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COMMUNICATIONS IN ALGEBRA, 22(12), 4717-4735 (1994) 

QUASI-HEREDITARY ALGEBRAS WHICH 

ARE DUAL EXTENSIONS OF ALGEBRAS 

Departmi-nt of Mathematics, Beijiiig h'oriiial 
IJniversity, 100875 Beijing, P.R.China 

June 28, 1993 

Dedicated to Professor Xue-Fu Duan on 111s 8oih birthday 

In t roduc t ion .  

In connection with the  study of highest weight categories arising in the repre- 
sentation theory of semisimple complex Lie algebras and algebraic groups Cline, 
Parshall and Scott introduced in [CPS] the notion of quasi-hereditary algebras. 
Many irnportant algebras such as hereditary algebras, Schur algebras arid algebras 
to blocks of category 0 which is studied in [BGG] are special classes of quasi- 
hereditary algebras. Quasl-hereditary algebras can be defined 111 nng-theoretic 
terms by the existence of a special sequence of ideals. These algebras have many 
applicabions and appear quite common. 

Suppose A is a quasi-hereditary algebra, then there is a partial order 5 on the 
set 11 of simple modules, and one studies the standard modules A = {A(XjlX E A ) .  
Of n~ain in t~res t  is the category F ( A )  of A-modules which have a &filtration. 
C.M.Ringe1 proved in [Rl] that F ( A )  has relative almost split sequences. As a 
notable example, one considers the Schur algebra ([GI), in this case F ( A )  becomps 
just the category consisting of all modules which have Weyl module filtratiori and 
is studied l ~ y  many authors (see [Dl, [El, and others). 

One of the interesting questions on F ( A )  of a quasi-hereditary algebra is when 
the category F ( A )  is finite (namely, there are only finitely many r-101)--isorriorphi~- 

+ Supported partially by the National Education Committee of China and the National Nat- 
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4718 DENG AND XI 

~ndecompoaable ~~iodules ) .  The present paper provides a n  attempt to ~nvrst~gate  
F ( A )  for a class of q~~w~-.heredi tary algebras which a r e  defined as d i i a l  rxtens11-ms 
(see trrlow) of algebras without oriented cycle. These quasi-hereditary 4grbras are 
mdeed BGGalgebras and have exact Borel subalgebras (see [XI). Our rnai11 ~~eslult, 
provides a useful reduction for these algebras with which one call i lect~le  whet,l~er 
7 ( A )  is finite even if the algebras themselves may be complicated (of wild type). 
Moreover, if a quasi-hereditary algebra is the dual extension of a hereditary algebra 
with radical square zero then we show that the relative Auslander-Reiten quiver 
of F ( A )  is almost the same as the one of the given hereditary algebra 

The paper is organised as follows. In section 1 we recall some definitions and 
include some basic results needed in the sequel. From section 2 to 4 we prove the 
main results and give an explanation of our method. The last section contains 
results on the quadratic dual of t,he quadratic BGG-algebra which is the dual 
extension of a quadratic algebra without oriented cycle in its quiver. 

Throughout the paper, algebras always mean finite-dimensional algebras over 
an algebraically closed field k and modules always mean finitely generated left 
modules, and notation on quivers is taken from [R2]. 

1.1 Let A be a finite-dimensional k-algebra. We denote by A-mod the category 
of all finite-dimensional left A-modules. Given a class O of A-modules, we denote 
by T ( O )  the full subcategory of A-mod defined to be the class of all A-modules 
which have a O-filtrat~on, that IS, a filtration 

such that each M,- l /M, ,  1 5 i 5 t ,  is isomorphic to an objects in O. 
Let E ( l ) ,  . . . , E(n )  be the simple A-modules, one from each isomorphism clastl. 

Note that here we have fixed an ordering of simple modules. Let P( i )  be the 
projective cover of E ( i )  and Q ( i )  the injective hull of E ( i ) .  We define A(:) to be 
the largest factor module of P ( i )  with all composition factors of the form E ( j )  for 
3 5 i and call it a standard module. Dually, the so-called costandard module V( i )  
is defined to be the largest submodule of Q ( i )  with composition factors E ( j )  with 
j 5 i .  Let A be the full subcategory formed by all A(k), 1 5 i 5 n and V  the full 
subcategory formed by all V ( i ) ,  1 5 i < n. (Sometimes we denote A (respectively, 
V )  by AA (respectively,Va) in order to indicate the considered algebra A). 

The algebra A (or better the pair (A, A )  ) is called quasi-hereditary if 
(i) EndA(A(i)) E k for all i, and 
(ii) Every projective module belongs to T ( A ) .  
The algebra A is called a BGG-algebra ([q) if (i),(ii) and the following cond~tion 

(iii) are satisfied: 
(iii) There is a duality 6 : A-mod --t A-mod which fixes simple modules. 

1.2 Suppose ii is a quasi-hereditary algebra. We will collect no::' s o m ~  results 
which will be needed in this context, proofs may be found in [Rl]. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
H
o
n
g
 
K
o
n
g
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
0
3
:
3
7
 
3
 
D
e
c
e
m
b
e
r
 
2
0
0
8



QUASI-HEREDITARY ALGEBRAS 4719 

Lemma. (1) ExtL(X, Y )  = 0 for all X E F ( A j  and 1' E F ( V )  and all t > 1 
(2) For each t ,  there IS a unlque (up to isomorph~sm) indecomposable module 

T ( I )  E 3 ( A )  n F ( V )  w ~ t h  the folow~ng exact sequences 

such that X ( A )  E 3(A(1) ,  , A(i  - I)),  Y E F ( V ( l ) ,  , V(i - 1)) a11d 3 ( A )  n 
F ( V )  = add($:=, T(1)) 

(3) Put  T = $T(i),  we call T the character~stlc module Then for every 
A-module &I E F(A) ,  there is an exact sequence 

with T, E addT. 
(4) E x t i ( 3 ( i ) ,  A ( j ) )  = 0 for all i 2 j and Homa(A(i) ,  A ( j ) )  = O for all i > j. 

In particular, Homa(F(A(i) ,  , . . , A(n)), F ( A ( l ) ,  , , . , A(i  - 1))) = 0 
(5) For each i and for each module M E F ( A ) ,  there is a submoilulr ill' of ,IT 

such that :!I' E F(A( i ) ,  , , A ( n j )  and i\I/~\ff F ( A ( l ) ,  , , A(i - 1)). 

1.3 ii sprcial class of quasi-heretlitary algebras is construe-fed i n  [XI Let us 
now recall tile col~struction. 

Let B Ct: a finite-dimensi~-!iial I-wic algebra over k .  As usual we say tlirit B is 
g~veu LJY a qulver QB = (Qo,  Q , )  with relations {p , l  i E I B j ,  that is, we cons~drr 
the algrtlrit kQ'/ < {p :  I i E I B )  >, where Q* is the opposite cjwver of Q :tiid 
the multiplication cup of two arrows a and 3 means that a comes first a.ncl then d 
follows (for the notation see [R2, 21 for details). For each ct from i to j in Q1, let a' 
he an arrow from j to i. We denote by Q; the set of all such a' with a E Q1. For 
a path a ,  . .  a,, we denote by ( a l  . . .  a,)' the path a; . . .  a', in (Qo,  Q',). With 
this notation we may define a BGG-algebra. 

Definition. Suppose that B is an algebra given by the quiver Q B  = (QO,  Q1) 
with relations { p ,  ( i E I B ) .  Let A be the algebra given by the quiver ( Q o ,  Ql  u Q:) 
with relations (p,l i E I B )  U {p: I  i E IB) U {nBfI a ,  /3 E Q1). The11 it is a finite- 
dimensional algebra over k .  

If B has no oriented cycle in its quiver, we may assurne that Qo = { I , .  . . , n} 
such that HoniB(Pg(i),  P B ( ~ ) )  = O for i > j !  then A 1s quasi-hereditary. Further- 
more, the standard A-modules are AA(i)  = PB(i)  for a € ( 1 , .  . . , n).  We say that 
A is the dual extension of B, denoted by A(B).  

Fro~li 11ow on, we suppose that B is a basic algebra without oriented cycle. 
Since for this algebra A = A ( B )  one has a duality which fixes all simple modules, 

it is in fact, a BGG-algebra in the sense of [q. For this BGG-algebra A obtai~led 
from B we have the following properties. 

1.4 Lelrl~tia. ( I )  B is a subalgebra of A with the same rnaxi~rial senlisinlplc 
subalgebra a n d  B is also a factor algebra of A .  
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4720 DENG AND XI 

( 2 )  Let B' be given by (Qo,  Qi) with relations {p : l  i E 1 ~ ) .  Then B' is a 
subalgebra of A with the same niaxin~al semisimple subalgebra and B' is also the 
f x t o r  algebra. of A modulo the ideal generated by {a* I cu E Q,}. Moreover. 
VA(P) = Q B t ( i )  for all i .  

(3) The n~odu le  A B ~  is projective. 
(4 )  dimt A = C, ( d i m t ~ B ( i ) ) ~ .  
(5) Let p . B -, .4 be the inclusion in ( 1 ) .  Then for each algebra-homornorph~sm 

f : B - R, there is a homomorphism g : A - R such that  f = pg. 

Proof. By the c-onstruct~on of A ,  the statements ( 1 )  to ( 3 )  and (5) are t r lv~al  
The statement ( 4 )  follows from t h ~  followmg fact whlch can be p~uved  by uslng 
the BGG-reclproc~ty (see [CPS] or [I]) 

Let A be a BGG-algebra wlth standard modules A(1),  , A(n)  Then d ~ r n ~  A 
= C , ( d l r n ~ A ( % ) ) ~  

To see whether a module M lies m F ( A )  we have the followmg 

1.5 Le~nma. Let M be an  A-module. Then M E F ( A )  if and only if 811.3 is 
projective. 

Proof. Let Af be In ?=(A) .  Since AA(a),  1 5 i n, are projective B-modules, 
one knows that  M as a B-module is a successive extension of projective B-modules 
and hence is a projective B-module. 

Now assume that B M  is a projective B-module. We shall show that  M belongs 
to  F ( A ) .  Let be a submodule of BM such that  gMi is a direct surn of all 
direct summands of ~11.1 isomorpllic to Be,. Then Mi is also an  A-module since 
Be,, = Ac,, = A a ( n )  We may write B M  = B  M' $B M", Thus there is an  exact 
sequence 

0 i M ' - M i M / M i i O  

in A-mod. Since M/Mi E MIi as B-modules, by induction, the A/Ae,A-module 
M/M1 E 3 ( A , - ( I ) ,  . .  , , A*(n - I)), where d = A/Ae,A can be considered as the 
dual extension of B = B / B e , B  by 1.3. Hence M E F ( A ) .  

1.6 To compare two categories F ( A A )  and Bf-mod, we consider the functors 
F = A A  aB,  - . Bi-mod + A-mod and G = B]q @ - : A-mocl -+ B'-mod. The 
basic properties of these functors are formulated in the following lemma. 

Lenlrna. ( 1 )  F  is an exact functor. 
( 2 )  F E ( i )  Z A , ( ; ) ,  F P B , ( i )  Z P A ( i )  for all i 
(3) G ( F h f )  S Btlll for each B'-module M .  

Proof. ( 1 )  follows from 1.4. 
( 2 )  It is easy to see that B' is an  exact Borel subalgebra of A in the sense of 

[K]. Thus  (2)  follows from the definition of an  exact Borel subalgebra. 
( 3 )  Since G(Fh.1) = BIB; @ ( A  @ B '  M j  Z (C' @ A  A )  081 &I S Bi @ B '  Ad E M ,  

the statelnent follows. 
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QUASI-HEREDITARY ALGEBRAS 472 1 

1.7 Remark .  From the definition 1.3 we know that the dual extension A = 
A ( B )  of an algebra B without oriented cycle is always a lean quasi-hereditary 
algebra in the sense of [ADL] since Cf = c f A c l  can be obtained from the  quiver of 
d by restricting it to the vertices { t , t +  I , . . .  ,n), where € 4  = el + e f + l  + - .  + e n  

2. Reduct ion.  

In this section we will use the theory of vector space categories to  give a method 
to determine whether 3 ( A )  is finite. In this way the question is reduced from a 
bigger algebra to a smaller one. It turns out that this reduction is powerful when 
one deals with the dual extension algebra A of an algebra having no oriented cycle 
as in section 1. 

Let us first recall some definitions. 

2.1 Definition ([R2]). Let K be a Krull-Schmidt k-category and I . I : K i 
k - niod an additive functor. The pair (K, 1. I) is called a vector space category. 
We denote by u(K,  I - I), called subspace category of ( K ,  1 .  I), the category of all 
triples V = (Vo, V,, yv : V, -+ IVoI), where Vw ', k - mod, Vo E K and rv is a 
k-linear map. A morphism from V -+ V' by definition is a pair (fo, f,), where 
fo : Vo -, Vd and f, : V, + Vd such that fwyvr = wIfo l .  

A n  additive k-category is called finite if there are finitely many isomorphism 
classes of indecomposable objects. 

If A0 is an algebra over k, and R is an Ao-module, one may form the one-point 
extension 

This algebra is denoted by A = Ao[R]. We denote by w the extension vertex of 
A. Clearly, A -mod = U ( A ~  - mod, HornAo(R, -)). Dually, one has one-point 
coextension [RIAo which is defined to be the following matrix algebra 

Suppose A. is a quasi-hereditary algebra and R E ~ ( A A ~ )  Then, by setting 
AA(w)  = (0 k O), A A ( l )  = AAo( l ) ,  , AA(n) = AAp(n), the algebra A = Ao[R] 
becomes a quasi-hereditary algebra Moreover, we have 

2.2 Lemma.  ~ ( A A )  = i ( ( 3 ( ~ ~ ~ ) ,  ( R ,  -)). 

Proof. Since R E F ( A a o )  we see that P(w) E 3 ( A A ) .  For any object V = 
(Vo, V,, y v )  E A - mod there is the following exact sequence 

which shows that Vo E F ( A A , )  if V E F ( A A ) .  Conversely, if V = (Vo, I.',,yv) E 
U ( F ( A ~ , ) , H O ~ ~ , ( R ,  -)), one can again form the above sequence and knows from 
(O,V,,O) z A ~ ( ~ ) ~ ~ ~ ~  that V is an extension of (Vo,O,O) E T ( A A , )  and a 
module in addAa(w). Hence V E F ( A A ) .  
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4722 DENG AND XI 

2.3 Let D be a quasi-hereditary algebra with s tandard  modules AD(2) ,  . . , 
A n ( n ) .  Suppose tha t  there IS a quasi-hereditary algebra C which is a coextension 
of D by a D-module such tha t  Ao(a )  % A c ( i ) / C e l A c ( i )  for i 2 2, where 1 is 
the coextension vertex of C .  (Note tha t  the simple C-modules have the ordering 
&(I) ,  . - - , E,-(n)). Now we want to  build a relationship between 3 ( A c )  and 
F ( A D )  and rompare these two categories. 

Proposition. There is an exact functor 7) : +(Ac)  - F ( A n )  such tha t  
(1) q is dense and full. 
(2) If f : A f  + N is a homotnorphistn, then q ( f )  = 0 if and only if f factors 

through a d d ( E c ( 1 ) ) .  
(3) If q ( M )  = 0 for some indeco~~iposable module M E F(A,:), then M E 

=-%(I). 
( 4 )  For any i\.I E +(Ac),  if M has no direct summand isomorphic to E c ( l ) ,  

then the module q ( M )  is indecomposable if and only if M is indecomposable 
(5) Given two indeconiposable niodules MI and I V ~  in F ( A c ) ,  they are isomor- 

phic ~f and only ~f q (M1)  and q (Mz)  are  isomorphic. 
(6) If R is a module in 3 ( A c )  and contains no direct summand isornorph~c to 

Ec(l), then Homc(R,  M )  Ci Homo(q(R) ,  q ( M ) )  for all M E F(2.c).  

Proof. Note tha t  D is the factor algebra of C nlodulo the ideal C e l C  and 
we can identify D with C / C e l C .  P u t  q ( M )  = k l / C e l M  for all &I E C - mod. 
Since Ce l  is a simple projective module, C e l M  is just the maximal semisimple 
submodule of itf with each direct summand isomorphic to  E,;( l ) .  This implies 
t ha t  for each f : hi 9 IV one can define a( f )  to  be the induced m a p  from q ( M )  
t o  t l (N)  by f -  

Clearly, 17 is a well-defined functor from C-mod to  D-mod. 
Since <:el is a projective C-module and q IS naturally equivalent to the functor 

(C /Ce lC ' )  @jC - ,  we see tha t  q is an  exact functor which sends A,- ( i )  to In(;) 
for all i 2 2. Hence if M E F ( A c )  then q ( M )  E ; F ( A D )  

(1) q is dense Indeed, let E F ( A D ) .  If E A D j n )  then there 1s nothing 
to  prove So we assume that  if has An-composition factors of the form ADi,j j 
with i 5 j < n then there is a module c M  E 3 ( A c )  such tha t  q ( M )  2 S. 

Using i n d ~ ~ c s i o n ,  we shall prove tha t  if D X  E + ( A D )  with A D -  coniposition 
factors of the form h D ( j j ,  i - 1 5 j 5 n then we can find a module M E T ( A c )  
with q ( M )  r X .  

Let X be such a module in F ( A D ) .  Then  by Lemma 1.2 ( 5 ) ,  there exists a 
submodule X o  of X with Xo E F ( A D ( i ) , . . .  , A D ( n ) )  such tha t  X / x o  E F ( A D ( i -  
1)). Hence we havs the following exact sequence 
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QUASI-HEREDITARY ALGEBRAS 4723 

with 1 = [M A D ( i  - I ) ] ,  the number of factors A o ( i  - 1) in a AD-- fiitratlo~i of 
M .  

By induction, there is a module ilfo E 3 ( A C )  such that r](lCfo) = S o .  Slnce 
Extg(A,;(i  - l ) , E c ( l ) )  = 0 by 1 .2  ( I ) ,  we may form the following diagram in 
C-mod: 

where y is the canonical projection, and where X' is the pullback of /j and 7 anit 
also the pushout of x and I. (Note that for Mo E C-mod there holds C e l M o  Y 

Ec( l ) '  = ker(y)). Then we may form the following diagram 

with MI a pullback and M' 2 ~ ~ ( 1 ) ' ~ ~ .  Since M / M 1  E DS, we get tha t  
M' = C e l M  and r](M) Z '-X. This shows that  q is dense. 

Suppose M I ,  M2 E F ( A c )  and.  f : q(M1) + q(M2). Applying Hornc(M1, -) 
to the exact sequence (in C-mod) 

one obtains the following exact sequence 

Since CelMl 2 E C ( ~ ) ~  E 3 ( V c )  and E x t & ( F ( h c ) , F ( O , - ) )  = 0, one has 
ExtL(A41: Ce lM2)  = 0 and the following commutative diagram: 
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4724 DENG AND XI 

This shows that there exists a hornornorphism f '  E Hornc(M1,14&) with q ( f l )  = f 
by the drfinition of 7 .  Hence 7 is full. 

(2) This is trivial. 

(3) Suppose M is indecornposable and q(M) - 0.  Then 1l.i = C e l M  2 ~ ~ ( 1 ) '  
and ( 3 )  follows, 

(4) If kf is ~ndecomposable with rl(M) # 0 then rl(lCi) is indecornposable since 7 
is full. Now let M be a module in 3 ( A c  ) which has no direct summand isomorphic 
to  Ec(l). Suppose that q (M)  is indecomposable. We shall prove that hl is also 
indecomposable. Taking an f E Endc(M),  then ~ ( f )  is invertible or nilpotent. If 
q(f)  is invertible then there exists a homomorphism g' E E n d c ( ~ ( M ) )  such that 
~ ( f ) g '  = 1. By (I),  there is an endomorphism g of M such that ~ ( g )  = g1 and 
~ ( f g )  = q ( f ) g l  Hence ~ ( f g  - 1) = 0 and f g  - 1 factors through CelErl, say 
j g  - 1 = h p ,  where h : M i C e l M  and p : CelM + M. If f g  - 1 # 0 then 
the image of h is nonzero and fiI contains a direct summand isomorpliic to Im(h) 
since C e l M  IS projective sen~isitnple module. This means that M har a dxect 
summand isomorphic to EC (I) ,  a contradiction. Hence f g  = 1. If q( f )  is nilpotent 
then there is a natural number m such that f m  factors over CelM.  Similar to the 
above discussion we can show that f m  = 0.  Hence M is indecomposable. 

(5) Sim~lar argument as in the proof of (4 )  gives the assertion 

(6) follows from (1) and (2) 

Now the functor 7 induces a functor @ Z ~ ( F ( A ~ ) ,  H o r n c ( ~ ,  - ) )  - U ( F ( A ~  ), 
Homo(q(R), -)), where R is a module in 3 ( A c )  

2.4 Lemma. Suppose R is a rriodule in 3 ( A c )  and has no direct summand 
isomorphic to Ec( l ) .  Then the functor 0 : 3 ( A c )  + F ( A n )  induces a canonical 
functor @ : u(F(&), ~ o r n c ( ~ ,  -)) i ~ ( F ( A D ) ,  H o m ~ ( q ( R ) ,  -)) such that 

(1) 9 is exact, full and dense. 

(2) If I.' E ~ ( F ( & ) , H o ~ ~ ( R , - ) )  is indecomposable with @(I.') = 0 ,  then 
v (Ec(l) ,O,O).  

Proof. For each object V = (Vo, V,, yV)  E ~ ( F ( A ~ ) ,  ~ o n l ~ ( ~ ,  -)) define 
9 ( V )  = ( ~ ( V O ) ,  V,, y ~ ) ,  where yV is the composition o f r v  and Q R , V ~  : Honlc(R, Vo) 

Honl~(r l (R),  rl(l.6)). To each map (fo, f,) define @(fo, f,) = (rdfo), fw).  It is 
easy to see that @ is a well-defined functor. 

(1) Since r]  is exact, and dense, @ is exact and dense too. Now we show that 
is even full. Since rl is full, given any homomorphism g : rl(Vo) - rl(Vi), w r  

can find a homomorphism jo : I;o 9 i,'; such tiial rl( f o j  = y.  Let, ( r / ( jo) ,  fu) be 
a horno~norphism from jrlfVo), V,,-+) to (~(v,,'), V:,yy,). Then we consider the 
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following diagram; 

VL - Homc(R,  V , )  - H o r n ~ ( q ( R ) ,  ll(Vd)) 
l v  I I J R . V ;  

P u t  r = -/vHoinc(R, f o ) -  f Y y Y , ,  then XT]R,V; = 0 by definitior~. According to 2.3 
( 6 ) ,  V R . ~ !  is a n  isomorphism. thus x = 0 and the  first square of the above diagram 
is comm;tative. This implies t ha t  @ is full. 

(2)  If (rj(Vo), V,,-y?) = 0 then V, = O and r)(Vo) = 0 .  This  means Vo 2 ~ ~ ( 1 1 ' .  
Since I.' is indecomposable, Vo Y Ec(1) and V Y ( E c ( l ) ,  0,O). 

Combining 2.3 and 2.4 we have 

2.5 T h e o r e m .  Let C be a quasi-hereditary algebra with standard modules 
A c ( l ) ,  . . . , A c ( n )  such tha t  

(1) C is the coextension of a quasi-hereditary algebra D with standard nlodules 
 AD(^);. . , A ~ i n ) ,  and 

(2) For 2 < j there holds AD ( j )  E A c ( j ) / C e l  A c ( j ) .  Then 
( i )  F ( & )  is finite if and only if F ( A o )  is finite. 
(ii) If R is a module in 3(&) which does not contain a direct summand iso- 

morphic to  E r ( l ) ,  then a ( F ( A c ) ,  Homc(R ,  - ) )  is finite if and only if a ( F ( i l D ) ,  
HomD(R/C'e ,R,  -)) is finite. 

P r o o f .  ( i )  follows from 2.3 and (ii) follows from 2.3  and 2.4 

This result shows tha t  in order to  know whether F ( & )  is finite one [nay verify 
if F ( A n )  is fir~ite. In the next section we apply this result to give a reduction to  
de t e r~ r~ ine  the finiteness of F ( A )  for a class of quasi-hereditary algebras. 

3. A p p l i c a t i o n .  

As an  application of t he  results in section 2 we study in this section the class of 
quasi-hereditary algebras which are the dual extensions of algebras whose quivers 
have no onented cycle. We reduce the determination of F ( A a )  t o  tha t  of 3 ( A D  j 
with D the dual extension of a factor algebra of B. In such a way one can determ~rie  
whether 3 ( A a )  is finite. 

Let us fix some notation. Let B again he a basic algeilra w~t l iout  o r~en ted  cyclr  
In ~ t s  quiver. S ~ n c e  for the dual extension algebra d of B the  standard ino~lules 
i A , [ i ) /  1 < i < r ~ }  are just the  indecomposable projective B-mvdulrs, we may 
always assume that  the vertices of the  quiver of B are  ordered in suc11 a way that, 
H o l n B ( P B ( l j , p B ( j ) )  = 0 for i > j .  Hence the vertex 1 is always a sink in t,he 
quiver of the algebra B. Let a l , .  . .  , a ,  be all the  arrows in the quiver of B 
ending a t  tile vertex 1. We denote by D the dual extension of B = B / B e l B  
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N o w  we try to  use 2 .2  to  describe our category ~ ( A A ) .  From this point of view 
we introduce the following new algebra Ao. 

By the co~istructioii of A, a n  A-module M can be always regarded as a iiiodule 
over Ao,  where A0 is obtained froin A by decomposmg the vertex 1 In the quiver 
of -4 into 1 and 1' = w such tha t  

(1) ct] s tar ts  at  w and there is no any other arrow between LO and j E Qo, and 
( 2 )  all ocher arrows in the  quiver of A remain in t ha t  of Ao,  and  
(3)  all relations of A are just the  relations for A o .  
The quiver of A. looks like the following 

Conversely, any module over A. can be regarded as a module over A .  
Denote by C the full subalgebra of A. with the vertex set ( 1 , .  . . , r t }  Since 

radPao (u )  =radPA ( I ) ,  we see tha t  A. is the one-point extension of the algebra C 
by the C-module R = r a d P a ( l )  and C is a quasi-hereditary algebra with st.andard 
modules A c ( l )  = Ec(l)  = Aa(l ) ;  . .  , Ac(n)  = A*(n).  (Note tha t  Pc(l) = 
E c ( l ) ,  P c ( f )  = P A ( j )  for j # 1). Also, A. is a quasi-hereditary algebra with 
standard rrlodules AA,(w) = Ea,(w) ,  Aa,(a) = Aa(a)  for f # ui .  Furtherrnore, we 
have the following observation. 

Froni this lemma we know that  the niain question is to determine F ( A A , )  By 
2.2, this is equivalent to  the investigation of Z ~ ( F ( A ~ ) , H O ~ ~ ( R , - ) )  Since the  
conditions in 3.3 are satisfied by our  algebras C and  D, we can apply the results 
in section 2 t o  these algebras to reduce the  investigation of 3 ( A A )  to 7 ( A n ) ,  
namely, rve have the following result: 

3.2 Theorem. 3 ( i l A )  1s finite if and only if U ( F ( A D ) ,  HornD(R/CelR,  -))  is 
f i n~ te  

Thus  one can use the well-known results on the vector space category or repre- 
sentation theory of finite partially ordered sets as  a tool t o  study the  subcategories 
F ( A A ) .  In this case the  following lemma may be useful. 

Lemma ([GR], sect. 4.7) .  If the category U(K,  I . I )  is finite, then for each 
indecomposahle object X E K ;  the right module [XI over E n d K ( S )  is uniserial. 

To esplain our reduction let us consider the following examples 

3.3 Exmnples (1) Let '4 be given by the quiver 
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4 

wlth ncu' = ,9B1 = y-y' = ay = a@' = pa' = y'a'=p-r = -yip' = 0 w h r h  IS the dual 
extension of B glven by 

P 
4 

By reduction, the quiver of D is 

and the corresponding subspace category IS f i ( F ( 4 D ) ,  H o m o ( E ~ ( 2 ) ,  -)), where 
ED(2)  denotes the s ~ m p l e  module corresponding to  the vertex 3 

Conslder HomD(ED(2) ,  PD(2) )  f k2 as right EndD(PD(a))-module whlch 1s an- 
nihdated by the rad~cal  of E n d n ( P o ( 2 ) ) ) ,  thus ~t is a s e m ~ s m p l e  rlght E n d o ( P ~ ( 2 ) ) -  
module and 1s not uniser~al By the above lemma, Z i (F (Ao) ,  H o n i ~ ( E ~ ( , 7 ) ,  -)) 
IS lnfinlte It follows from 3 2 that  7 ( A A )  IS lnfin~te In fact ,  the modules 
.tfx = (bf,, ,2f2, hf3,113;, a ,  a', /3,B1, y, 7:) for X E k glven by 

provide a family of infinitely many non-isomorphic indecomposable modules in 
3 ( A A ) .  (One can use 1.5 to decide that  MA, A E k ,  have really a aA-fiItratl0n). 

(2) Let ii be given by the quiver 

It is obtained from the algebra B D
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DENG AND XI 

Then the quiver of D looks like 

and  RICelR = AD(3) .  
The  Auslander-Reiten quiver of F ( A o )  has the form 

1 2  I 

where the indecomposable modules are displayed by their Loewy factors and the  
dotted vertical lines should be identified. 

It is easy to  show that  Q ( F ( A D ) , H o m D ( A D ( 3 ) ,  -)) is finite Indeed, the in- 
vestigation of this subspace category can be easily converted into tha t  of a poset 
of f i n ~ t e  type ([GR], sect. 4.1).  As a consequence of 3.2,  ;F(Ao) is finite. In fact, 
there are 17  isomorphism classes of indecornposables in FjAa) .  

3.4 Proposition. Let A, be the algebra given by the  quiver 

with a,a: = 0 , l  5 i 5 n - 1, which is the dual extension of the Dynkm diagram 
A, Then F ( A A )  is finite if n 5 3, and infinite if n > 3. 

Proof. The cases n = 1 , 2  are trivial. In case n = 3, the Auslander-Reiten 
quiver of F ( A A ,  ) has the f o ~ m  
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where the dotted vertical lines are identified. Then 7 ( A a , )  is finite 
In case n = 4, by deleting the vertex 1, we obtain D glven by - 2 

2 x 3 2 4  a2ai = a3a$ = 0. 
=; 

The subspace category G ( F ( A ~ ) , H ~ I ~ ~ ~ ( P ~ ( ~ ) ,  -)) is infinite since the space 
H o m D ( P D ( 2 ) ,  P D ( 2 ) )  Z kGonsidered as  right EndD(Po(2))-module is not unise- 
rial, for d imtrad(Endn(PD(3)) )  = 2 and r a d 2 ( E n d o ( P ~ ( 2 ) ) )  = 0. Hence 3 ( A A , )  
is infinite. 

The  general case n 2 4 follows directly from the case n = 4. Tlie proof is 
finished. 

4. A special case. 

In this section we investigate the full subcategory T ( h )  of the dual extknsioli 
A of B 111 the special case where B is a hereditary algebra wltll rr td2(H\ = 0 U:r 
sltall see that  i ~ i  t,Iiis rase 3 ( A j  behaves as the nloc:lule category (if 1 . h ~  algclira B 
Nanirly, we prove the Eollc~wing 

4.1 Theorem. Let B be a hereditary algebra with radical square zilrci nliii A t11c 
quasl-hered~tary algebra w h ~ c h  IS the dual extension uf B. Then the Auslander- 
Reitell qurver of F ( A a )  has the  same number of vertices as  tha t  of the algebra B, 
itnd every irreducible m a p  in B-mod induces a n  irreducible map in 3 ( A , 4 )  

Proof. Since B' as well as B is hereditary, the  projective dirnerisiou of a simplt 
B'-module 1s smaller thau 2. Hence proj.tliln A a  (4) 5 1 for all i by 1.6. I t  follows 
from [DR] that  3 ( A A )  is closed under subrnodules. Let Q be the ideal uf d such 
tha t  B '  E A / Q .  Then r a d ( A ) ,  Q = 0 smce r a d 2 ( B )  = 0. To prove t h e  Theorem 
4.1,  we demonstrate t ha t  the  functor A 8 ~ )  - is dense and  preserves irreciucihle 
maps. 

4.2 Lemma. The  functor F : BJ-mod-+ F ( A a )  is dense 

Proof. Clearly, the functor niaps B'-lnochles into 3 ( A A )  accoldinp lo  1.6 
Suppose i1.I E ; F ( A A ) .  We will show that  there 1s a B1-rnoilule S such 1,liat 
F ( S )  2 Af. Since F ( A A )  is closed under sub~nodules ,  Q M  lies in F ( A A ) .  Note 
tha t  the module Q M  is a sernisirnple A-module. Thus  each simple direct summand 
of Q M  belongs to 3 ( A A ) .  It follows fro111 A being a BGG-algebra tha t  the  srrnple 
direct surnmands of QM lie also in 3 ( V a ) .  Hence E x t i ( T ( A A ) ,  Q M )  = 0.  Froin 
the construction of ,-i we know that  A = B' $ Q and there is an exact sequence 

In B1-mod Applylng - @ ~ i  (MlQil.1) t o  this sequence, one gets an  exact sequerlce 
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This gwes a short exact sequence in A-mod. 

since T ~ ~ ~ ' ( B ' , M / Q M )  = O If we apply &mA(Y, -) with I' E F ( A A )  t o  the  
above sequence then we get 

Note tha t  with A ~ ~ ~ ( h l / Q h f ) )  also Q @ B , ( M / Q M )  is in F ( A A )  , and hence QOB' 
( IMIQM)  is a semisimple module and belongs to  F ( V A ) .  Thus E x t i ( Y ,  Q O B I  
(,W/Qhf)) = 0 by 1.2 (1) and HomA(Y, cr) is surjective. This yields tha t  u is an  
3(AA)-a~)proximat , ion  of M I Q M .  (Recall that  a morphism f : k' - A4 with  k' 
in it full suh:ategory C of A-mod is called a r ~ g h t  C-approximation if Ho!nn(YJ, f )  
is surjective for all Y' E C).  On the other hand, we have the natural  exact secluen(:e 
in A-moil: 

P 0 - Q M - M - M / Q M - + O  

Wit,hout loss of generality, we may assume tha t  M is indecomposable. Then /? 
is right niinimal. ( A  homomorpl~ism f : Y - M in A-mod is said to  be right 
minimal if an  endomorphism g : Y - Y is an  automorphism whenever g f = f ) .  
Similarly, one can see tha t  is also a right 7 (AA)-approx i~~ la t ion .  Hence, ,B 
is a minimal right 3(AA)-approximation for M I Q M  and we have the following 
commutative diagram: 

Since /? = ( fg )@,  we know that  f g  is an automorphism of M. Hence M is a direct 
summand of A @ J ~ , ( M / Q M ) .  Let MIQM = $, X i ,  where X i  are indecomposable 
3'-modulrs. Then (MjQ11.I) Y $, A @ B ,  X ,  with ABBt X, indeco~nposable 
by 1.6 (3 )  and there is an  X j  such tha t  F ( X , )  Z M ,  and therefore the functor is 
dense. 

4.3 Lemina. If f : M - N is an  irreducible m a p  between i n d e c o ~ ~ ~ p o s a b l e  
B'-modules, then A as,  f is an  irreducible m q  in "=(LA). 
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Proof. If .4 @ B ,  f factors through a module X' E 3 ( A a )  then, by Lemma 4 2 ,  
we may wrlGe X' = A @g, X with K a I?'-module 

Applying the functor G = B' - to this co~nmutative diagram we h a v ~  

f 
M - N  

Hence B'  h is split mono, or B' g is split epi. And therefore h = A @BI 

(B' @ a  h )  is split mono, or g = A @ B ,  (B' @ A  g )  is split epi. Thus the lemma 
follows. 

Now the Theorem 4.1 follows immediately from 4.2, 4 . 3  and 1.6. 

4.4 Remark. The condition that B has radical-square-zero in the theorem 
is necessary. Let B be the algebra given by the quiver 1 c 2 c 3.  Then the 
corresponding BGG-algebra A has F ( A A )  with 9 indecomposable modules while 
the algebra B lias only 6 indecomposable modules (cf. 3.4) .  Also the example 3.3  
(1) shows that the heredity of B is necessary. 

5 .  Quadratic duality. 

In this section we discuss quadratic algebras and their dual quadratic algebras. 
Especially, we prove that the dual quadratic algebras of the d u d  extensions of 
quadratic algebras B without oriented cycle in their qulvers are quasi-hereditary 

5.1 Definition. The algebra -4 = kQ/ < R > is called quadratic if R is a 
subset of the space spanned by all paths of length 2 

Each quadratic algebra A = kQ/ < R > has a natural 2-gradlng 

where A, is the space generated by the residual classes of paths of length i. We 
simply Identify R with a subset of A1 @A,  A1, and the space spanned by such 
subset is denoted by R(A). 

For convenience, we write A as 

Then -4 = T ( A l ) /  < R(A) >, where T(A1) is the tensor algebra of Al  over .4o 
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A n-iorphis~ii f : .4 - B of quadratic algebras is an  algebra Iio~iic~morpliisiii 
preserving gradings. 

Let -4 = kQ/ < R >= $ , , , A ,  be a quadratic algebra. Regard the h-dual 
space A; of .41 as AO-bimodulewith the action ( a f b ) ( v )  = f (bva) ,  whew a ,  b  E A. 
and  f E A;. The  dual quadratic algebra A! is defined by 

here we i d e i ~ t ~ f y  (Al  nA, Al) '  with A; @ A ,  d; by sending (f  8 g)' to g* '3 f' 
More precisely, 

.2' = T ( A ; ) / I  

where I is the ideal of T(Af) generated by ~ ( . 4 ) ~ ,  in other words, 

where QE = Qo and Q; = {a*/ u E Q1) The construction of d i ~ d  C ~ I I R I ~ ~ : I ~ . I C  

algebras a functor 

which maps a morpliism f : -4 - B to s n ~ o r p h i s n ~  f! . B! - -4' iilducecl Ly 
f: : By i -4; (see [MI). 

5.2 Lemma([lLI]) The functor ' 1s an e q u ~ v a l r ~ ~ c e  arl~l '' rdda  n here r i l , r A  
denotes the ~ c l ~ n t ~ t y  functor 

Lrt A = h Q /  < R >= $ 1 2 , A ,  be a cluit~:lratii' algri-lra Ki:call 111at 113. At.4) 
we denote tlhe cll~al extellsioll of d (see sectlon 1) By ctrnstrut7tlon. 

where 1: = eoEQI ko' and R ( A ( - 4 ) )  15 the space spanned k~y R(Aj  U R ( d j i  U 

{,rn!?'l 0. /3 f5 Q l  1. 
T l ~ e  c:o~.rc.spci~lrlt,~ire d H A ( d )  gives rise to a functor 

Then we have the following 

5.3 Theorem. For each quadratic algebra A = k Q /  < R >= ~ & , ~ ~ - 4 , ,  there is 
a n  isomorphism r,(A) : & A ) !  - A ( A ! ) .  

Proof. By construction, the algebra R ( A )  is given as f o l l o ~ ~ s .  
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iiiiere R ( d j l  = {x, X,cr:,3:1 .\,$,a, E R ( A ) )  Therefore 

Sinlilarly. -4' + { i l ; ,R(A)'  C ( A 1  ~3 A , ) ' }  and  

where A;' & A;' 3 ( R ( A ) ~ ) '  = {z, p l ~ ; ' b ~ ' ~  z, PI U;U; € RR(A)'. PI k . 1  
Set 

Then f is ail ..lo-linear map  such tha t  f @ f ( R ( A ( A ) ' ) )  = R ( d ( d ! ) )  and it ~ ~ ~ J u c e s  
the wanted ~somorphism q( A) 

Indeed, tile isomorphisms q(A)  give m e  t o  a riatuml i so rno rp l i i s~~~  7 /  'A - A' 
Let us  [low glve au  example to explain 5 . 3  before we go further. 

5.4 E x ~ n t p i e .  Let A he the dual extension of t h e  pa th  alget~ra of the quiver 
Q = ~ Q o .  Q l i :  

01 7 

3 - 2 - 1  

.T 
4 

modulo the ideal generated by R  = {cr),,3y}. 
Then N.4) '  and  A ( A ! )  are,  respectively, the path algebras of the following 

quivers with the relations 

Ohriously, they are ~somorp l i~c  
Now we return to a r b ~ t r a r y  algebras defined by qurvers a n ~ l  r e l a t i v ~ ~ s  

5 .5  Theoreln. Let A = kQ/ < R > and B = kS/ < T > , and Q S h a w  no 
o r ~ e n t r d  ry(.lr T h r u  A ( A )  @t  A ( B )  2: A(A @ k  B) 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
H
o
n
g
 
K
o
n
g
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
0
3
:
3
7
 
3
 
D
e
c
e
m
b
e
r
 
2
0
0
8



4734 DENG AND XI 

Proof. N r r t e  that the cpiver of A Fk B C O I ~ S I S ~ S  of the v e r t w s  I, 1;. f, and 
arrows cr r , ,  JI g ;3. where c , ,  f l  are the ~ d e n ~ p o t e n t s  of '4 and R co r r r spo~~ t i i l~g  
t o  vertlces I E Q ,  j E S ,  and a ,  ;? are arrows in Q and S, respc(,t~vely 

By c70nst,nlctlon, the qniver of A(A B k  B)  has the  same set of verticea as lhat  
of d @t. B,  a n d  it cons~sts  of a r r o w  a 3 r , ,  f, '3 p, (a @ < , ) I ,  (fl /3)' ; E Q o ,  j E 
.&.a E Q ,  and /3E S1. 

The rnlbeddings i, . A ( A )  -- A ( A  3~ B )  defined by a +- a 2 1 m c i  i B  
A(B 1 - A(d @ t  B) defined by b - 1 & h , where we ~cientify a' 4 el wi th  i n  C. PI )' 
ctnd fl 2 /?' with (f, :!)', indurr a I;-linear m a p  

which is balanced. I t  then induces an  algebra hoinnmorphism 

which provides a cliiivrr isiirr~orphisin from the  quiver of A ( d  j i,h ACB) to tha t  of 
A(.4 @ k  B). 'Therefore, 19 is s~lget*tive. 

On  the o t l ~ e r  harid, using L t n ~ m a  1 1 ( 4 )  and co~npar ing the ~hmensions of 
A ( A )  &t A ( H )  and A ( A  @ r :  B), we obtain 

since A @ , B . ~  ak B = $,,,  PA(^) 01; P B ( ~ )  
AS a result, is an  isomorphism. 

5.6 Corollary. Let A and B be quadratic algebras without oriented cycle 111 

their quivers:Then ( A ( A )  gk A ( B ) ) !  is quasi-hereditary. 

Proof. Smce A a ~ l d  B 11ave no oriented cycle, -4 ar: B has no o n c ~ i t r d  cycle 
elther. Then so ~ Ioes  (zl g~ B)!. 

From 5.3 and 5 5 it follows tha t  the algebra 

is quasi-hereditary 

Acknowledgement. The  allihors would like to  thank Prof Sliar~xuc. LIU for 
help and r l~courage~nent  
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