
SELF-INJECTIVE ALGEBRAS UNDER DERIVED EQUIVALENCES

CHANGCHANG XI AND JIN ZHANG∗

Abstract. The Nakayama permutations of two derived equivalent, self-injective Artin algebras are
conjugate. A different but elementary approach is given to showing that the weak symmetry and
self-injectivity of finite-dimensional algebras over an arbitrary field are preserved under derived
equivalences.

1. Introduction

Self-injective algebras have played a very important role in various areas of mathematics and
physics (see, for example, [1], [11], and the references therein). In the representation theory of
algebras, the famous, but still not yet solved Auslander-Reiten conjecture on stable equivalences
is reduced to self-injective Artin algebras (see [12]). The conjecture states that two Artin algebras
have same number of isomorphism classes of non-projective simple modules whenever they are
stably equivalent. Moreover, self-injective Artin algebras are closed under stable equivalences
(with a mild condition) (see [13]). Also, self-injective algebras over an algebraically closed field
are closed under derived equivalences [2]. This result seems to be extended to algebras over any
field in [16], but we have difficulty to understand some arguments in its proof there. On the other
hand, weakly symmetric algebras over an algebraically closed field are preserved under derived
equivalences [3]. It is unknown whether this is true for algebras over an arbitrary field, while
symmetric algebras over any field are closed under derived equivalences (see [15]).

Given a self-injective Artin algebra Λ, the Nakayama functor of Λ is a self-equivalence on
the category of finitely generated projective Λ-modules. Hence it permutes the complete set of
isomorphism classes of indecomposable projective Λ-modules. This permutation is called the
Nakayama permutation, which is uniquely determined by Λ, up to conjugation.

This note continues the study of self-injective algebras under derived equivalences. First,
we show that, if two self-injective Artin algebras are derived equivalent, then their Nakayama
permutations are conjugate (see Theorem 4.1). We then give an elementary approach to Rickard-
Rouquier’s result that self-injective algebras over an arbitrary field are closed under derived
equivalences, and we further prove that derived equivalences also preserve weakly symmetric
algebras over any field (see Corollary 5.4).

The strategy for proving the first result uses an idea from categorification, namely we first in-
vestigate derived Nakayama functors on the homotopy categories of finitely generated projective
modules, and then pass to the Grothendieck groups of these homotopy categories. In this way, the
Nakayama permutations can be realized by derived Nakayama functors. The elementary proof
of Rickard-Rouquier’s result is based on studying relations between self-injective algebras and
extensions of fields. Consequently, we prove the desired result for weakly symmetric algebras
and self-injective algebras.
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The paper is organized as follows: In Section 2 we fix notation and recall basic facts on derived
equivalences. In Section 3 we study Grothendieck groups of triangulated categories. In Section 4
we prove that the Nakayama permutations of derived equivalent, self-injective Artin algebras are
conjugate. Also, we point out that Rickard’s result on derived equivalences preserving symmetry
for finite-dimensional algebras can be generalized to the one for Artin algebras (see Remark 4.3).
In Section 5 we show that finite-dimensional, weakly symmetric algebras over an arbitrary field
are closed under derived equivalences, and provide an elementary proof of Rickard-Rouquier’s
result on self-injective algebras under derived equivalences. Finally, we deduce a series of
consequences of our main results.

2. Preliminaries

In this section we fix notation and recall some definitions and results on derived equivalences.
Throughout the paper, all modules are assumed to be left modules. For a (unitary associative)

ring Λ, we denote by Λ-mod the category of finitely generated Λ-modules, by Λ-proj the full
subcategory of Λ-mod consisting of projective Λ-modules, and by K b(Λ-proj) the bounded
homotopy category of complexes over Λ-proj. As usual, we write Db(Λ) for the bounded derived
category of Λ-mod.

Artin algebras A and B are derived equivalent if Db(A) and Db(B) are equivalent as triangulated
categories. Derived equivalences can be described by tilting complexes [14]. We recall the
descriptions just for Artin algebras below.

Let A be an Artin algebra. A complex X• in K b(A-proj) is called a tilting complex (see [14]) if
HomK b(A-proj)(X

•, X•[i]) = 0 for i , 0 and X• generates K b(A-proj) as a triangulated category.
The description of derived equivalences by tilting complexes is given by the following theorem

(see [7, 10, 14, 15]).

Theorem 2.1. Suppose that A and B are Artin algebras over a commutative Artin ring R. Then
the following are equivalent.

(1) A and B are derived equivalent.
(2) There exists a tilting complex T • ∈ K b(A-proj) such that B ≃ EndDb(A)(T •)op as algebras.
(3) There is a triangle equivalence from K b(A-proj) to K b(B-proj).

An Artin algebra A is said to be symmetric if AAA ≃ DA as A-A-bimodules, where D is the
usual duality of the Artin algebra A; weakly symmetric if the injective hull and projective cover of
every simple A-module are isomorphic; Frobenius if AA ≃ DA as A-modules; and self-injective
if AA is injective. A basic self-injective algebra is a Frobenius algebra. By a basic algebra we
mean an Artin algebra A such that AA is a direct sum of pairwise non-isomorphic indecomposable
modules.

Let n be a positive integer. We denote by Σn the symmetric group of permutations on {1, 2, · · · , n}.
For an object X in an additive category, X⊕n stands for the direct sum of n copies of X.

3. Grothendieck groups of triangulated categories

In this section we study basic properties of the Grothendieck groups of triangulated categories,
and their behaviors under triangle equivalences. We start with the following definition in [6, 7].

Let C be a triangulated category with the shift functor [1]. Assume further that C is essentially
small, that is, the isomorphism classes of objects of C form a set. For X ∈ C, we denote by [X]
the isomorphism class containing X. Let C̃ be the set of the isomorphism classes [X] of objects
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X in C. Let F(C) be the free abelian group generated by all elements of C̃, and let F0(C) be the
subgroup of F(C) generated by [X] − [Y] + [Z] for all triangles

X −→ Y −→ Z −→ X[1]

in C. The Grothendieck group K0(C) of C is defined to be the quotient group F(C)/F0(C). We
write [X] for the coset of [X] in K0(C).

We denote by
d : C̃ −→ K0(C)

the composition of the canonical maps C̃ ↪→ F(C) ↠ K0(C). Then d([X]) = [X] for any object X
in C.

For a triangle functor F : C→ D of essentially small triangulated categories C and D, one has
naturally a map F̃ : C̃ → D̃ defined by F̃([X]) = [F(X)] for [X] in C̃. Since the images of two
isomorphic objects in C under F are still isomorphic in D, the map F̃ is well defined.

If A is a ring and C = K b(A-proj), we simply write K0(A) for K0(C).

Lemma 3.1. Let C be an essentially small triangulated category.
(1) For objects X and Y in C,

d([X ⊕ Y]) = d([X]) + d([Y]) and d([X[i]]) = (−1)id([X]) for i ∈ Z.

(2) The map d is surjective.

Proof. For objects X and Y in C, there is a canonical triangle X → X ⊕ Y → Y
0
→ X[1]. Thus

d([X ⊕ Y]) = d([X]) + d([Y]). In particular, for the zero object 0 of C, there holds d([0]) = 0

in K0(C). The triangle X → 0 → X[1]
−idX[1]
→ X[1] shows d([X[1]]) = −d([X]). This implies

d([X[i]]) = (−1)id([X]) for i ∈ Z.
Let α ∈ K0(C). Without loss of generality, we may assume that α is the coset of an element

r1[X1] + · · · + rm[Xm] + rm+1[Xm+1] + · · · + rn[Xn]

in F(C), where all X j are objects in C, r j < 0 for 1 ⩽ j ⩽ m, and r j > 0 for m + 1 ⩽ j ⩽ n. Then

d([X1[1]⊕−r1 ⊕ · · · ⊕ Xm[1]⊕−rm ⊕ X⊕rm+1
m+1 ⊕ · · · ⊕ X⊕rn

n ]) = α.

So d is surjective. □

Now, assume that A is a semiperfect ring, that is, every finitely generated left (or right) A-
module has a projective cover, or equivalently, A has a complete orthogonal set {e1, · · · , en} of
idempotents with each eiAei a local ring.

Let X• ∈ K b(A-proj) be of the form

X• = · · · −→ 0 −→ Xi
di

X
−→ Xi+1

di+1
X
−→ · · · −→ Xi+m −→ 0 −→ · · ·

Denote by σ⩽tX• the brutal truncation of X• at the degree t, that is, (σ⩽tX•) j = X j for j ⩽ t and 0
otherwise. Then there is a series of triangles:

∆ j : σ⩽ j−1X•[−1]
f •j
−→ X j[− j] −→ σ⩽ jX• −→ σ⩽ j−1X•

for i + 1 ≤ j ≤ i +m, where σ⩽i+mX• = X• and f •j is defined by f j
j = d j−1

X and f s
j = 0 for s , j. By

Lemma 3.1, d([X•]) =
∑

i⩽ j⩽i+m(−1) jd([X j]).
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Since A is a semiperfect ring, there are finitely many pairwise non-isomorphic, indecomposable
projective A-modules. Let {P1, · · · , Pn} be a complete set of pairwise non-isomorphic, indecom-
posable projective A-modules. For i ≤ j ≤ i + m, we write X j ≃

⊕
1⩽s⩽n P⊕t js

s with t js ∈ N, and
λs :=

∑
i⩽ j⩽i+m(−1) jt js . Then d([X•]) =

∑
1⩽s⩽n λsd([Ps]). As d is surjective, we see that K0(A) is

an abelian group generated by these [Ps], 1 ≤ s ≤ n.
Next, we define dim(X•) = (λ1, · · · , λn) ∈ Zn for the complex X•. If Y• is a complex in

K b(A-proj) such that Y• ≃ X• in K b(A-proj), then dim(Y•) = dim(X•). Moreover, for any
morphism f • : X• → Z• in K b(A-proj), there holds dim(cone( f •)) = dim(Z•) − dim(X•), where
cone( f •) stands for the mapping cone of f •. Hence we get a homomorphism of abelian groups:

dim : K0(A) −→ Zn, [X•] 7→ dim(X•).

This shows that the set {dim([P1]),dim([P2]), · · · ,dim([Pn])} forms a basis of the free abelian
group Zn, and therefore K0(A) is a free abelian group generated by [P1], [P2], · · · , [Pn].

Not all Grothendieck groups of (essentially small) triangulated categories are free. For ex-
ample, if A is a finite-dimensional, self-injective algebra such that the Cartan matrix of A has
an elementary divisor different from 0 and 1, then the Grothendieck group of the stable module
category A-mod (as a triangulated category) is not free. For more details, see [17, Section 5.7.1].

Proposition 3.2. Suppose that A and B are semiperfect rings. If F : K b(A-proj)→ K b(B-proj)
is a triangle equivalence, then F induces a group isomorphism F : K0(A) → K0(B) such that the
diagram (of maps) is commutative:

(∗) ˜K b(A-proj) F̃ //

d
��

˜K b(B-proj)

d
��

K0(A) F // K0(B)

where ˜K b(A-proj) stands for the set of the isomorphism classes of objects in K b(A-proj).

Proof. Let Y•s := F(Ps) in K b(B-proj) for 1 ⩽ s ⩽ n. We define a group homomorphism

F : K0(A) −→ K0(B), [Ps] 7→ d([Y•s ]) for 1 ≤ s ≤ n.

Let X• be a complex in K b(A-proj) of the above form with X j :=
⊕

1⩽s⩽n P⊕t js
s and λs :=∑

j(−1) jt js . Then d([X•]) =
∑

1⩽s⩽n λsd([Ps]) and

Fd([X•]) =
∑

1⩽s⩽n

λsFd([Ps]) =
∑

1⩽s⩽n

λsF([Ps]) =
∑

1⩽s⩽n

λsd([Y•s ]).

Applying F to the triangle ∆ j, we have a triangle

F(∆ j) : F(σ⩽ j−1X•)[−1]
F( f •j )
−→ F(X j)[− j] −→ F(σ⩽ jX•) −→ F(σ⩽ j−1X•), i + 1 ≤ j ≤ i + m.

Since F(σ⩽i+mX•) = F(X•), it follows from Lemma 3.1 that

d([F(X•)]) =
∑

i⩽ j⩽i+m

(−1) jd([F(X j)]).

Then
dF̃([X•]) = d([F(X•)]) =

∑
1⩽s⩽n

λsd([F(Ps)]) =
∑

1⩽s⩽n

λsd([Y•s ]) = Fd([X•]).

Hence the above square (∗) is commutative.
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It remains to show that F is bijective. In fact, we consider a quasi-inverse F−1 of F. In this
case, we have the group homomorphism F−1 : K0(B)→ K0(A) induced by F−1. Then

F−1 F([Ps]) = F−1(d([Y•s ])) = dF̃−1([Y•s ]) = d([F−1(Y•s )]) = d([Ps]) = [Ps]

for 1 ⩽ s ⩽ n. Hence F−1 F = idK0(A). Similarly, F F−1 = idK0(B). So F is bijective. □

4. Nakayama permutations of self-injective algebras

In this section we will prove that Nakayama permutations of derived equivalent, self-injective
Artin algebras are conjugate.

Let A be an Artin algebra over a commutative Artin ring R. The Nakayama functor νA :
A-mod→ A-mod is defined by νA := (DA)⊗A −, where D is the usual duality of an Artin algebra.
Clearly, νA induces a left derived functor

LνA : Db(A) −→ Db(A),

which restricts to a triangle equivalence

LνA : K b(A-proj) −→ K b(A-inj),

where A-inj denotes the category of finitely generated injective A-modules.

Now, assume that A is a self-injective Artin algebra. Since A(DA) and (DA)A are projective
generators, νA is a self-equivalence on A-mod, and restricts to a self-equivalence on A-proj.
Let {P1, · · · , Pn} be a complete set of pairwise non-isomorphic, indecomposable projective A-
modules. Then νA induces a permutation on {P1, · · · , Pn}, called the Nakayama permutation of A.
Precisely, the Nakayama permutation σA is defined on {1, · · · , n} by

νA(Pi) ≃ PσA(i)

for i ∈ {1, · · · , n}. Clearly, up to conjugation, the Nakayama permutation σA of A is uniquely
determined by {P1, · · · , Pn}.

Let B be another self-injective Artin algebra over R, and let {Q1, · · · ,Qm} be a complete set
of pairwise non-isomorphic, indecomposable projective B-modules. Assume that A and B are
derived equivalent. Then m = n and σB is again a permutation of {1, · · · , n}. Our first main result
reveals a precise relation between σA and σB.

Theorem 4.1. If A and B are derived equivalent, self-injective Artin algebras, then σA and σB

are conjugate.

To prove Theorem 4.1, we first show a technical lemma on the left derived functors of Nakayama
functors.

Let A be a self-injective Artin algebra. Then both A(DA) and (DA)A are projective. By
definition, the left derived functor of the Nakayama functor νA is given explicitly as follows:

LνA : K b(A-proj) −→ K b(A-proj), X• = (Xi, di
X) 7→

(
νA(Xi), νA(di

X)
)
.

As νA is a self-equivalence of A-proj (or A-mod), we see that LνA is a triangle self-equivalence of
K b(A-proj). Clearly, LνA(P) ≃ νA(P) for P ∈ A-proj.

Lemma 4.2. Suppose that A and B are Artin algebras. If F : Db(A) → Db(B) is a triangle
equivalence, then for any X• in K b(A-proj), FLνA(X•) ≃ LνBF(X•) in Db(B) which is natural in
X•. In particular, if A and B are self-injective Artin algebras and F : K b(A-proj)→ K b(B-proj)
is a triangle equivalence, then there is a natural isomorphism FLνA ≃ LνBF : K b(A-proj) →
K b(B-proj).
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Proof. For X• in K b(A-proj) and Y• in Db(A), we may consider HomDb(A)(X•,Y•) and
HomDb(A)(Y•,LνA(X•)) as the degree-zero homologies of the total complexes of the double com-
plexes Hom••A (X•,Y•) and Hom••A (Y•,LνA(X•)), respectively. It is well known that, for any X in
A-proj and Y in A-mod, DHomA(X,Y) ≃ HomA(Y, νA(X)) which is natural in X and Y . Thus
DHom••A (X•,Y•) ≃ Hom••A (Y•,LνA(X•)) naturally as double complexes for X• ∈ K b(A-proj) and
Y• ∈ Db(A). Taking homology in degree zero, we obtain

(1) DHomDb(A)(X•,Y•) ≃ HomDb(A)(Y•,LνA(X•))

which is natural in X• ∈ K b(A-proj) and Y• ∈ Db(A). On the other hand, as F is an equivalence,
there are natural isomorphisms:

(2) DHomDb(A)(X•,Y•) ≃ DHomDb(B)(F(X•), F(Y•))

and
(3) HomDb(A)(Y•,LνA(X•)) ≃ HomDb(B)(F(Y•), F(LνA(X•))).

Using the B-module version of (1), we have the natural isomorphism:

(4) DHomDb(B)(F(X•), F(Y•)) ≃ HomDb(B)(F(Y•),LνB(F(X•))).

Thus it follows from (3), (1), (2) and (4) that

HomDb(B)(F(Y•), F(LνA(X•))) ≃ HomDb(B)(F(Y•),LνB(F(X•)))

which is natural in X• ∈ K b(A-proj) and Y• ∈ Db(A). As F is an equivalence, we obtain
FLνA(X•) ≃ LνBF(X•) in Db(B) which is natural in X• ∈ K b(A-proj). When A and B are self-
injective and when F restricts to a triangle equivalence K b(A-proj)→ K b(B-proj), we have the
last statement of Lemma 4.2. □

Remark 4.3. Lemma 4.2 can be applied to generalize [15, Corollary 5.3] for finite-dimensional
algebras over a field to the one for Artin algebras, namely an Artin algebra B derived equivalent
to a symmetric Artin algebra A is itself symmetric. Indeed, let F : Db(A) → Db(B) be a
triangle equivalence. Since A is symmetric, DA ≃ A as A-A-bimodules, and therefore LνA ≃ id
naturally on Db(A). By Lemma 4.2, LνBF(X•) ≃ FLνA(X•) ≃ F(X•) in Db(B) naturally for X•

in K b(A-proj). As F is an equivalence, LνB ≃ id naturally on K b(B-proj). Hence DB ≃ B as
B-modules. If we apply the natural isomorphism LνB ≃ id to morphisms B → B in K b(B-proj)
given by right multiplication of elements in B, then the isomorphism DB ≃ B is actually an
isomorphism of B-B-bimodules, and therefore B is a symmetric algebra.

Given σ ∈ Σn, we may write σ = σ1σ2 · · ·σs with σi a cyclic permutation of length λi ≥ 1,
such that the contents of these σi are pairwise disjoint. In this case, we may assume that λ1 ⩾
λ2 ⩾ · · · ⩾ λs. Then λ := (λ1, · · · , λs) is a partition of n, called the cycle type of σ. It is well
known that two permutations in Σn are conjugate if and only if they have the same cycle type.

For a unitary ring A, we denote by Mn(A) the full n × n matrix ring over A. If σ ∈ Σn, then the
permutation matrix cσ of σ over C is the n × n matrix with 1 in the (i, σ(i))-entry for 1 ≤ i ≤ n
and with 0 for all other entries.

The following result seems to be known. For the convenience of the reader, we provide a proof.

Lemma 4.4. Let σ1 and σ2 be permutations in Σn. Then σ1 and σ2 are conjugate in Σn if and
only if cσ1 and cσ2 are similar in Mn(C).
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Proof. Clearly, cσ1cσ2 = cσ1σ2 and c−1
σ = cσ−1 in Mn(C). Thus, if σ1 and σ2 are conjugate in Σn,

then cσ1 and cσ2 are similar in Mn(C). Here, C can be replaced by any field.
Conversely, suppose that cσ1 and cσ2 are similar in Mn(C). Let λ = (λ1, · · · , λu) and µ =

(µ1, · · · , µv) be the cycle types of σ1 and σ2, respectively. Since the similarity of matrices and
conjugation of permutations are equivalence relations and since conjugate permutations have
similar permutation matrices, we may assume that

σ1 = (1 2 · · · λ1)(λ1 + 1 λ1 + 2 · · · λ1 + λ2) · · · (
∑

1⩽i⩽u−1

λi + 1
∑

1⩽i⩽u−1

λi + 2 · · · n),

σ2 = (1 2 · · · µ1)(µ1 + 1 µ1 + 2 · · · µ1 + µ2) · · · (
∑

1⩽i⩽v−1

µi + 1
∑

1⩽i⩽v−1

µi + 2 · · · n)

where the i-tuple (a1 · · · ai) means the cyclic permutation on the set {a1, · · · , ai}. By computa-
tions, the characteristic polynomials of cσ1 and cσ2 are

Φ1(x) = (xλ1 − 1)(xλ2 − 1) · · · (xλu − 1) ∈ C[x] and Φ2(x) = (xµ1 − 1)(xµ2 − 1) · · · (xµv − 1) ∈ C[x],

respectively. Since cσ1 and cσ2 are similar in Mn(C), we have Φ1(x) = Φ2(x), that is, they have the
same eigenvalues with the same multiplicities. We show λ1 = µ1. This follows from the 3 facts:

(i) All λ1-th roots of unity are eigenvalues of cσ1 , while all µ1-th roots of unity are eigenvalues
of cσ2 .

(ii) There exists a q-th root of unity different from any w-th root of unity if q > w, and
(iii) λ1 and µ1 are maximal in λ and µ, respectively.
By repeating this process, we finally get u = v and λi = µi for 1 ≤ i ≤ u. Hence σ1 and σ2 have

the same cycle type, and therefore are conjugate in Σn. □

Proof of Theorem 4.1: The functors LνA and LνB are triangle self-equivalences of K b(A-proj)
and K b(B-proj), respectively. Since A and B are derived equivalent, there is a triangle equiva-
lence F : K b(A-proj)→ K b(B-proj) by Theorem 2.1. Thus there is the following diagram:

˜K b(A-proj) F̃ //

d

��

˜K b(B-proj)

d

��

˜K b(A-proj)

d

��

F̃ //

L̃νA 66

˜K b(B-proj)
d

��

L̃νB
66

K0(A) F // K0(B)

K0(A)

LνA
55

F
// K0(B) LνB

55

where the vertical squares in the diagram are commutative by Proposition 3.2, and the top square
is commutative by Lemma 4.2. We shall show that the bottom square of homomorphisms of
abelian groups is also commutative, that is, F LνA = LνB F.

Indeed, take α ∈ K0(A). By Lemma 3.1(2), there is a complex X• in K b(A-proj) such that
d([X•]) = α. Then

F LνA(α) = F LνA(d([X•])) = FdL̃νA([X•]) = dF̃L̃νA([X•])

= dL̃νBF̃([X•]) = LνBdF̃([X•]) = LνB Fd([X•]) = LνB F(α).

Hence the bottom square of the diagram is commutative.
Now, consider the Nakayama permutations σA and σB as elements in Σn, which are defined by
νA(Pi) ≃ PσA(i) and νB(Qi) ≃ QσB(i) for 1 ≤ i ≤ n. Let cσA and cσB be the permutation matrices
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of σA and σB, respectively. The Grothendieck groups K0(A) and K0(B) are free abelian groups
generated by these [Pi] and these [Qi], respectively. Moreover, by Proposition 3.2,

LνA([Pi]) = LνA(d([Pi])) = dL̃νA([Pi]) = d([νA(Pi)]) = d([PσA(i)]) = [PσA(i)].

Hence, with respect to the basis {[P1], · · · , [Pn]}, the group homomorphism LνA has the corre-
sponding matrix cσA . Similarly, with respect to the basis {[Q1], · · · , [Qn]}, the group homomor-
phism LνB has the corresponding matrix cσB . Since F is a group isomorphism by Proposition
3.2, it corresponds to an invertible matrix c ∈ Mn(C) with respect to the basis {[P1], · · · , [Pn]} of
K0(A) and the basis {[Q1], · · · , [Qn]} of K0(B). Due to F LνA = LνB F, there holds ccσA = cσBc.
This means that cσA and cσB are similar in Mn(C). By Lemma 4.4, σA and σB are conjugate in Σn.
□

5. Self-injective andWeakly symmetric algebras over a field are closed under derived
equivalences

Al-Nofayee and Rickard [2] proved that, if A and B are derived equivalent, finite-dimensional
algebras over an algebraically closed field and if A is self-injective, then B is self-injective. This
result seems then to be extended to finite-dimensional algebras over an arbitrary field by Rickard
and Rouquier in [16, Corollary 3.12], but we have difficulty to understand an argument in the
proof there, see the words just above [16, Corollary 3.12]: “Assume now H<0(B) = 0. Then,
viewed as an object of Db(B), ν(PS(S )) is concentrated in degree 0”.

In this section we give a different, but very elementary approach to Rickard-Rouquier’s result,
and we show that a finite-dimensional algebra over an arbitrary field derived equivalent to a
weakly symmetric algebra is itself weakly symmetric. This is known for weakly symmetric
algebras over an algebraically closed field in [3, Proposition 3.1].

An Artin ring R is called a Frobenius ring if RR is injective and the socle of RR is isomorphic
to the top of RR.

Lemma 5.1. Let Λ be an Artin algebra over a Frobenius and commutative Artin ring R, and let
E be a commutative R-algebra such that RE is a free R-module and EE is an injective E-module.
Assume that M ∈ Λ-mod is a projective R-module. Then ΛM is injective if and only if so is the
Λ ⊗R E-module M ⊗R E.

Proof. Let −∗ = HomR(−,R) : Λ-mod→ Λop-mod. Since R is a Frobenius ring, −∗ is a duality
by [4, Theorem 3.3]. With M also M∗ is a finitely generated projective R-module, therefore
HomR(M∗,R) ⊗R X ≃ HomR(M∗, X) as Λ-Γ-bimodules for any R-Γ-bimodule X with Γ a ring.
Hence there are natural isomorphisms of functors:

HomΛ⊗RE(−,M ⊗R E) ≃ HomΛ⊗RE(−, (M∗∗) ⊗R E)
≃ HomΛ⊗RE

(
−,HomR(M∗, E)

)
≃ HomE

(
M∗ ⊗Λ (−)E, E

)
(by adjoint isomorphism)

= HomE(−, E) ◦ (M∗ ⊗Λ −)

Thus if ΛM is injective, then it follows from the duality −∗ that M∗ is a projective right Λ-module,
and therefore HomΛ⊗RE(−,M⊗RE) is a composition of two exact functors. Thus HomΛ⊗RE(−,M⊗R

E) is itself an exact functor and M ⊗R E is an injective Λ ⊗R E-module.
Conversely, suppose that Λ⊗RE(M ⊗R E) is injective. By [5, Corollary IX.2.4a], the Λ-module

M ⊗R E is injective. Assume that {xi | i ∈ I} is an R-basis of E for some indexing set I. We take a
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fixed element 0 ∈ I. Then E = x0R ⊕
⊕

i∈I\0 xiR and

ΛM ⊗R E ≃ M ⊗R
(⊕

i∈I

xiR
)
≃ M ⊗R (x0R) ⊕ M ⊗R

(⊕
i∈I\0

xiR
)
≃ M ⊕ M ⊗R

(⊕
i∈I\0

xiR
)

as Λ-modules. Hence ΛM is injective. □

The following is an immediate consequence of Lemma 5.2.

Corollary 5.2. Let Λ be a finite-dimensional algebra over a field k, and let E/k be an extension
of fields. Then Λ is self-injective if and only if so is the tensor product Λ⊗k E of the k-algebras Λ
and E.

The following result is observed by Rickard and Rouquier in [16].

Corollary 5.3. [16, Corollary 3.12] Suppose that A and B are finite-dimensional algebras over
an arbitrary field such that they are derived equivalent. If A is self-injective, then so is B.

Proof. Assume that A and B are finite-dimensional algebras over a field k. Let k be an
algebraically closed field of k. Since A and B are derived equivalent, A ⊗k k and B ⊗k k are
derived equivalent by [15, Theorem 2.1]. Suppose that A is self-injective. By Corollary 5.2,
A⊗k k is self-injective. It is easy to see that A⊗k k and B⊗k k are finite-dimensional algebras over
k because dimk(A⊗k k) = dimk(A). Now, the k-algebra B⊗k k is self-injective by [2, Theorem 2.1]
which states that finite-dimensional self-injective algebras over an algebraically closed field are
preserved under derived equivalences. It then follows from Corollary 5.2 that B is a self-injective
algebra. □

Derived equivalences preserve finite-dimensional symmetric algebras over an arbitrary field
[15, Corollary 5.3]. We point out that this is true also for weakly symmetric algebras over an
arbitrary field, and refer to [3] for weakly symmetric algebras over an algebraically closed field.

Corollary 5.4. Suppose that A and B are finite-dimensional algebras over an arbitrary field such
that they are derived equivalent. If A is weakly symmetric, then so is B.

Proof. A finite-dimensional, self-injective algebra Λ is weakly symmetric if and only if the
Nakayama permutation ofΛ is the identity map. This follows from the definition of the Nakayama
functor νΛ.

Suppose that A and B are derived equivalent. Further, assume that A is weakly symmetric.
Then A is self-injective. By Corollary 5.3, B is also self-injective. By assumption, A is weakly
symmetric, that is, the Nakayama permutation of A is the identity map. So the Nakayama
permutation of B is also the identity map by Theorem 4.1. Hence B is weakly symmetric. □

Corollary 5.5. Suppose that A, B,Λ and Γ are finite-dimensional algebras over a field k. Assume
that A and Λ are derived equivalent and that B and Γ are derived equivalent.

(1) If both A and B are symmetric (or self-injective), then so is the tensor product algebra
Λ ⊗k Γ.

(2) Assume that k is an algebraically closed field. If both A and B are weakly symmetric, then
so is the tensor product algebra Λ ⊗k Γ.

Proof. It is known that if A and B are symmetric (or self-injective) k-algebras over an arbitrary
field k, then so is the tensor product A ⊗k B. Furthermore, if A and B are weakly symmetric
algebras over an algebraically closed k, then so is the tensor product A ⊗k B. This can be seen by
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the two facts: (a) Over an algebraically closed field k, the indecomposable projective (A ⊗k B)-
modules are of the form P⊗k Q with P and Q indecomposable modules over A and B, respectively.
(b) Over an arbitrary field k, there holds νA⊗k B(P ⊗k Q) ≃ νA(P) ⊗k νB(Q) as (A ⊗k B)-modules for
P in A-proj and Q in B-proj. As derived equivalences are preserved under taking tensor products
(see [15]), we see that A⊗k B and Λ⊗k Γ are derived equivalent. Now, Corollary 5.5 follows from
Remark 4.3 (or [15, Corollary 5.3]) and Corollaries 5.3-5.4. □

Let C be an additive category, D a full subcategory of C, and X an object in C. A morphism f :
D→ X in C is called a right D-approximation of X if D ∈ D and the induced map HomC(D′, f ) :
HomC(D′,D) → HomC(D′, X) is surjective for every object D′ ∈ D. Dually, there is defined the
left D-approximation of X.

A sequence

X
f
−→ M

g
−→ Y

in C is called a D-split sequence if M ∈ D, f is both a kernel of g and a left D-approximation of
X, and g is both a cokernel of f and a right D-approximation of Y .

For an object M in C, add (M) stands for the full subcategory of C consisting of all objects
isomorphic to direct summands of direct sums of finitely many copies of M.

As a consequence of Corollary 5.3 and Corollary 5.4 together with [9, Theorem 3.5] and [15,
Corollary 5.3], we get the following.

Corollary 5.6. Let M be an object of an additive k-category C with k a field. If X → M′ → Y is an
add (M)-split sequence in C, then EndC(X ⊕ M) is a self-injective (symmetric, weakly symmetric)
algebra if and only if so is EndC(Y ⊕ M).

Let A be an Artin algebra. A complex T • in K b(A-proj) is called a basic complex if it is a
direct sum of pairwise non-isomorphic, indecomposable complexes in K b(A-proj). A complex
X• in K b(A-proj) is said to be radical if all differentials of X• are radical homomorphisms.

Corollary 5.7. If A is a finite-dimensional, self-injective algebra over a field, then, for any basic
tilting complex X•, LνA(X•) ≃ X• in K b(A-proj).

Proof. Let X• be a basic tilting complex and B := EndK b(A-proj)(X
•)op. Then B is a basic self-

injective algebra by Corollary 5.3, and therefore B is a Frobenius algebra. By definition, B(DB) ≃
BB as B-modules. Moreover, there is a triangle equivalence F : K b(B-proj)→ K b(A-proj) such
that F(BB) = X• (see [14]). Then it follows from Lemma 4.2 that

LνA(X•) = LνA(F(BB)) ≃ FLνB(BB) = F(B(DB)) ≃ F(BB) = X•

in K b(A-proj). □

Corollary 5.8. Suppose that A and B are finite-dimensional algebras over a field such that they
are derived equivalent. If A is self-injective and its Nakayama permutation σA is transitive (that
is, σA has only one orbit), then A and B are Morita equivalent.

Proof. Without loss of generality, we assume that B is basic. Then there is a basic tilting
complex X• in K b(A-proj) such that B ≃ EndK b(A-proj)(X

•)op by Theorem 2.1. Further, by [8,
(a), p.112], we may assume that the complex X• is radical. Now it suffices to prove that X•

is concentrated in a single degree because this will imply that X• is a projective generator, and
therefore A and B are Morita equivalent.
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Indeed, assume that X• is of the form (up to shift)

X• = · · · −→ 0 −→ X0
d0

X
−→ X1

d1
X
−→ · · · −→ Xm −→ 0 −→ · · ·

with X0 , 0 , Xm. Suppose m , 0. Since the Nakayama permutation of A is cyclic, there is a
number n such that each indecomposable projective A-module is isomorphic to a direct summand
of the terms of

⊕
1⩽s⩽n Lνs

A(X•) in degrees 0 and m. By Corollary 5.7,
⊕

1⩽s⩽n Lνs
A(X•) ≃

(X•)⊕n in K b(A-proj). Since both
⊕

1⩽s⩽n Lνs
A(X•) and (X•)⊕n are radical complexes, it fol-

lows from [8, (b), p.113] that
⊕

1⩽s⩽n Lνs
A(X•) ≃ (X•)⊕n as complexes. Then each indecom-

posable projective A-module is isomorphic to a direct summand of (X0)⊕n and (Xm)⊕n. Thus
HomK b(A-proj)((X

•)⊕n, (X•)⊕n[m]) , 0. This contradicts to the fact that (X•)⊕n is a tilting complex.
Hence m = 0 and X• has only one nonzero term. □
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