}(X)$. Clearly, if $X^{i}=0$ for all $i \geq 1$, then $X=\tau \leq 0 X$ and $\xi_{X}=\pi_{X}^{0}$. Now, there is a natural transformation

$$
\xi: \quad \operatorname{Id}_{\mathscr{D} \leq 0}(\mathscr{A}) \longrightarrow H^{0}: \quad \mathscr{D}^{\leq 0}(\mathcal{A}) \rightarrow \mathscr{D}^{\leq 0}(\mathcal{A})
$$

When $\mathscr{A}=A^{\mathrm{e}}$-Mod and $X, Y \in \mathscr{D} \leq 0(\mathcal{A})$, we denote the composite of the following morphisms by

$$
\theta_{X, Y}: X \otimes_{A}^{\mathbb{L}} Y \xrightarrow{\xi_{X} \otimes_{A}^{\mathbb{L}} \xi_{Y}} H^{0}(X) \otimes_{A}^{\mathbb{L}} H^{0}(Y) \xrightarrow{\xi_{H^{0}(X) \otimes_{A}^{\mathbb{L}} H^{0}(Y)}} H^{0}(X) \otimes_{A} H^{0}(Y)
$$

Then $\theta_{X, Y}$ is natural in X and Y. This gives rise to a natural transformation

$$
\theta_{-,-}:(-) \otimes_{A}^{\mathbb{L}}(-) \longrightarrow H^{0}(-) \otimes_{A} H^{0}(-): \quad \mathscr{D}^{\leq 0}(\mathcal{A}) \times \mathscr{D}^{\leq 0}(\mathcal{A}) \longrightarrow A^{\mathrm{e}}-\mathrm{Mod}
$$

We have the following result.

Lemma 3.2. (1) For $X \in \mathscr{D}^{\leq 0}(\mathcal{A})$, the morphism $H^{0}\left(\xi_{X}\right)$ is an automorphism of $H^{0}(X)$.
(2) For a morphism $f: X \rightarrow Y$ in $\mathscr{D}^{\leq 0}(\mathscr{A})$, there is a unique morphism $f^{\prime}: H^{0}(X) \rightarrow H^{0}(Y)$ in \mathcal{A} such that $f \xi_{Y}=\xi_{X} f^{\prime}$. Moreover, $f^{\prime}=H^{0}\left(\xi_{X}\right)^{-1} H^{0}(f) H^{0}\left(\xi_{Y}\right)$.
(3) Let $\mathcal{A}:=A^{\mathrm{e}}$-Mod. Then the map $H^{0}\left(\theta_{X, Y}\right): H^{0}\left(X \otimes_{A}^{\mathbb{L}} Y\right) \rightarrow H^{0}(X) \otimes_{A} H^{0}(Y)$ is an isomorphism and $\theta_{X, Y}=\xi_{X \otimes_{A}^{\boxed{L}} Y} H^{0}\left(\theta_{X, Y}\right)$. Thus there is a natural isomorphism of functors

$$
H^{0}\left(\theta_{-,-}\right): H^{0}\left(-\otimes_{A}^{\mathbb{L}}-\right) \xrightarrow{\simeq} H^{0}(-) \otimes_{A} H^{0}(-): \quad \mathscr{D}^{\leq 0}(\mathcal{A}) \times \mathscr{D}^{\leq 0}(\mathcal{A}) \longrightarrow A^{\mathrm{e}} \text {-Mod. }
$$

Proof. (1) and (2) follow from the construction of ξ. Note that $H^{0}\left(\xi_{X} \otimes_{A}^{\mathbb{L}} \xi_{Y}\right)$ and $H^{0}\left(\xi_{H^{0}(X) \otimes_{A}^{\mathbb{L}} H^{0}(Y)}\right)$ are isomorphisms. Since $\xi_{H^{0}(X) \otimes_{A} H^{0}(Y)}$ is the identity, (3) follows from (2).

In the rest of this section, let $\varphi: A \rightarrow A^{\prime}$ be a homomorphism of algebras. Define

$$
W:=\Phi\left(A^{\prime}\right), B^{\prime}:=H^{0}(W), W^{\prime}:=\tau^{\leq 0} W \text { and } \varphi^{\prime}:=H^{0}(\Phi(\varphi)): B \longrightarrow B^{\prime} .
$$

Lemma 3.3. (1) $A^{\prime} \otimes_{A}^{\mathbb{L}} T$ is isomorphic in $\mathscr{D}\left(A^{\prime}\right)$ to a tilting complex if and only if $H^{n}(W)=0$ for all $n \neq 0$.
(2) B^{\prime} is an algebra with the multiplication induced from

$$
B^{\prime} \otimes_{B} B^{\prime} \xrightarrow{H^{0}\left(\theta_{W^{\prime}, w^{\prime}}\right)^{-1}} H^{0}\left(W^{\prime} \otimes_{B}^{\mathbb{L}} W^{\prime}\right) \xrightarrow{H^{0}\left(\lambda_{W}^{0} \otimes_{B}^{\mathbb{L}} \lambda_{W}^{0}\right)} H^{0}\left(W \otimes_{B}^{\mathbb{L}} W\right) \xrightarrow{H^{0}\left(\phi_{A^{\prime}, A^{\prime}}\right)} H^{0}\left(\Phi\left(A^{\prime} \otimes_{A}^{\mathbb{L}} A^{\prime}\right)\right) \xrightarrow{H^{0}(\Phi(\pi))} B^{\prime}
$$

where $\pi: A^{\prime} \otimes_{A}^{\mathbb{L}} A^{\prime} \rightarrow A^{\prime}$ is the composite of $\xi_{A^{\prime} \otimes \otimes_{A}^{\mathbb{A}} A^{\prime}}: A^{\prime} \otimes_{A}^{\mathbb{L}} A^{\prime} \rightarrow A^{\prime} \otimes_{A} A^{\prime}$ with the multiplication map $A^{\prime} \otimes_{A} A^{\prime} \rightarrow A^{\prime}$.
(3) B^{\prime} and $\operatorname{End}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T\right)$ are isomorphic as algebras. Moreover, φ^{\prime} is a homomorphism of algebras.

Proof. (1) Since T is isomorphic in $\mathscr{D}(A)$ to a tilting complex P, we have $A^{\prime} \otimes_{A}^{\mathbb{L}} T \simeq A^{\prime} \otimes_{A} P$ in $\mathscr{D}\left(A^{\prime}\right)$ and $A^{\prime} \otimes_{A} P \in \mathscr{K}^{b}\left(A^{\prime}\right.$-proj). As add (P) generates $\mathscr{K}^{b}\left(A\right.$-proj) as a triangulated category, $\operatorname{add}\left(A^{\prime} \otimes_{A} P\right)$ generates $\mathscr{K}^{b}\left(A^{\prime}\right.$-proj) as a triangulated category. This implies that $A^{\prime} \otimes_{A}^{\mathbb{L}} T$ is isomorphic in $\mathscr{D}\left(A^{\prime}\right)$ to a tilting complex if and only if $A^{\prime} \otimes_{A}^{\mathbb{L}} T$ is self-orthogonal in $\mathscr{D}\left(A^{\prime}\right)$. Moreover, for $n \in \mathbb{Z}$, it follows from the isomorphism $\varepsilon_{B}: T^{\vee} \otimes_{A}^{\mathbb{L}} T \rightarrow B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$ that there is a series of isomorphisms
$(*) \operatorname{Hom}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T, A^{\prime} \otimes_{A}^{\mathbb{L}} T[n]\right) \simeq \operatorname{Hom}_{\mathscr{D}(A)}\left(T, A^{\prime} \otimes_{A}^{\mathbb{L}} T[n]\right) \simeq \operatorname{Hom}_{\mathscr{D}(B)}\left(T^{\vee} \otimes_{A}^{\mathbb{L}} T, T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T[n]\right)$

$$
\simeq \operatorname{Hom}_{\mathscr{D}(B)}\left(B, T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T[n]\right)=\operatorname{Hom}_{\mathscr{D}(B)}(B, W[n]) \simeq H^{n}(W) .
$$

Thus $A^{\prime} \otimes_{A}^{\mathbb{L}} T$ is self-orthogonal if and only if $H^{n}(W)=0$ for all $n \neq 0$. This shows (1).
(2) If taking $n=0$ in $(*)$, we get an isomorphism $\operatorname{End}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T\right) \simeq B^{\prime}$ of k-modules. Via the isomorphism, we can transfer the algebra structure of $\operatorname{End}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T\right)$ to the one of B^{\prime}.

Let $s_{i} \in \operatorname{Hom}_{\mathscr{D}(B)}(B, W)$ for $i=1,2$. By $(*)$, there are morphisms $t_{i}: T \rightarrow A^{\prime} \otimes_{A}^{\mathbb{L}} T$ in $\mathscr{D}(A)$ such that $s_{i}=\varepsilon_{B}^{-1}\left(T^{\vee} \otimes_{A}^{\mathbb{L}} t_{i}\right)$. By the first isomorphism in $(*)$, we can define a multiplication on the abelian group $\operatorname{Hom}_{\mathscr{D}(A)}\left(T, A^{\prime} \otimes_{A}^{\mathbb{L}} T\right)$, that is, the multiplication of t_{1} with t_{2} is given by the composition of the morphisms

$$
t_{1} \cdot t_{2}: T \xrightarrow{t_{1}} A^{\prime} \otimes_{A}^{\mathbb{L}} T \xrightarrow{A^{\prime} \otimes_{A}^{\mathbb{L} t_{2}}} A^{\prime} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T \xrightarrow{\pi \otimes_{A}^{\mathbb{L}} T} A^{\prime} \otimes_{A}^{\mathbb{L}} T .
$$

This yields the product $s_{1} \cdot s_{2} \in \operatorname{Hom}_{\mathscr{D}(B)}(B, W)$ of s_{1} with s_{2}, described by the composite of the morphisms

$$
s_{1} \cdot s_{2}: B \xrightarrow{\varepsilon_{B}^{-1}} T^{\vee} \otimes_{A}^{\mathbb{L}} T^{T^{\vee} \otimes_{A}^{\mathbb{L}} t_{1}} T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T^{T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} t_{2}} T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T \xrightarrow{\Phi(\pi)} T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T=W .
$$

Since $\left({ }_{A} T \otimes_{B}^{\mathbb{L}}-,{ }_{B} T^{\vee} \otimes_{A}^{\mathbb{L}}-\right)$ is an adjoint pair of functors between $\mathscr{D}(B)$ and $\mathscr{D}(A)$, the composite of the morphisms

$$
T \xrightarrow{\text { can }} T \otimes_{B}^{\mathbb{L}} B \xrightarrow{T \otimes_{B}^{\mathbb{L}} \varepsilon_{B}^{-1}} T \otimes_{B}^{\mathbb{L}} T^{\vee} \otimes_{A}^{\mathbb{L}} T \xrightarrow{\varepsilon_{A} \otimes_{A}^{\mathbb{L}} T} A \otimes_{A}^{\mathbb{L}} T \xrightarrow{\mathrm{can}} T
$$

is the identity morphism of T, where the first and last morphisms are canonical isomorphisms. It follows that t_{2} is the composite of the morphisms
${ }_{A} T \xrightarrow{\text { can }} T \otimes_{B}^{\mathbb{L}} B \xrightarrow{T \otimes_{B}^{\mathbb{L}} \varepsilon_{B}^{-1}} T \otimes_{B}^{\mathbb{L}} T^{\vee} \otimes_{A}^{\mathbb{L}} T \xrightarrow{T \otimes_{B}^{\mathbb{L}} T^{\vee} \otimes_{A}^{\mathbb{L}} t_{2}} T \otimes_{B}^{\mathbb{L}} T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T^{\varepsilon_{A} \otimes_{A}^{L} A^{\prime} \otimes_{A}^{\mathbb{L}} T} A \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T \xrightarrow{\text { can }}{ }_{A} A^{\prime} \otimes_{A}^{\mathbb{L}} T$, and therefore the multiplication $s_{1} \cdot s_{2}$ is the composite of the morphisms

$$
B \xrightarrow{s_{1}} W \xrightarrow{\mathrm{can}} W \otimes_{B}^{\mathbb{L}} B \xrightarrow{W \otimes_{B}^{\mathbb{L}} s_{2}} W \otimes_{B}^{\mathbb{L}} W=\Phi\left(A^{\prime}\right) \otimes_{B}^{\mathbb{L}} \Phi\left(A^{\prime}\right) \xrightarrow{\phi_{A^{\prime}, A^{\prime}}} \Phi\left(A^{\prime} \otimes_{A}^{\mathbb{L}} A^{\prime}\right) \xrightarrow{\Phi(\pi)} W .
$$

Since the inclusion $\lambda_{W}^{0}: W^{\prime} \rightarrow W$ induces an isomorphism $\operatorname{Hom}_{\mathscr{D}(B)}\left(B, W^{\prime}\right) \simeq \operatorname{Hom}_{\mathscr{D}(B)}(B, W)$, there are $s_{i}^{\prime} \in \operatorname{Hom}_{\mathscr{D}(B)}\left(B, W^{\prime}\right)$ for $i=1,2$ such that $s_{i}=s_{i}^{\prime} \lambda_{W}^{0}$. Let

$$
\widetilde{s}_{i}:=s_{i}^{\prime} \pi_{W^{\prime}}^{0} \in \operatorname{Hom}_{B}\left(B, B^{\prime}\right) .
$$

Since H^{0} induces an isomorphism $\operatorname{Hom}_{\mathscr{D}(B)}(B, W) \simeq \operatorname{Hom}_{B}\left(B, B^{\prime}\right) \simeq B^{\prime}$ as k-modules, we have $H^{0}\left(s_{i}\right)=$ $\widetilde{s_{i}}$. In the diagram

of morphisms in $\mathscr{D}(B)$, all the squares are commutative and $H^{0}\left(\theta_{W^{\prime}, W^{\prime}}\right)$ is an isomorphism. Let $\mu: B \rightarrow$ $B^{\prime} \otimes_{B} B^{\prime}$ be the composite of the morphisms in the bottom line of the diagram. Then

$$
H^{0}\left(s_{1} \cdot s_{2}\right)=\mu H^{0}\left(\theta_{W^{\prime}, W^{\prime}}\right)^{-1} H^{0}\left(\lambda_{W}^{0} \otimes_{B}^{\mathbb{L}} \lambda_{W}^{0}\right) H^{0}\left(\phi_{A^{\prime}, A^{\prime}}\right) H^{0}(\Phi(\pi)): B \longrightarrow B^{\prime} .
$$

Note that μ sends the identity 1 of B to (1) $\widetilde{s_{1}} \otimes(1) \widetilde{s_{2}}$. Now, by identifying B^{\prime} with $\operatorname{Hom}_{\mathscr{D}(B)}(B, W)$ and also with $\operatorname{Hom}_{B}\left(B, B^{\prime}\right),(2)$ can be proved.
(3) The isomorphism $\operatorname{End}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T\right) \simeq B^{\prime}$ as algebras has been shown in the proof of (2). Now, we denote by $\mu_{B^{\prime}}: B^{\prime} \otimes_{B} B^{\prime} \rightarrow B^{\prime}$ the composite of the morphisms in (2). Recall that $\Phi(A) \simeq B$ and $H^{0}(\Phi(A))=B$. If $A^{\prime}=A$ and $\varphi=\operatorname{Id}_{A}$, then $B^{\prime}=B$ and $\mu_{B}: B \otimes_{B} B \rightarrow B$ is the canonical isomorphism induced by the multiplication of B. For a general $\varphi: A \rightarrow A^{\prime}$, there is an equality $\mu_{B} \varphi^{\prime}=\left(\varphi^{\prime} \otimes_{B} \varphi^{\prime}\right) \mu_{B^{\prime}}$ which means that φ^{\prime} is an algebra homomorphism. Note that if B and B^{\prime} are identified with $\operatorname{End}_{\mathscr{D}(A)}(T)$ and $\operatorname{End}_{\mathscr{T}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T\right)$, respectively, then $\varphi^{\prime}: B \rightarrow B^{\prime}$ is exactly the algebra homomorphism induced from $A^{\prime} \otimes_{A}^{\mathbb{L}}-: \mathscr{D}(A) \rightarrow \mathscr{D}\left(A^{\prime}\right)$.

The following result provides a method for constructing derived equivalences of algebras with idempotents from given ones. It also generalizes derived equivalences of trivial extensions of algebras by bimodules (see [19, Corollary 5.4]).

Proposition 3.4. Suppose $H^{n}(W)=0$ for all $n \neq 0$. Then the pairs $\left(A^{\prime},(e) \varphi\right)$ and $\left(B^{\prime},(f) \varphi^{\prime}\right)$ of algebras with idempotents are derived equivalent. In particular, A^{\prime} and B^{\prime} are derived equivalent.

Proof. By Lemma3.3 $A^{\prime} \otimes_{A}^{\mathbb{L}} T$ is isomorphic in $\mathscr{D}\left(A^{\prime}\right)$ to a tilting complex and $\operatorname{End}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T\right) \simeq B^{\prime}$ as algebras. It follows from Theorem 2.2 that A^{\prime} and B^{\prime} are derived equivalent. Clearly, $T \otimes_{B}^{\mathbb{L}} B f \simeq T f \in$ $\operatorname{add}\left({ }_{A} T\right)$ and $A^{\prime} \otimes_{A}^{\mathbb{L}} T f \in \operatorname{add}\left({ }_{A^{\prime}} A^{\prime} \otimes_{A}^{\mathbb{L}} T\right)$. Since (A, e) and (B, f) are derived equivalent, $T f$ generates $\mathscr{K}^{b}(\operatorname{add}(A e))$ in $\mathscr{D}(A)$ by Lemma 2.4(2). Applying the functor $A^{\prime} \otimes_{A}^{\mathbb{L}}-: \mathscr{D}(A) \rightarrow \mathscr{D}\left(A^{\prime}\right)$ to $T f$ and $\mathscr{K}^{b}(\operatorname{add}(A e))$, we see from the general result in the proof of Lemma 2.5(2) that $A^{\prime} \otimes_{A}^{\mathbb{L}} T f$ generates $\mathscr{K}^{b}\left(\operatorname{add}\left(A^{\prime}(e) \varphi\right)\right)$ in $\mathscr{D}\left(A^{\prime}\right)$. Note that

$$
\begin{aligned}
\operatorname{Hom}_{\mathscr{D}\left(A^{\prime}\right)}\left(A^{\prime} \otimes_{A}^{\mathbb{L}} T, A^{\prime} \otimes_{A}^{\mathbb{L}} T f\right) & \simeq \operatorname{Hom}_{\mathscr{D}(A)}\left(T, A^{\prime} \otimes_{A}^{\mathbb{L}} T f\right) \simeq \operatorname{Hom}_{\mathscr{D}(B)}\left(T^{\vee} \otimes_{A}^{\mathbb{L}} T, T^{\vee} \otimes_{A}^{\mathbb{L}} A^{\prime} \otimes_{A}^{\mathbb{L}} T f\right) \\
& \simeq \operatorname{Hom}_{\mathscr{D}(B)}\left(B, W \otimes_{B} B f\right) \simeq H^{0}(W) \otimes_{B} B f \simeq B^{\prime}(f) \varphi^{\prime} .
\end{aligned}
$$

By Lemma 2.4(2), the pairs $\left(A^{\prime},(e) \varphi\right)$ and $\left(B^{\prime},(f) \varphi^{\prime}\right)$ are derived equivalent.
Now, we turn to mirror-reflective algebras at any levels. Recall that, for each $\lambda \in Z(\Lambda)$, the multiplication map $(\cdot \lambda): \Lambda \rightarrow \Lambda$ induces a homomorphism $\omega_{\lambda}: \Delta_{0} \otimes_{A} \Delta_{0} \rightarrow \Delta_{0}$ in A^{e}-Mod, which is the composite of the maps

$$
\Delta_{0} \otimes_{A} \Delta_{0} \xrightarrow{\omega_{e}} \Delta_{0} \xrightarrow{F_{e}(\cdot \lambda)} \Delta_{0} .
$$

We define the derived version of ω_{λ} to be the composite of the maps in $\mathscr{D}\left(A^{\mathrm{e}}\right)$:

$$
\mathbb{L} \omega_{\lambda}: \Delta \otimes_{A}^{\mathbb{L}} \Delta \xrightarrow{\simeq} \Delta \xrightarrow{\mathbb{L} F_{e}(\cdot \lambda)} \Delta
$$

where the first isomorphism is canonical, due to $e A \otimes_{A}^{\mathbb{L}} A e \simeq \Lambda$ in $\mathscr{D}\left(\Lambda^{\mathrm{e}}\right)$. Note that both ω_{e} and $\mathbb{L} \omega_{e}$ are isomorphisms since $(\cdot e)$ is the identity map of Λ, and that F_{e} and $\mathbb{L} F_{e}$ are fully faithful functors. Thus we have the following result.

Lemma 3.5. There are isomorphisms

$$
\begin{gathered}
\omega_{(-)}: Z(\Lambda) \xrightarrow{\simeq} \operatorname{Hom}_{A^{e}}\left(\Delta_{0} \otimes_{A} \Delta_{0}, \Delta_{0}\right), \lambda \mapsto \omega_{\lambda}=\omega_{e} F_{e}(\cdot \lambda), \\
\mathbb{L} \omega_{(-)}: Z(\Lambda) \xrightarrow{\simeq} \operatorname{Hom}_{\mathscr{D}\left(A^{e}\right)}\left(\Delta \otimes_{A}^{\mathbb{L}} \Delta, \Delta\right), \lambda \mapsto \mathbb{L} \omega_{\lambda}=\left(\mathbb{L} \omega_{e}\right) \mathbb{L} F_{e}(\cdot \lambda) .
\end{gathered}
$$

Moreover, ω_{λ} is an isomorphism if and only if λ is invertible if and only if $\mathbb{L} \omega_{\lambda}$ is an isomorphism.
Similarly, for $\mu \in Z(\Gamma)$, there is a homomorphism $\omega_{\mu}: \Theta_{0} \otimes_{A} \Theta_{0} \rightarrow \Theta_{0}$ in B^{e}-Mod with its derived version

$$
\mathbb{L} \omega_{\mu}: \Theta \otimes_{B}^{\mathbb{L}} \Theta \xrightarrow{\simeq} \Theta \xrightarrow{\mathbb{L} F_{f}(\cdot \mu)} \Theta
$$

in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. Following the diagram (\sharp), let $\eta: \Phi \circ \mathbb{L} F_{e} \rightarrow \mathbb{L} F_{f} \circ \Phi^{\prime}$ be a natural isomorphism of functors from $\mathscr{D}\left(\Lambda^{\mathrm{e}}\right)$ to $\mathscr{D}\left(B^{\mathrm{e}}\right)$ and let $\tau: \Phi^{\prime}(\Lambda) \rightarrow \Gamma$ be an isomorphism in $\mathscr{D}\left(\Gamma^{\mathrm{e}}\right)$.

Lemma 3.6. The following hold for $\lambda \in Z(\Lambda)$ and $\mu:=(\lambda) \sigma \in Z(\Gamma)$.
(1) There are commutative diagrams

where $\lambda_{1} \in Z(\Lambda)$ and $\mu_{1} \in Z(\Gamma)$ are invertible, and $\tau_{1}:=\eta_{\Lambda} \mathbb{L} F_{f}(\tau): \Phi(\Delta) \rightarrow \Theta$ is an isomorphism.
(2) Let

$$
W_{0}:=\Phi\left(\Delta_{0}\right), \quad \tau_{2}:=\tau_{1}^{-1} \Phi\left(\xi_{\Delta}\right): \Theta \longrightarrow W_{0}, \psi_{\lambda}:=\xi_{\Delta_{0} \otimes_{A}^{\mathbb{L}} \Delta_{0}} \omega_{\lambda \lambda_{1}}: \Delta_{0} \otimes_{A}^{\mathbb{L}} \Delta_{0} \longrightarrow \Delta_{0}
$$

Then there is a commutative diagram in $\mathscr{D}\left(B^{\mathrm{e}}\right)$:

(3) If W_{0} lies in $\mathscr{D} \leq 0\left(B^{\mathrm{e}}\right)$, then there is a commutative diagram in $B^{\mathrm{e}}-\mathrm{Mod}$:

where $\mu^{\prime} \in Z(\Gamma)$ is invertible. If, in addition, $H^{0}\left(\Phi\left(\xi_{\Delta}\right)\right)$ is an isomorphism, then there is an algebra isomorphism

$$
H^{0}(\Phi(R(A, e, \lambda))) \simeq R(B, f, \mu)
$$

(4) If $W_{0} \simeq \Theta_{0}$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$, then $H^{0}\left(\Phi\left(\xi_{\Delta}\right)\right)$ is an isomorphism of B^{e}-modules.

Proof. (1) Note that $\mathbb{L} \omega_{e}$ is an isomorphism. By Lemma3.2(2)-(3), $\mathbb{L} F_{e}(\cdot \lambda) \xi_{\Delta}=\xi_{\Delta} F_{e}(\cdot \lambda)$ and there is a unique isomorphism $\alpha: \Delta_{0} \otimes_{A} \Delta_{0} \rightarrow \Delta_{0}$ such that $\left(\mathbb{L} \omega_{e}\right) \xi_{\Delta}=\theta_{\Delta, \Delta} \alpha$. By the first isomorphism in Lemma 3.5, there is an element $\lambda_{1} \in Z(\Lambda)^{\times}$such that $\alpha=\omega_{\lambda_{1}}=\omega_{e} F_{e}\left(\cdot \lambda_{1}\right)$. Thus

$$
\left(\mathbb{L} \omega_{\lambda}\right) \xi_{\Delta}=\left(\mathbb{L} \omega_{e}\right) \mathbb{L} F_{e}(\cdot \lambda) \xi_{\Delta}=\theta_{\Delta, \Delta} \alpha F_{e}(\cdot \lambda)=\theta_{\Delta, \Delta} \omega_{e} F_{e}\left(\cdot \lambda_{1}\right) F_{e}(\cdot \lambda)=\theta_{\Delta, \Delta} \omega_{e} F_{e}\left(\cdot\left(\lambda \lambda_{1}\right)\right)=\theta_{\Delta, \Delta} \omega_{\lambda \lambda_{1}}
$$

Hence the diagram in the left-hand side of (1) is commutative.
Since $\mathbb{L} \omega_{e}$ and τ are isomorphisms and η is a natural isomorphism, there is a unique isomorphism $\beta: \Theta \otimes_{B}^{\mathbb{L}} \Theta \rightarrow \Theta$ such that all the squares in the diagram are commutative:

Further, by applying a similar isomorphism in Lemma 3.5 to the pair (B, f), we have $\beta=\mathbb{L} \omega_{\mu_{1}}=$ $\left(\mathbb{L} \omega_{f}\right) \mathbb{L} F_{f}\left(\cdot \mu_{1}\right)$ for some invertible element $\mu_{1} \in Z(\Gamma)$. This implies

$$
\beta \mathbb{L} F_{f}(\cdot \mu)=\left(\mathbb{L} \omega_{f}\right) \mathbb{L} F_{f}\left(\cdot \mu_{1}\right) \mathbb{L} F_{f}(\cdot \mu)=\left(\mathbb{L} \omega_{f}\right) \mathbb{L} F_{f}\left(\cdot\left(\mu \mu_{1}\right)\right)=\mathbb{L} \omega_{\mu \mu_{1}}
$$

Thus the second diagram in (1) is commutative.
(2) It follows from $\theta_{\Delta, \Delta}=\left(\xi_{\Delta} \otimes_{A}^{\mathbb{L}} \xi_{\Delta}\right) \xi_{\Delta_{0} \otimes_{\Delta}^{\amalg} \Delta_{0}}$ and the first diagram in (1) that there is the commutative diagram:

Applying Φ and the natural isomorphism $\phi_{-,-}: \Phi(-) \otimes_{B}^{\mathbb{L}} \Phi(-) \xrightarrow{\simeq} \Phi\left(-\otimes_{A}^{\mathbb{L}}-\right)$ to this diagram, we get another commutative diagram:

Now, the commutative diagram in (2) follows from the second commutative diagram in (1).
(3) Note that $H^{0} \circ \mathbb{L} F_{e}=F_{e}$. Applying H^{0} to the diagram in (2), we see from Lemma 3.2 3) that the squares in the diagram

$$
\begin{gather*}
\Theta_{0} \otimes_{B} \Theta_{0} \stackrel{H^{0}\left(\theta_{\Theta, \Theta}\right)}{\sim} H^{0}\left(\Theta \otimes_{B}^{\mathbb{L}} \Theta\right) \xrightarrow{H^{0}\left(\mathbb{L} \omega_{\mu \mu_{1}}\right)} \xrightarrow{H^{0}\left(\tau_{2} \otimes_{B}^{\hbar} \tau_{2}\right)} \downarrow H^{0}(\Theta) \tag{1}\\
H^{0}\left(\tau_{2}\right) \otimes_{B} H^{0}\left(\tau_{2}\right) \mid \\
H^{0}\left(W_{0}\right) \otimes_{B} H^{0}\left(W_{0}\right) \stackrel{H^{0}\left(\theta_{\left.W_{0}, W_{0}\right)}^{\sim}\right.}{\sim} H^{0}\left(W_{0} \otimes_{B}^{\mathbb{L}} W_{0}\right) \xrightarrow{H^{0}\left(\phi_{\left.\Delta_{0}, \Delta_{0}\right)}\right) H^{0}\left(\Phi\left(\psi_{\lambda}\right)\right)} H^{0}\left(\tau_{2}\right) \\
H^{0}\left(W_{0}\right)
\end{gather*}
$$

are commutative, where the isomorphisms are due to $\Theta, W_{0} \in \mathscr{D}^{\leq 0}\left(B^{\mathrm{e}}\right)$. Moreover, for the pair (B, f) and $\mu \mu_{1} \in Z(\Gamma)$, we obtain similarly the following commutative diagrams, in which the second one is obtained from the first by the functor H^{0} :

where $\mu_{2} \in Z(\Gamma)$ is invertible and $H^{0}\left(\xi_{\Theta}\right)$ is an automorphism by Lemma 3.2(1). Since the functor F_{f} induces an algebra isomorphism $Z(\Gamma) \rightarrow \operatorname{End}_{B^{e}}\left(\Theta_{0}\right)$, there is an invertible element $\mu_{3} \in Z(\Gamma)$ such that $H^{0}\left(\xi_{\Theta}\right)=F_{f}\left(\cdot \mu_{3}\right)$. This implies

$$
\left(\natural_{3}\right) \quad \omega_{\mu \mu_{1} \mu_{2}} H^{0}\left(\xi_{\Theta}\right)^{-1}=\omega_{\mu \mu_{1} \mu_{2}} F_{f}\left(\cdot \mu_{3}^{-1}\right)=\omega_{\mu \mu_{1} \mu_{2} \mu_{3}^{-1}} .
$$

Let $\mu^{\prime}:=\mu_{1} \mu_{2} \mu_{3}^{-1} \in Z(\Gamma)$. Then μ^{\prime} is invertible. By $\left(\bigsqcup_{1}\right)-\left(\natural_{3}\right)$, we obtain the commutative diagram in (3).
Next, we apply Lemma 3.3 (2) to show the algebra isomorphism in (3).
Let $A^{\prime}:=R\left(A, e, \lambda \lambda_{1}\right), B^{\prime}:=H^{0}\left(\Phi\left(A^{\prime}\right)\right)$ and $\varphi: A \rightarrow A^{\prime}$ be the canonical injection. By Lemma 3.3(2), B^{\prime} is an algebra. Since $A^{\prime}=A \oplus \Delta_{0}$ and $\Phi(A) \simeq B$, there holds $\Phi\left(A^{\prime}\right) \simeq B \oplus W_{0}$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. Now, we identity B^{\prime} with $B \oplus H^{0}\left(W_{0}\right)$ as B^{e}-modules and describe the multiplication of B^{\prime} in terms of the one of A^{\prime} and the one in Lemma 3.3(2):

The multiplication of B with B^{\prime} (or B^{\prime} with B) is given by left (or right) multiplication since B^{\prime} is a B - B-bimodule; while the multiplication on $H^{0}\left(W_{0}\right)$ is induced from the composition

$$
\begin{aligned}
& H^{0}\left(W_{0}\right) \otimes_{B} H^{0}\left(W_{0}\right) \xrightarrow{H^{0}\left(\theta_{W_{0}^{\prime}, W_{0}^{\prime}}\right)^{-1}} H^{0}\left(W_{0}^{\prime} \otimes_{B}^{\mathbb{L}} W_{0}^{\prime}\right) \xrightarrow{H^{0}\left(\lambda_{W_{0}}^{0} \otimes_{B}^{\mathbb{L}} \lambda_{W_{0}}^{0}\right)} H^{0}\left(W_{0} \otimes_{B}^{\mathbb{L}} W_{0}\right) \\
& H^{0}\left(W_{0}\right) \stackrel{H^{0}\left(\Phi\left(\omega_{\lambda \lambda_{1}}\right)\right)}{\rightleftarrows} H^{0}\left(\Phi\left(\Delta_{0} \otimes_{A} \Delta_{0}\right)\right) \stackrel{H^{0}\left(\Phi\left(\xi_{\Delta_{0} \otimes_{A}^{\mathbb{H}} \Delta_{0}}\right)\right)}{\gtrless} H^{0}\left(\Phi\left(\Delta_{0} \otimes_{A}^{\mathbb{L}} \Delta_{0}\right)\right)
\end{aligned}
$$

where $W_{0}^{\prime}:=\tau^{\leq 0} W_{0}$ and the injection $\lambda_{W_{0}}^{0}: W_{0}^{\prime} \rightarrow W_{0}$ is an isomorphism by $W_{0} \in \mathscr{D}^{\leq 0}\left(B^{\mathrm{e}}\right)$. It then follows from

$$
\theta_{W_{0}, W_{0}}=\left(\left(\lambda_{W_{0}}^{0}\right)^{-1} \otimes_{B}^{\mathbb{L}}\left(\lambda_{W_{0}}^{0}\right)^{-1}\right) \theta_{W_{0}^{\prime}, W_{0}^{\prime}}=\left(\lambda_{W_{0}}^{0} \otimes_{B}^{\mathbb{L}} \lambda_{W_{0}}^{0}\right)^{-1} \theta_{W_{0}^{\prime}, W_{0}^{\prime}},
$$

that $H^{0}\left(\theta_{W_{0}, W_{0}}\right)^{-1}=H^{0}\left(\theta_{W_{0}^{\prime}, W_{0}^{\prime}}\right)^{-1} H^{0}\left(\lambda_{W_{0}}^{0} \otimes_{B}^{\mathbb{L}} \lambda_{W_{0}}^{0}\right)$. Thus the multiplication of $H^{0}\left(W_{0}\right)$ with $H^{0}\left(W_{0}\right)$ in B^{\prime} is induced from

$$
H^{0}\left(\theta_{W_{0}, W_{0}}\right)^{-1} H^{0}\left(\phi_{\Delta_{0}, \Delta_{0}}\right) H^{0}\left(\Phi\left(\psi_{\lambda}\right)\right): H^{0}\left(W_{0}\right) \otimes_{B} H^{0}\left(W_{0}\right) \longrightarrow H^{0}\left(W_{0}\right) .
$$

Suppose that $H^{0}\left(\Phi\left(\xi_{\Delta}\right)\right)$ is an isomorphism. Then $H^{0}\left(\tau_{2}\right)$ is an isomorphism and $B^{\prime} \simeq B \oplus \Theta_{0}$ as B^{e} modules. Moreover, the commutative diagram in (3) implies that $H^{0}\left(\tau_{2}\right)$ induces an algebra isomorphism $R\left(B, f, \mu \mu^{\prime}\right) \simeq B^{\prime}$ which lifts the identity map of B. Since $\lambda_{1} \in Z(\Lambda)$ and $\mu^{\prime} \in Z(\Gamma)$ are invertible, it follows from [4, Lemma 3.2(2)] that $A^{\prime} \simeq R(A, e, \lambda)$ and $R\left(B, f, \mu \mu^{\prime}\right) \simeq R(B, f, \mu)$ as algebras. Thus there are algebra isomorphisms $H^{0}(\Phi(R(A, e, \lambda))) \simeq H^{0}\left(\Phi\left(A^{\prime}\right)\right)=B^{\prime} \simeq R(B, f, \mu)$.
(4) Under the identifications $G_{e}\left(\Delta_{0}\right)=\Lambda$ and $\Delta=\mathbb{L} F_{e}(\Lambda)$, we see that $\xi_{\Delta}: \Delta=\left(\mathbb{L} F_{e} \circ G_{e}\right)\left(\Delta_{0}\right) \rightarrow \Delta_{0}$ is the counit adjunction morphism of Δ_{0} associated with the adjoint pair ($\mathbb{L} F_{e}, G_{e}$). Similarly, up to isomorphism, $\xi_{\Theta}: \Theta=\left(\mathbb{L} F_{f} \circ G_{f}\right)\left(\Theta_{0}\right) \rightarrow \Theta_{0}$ is the counit adjunction morphism of Θ_{0} associated with the adjoint pair $\left(\mathbb{L} F_{f}, G_{f}\right)$. Now, recall that two morphisms $f_{i}: X_{i} \rightarrow Y_{i}$ for $i=1,2$ in an additive category are isomorphic if there are isomorphisms $\alpha_{1}: X_{1} \rightarrow X_{2}$ and $\alpha_{2}: Y_{1} \rightarrow Y_{2}$ such that $f_{1} \alpha_{2}=\alpha_{1} f_{2}$. By the diagram (\sharp), the functor Φ is an equivalence and there is a natural isomorphism

$$
\Phi \circ \mathbb{L} F_{e} \circ G_{e} \xrightarrow{\simeq} \mathbb{L} F_{f} \circ G_{f} \circ \Phi: \mathscr{D}\left(A^{\mathrm{e}}\right) \longrightarrow \mathscr{D}\left(B^{\mathrm{e}}\right) .
$$

This implies that $\Phi\left(\xi_{\Delta}\right): \Phi(\Delta) \rightarrow W_{0}$ is isomorphic to the counit adjunction morphism of W_{0} associated with $\left(\mathbb{L} F_{f}, G_{f}\right)$. If $W_{0} \simeq \Theta_{0}$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$, then ξ_{Θ} and $\Phi\left(\xi_{\Delta}\right)$ are isomorphic as morphisms in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. Since $H^{0}\left(\xi_{\Theta}\right)$ is an isomorphism by Lemma3.2 1), $H^{0}\left(\Phi\left(\xi_{\Delta}\right)\right)$ is an isomorphism. This shows (4).

Proof of Theorem 3.1 For each $\lambda \in Z(\Lambda)$, let $A^{\prime}:=R(A, e, \lambda), \varphi: A \rightarrow A^{\prime}$ the canonical injection and $B^{\prime}:=H^{0}\left(\Phi\left(A^{\prime}\right)\right)$. Since $A^{\prime}=A \oplus \Delta_{0}$ and $\Phi(A) \simeq B$, we have $\Phi\left(A^{\prime}\right) \simeq B \oplus \Phi\left(\Delta_{0}\right)$. By assumption, $\Phi\left(\Delta_{0}\right) \simeq \Theta_{0}$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. This implies $\Phi\left(A^{\prime}\right) \simeq B \oplus \Theta_{0}$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$, and therefore $B^{\prime}=B \oplus H^{0}\left(\Phi\left(\Delta_{0}\right)\right) \simeq$ $B \oplus \Theta_{0}$ and $H^{n}\left(\Phi\left(A^{\prime}\right)\right)=0$ for all $n \neq 0$. Now, let $\varphi^{\prime}:=H^{0}(\Phi(\varphi)): B \rightarrow B^{\prime}$. By the multiplication of B^{\prime} in Lemma 3.3 (2), φ^{\prime} is the canonical injection. Then $(e) \varphi=e \in A^{\prime}$ and $(f) \varphi^{\prime}=f \in B^{\prime}$. By Proposition 3.4, $\left(A^{\prime}, e\right)$ and $\left(B^{\prime}, f\right)$ are derived equivalent. Since $\Phi\left(\Delta_{0}\right) \simeq \Theta_{0}$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$, it follows from Lemma 3.6(3)(4) that there is an algebra isomorphism $B^{\prime} \simeq R(B, f,(\lambda) \sigma)$ which lifts the identity map of B. Consequently, $\left(A^{\prime}, e\right)$ and $(R(B, f,(\lambda) \sigma), f)$ are derived equivalent. Clearly, $(e) \sigma=f$ since e and f are identities of Λ and Γ, respectively. Thus $(R(A, e), e)$ and $(R(B, f), f)$ are derived equivalent.

A sufficient condition for the isomorphism in Theorem 3.1 to hold true is the vanishing of positive Tor-groups over corner algebras.
Proposition 3.7. Suppose that there is a derived equivalence between (A, e) and (B, f) of algebras with idempotents, which is induced by a two-sided tilting complex $A_{A} T_{B}$. If $\operatorname{Tor}_{n}^{\Lambda}(A e, e A)=0=\operatorname{Tor}_{n}^{\Gamma}(B f, f B)$ for all $n \geq 1$, then the derived equivalence $\Phi: \mathscr{D}\left(A^{\mathrm{e}}\right) \rightarrow \mathscr{D}\left(B^{\mathrm{e}}\right)$ associated with T between the enveloping algebras A^{e} and B^{e} satisfies $\Phi\left(A e \otimes_{\Lambda} e A\right) \simeq B f \otimes_{\Gamma} f B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$.

Proof. Since $\operatorname{Tor}_{n}^{\Lambda}(A e, e A)=0$ for all $n \geq 1$, we have $A e \otimes_{\Lambda}^{\mathbb{L}} e A \simeq A e \otimes_{\Lambda} e A$ in $\mathscr{D}\left(A^{\mathrm{e}}\right)$. Similarly, $B f \otimes_{\Gamma}^{\mathbb{L}} f B \simeq B f \otimes_{\Gamma} f B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. Moreover, since (A, e) and (B, f) are derived equivalent, it follows from Lemma 2.4(4) that $\Phi\left(A e \otimes_{\Lambda}^{\mathbb{L}} e A\right) \simeq B f \otimes_{\Gamma}^{\mathbb{L}} f B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. Thus $\Phi\left(A e \otimes_{\Lambda} e A\right) \simeq B f \otimes_{\Gamma} f B$. \square

Proof of Theorem 1.1 Suppose that A and B are derived equivalent, gendo-symmetric algebras. Then the pair (A, e) and (B, f) are derived equivalent by Proposition 2.6 Without loss of generality, we assume that the derived equivalence between (A, e) and (B, f) is induced by a two-sided tilting complex $T \in \mathscr{D}\left(A \otimes_{k} B^{\mathrm{op}}\right)$. This gives rise to a derived equivalence between A^{e} and B^{e}. Let $\Phi:=$ $T^{\vee} \otimes_{A}^{\mathbb{L}}-\otimes_{A}^{\mathbb{L}} T: \mathscr{D}\left(A^{\mathrm{e}}\right) \rightarrow \mathscr{D}\left(B^{\mathrm{e}}\right)$ be the associated equivalence. Then Φ induces an algebra isomorphism $\sigma: Z(e A e) \rightarrow Z(f B f)$ (see the lines just before Theorem 3.1]. Note that, for the gendo-symmetric algebra (A, e), there is an isomorphism ${ }_{A} A e \otimes_{\Lambda} e A_{A} \simeq D(A)$ of $A-A$-bimodules by [6, Section 2.2] or [4], Lemma 4.1(2)]. Similarly, ${ }_{B} B f \otimes_{\Gamma} f B_{B} \simeq D(B)$ as B - B-bimodules. Since $\Phi(D(A)) \simeq D(B)$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$, we have $\Phi\left(A e \otimes_{\Lambda} e A\right) \simeq B f \otimes_{\Gamma} f B$ in $\mathscr{D}\left(B^{\mathrm{e}}\right)$. Now, Theorem 1.1 follows immediately from Theorem 3.1 .

Finally, we present an example to illustrate the main result. We consider the truncated polynomial algebra $\Lambda:=k[x] /\left(x^{3}\right)$. Let X be the simple Λ-module and Y the indecomposable Λ-module of length 2 . Then $A:=\operatorname{End}_{\Lambda}(\Lambda \oplus X)$ and $B:=\operatorname{End}_{\Lambda}(\Lambda \oplus Y)$ are derived equivalent, gendo-symmetric algebras. In this case, $A e=\operatorname{Hom}_{\Lambda}(\Lambda \oplus X, \Lambda)$ and $B f=\operatorname{Hom}_{\Lambda}(\Lambda \oplus Y, \Lambda)$. Clearly, $e A e \simeq e B e \simeq \Lambda$. Moreover, A and B are given by the following quivers with relations, respectively:

Further, e and f are corresponding to the vertex 1 in the quivers, respectively. $R(A, e)$ and $R(B, f)$ are presented by the following quivers with relations, respectively.
$R(A, e)$:

$$
\beta \bar{\alpha}=\bar{\beta} \alpha=0, \alpha \gamma=\bar{\alpha} \bar{\gamma}=0,
$$

$$
\beta \bar{\alpha}=\bar{\beta} \alpha=0,
$$

$$
\gamma^{2}=\beta \alpha, \bar{\gamma}^{2}=\bar{\beta} \bar{\alpha}, \alpha \beta+\bar{\alpha} \bar{\beta}=0 .
$$

$$
\alpha \beta \alpha \beta+\bar{\alpha} \bar{\beta} \bar{\alpha} \bar{\beta}=0 .
$$

By Theorem 1.1, $R(A, e)$ and $R(B, f)$ are derived equivalent.

References

[1] M. Auslander, I. Reiten and S. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge, 1995.
[2] H. X. Chen and C. C. XI, Dominant dimensions, derived equivalences and tilting modules, Isr. J. Math. 215 (2016) 349-395.
[3] H. X. Chen and C. C. XI, Homological theory of orthogonal modules, arXiv:2208.14712] Preprint, 1-40, 2022.
[4] H. X. Chen, M. Fang and C. C. Xi, Tachikawa's second conjecture, derived recollements, and gendo-symmetric algebras, Preprint, 2022, available at arXiv: 2211.08037.
[5] M. FANG and S. Koenig, Endomorphism algebras of generators over symmetric algebras, J. Algebra 332 (2011) 428-433.
[6] M. FANG and S. Koenig, Gendo-symmetric algebras, canonical comultiplication, bar cocomplexes and dominant dimension, Trans. Amer. Math. Soc. 368 (2016) 5037-5055.
[7] M. Fang and H. Miyachi, Hochschild cohomology and dominant dimension, Trans. Amer. Math. Soc. 371 (2019) 52675292.
[8] D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62(3) (1987) 339-389.
[9] M. Hoshino, Modules without self-extensions and Nakayama's conjecture, Arch. Math. (Basel) 43 (1984) 493-500.
[10] M. Hoshino, Y. Kato and J-I. Miyachi, On t-structures and torsion theories induced by compact objects, J. Pure Appl. Algebra 167 (2002) 15-35.
[11] W. Hu and C.C. XI, Derived equivalences and stable equivalences of Morita type, I. Nagoya Math. J. 200 (2010) 107-152.
[12] W. Hu and C.C. XI, Derived equivalences for Φ-Auslander-Yoneda algebras, Trans. Amer. Math. Soc. 365 (2013) 56815711.
[13] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. 74 (1994) 63-102.
[14] B. MÜLLER, The classification of algebras by dominant dimension, Canad. J. Math. 20 (1968) 398-409.
[15] J.-I. MIYACHI, Recollement and tilting complexes, J. Pure Appl. Algebra 183 (2003) 245-273.
[16] T. NAKAYAMA, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958) 300-307.
[17] A. Neeman, Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press, Princeton, NJ, 2001.
[18] J. RICKARD, Morita theory for derived categories, J. London Math. Soc. 39 (1989) 436-456.
[19] J. RICKARD, Derived categories and stable equivalences, J. Pure Appl. Algebra 61 (1989) 303-317.
[20] J. Rickard, Derived equivalences as derived functors, J. Lond. Math. Soc. 43 (1991) 37-48.
[21] H. Tachikawa, Quasi-Frobenius rings and generalizations, Lecture Notes in Mathematics 351, Berlin-Heidelberg New York 1973.
[22] Ch. Weibel, An introduction to homological algebra, Cambridge University Press. Cambridge, 1994.
Hongxing Chen,
School of Mathematical Sciences \& Academy for Multidisciplinary Studies, Capital Normal University, 100048 Beijing, P.
R. China;

Email: chenhx@cnu.edu.cn (H.X.Chen)
Changchang Xi,
School of Mathematical Sciences, Capital Normal University, 100048 Beijing; \& School of Mathematics and Statistics, Shaanxi Normal University, 710119 Xi’an, P. R. China

Email: xicc@cnu.edu.cn (C.C.Xi)

[^0]: * Corresponding author. Email: xicc@cnu.edu.cn; Fax: 00861068903637.

 2010 Mathematics Subject Classification: Primary 16E35, 18E30, 16P10; Secondary 16S10, 16S50
 Keywords: Derived equivalence; Gendo-symmetric algebra; Mirror-reflective algebra; Recollement; Symmetric algebra; Tilting complex.

