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QUASI-HEREDITARY ALGEBRAS WHICH
ARE DUAL EXTENSIONS OF ALGEBRAS

£
BaNGMING DENG AND CHANGCHANG X!

Department of Mathematics, Beijing Normal
University, 100875 Beijing, P.R.China

June 28, 1993

Dedicated to Professor Xue-Fu Duan on his 80" birthday

Introduction.

It connection with the study of highest weight categories arising in the repre-
sentation theory of semisimple complex Lie algebras and algebraic groups Cline,
Parshall and Scott introduced in [CPS] the notion of quasi-hereditary algebras.
Many important algebras such as hereditary algebras, Schur algebras and algebras
to blocks of category @ which is studied in [BGG] are special classes of quasi-
hereditary algebras. Quasi-hereditary algebras can be defined in ring-theoretic
terms by the existence of a special sequence of ideals. These algebras have many
applications and appear quite common.

Suppose 4 is a quasi~hereditary algebra, then there is a partial order < on the
set, A of simple modules, and one studies the standard modules A = {A(A)|A € A}
Of main interest is the category F(A) of A-modules which have a A-filtration.
C.M.Ringel proved in [R1] that F(A) has relative almost split sequences. As a
notable example, one considers the Schur algebra ([G}]), in this case F(A) becomes
Just the category consisting of all modules which have Weyl module filtration and
1s studied by many authors (see [D], [E], and others).

One of the interesting questions on F(A) of a quasi-hereditary algebra is when
the category F(A) is finite (namely, there are only finitely many non-isomorphic
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indecomposable modules). The present paper provides an atterapt to investigate
F(A) for a class of quasi-hereditary algebras which are defined as dual extensions
(see below) of algebras without oriented cycle. These quasi-hereditary algebras are
indeed BGG-algebras and have exact Borel subalgebras (see [X]). Our main result
provides a useful reduction for these algebras with which one can decide whether
F(A) is finite even if the algebras themselves may be complicated (of wild type).
Moreover, if a quasi-hereditary algebra is the dual extension of a hereditary algebra
with radical square zero then we show that the relative Auslander—Reiten quiver
of F(A) is almost the same as the one of the given hereditary algebra.

The paper is organised as follows. In section 1 we recall some definitions and
include some basic results needed in the sequel. From section 2 to 4 we prove the
main results and give an explanation of our method. The last section contains
results on the quadratic dual of the quadratic BGG-algebra which is the dual
extension of a quadratic algebra without oriented cycle in its quiver.

Throughout the paper, algebras always mean finite—dimensional algebras over
an algebraically closed field & and modules always mean finitely generated left
modules, and notation on quivers is taken from [R2].

1.Preliminaries.

1.1 Let A be a finite~dimensional k-algebra. We denote by A-mod the category
of all finite—dimensional left A-modules. Given a class @ of A-modules, we denote
by F(©) the full subcategory of A-mod defined to be the class of all A-modules
which have a ®—filtration, that is, a filtration

0=MiCM_1C  -CMiCMy=M

such that each M, _,/M,;,1 <1 <t, is isormorphic to an objects in ©.

Let E(1), -+, E(n) be the simple 4-modules, one from each isomorphism class.
Note that here we have fixed an ordering of simple modules. Let P(i) be the
projective cover of E(i) and Q(i) the injective hull of E(i). We define A(3) to be
the largest factor module of P(#) with all composition factors of the form E(J) for
J <+ and call it a standard module. Dually, the so~called costandard module V(i)
is defined to be the largest submodule of @(#) with composition factors E(j) with
J <t. Let A be the full subcategory formed by all A(i),1 <1 < n and V the full
subcategory formed by all V(i},1 <'¢ € n. (Sometimes we denote A (respectively,
V) by A, (respectively,V4) in order to indicate the considered algebra A4).

The algebra 4 {or better the pair (4,A) ) is called quasi-hereditary if

(i) End 4(A(s)) & k for all 5, and

(1) Every projective module belongs to F(A).

The algebra 4 is called a BGG-algebra ({I]) if (1),(i1) and the following condition
(ii1) are satisfied:

(111) There is a duality § : A-mod ~—— A-mod which fixes simple modules.

1.2 Suppose A is a quasi-hereditary algebra. We will collect now some results
which will be needed in this context, proofs may be found in [R1].
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Lemma. (1} Exty(X,Y)=0forall X € F(A)and Y € F(V)and all t > L.
(2) For each ¢, there is a unique (up to isomorphism) indecomposable module
T@)e F(A)YN F(V) with the folowing exact sequences

0 — A(i) — T(i) — X(i) — 0
0 — Y (i) — T(i) — V(i) — 0

such that X@)e F(AQL),---,A(i=1), Y € F(V(1), -, V(i - 1)) and F(A)N
F(V) = add(@]_, T )

(3 ) Put T = @T(s), we call T the characteristic module. Then for every
A-module M € F(A), there is an exact sequence

0o M —Th—T — - —Ty—0

with T, € addT.
(4) Exty (A(¢),A(j)) =0 for all 1 > j and HomA( (1), (7)) =0forall i > j.

In particular, Hom 4 (F(A(2), -, &(n)), F(AQL),- - Az =1))) = 0.
{5) For each i and for each module M e F(A), there 1s a submodule AL’ of M
such that M' € F(A(D), -, A(n)) and M/M' € F(A(L), - A@i —1)}.

1.3 A special class of quasi-hereditary algebras is constructed in [X]. Let us
now recall the construction.

Let B be a finite-dimensional basic algebra over k. As usual we say that B is
given by a quiver Qg = (Qo, Q1) with relations {p;| i € Iy}, that is, we consider
the algebra kQ*/ < {p! | 7 € Iz} >, where Q* is the opposite quiver of Q and
the multiplication «@ of two arrows « and 3 means that o comes first and then d
follows (for the notation see [R2, 2] for details). For each a from i to j in Qy, let &'
be an arrow {rom j to . We denote by @] the set of all such o with « € Q;. For
a path a; -+ ay, we denote by {ay - a,, )" the path ], - a} in (Qg, Q}). With
this notation we may define a BGG-algebra.

Definition. Suppose that B is an algebra given by the quiver Q5 = (Qq, Q1)
with relations {p;| i € Iz}. Let A be the algebra given by the quiver (Qq, Q;UQY)
with relations {pi| i € I} U {p!|i € Ip} U {aB'| a,B8 € Q:}. Then it is a finite-
dimensional algebra over k.

If B has no oriented cycle in its quiver, we may assume that Qg = {1, -  n}
such that Homp(Pp(1), Pp(j)) = 0 for ¢ > j, then A is quasi- heredltary Further-
more, the standard A- modules are Ay(i) = Pg(i) fori € {1, - ,n}. We say that
4 15 the dual extension of B, denoted by A(B).

From now on, we suppose that B is a basic algebra without oriented cycle.

Since for this algebra A = A(B) one has a duality which fixes all simple modules,
it is in fact a BGG-algebra in the sense of [I]. For this BGG-algebra A obtained
from B we have the following properties.

1.4 Lemma. (1) B is a subalgebra of 4 with the same maximal semisimple
subalgebra and B is also a factor algebra of 4.
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(2) Let B’ be given by (Qq, @) with relations {p/] + € Ig}. Then B' is a
subalgebra of A with the same maximal semisimple subalgebra and B’ is also the
factor algebra of A4 modulo the ideal generated by {a* | @ € @,}. Moreover.
Vq(i) = Q_Br(l) for all +.

(3) The module 45/ is projective.

(4) dimg 4 = 3, (dimg Pg(3))2.

{5)Let u: B — A be the inclusion in (1). Then for each algebra-homomorphism
f: B — R, there is a homomorphism g : A — R such that f = pug.

Proof. By the construction of A4, the statements (1) to (3) and (5) are trivial.
The statement (4) follows from the following fact which can be proved by using
the BGG-reciprocity (see [CPS] or [I]):

Let A be a BGG-algebra with standard modules A{1), -, A(n). Then dimz A
= 3 (dimp A(E)2

To see whether a module M lies in F(A) we have the following

1.5 Lemma. Let M be an A-module. Then M € F(A) if and only if g M is
projective.

Proof. Let M be in F(A). Since A4(i),1 € ¢ < n, are projective B-modules,
one knows that M as a B~module is a successive extension of projective B~modules
and hence is a projective B-module,

Now assume that gM is a projective B-module. We shall show that A belongs
to F(A). Let gM' be a submodule of pM such that g M’ is a direct sum of all
direct surnmands of g M isomorphic to Be,. Then M' is also an A-module since
Be,, = Ae, = Ax(n). We may write gM =5 M’ &p M. Thus there is an exact
sequence

O———«aM'-——»M———-)M/M'—-—-«»O

in A~mod. Since M/M' = M" as B-modules, by induction, the A/4e, A-module
M{M' e F(A4(1), -, Aj(n—1)), where A = AJAe, A can be considered as the
dual extension of B = B/Be, B by 1.3. Hence M € F(A).

1.6 To compare two categories F{A4) and B'-mod, we consider the functors
F=44A%p —:B'-mod - A—mod and G = B}, ® — : A—mod — B'—mod. The
basic properties of these functors are formulated m the following lernma.

Lemma. (1) F is an exact functor.
(2) FB(1) = Ay (1), FPgi(i) & P,(i) for all 5.
(3) G(FM) = g M for each B'-module M.

Proof. (1) follows from 1.4.

(2) It is easy to see that B’ is an exact Borel subalgebra of A in the sense of
[K]. Thus (2) follows from the definition of an exact Borel subalgebra.

(3) Since G(FM)=p B, ® (A0 M)2 (D'osA)3p M2 B g MM,
the statement follows.
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1.7 Remark. From the definition 1.3 we know that the dual extension 4 =
A(B) of an algebra B without oriented cycle is always a lean quasi-hereditary
algebra in the sense of [ADL] since Cy = e4A¢; can be obtained from the quiver of
A by restricting it to the vertices {t,t+1, - ,n}, where e; = ey + €41+ - +en.

2. Reduction.

In this section we will use the theory of vector space categories to give a method
to determine whether F{A) is finite. In this way the question is reduced from a
bigger algebra to a smaller one. It turns out that this reduction is powerful when
one deals with the dual extension algebra 4 of an algebra having no oriented cycle
as in section 1.

Let us first recall some definitions.

2.1 Definition ([R2]). Let X be a Krull-Schmidt k-category and |- |: K —
k — mod an additive functor. The pair (K,|-|) is called a vector space category.
We denote by #(K,| - |), called subspace category of (K, |- |), the category of all
triples V. = (Vy, Vo, oy : Vo — |Vol), where V,, € £ —mod, V5 € K and vy is a
k-linear map. A morphism from ¥V — V' by definition is a pair (fq, f.), where
fo:Vo— V4 and f,: Vi, = V. such that foywv: = /ol

An additive k-category is called finite if there are finitely many isomorphism
classes of indecomposable objects.

If 4¢ is an algebra.over k, and R is an Ag-module, one may form the one-point

extension
Ay R
A= (5 1]

This algebra is denoted by A = Ag[R]. We denote by w the extension vertex of
4. Clearly, A—mod ~ U(A4dg—mod,Hom,,(R,—)). Dually, one has one-point
coextension [R]A, which is defined to be the following matrix algebra

k Homy (R, k)
0 Ao ’

Suppose Aq is a quasi-hereditary algebra and R € F(A4,). Then, by setting
Aglw)=(0,k,0), Aa(l) = A, (1), - ,A4(n) = Ay (n), the algebra A = Ag[R)]
becomes a quasi-hereditary algebra. Moreover, we have

2.2 Lemma. F(Ay) =U(F(A,, ), Homy, (R, -)).

Proof. Since R €°F(A,,) we see that P(w) € F(A,). For any object V =
(Vo, Vo, ) € A — mod there is the following exact sequence

0 — (V5,0,0) — (Vo, Vo, y) — (0,V,,0) — O

which shows that Vo € F(A4,) if V € F(A4). Conversely, if V = (Vg, Vo, w) €
U(F(A4,),Homy, (R, —)), one can again form the above sequence and knows from
(0,V,,0) & A, (w)li™¥e that V is an extension of (V5,0,0) € F(A,,) and a
module in addA 4(w). Hence V € F(Ay).
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2.3 Let D be a quasi-hereditary algebra with standard modules Ap(2),-- -,
Ap(n). Suppose that there 1s & quasi-hereditary algebra C which is a coextension
of D by a D-module such that Ap(¥) & Ac(4)/Cer1Ac(i) for ¢+ > 2, where 1 is
the coextension vertex of C. {Note that the simple C-modules have the ordering
Ec(1), -+, Ec(n)). Now we want to build a relationship between F(A¢) and
F(Ap) and compare these two categories.

Proposition. There is an exact functor n: F(Ag) — F(Ap) such that

(1) n 1s dense and full.

(2) If f: M — N is a homomorphism, then n(f) = 0 if and only if f factors
through add(Ec(1)).

(3) If n(M) = 0 for some indecomposable medule M € F(Ac), then M =
Ac(l) = Ec(1).

(4) For any M € F(A¢), if M has no direct summand isomorphic to E¢ (1),
then the module n(M) i1s indecomposable if and only if M is indecomposable.

(5) Given two indecomposable modules M and Ms; in (A ), they are isomor-
phic if and only if n{M) and n(Mz) are isomorphic.

(6) If R is a module in F(Ac) and contains no direct summand isomorphic to
Ec(1), then Homg (R, M) 2 Homp(n{R), n(M)) for all M € F(Ac).

Proof. Note that DD is the factor algebra of € modulo the ideal Ce;C and
we can identify D with C/Ce;C. Put n(M) = M/Ce;M for all M € € — mod.
Since Ce; is a simple projective module, Ce; M is just the maximal semisimple
submodule of M with each direct summand isomorphic to £ (1). This implies
that for each f: M — N one can define n{f) to be the induced map from n(M)
to n(N) by f:

0 CesM M 2 (M) s 0
l J_f lw)
0 CerN N — p(N) —— 0

Clearly, 7 is a well-defined functor from C-mod to D-mod.

Since Ce; is a projective C-module and 7 is naturally equivalent to the functor
(C/CeyC) @c —, we see that 1 is an exact functor which sends An-(i} to Ap{:)
for all « > 2. Hence if M € F(Ap) then n(M) € F(Ap).

(1) nis dense. Indeed, let pX € F(Ap). I p X = Ap(n) then there is nothing
ro prove. So we assume that 1if p X" has Ap-composition factors of the form Ap(y)
with 7 < j < n then there i1s a module ¢ M € F(A(¢) such that n(M) = X.

Using nduction, we shall prove that if pX € F(Ap) with Ap- composition
factors of the form Ap(j), 1 —1 < 7 < n then we can find a module M € F(A:)
with n(AM) = X.

Let X be such a module in F(Ap). Then by Lemma 1.2 (5), there exists a
submodule X, of X with Xy € F(Ap(7),- - ,Ap(n)) such that X/ Xy € F(Ap(v—
1)). Hence we have the following exact sequence

8' 3
0 > Xa X Ap(i =1} ——
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with { = [M : Ap(i — 1)], the number of factors Ap(7 — 1) in a Ap- filtration of
M.

By induction, there is a module My € F(A¢) such that (o) = Xo. Since
ExtZ(Ac(i —1),Bc(1)) = 0 by 1.2 (1), we may form the following diagram in
C-mod:

CeyMy ———= Ce1 M,
0 —— My ———m M —— Ag(i—1) —— 0
[ | |
u § s .
0 —— Xo —— X' —— Ac(i—1)\ —— 0
| - I

8’ I}
¢ —— XO — DX — AD(Z—].)I —_ 0

where + is the canonical projection, and where X' is the pullback of # and v and
also the pushout of . and z. (Note that for My € C-mod there holds Ce M, 2
Ec{1) = ker(v)). Then we may form the following diagram

0 —— Ce;Mo M’ Cele s (0
0 — CelMo M X’ — 0

with M’ a pullback and M' & Ec(1)'*™. Since M/M' = pX, we get that
M' = CeiM and n(M) = pX. This shows that n is dense.

Suppose My, M, € F(Ac) and' f : n(M1) — n(M2). Applying Home (M, —)
to the exact sequence (in C~mod)

0 Ce M, + M, n(M;) —— 0,

one obtains the {ollowing exact sequence
- Homg (M, M3) — Home (My, n(M;)) — Extl(M,, Ce, M) — -

Since CesM; & Ec(1)™ € F(Ve) and Extl(F(A¢), F(Vc)) = 0, one has
Extl (M, Ce;M;) = 0 and the following commutative diagram:

0 —— Ce,AIl AI1 1](]\/[1) — 0

l 11” lf

0 —— CerM; . M, n(My) —— 0
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This shows that there exists a homornorphism f' € Home (M, My) with n(f') = f
by the definition of . Hence n is full.

(2) This is trivial.

(3) Suppose M is indecomposable and (M) = 0. Then M = Ce;M = E. (1)
and (3) follows.

(4) If M is indecomposable with n(M) # 0 then n{M) is indecomposable since n
is full. Now let M be a module in F(A. ) which has no direct summand isomorphic
to Ec(1). Suppose that n(M) is indecomposable. We shall prove that M is also
indecomposable. Taking an f € Endc (M), then n(f) is invertible or nilpotent. If
n{f) is invertible then there exists a homomorphism g’ € Ende(n(M)) such that
n{f)g' = 1. By (1), there is an endomorphism g of M such that n(g) = 3’ and
n(fg) = n(f)g'. Hence n(fg —1) = 0 and fg — 1 factors through Ce1 M, say
fg~1=hu, where h - M — CeyM and u: CesM — M. If fg—1# 0 then
the image of h is nonzero and M contains a direct summand isomorphic to Im(h)
since Cey M is projective semisimple module. This means that M has a direct
summand isomorphic to E¢ (1), a contradiction. Hence fg = 1. If (f) is nilpotent
then there is a natural number m such that f™ factors over Ce; M. Similar to the
above discussion we can show that f™ = 0. Hence M is indecomposable.

(5) Similar argument as in the proof of (4) gives the assertion.

(8) follows from (1) and (2).

Now the functor 5 induces a functor @ : U(F(Ac),Home (R, —=)) — U{F{Ap),
Homp(n(R),~)), where R is a module in F(Ac).

2.4 Lemma. Suppose R is a module in F(A¢) and has no direct summand
isomorphic to Ec(1). Then the functor n: F(Ac) = F(Ap) induces a canonical
functor @ : U(F(Ac) Home (R, -)) = U(F(Ap), Homp{n(R), —)) such that

(1) @ is exact, full and dense.

(2) I V € U(F(Ac) Homg(R,-)) is indecomposable with &(V) = 0, then
V = (Ec(1),0,0).

Proof. For each object V = (Vo,V,,w) € U(F(Ac), Homg(R, —)) define
@(V) = (n(Vs), Vo, ¥ ), where v% is the composition of vv and np,v, : Homg (R, Vp)
~ Homp(n(R),7(Vy)). To each map (fy, f,) define ®(fo, fu) = (n(fo), fu). Tt is
easy to see that ® is a well-defined functor.

(1) Since n is exact and dense, & is exact and dense too. Now we show that
® is even full. Since 7 is full, given any homomorphism g : n(Vy) — 5(Vy), we
can find a homomorphism fo : Vo — ¥y such that n(fo) = g. Let (n(fo), f.) be
a homomorphism from (n(Vo), Vo, %) to (n(Vy), V.., 7%+). Then we consider the
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following diagram:

n&8,v,

,
V, —— Hom¢(R, V,) —— Homp(n(R), n(Vo))
lfw lﬂomc(ﬂ.)‘o) lHomD(n(R),n(fo))

V! —— Homc(R,Vy) —— Homp(n(R), n(Vy))

Yy ’ln,vo’
Put ¢ = yyHome (R, fo) = fuyv:, then zngryy = 0 by definition. According to 2.3
(6), nr,v; is an isomorphism, thus z = 0 and the first square of the above diagram
is commutative, This implies that & is full.

(2) I{ (n(Vo), Vu,vv) = 0 then V, = 0 and n{Vy) = 0. This means V) = Ec(1).
Since V is indecomposable, V5 & Ec(1) and V 2= (FE¢(1),0,0).

Combining 2.3 and 2.4 we have

2.5 Theorem. Let C be a quasi-hereditary algebra with standard modules
Ag(1),--+, Ag(n) such that

(1) C is the coextension of a quasi~hereditary algebra D with standard modules
AD(Z), R AD(n), and

{(2) For 2 < j there holds Ap(j) & Ac(f)/CerAc(f). Then

(1) F{(Ac) is finite if and only if F(Ap) is finite.

(11) I R is a module in F(A¢) which does not contain a direct summand iso-
morphic to Ec(1), then U (F(A¢), Home (R, —)) is finite if and only if W(F(Ap),
Homp(R/Ce R, —)) is finite.

Proof. (1) follows from 2.3 and (i1) follows from 2.3 and 2.4.

This result shows that in order to know whether F(A¢) is finite one may verify
if F(Ap)is finite. In the next section we apply this result to give a reduction to
determine the finiteness of F(A) for a class of quasi-hereditary algebras.

3. Application.

As an application of the results in section 2 we study in this section the class of
quasi-hereditary algebras which are the dual extensions of algebras whose quivers
have no oriented cycle. We reduce the determination of F(A 4) to that of F{Ap)
with D the dual extension of a factor algebra of B. In such a way one can determine
whether F(A 4) is finite.

Let us fix some notation. Let B again be a basic algebra without oriented cycle
in 1ts quiver. Since for the dual extension algebra A of B the standard modules
{A400)] 1 € ¢ < n} are just the indecomposable projective B—modules, we may
always assumne that the vertices of the quiver of B are ordered in such a way that
Homp{Pp{z}), Pg(j)) = 0 for ¢« > 7. Hence the vertex 1 is always a sink in the
quiver of the algebra B. Let «y, -+ ,a,, be all the arrows in the quiver of B
ending at the vertex 1. We denote by D the dual extension of B = B/Be;B.
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Now we try to use 2.2 to describe our category F(A 1), From this point of view
we introduce the following new algebra Aq.

By the construction of A, an A-module M can be always regarded as a module
over Ag, where Ap is obtained from 4 by decomposing the vertex 1 in the quiver
of 4 into 1 and !’ = w such that

(1) a! starts at w and there 1s no any other arrow between w and j € Qq, and

(2) all other arrows in the quiver of A remain in that of 4;, and

(3) all relations of 4 are just the relations for Ao,

The quiver of 4, looks like the following

W fa_ oy

N
b2
e nly

Conversely, any module over 4g can be regarded as a module over A.

Denote by ' the full subalgebra of Ay with the vertex set {1,--- ,n}. Since
radP,, (w) =radP4(1), we see that A is the one—point extension of the algebra €
by the C-module R =radP4(1) and C is a quasi-hereditary algebra with standard
modules Ac(l) = Ec(1) = A4(1),- - ,8c(n) = A4s(n). (Note that Po(l) =
Ec(1),Pa(y) = Palj) for j # 1). Also, Ag is a quasi-hereditary algebra with

standard modules A 4, (w) = E4,(w), Aa,(3) = A4(4) for i # w. Furthermore, we
have the {ollowing observation.

H

3.1 Lemma. F(A,, )= F(A)VE, (w)

From this lemma we know that the main question is to determine F(A 4, ). By
2.2, this is equivalent to the investigation of #(F(A¢), Home (R, —)). Since the
conditions in 2.3 are satisfied by our algebras C and D, we can apply the results
in section 2 to these algebras to reduce the investigation of F(A,4) to F(Ap),
namely, we have the following result:

3.2 Theorem. F(A,) is finite if and only ifZ](J-'(AD)7 Homp{R/Ce R, —)) is
finite.

Thus one can use the well-known results on the vector space category or repre-
sentation theory of finite partially ordered sets as a tool to study the subcategories

F(A4). In this case the following lemma may be useful.

Lemma ({GR], sect. 4.7). If the category I](K,] - |) is finite, then for each
indecomposable object X € K, the right module [X| over Endx (X ') is uniserial.

To explain our reduction let us consider the following examples.

3.3 Examples (1) Let 4 be given by the quiver
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@ Y
o v

g’ ﬁﬂ
4

with aa' = 88' = 7' = av = o = Ba’' = va'=5vy = +'P" = 0 which is the dual
extension of B given by

o Y
3 —s 2 — 1
T" ay =By =0
4

By reduction, the quiver of D 1s

7

a i 33 —
3 - 9 ﬁ . 4 with aa' = 38" =0

and the corresponding subspace category is U(F(Ap), Homp{Ep(2), =), where
Ep(2) denotes the simple module corresponding to the vertex 2.

Consider Homp(Ep(2), Pp(2)) & k? as right Endp(Pp(2))-module which is an-
nihilated by the radical of Endp(Pp(2))), thus it is a semisimple right Endp(Pp(2))-
module and is not uniserial. By the above lemma, ¥(F(Ap ), Homp(Ep(2), =)
is infinite. It follows from 3.2 that F(A,) is infinite. In fact, the modules

My = (M My My, My, a,a', 8,8 ,v,9,) for A € k given by

(k2 k% &, ks [1 0 0], [S] [o01], H [3?], [s23])

o 00

)

provide a family of infinitely many non-isomorphic indecomposable modules in
F(A4). (One can use 1.b to decide that My, A € k, have really a A 4—filtration).
(2) Let A be given by the quiver

a Y
l == § —— 4
%’ ¥ aa' = ;3[)" = 71’ =0
A

ya=yf =o'y ="' =0

w2

It is obtained from the algebra B:

] — 3 — 4
lﬂ ya=98=0

2
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Then the quiver of D looks like

AN AN [ S S-S B
2773724 B =y =8 =74 =0
8 v

and R/Ce;R = Ap(3).
The Auslander-Relten quiver of F(Ap) has the form

5

X

1 2 .
where the indecomposable modules are displayed by their Loewy factors and the
dotted vertical lines should be identified.

It is easy to show that U(F(Ap) Homp(Ap(3),—)) is finite. Indeed, the in-
vestigation of this subspace category can be easily converted into that of a poset
of finite type ([GR], sect. 4.1). As a consequence of 3.2, F(Ap) is finite. In fact,
there are 17 isomorphism classes of indecomposables in F(A4).

3.4 Proposition. Let A, be the algebra given by the quiver

@y @y “L;l
1752723 -n—=1"n

aly =iy aln_y

with ;&) = 0,1 < i < n—1, which is the dual extension of the Dynkin diagram
A, . Then F(A4) is finite if n < 3, and infinite if n > 3.

Proof. The cases n = 1,2 are trivial. In case n = 3, the Auslander—Reiten
quiver of (A 4,) has the form



Osi s/ 5 Decenper ZUUo

[Untversity of Hong Kong Libraries| Al:

bowni oaded By:

QUASI-HEREDITARY ALGEBRAS 4729

where the dotted vertical lines are identified. Then F(A 4,) is finite.
In case n = 4, by deleting the vertex 1, we obtain D given by

—_— 1 t
278374 aza, = azaz = 0.

The subspace category U(F(Ap),Homp(Pp(2),—)) is infinite since the space
Homp (Pp(2), Pp(2)) = k* considered as right Endp(Pp(2))-module is not unise-
rial, for dimrad(Endp (Pp(2))) = 2 and rad®*(Endp(Pp(2))) = 0. Hence F(A4,)
is infinite.

The general case n > 4 follows directly from the case n = 4. The proof is
finished.

4. A special case.

In this section we investigate the full subcategory F(A) of the dual extension
A of B in the special case where B is a hereditary algebra with rad?{B) = 0. We
shall see that in this case F{A) behaves as the module category of the algebra B
Namely, we prove the [oHowing

4.1 Theorem. Let B be a hereditary algebra with radical square zero and A the
quasi-hereditary algebra which 1s the dual extension of B. Then the Auslander—
Reiten quiver of F(A 4) has the same number of vertices as that of the algebra B,
and every lrreducible map in B-mod induces an irreducible map in F(A 4).

Proof. Since B' as well as B is hereditary, the projective dimension of a simple
B'-module is smaller than 2. Hence proj.dim A 4{:) < 1 for all z by 1.6. It follows
from [DR] that F(A ) is closed under submodules. Let Q be the ideal of 4 such
that B' =2 4/Q. Then rad(A) @ = 0 since rad?(B) = 0. To prove the Theorem
4.1, we demonstrate that the functor A @+ — 1s dense and preserves irreducible
maps.

4.2 Lemnma. The functor F: B'-mod-— F(A4) is dense.

Proof. Clearly, the functor maps B'-modules into F(A,) according to 1.6.
Suppose M € F(A4). We will show that there is a B'-module X such that
F(X) & M. Since F(A,) is closed under submodules, QM lies in F(A ). Note
that the module QM is a semisimple A-module. Thus each simple direct summand
of QM belongs to F(A ). It follows from A being a BGG-algebra that the simple
direct summands of QM lie also in F(V 4). Hence Exty (F(A4), QM) = 0. From
the construction of A we know that A = B' @ Q and there is an exact sequence

0— Qg+ — A — B' — 0
in B'-mod. Applying —®p:(M/QM) to this sequence, one gets an exact sequence
TorB'(B', M/QM) —Q @5 (M/QM)
— AQ®p (M/QM) — B' @p (M/QM) — 0.
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This gives a short exact sequence in A-mod:
00— Q&p (M/QM) — A®p (M]QM) 25 M/QM — 0

since Tor®'(B', M/QM) = 0. If we apply Hom, (Y, ~) with ¥ € F(A,) to the
above sequence then we get

0 —Hom, (Y, Q @5 (M/QM)) — Hom, (Y, 4 @5 (M/QM)) -
— Hom, (Y, M]QM) — ExtLY(Y,Q ®a (M/QM)).

Note that with A@ g/ (M/QM)) also Q@p/(M/QM)isin F(A,), and hence Q@ 5
(M/QM) is a semisimple module and belongs to F(V4). Thus Ext}(Y,Q ®5
{M/QAM)) = 0 by 1.2 (1) and Hom 4(Y, @} is surjective. This yields that a is an
F(A 4)-approximation of M/QM. (Recall that a morphism f:Y — M with ¥
in a full subcategory € of A-mod is called a right C-approximation if Hom4(Y', f)
is surjective for all Y/ € C). On the other hand, we have the natural exact sequence
in A-mod:
0~ QM — M 24 M/QM — 0

Without loss of generality, we may assume that M is indecomposable. Then 8
is right minimal. (A homomorphism f: ¥ — M in A-mod is said to be right
minimal if an endomorphism ¢ : Y — Y 1s an automorphism whenever gf = f).
Similarly, one can see that 3 is also a right F(A 4 )-approximation. Hence, 8
is a minimal right F(A 4)-approximation for M/QM and we have the following
commutative diagram:

B
0 — QM —_— M — M/{QM — 0

! /| H

0 —— Q@s (M/QM) ——— A@p (M/QM) —— M/QM —— 0

! g |

B
0 — QM —_— M — M/QM —— 0

Since 8 = (fg)B, we know that fg is an automorphism of M. Hence M is a direct
summand of AQp (M/QM). Let M{QM = D, X;, where X are indecomposable
B'-modules. Then A@p (M/QM) 2 @; A®p X, with A®p: X, indecomposable
by 1.6 (3) and there is an X; such that F(X;) = M, and therefore the functor is
dense.

4.3 Lemma. If f: M — N is an irreducible map between indecomposable
B'~-modules, then 4 ®p f is an irreducible map in F(A4)
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Proof. If A ®p f factors through a module X' € F(A ) then, by Lemma 4.2,
we may write X' = A ®p' X with X a B'-module:

AQp M ——‘ AQp N

\ %

A@p X

Applying the functor G = B' @ 4 — to this commutative diagram we have

Hence B' @4 b is split mono, or B’ ®.4 ¢ is split epi. And therefore h = 4 @5
(B'®.4 h) is split mono, or g = A ®p' (B’ ®4 g) is split epi. Thus the lemma
follows.

Now the Theorem 4.1 follows immediately from 4.2, 4.3 and 1.6.

4.4 Remark. The condition that B has radical-square-zero in the theorem
is necessary. Let B be the algebra given by the quiver 1 «— 2 «— 3. Then the
corresponding BGG-algebra 4 has F(A,) with 9 indecomposable modules while
the algebra B has only 6 indecomposable modules (c¢f. 3.4). Also the example 3.3
(1) shows that the heredity of B is necessary.

5. Quadratic duality.
In this section we discuss quadratic algebras and their dual quadratic algebras.

Especially, we prove that the dual quadratic algebras of the dual extensions of
quadratic algebras B without oriented cycle in their quivers are quasi—hereditary.

5.1 Definition. The algebra 4 = kQ/ < R > is called quadratic if R is a
subset of the space spanned by all paths of length 2
Each quadratic algebra 4 = k¥Q/ < R > has a natural Z-grading

A=A A DA4,d
where A; 1s the space generated by the residual classes of paths of length . We
simply identify R with a subset of Ay ®4, A;, and the space spanned by such
subset is denoted by R(4).

For convenience, we write 4 as
A = {Al,R(fi) C Al ®A° A]}

Then A = T(A41)/ < R(4) >, where T(A;) is the tensor algebra of A, over 4.
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A morphism f : A — B of quadratic algebras is an algebra homomorphism
preserving gradings.

Let 4 = kQ/ < R >= @, Ai be a quadratic algebra. Regard the k-dual
space A% of 4; as Ap-bimodule with the action (afb)(v) = f(buva), where a,b € Ao
and f € AY. The dual quadratic algebra 4’ is defined by

4" e {4 R(A)E C (4 @4y A1) = 4 B4, 47)

here we identify (A, @a, 41)" with A} ®4, A} by sending (f @ g)* to g* 2 f*.
More precisely,

A =TUAN/T
where I is the ideal of T(4}) generated by R(4)*, in other words,
A'=kQ*/ < R4 >

where Q% = Qo and Qf = {a"| a € @;}. The construction of dual quadratic
algebras yields a functor

ViQA — QAT A A

which maps a morphism f : 4 — B to a morphism f': B' — A’ induced by
Iy« By — A7 (see [M]).

5.2 Lemma([M]). The functor ! is an equivalence and '* = idg 4. where idy .
denotes the identity functor.

Let 4 = kQ/ < R >=@,,, 4, be a quadratic algebra. Recall that by A{4)
we denote the dual extension of 4 (see section 1) By construction,

Al4) — {4, @ AL RAMA) C (4 & A Ty, (4 & A)))
where 4] = F.¢0, ka’ and R(A(4)) 1s the space spanned by R(4) U R(4)' U
{ap'a.3 € Q1}.
The correspondence 4 — A(4) gives rise to a functor
AIQA— QA Avr— A(A)

Then we have the following

5.3 Theorem. For each quadratic algebra A = kQ/ < R >= @ip04i, there is
an isomorphism n(A4) : A(A) — A(AY).

Proof. By construction, the algebra A(A) is given as {ollows:

A(A) = {4134, RIAA) = RIA)BR(AY B A18 4, 4] C (i d)Ta, (kb A}
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where R(4) = {2, Aol j! |52, M3 ai € R(A)}. Therefore,
A) = {1 34)) = 43841 R(A(4)) = RIA(A) C ((ArdAD@(A1347)" )
Similarly, 4° & {4%, R(4)1 C (4, @ 4:)*} and

A(4') = {47 & AT, RIA(AY) = RIATT & (R4 6 4] © 4]
C (AT 4])@ (4] & 47 )}

where A;' & A;’ D(R(AWY = {Z, Hiuy | Z Hiviul € R(AY: pj €k}
Set )
foAle A — Al e 4

D xal, Yot — (3 Mad Y wid)
1 ) 1 )

Then f is an dg-linear map such that f@ f(R{A{4)")) = R(A(4")) and it induces
the wanted 1somorphism n(A4).
Indeed, the isomorphisms n{4) give rise to a natural isomorphism 5 A — A!
Let us now give an example to explain 5.3 before we go further.

5.4 Example. Let A be the dual extension of the path algebra of the quiver

Q=(Qo 1)

3 —— 2 —— 1
d
4

modulo the ideal generated by R = {a~, 8v}.
Then A{A4)" and LA(A') are, respectively, the path algebras of the following
quivers with the relations

¥ 1. . .r

X Y
1 :—:_: 2 ‘—- 3 1 | eemsnm———t > 2 o > 3
4 v *
6 ﬂ/,, and ﬂ’ﬂf””
4
aa’ = 33 ="y =0 a'at = =y =0

Obviously, they are isomorphic.
Now we return to arbitrary algebras defined by quivers and relations.

5.5 Theorem Let 4 =kQ/ < R>and B=kS/ < T >,and Q, S have no
oriented cycle. Then A(A) @ A(B) ~ A{A @ B).
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Proof. Note that the quiver of 4 @ B consists of the vertices = = f, and
arrows « ® ¢, f, & . where ¢, fj are the idempotents of 4 and B corresponding
to vertices i € Q, 7 € §, and a, 3 are arrows in Q and $, respectively

By coustruction, the quiver of A(A @, B) has the same set of vertices as that
of A& B, and it consists of arrows a @ ¢,, f; 28, (a® &), (f, @ 8)Y (€Qo,jE
Sp.a €Q, and 3€ S5,

The embeddings 14 : A(4) — A(A ®; B) defined by a — a2 1 and 15
AB) — A(A @t B) defined by br— 1® b, where we identily a' e, with {age )
and f; 2 A" with (f; € 3, induce a k-linear map

T A(4) x A(B) — A(A @4 B)

(a,b) = 14(a)-i5(b)

which is balanced. It then induces an algebra homomorphism
b A(4d) @ AB) — A(A 21 B)

a@ b ¥(a,b) = is(a) ig(h)
which provides a quiver isomorphism from the quiver of A{A) &y A(B) to that of
A(A @1 B). Therefore, ® 1s surjective.

On the other hand, using Lemma 1.4 (4) and comparing the dimensions of
A(A) & A(B) and A(A ®p B), we obtain

dimgA(4) @ AB) = dimpA(4) - dimg AB) = (Y dimPa(i))( ) dimiPp(j))
i j
= Z(dimkPA(i)dixllkPB(.j‘)')Q = Z(dimk(P,,(i) S Pey))?
W i1

= dun; A(A @ B)

since ag,pA 91 B = @, ; Pa(i) @k Ps(J).
As a result, $ is an isomorphism.

5.6 Corollary. Let 4 and B be quadratic algebras without oriented cycle in
their quivers.’ Then (A(A) % A(B)) is quasi-hereditary.

Proof. Since A and B have no oriented cycle, 4 ®; B has no oriented cycle
either. Then so does (A & Br)!.
From 5.3 and 5.5 it follows that the algebra

(A(4) @ A(B)) = (A(A @ B))' ~ A((4 &4 B))
is quasi-hereditary.
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