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Abstract. For each finite poset, we associate it with a family M of matrices and
define the corresponding M—twisted double incidence algebra which is a generalization
of the construction given by Dyer. In the paper we mainly study the quadratic dual
and Ringel dual of the M—twisted double incidence algebra. We prove that if the
given poset is a tree then its M-twisted double incidence algebra is a BGG-algebra
and the Ringel dual can be determined in detail (with some natural restriction on
matrices). Moreover, we show that in the tree case with all matrices non-zero the
processes of forming Ringel duals and quadratic duals of M—twisted double incidence
algebras, respectively, commute with each other.

Introduction

In his study of Kazhdan—-Lusztig—Stanley polynomials with interpretations in the represen-
tation theory of finite dimensional quadratic algebras, Dyer introduced in [4] for certain
class of posets, including Bruhat intervals or face lattices, families of finite dimensional
algebras, and proved that these algebras have many nice properties, and in particular,
satisfy the main conjecture mentioned in [4, 1.6]. The algebras constructed from posets
satisfying the conditions in [4] are quasi—hereditary algebras with dualities which fix simple
modules. Such algebras are called BGG-algebras (see [9], and [3]). It is well-known that
each block of the category O introduced by Bernstein, Gelfand and Gelfand in [1] is equiv-
alent to the module category of a finite dimensional BGG—algebra such that its quadratic
dual algebra is also quasi—hereditary. Quasi—hereditary algebras have been introduced by
Cline, Parshall and Scott in order to describe the structure of certain finite dimensional
algebras which arise naturally in the representation theory of semisimple complex Lie al-
gebras and of reductive algebraic groups, and then are ring—theoretically investigated by
Dlab and Ringel in [5]. Recently, Ringel [11] associated with each quasi-hereditary algebra
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A another quasi-hereditary algebra R(A) which we call the Ringel dual of A. Being the en-
domorphism algebra of a generalized tilting module, the Ringel dual has many applications
in the study of symmetric groups and Schur algebras (see [8]).

The main objective of the present paper is the study of Ringel duals and quadratic duals
for a class of quasi—hereditary algebras which are defined to be twisted double incidence
algebras of posets as well as of the relation between these two dualities.

First we simplify the construction in [4] and construct for any finite poset a family of
finite dimensional algebras, here we do not require any restriction on posets and labellings.
Since the labellings in our paper are families of matrices, we call them matrix labellings.
Of course, if the given poset and the labelling satisfy all conditions in [4, Sect. 3], then
our construction yields the same algebra as in [4] whose quasi-heredity is proved by Dyer.
(Note that the algebras in [4] are a special class of a much larger class of algebras studied
by Dyer in a big program.) In general, the algebras we constructed are not always quasi—
hereditary. However, we prove that if the Hasse diagram of the poset is a tree then the
constructed algebra 1s quasi-hereditary. Since in this case all the matrices are symmetric,
the defined algebra is even a BGG-algebra.

Let X be a finite poset with a matrix labelling M. We consider the defined algebra
A(x,my, and we call it the M-twisted double incidence algebra of X. To describe the
quadratic dual of A(x ), we first give a sufficient and necessary condition for A x ) to
be a quadratic algebra, and then introduce a new finite dimensional algebra B(x 3y which
is again defined by using the labelling poset X. One of our main results, Theorem 2.9, says
that if A(x ) is quadratic then the quadratic dual of A(x ps) is of the form B(xor, —psty.
Usually, the algebra B x ar) is not a quasi-hereditary algebra. However, in case X is a tree
(namely, the Hasse diagram of X is a tree) or X satisfies the conditions in [4, sect.3], the
algebra B(x pr) becomes quasi-hereditary. For Ringel duals as well as the relation between
Ringel duals and quadratic duals we concentrate mainly on the case when X is a tree.
The main results are 4.6 and 5.8. Namely, in good cases (if X is a tree and all matrices
are invertible), the processes of forming the quadratic dual and the Ringel dual of A(x
respectively, commute with each other.

We organize the paper as follows. In section 0 we recall some basic definitions and facts.
In section 1 we generalize the construction in [4]. Section 2 is devoted to the description of
quadratic dual of A(x ar). In order to prove 4.6 and 5.8, we discuss in section 3 the Borel
subalgebra and A-subalgebra in the sense of Konig. As a byproduct, we have an upper
bound for global dimension of A(x ar) if it is quasi-hereditary. Using the results in section
3 we prove the main results in the last two sections.

0. Preliminaries

0.1 Let A be a finite dimensional algebra over an algebraically closed field k. We will
consider finitely generated left A—modules, maps between A-modules will be written on the
right side of the argument, thus the composition of maps f : My — My and g : My — M;
will be denoted by fg. The category of all finitely generated modules will be denoted by
A-mod. Given a class © of A-modules, we denote by F(0O) the class of all A-modules
which have a ©-filtration, that is, a filtration

O=M,CMyC---CM i CMy=M
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such that each factor M;_1/M; is isomorphic to an object in © for 1 <7 < t. For a module
M € A-mod, we denote by add(M) the full additive subcategory of A-mod consisting of
all finite direct sums of direct summands of M.

Let A be a finite poset in bijective correspondence with the isomorphism classes of
simple A-modules. For each A\ € A, let E(\) be a simple module in the isomorphism
class corresponding to A and P(\) (or P4()\)) a projective cover of E()\) and denote by
A()N) the maximal factor modules of P(\) with composition factors of the form E(pu),
p < A. Dually, let Q(\) (or @a())) be an injective hull of E(\) and denote by V() the
maximal submodule of Q(\) with the composition factors of the form E(u), p < A. Let A
(respectively, V) be the full subcategory of all A(\), A € A (respectively, all V(A), A € A).
We call the modules in A the standard modules and the ones in V the costandard modules.

The algebra A is said to be quasi-hereditary with respect to (A, <) if for each A € A
we have

(1) Enda(A(N)) = k;

(ii) P(\) € F(A), and moreover, P(\) has a A-filtration with quotient A(p) for p > A
in which A()) occurs exactly once.

For a quasi-hereditary algebra A with respect to a poset A we call the elements in A
weights and A the weight poset of A. By (A, A) we denote a quasi-hereditary algebra A
with the weight poset A.

If a quasi-hereditary algebra has a duality ¢ which fixes simple modules, we call it a

BGG-algebra (see [9], [3]).

0.2 The usual (and equivalent) definition of quasi-hereditary algebras uses the notion of a
heredity ideal. A heredity ideal of an algebra A is an idempotent ideal I, with I(rad(A))I
= 0, and such that 4I is a projective module (or, equivalently, I4 is a projective right
module). A chain of ideals

A=L 2L 2---21,=0

is called a heredity chain provided I;_1/I; is a heredity ideal of A/I;, for 1 < t < n.
A finite dimensional algebra is quasi-hereditary if and only if it has a heredity chain.
Note that a heredity chain may always be refined so that for every ¢, the indecomposable
summands of a fixed module 4(I;—1/1I;) are all isomorphic, say isomorphic to some A(t),
and then these modules are just the standard modules. Conversely, given an algebra A
which satisfies the conditions (i) and (ii), then for every ¢ there exists a maximal left ideal
I, of A which belongs to F({A(t + 1), -+ ,A(s(A))}), where s(A) is the number of the
isomorphism classes of simple A-modules, it clearly will be a two—sided ideal, and, in this
way, we obtain a heredity chain (I;); for A. Note that the A/I;-—modules are just those
A-modules which only have composition factors of the form E(¢), with 7 < t.

0.3 To check whether an ideal in A is a heredity ideal one may use the following result

due to Dlab and Ringel.

Lemma [5]. Let A be a finite dimensional k—algebra and I an ideal generated by the
idempotent e in A. If e(rad(A))e = 0 then Al is projective if and only if the multiplication
map

Ae (}} eAd — AeA
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18 bijective.

0.4 Now we recall the definition of quadratic algebras and their quadratic duals (see [2]).
Consider a k—algebra Ay = k™. Let A; be a finite dimensional Ay—bimodule, and form

the tensor algebra T4, (A1) := @NT"(Al) over Ay, where T"(A;) := A1 @4, -+ @4, A1
ne

denotes the n—fold tensor product (and T°(A;) = Ag). An algebra of the form A =
Ts,(A1)/ < R(A) >, where < R(A) > is the two-sided ideal of T4,(A1) generated by
some Ag—subbimodule R(A4) of T?(A;), is called a (basic) quadratic algebra.

Regard the dual space A7 = Hom(A;, k) as an Ag—bimodule with the action (v)(afb)
= (bva)f, where a, b € Ay and f € A¥. The quadratic dual of A is defined by A' :=
Ta,(A%)) < R(A)* >, where R(A)'L is the annihilator R(A)* = {f € A} @4, A} |
(R(A))f =0} of R(A) (we identify (A ®a4, A1)* with A} ®4, AT by sending (f ® ¢)* to
9 @ ).

0.5 We fix some notation and terminology used throughout. For a finite poset X we denote
by |X| the cardinality of X, and write z <y (or y>=x) to indicate that z < y and that
there is no z € X satisfying * < z < y. For z, y € X with < y the closed subinterval
[z, y] is defined to be the set of all z € X with # < 2z < y. A chain from z to y of length n
is a sequence © = ¢ < 1 < -+ < ¥, = y of elements in X. A maximal chain of length n
from z to y is a sequence r = x¢g < 1 < -+ <z, = y. The minimum (resp. maximum) of
the lengths of all chains from x to y is called the minimal (resp. maximal) length of [z, y].

We denote by k™*™ the set of all n x m matrices over k and by M? the transpose of a
matrix M.

1. Definition of algebras A x i

In this section we define for any finite poset X a family of finite dimensional algebras over
an algebraically closed field k. Our construction is a generalization of that given in [4] and
includes some special cases in [12]. We prove that A(x ) is quasi-hereditary if the Hasse
diagram of X is a tree.

1.1 Let k be an algebraically closed field and X a finite poset. We consider each closed
subinterval [z, w] of X with minimal length 2. Suppose y1, -+, Yy, are elements in [z, w]
such that z < y; <w, 1 <1 < n, are all maximal chains from z to w of length 2, i.e. the
Hasse diagram of [z, w] has a subdiagram of the following form

Y1
T Yi w

Yn
and such a diagram is called a mesh diagram of  and w. With such a mesh we associate

a matrix M,(z,w) € k"*", say

Mn(wi) = (a(x’W))inIj :

YiYj
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Then we say that X is labelled by matrices, denoted by (X, M), where M is the set of all
the labelling matrices, and call M a matrix labelling on X.

1.2 Let X be a finite poset . We first define an associative k-algebra A’y with a k-
basis consisting of all symbols x, --- 2129, where n > 0 and z; € X, 0 < 7 < n, sat-
1sfy either x;,—_y < x; or x;—; >x;. The multiplication is defined on the basis by setting
(Ym Y190 )(Tpn - - T120) equal to Ypm -+ Y12y -+ - 120 if Yo = x, and 0 otherwise, then
extended to Ay by linearity. The algebra A’y is already introduced by Dyer in [4].
Obviously, there is a k—algebra anti-involution ¢ of A’y defined on the basis vectors by
€1 Ty TITo —> TOT1 "+ Ty

1.3 Suppose that we are in the situation of 1.1. For z < y, = < z in X, we define
Fyzz = YTz — Z agﬁ’“’)ywz,

where the sum is over all w satisfying y < w and z <w. Note that we allow in the above
definition that y = z and that if there i1s no w satisfying y < w and z < w then the summation
18 zero.

1.4 Definition. Let I(X, M) be the ideal of A’y generated by elements of the following
two types

(1.4.1) Tyzzs T, Y, 2 € X with <y and z < z,

(1.4.2) Up*** ULUG — Uy ** * V1V, U *** V1V — Up * + * UUg, for u < v in X,

whereu =u, < - <uy<ug=vandu =v,, <---< vy < vy = v are maximal chains from
u to v.

We denote by A(x ur) the quotient algebra of A’y by I(X, M) and call it an M—twisted
double incidence algebra of X (This name is suggested by S.Konig).

1.5 Remarks and examples. First note that if X satisfies the conditions in [4, 3.1-3.2],
then the above definition yields the same algebra as in [4, 3.8]. Certainly, there are a lot
of posets which do not satisfy the conditions in [4]. For example, let X be a poset with
the following Hasse diagram

Y1 w1
z Y2 W2
Y3 w3

Then it is clear that this poset does not fulfill the conditions in [4]. However, we can still
get a quadratic algebra A(x ) by using 1.4. We take

M(x,wl):[é(fi], Me,wn) = [01], M(z,ws) = [o]

110 10
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Then A(x ar) is the path algebra of the quiver

1 w1

T Y2 )

g3 w3

modulo the ideal I(X, M).

Second, if we take all the matrices to be zero matrices then we get the algebra A(Z(X)),
the dual extension of Z(X), defined in [12] and discussed in [7], where Z(X) is the incidence
algebra of X. Recall that the algebra Z(X) by definition is the quotient of Z% by the ideal
E(X), where T denotes the subalgebra of A’y with basis vectors z, - - - z12¢ satisfying
Tp < -+ <2y <29, and where E(X) is the ideal of 7% generated by the elements of the type
Up " UTUY — U """ V1V 10T U = Up < - < U 1< Uy =vand U4 = U, < -+ "<V <<Vg = ¥
maximal chains from u to v in X.

Finally, if we take all the labelling matrices to be symmetric then the anti—involution
¢ induces a k-algebra anti-involution of A(x pr) which fixes all primitive idempotents
with x € X, and we still denote 1t by ¢.

1.6 Proposition. For a finite poset X with an arbitrary matriz labelling M, the algebra
Ax,my 18 finite dimensional.

Proof. For convenience, we write A' = Ay, A = A(x py and I = I(X, M), and if there is
no confusion in the context, we write sometimes x,, - - - x1xg for x, ---z129 + I in A.

For the proof of this proposition, we show much more, namely the following three
properties.

(1) Let z be a maximal element in X. Then Az can be spanned by the set

{2 - xizozr+I|neN, z,< - <ap<z in X}

over k.

To prove (1) it is enough to show the following statement: For z,---z129 € A', if
Ty 1207 ¢ I then x, <--- < x1 < 0. Indeed, if n = 0 or 1 then the statement follows
directly from the fact that z is a maximal element and zyz € I for y < 2 and y < z. Now
suppose that the statement is true for n. Let us take an element z,y 2, - -z129 € A’
such that z,y12, - -z1202 ¢ I. Of course, we have z,---x1279x ¢ I. By induction
hypothesis, we have z, < ---<xy <zo<z. If x,47 <z, then we have what we want.
Suppose T, < Tp41, then

— (zn,w)

Zn-}-lzn—lmn—*—]‘("J:'Zﬁ;n_]- + rxn-}—lxnzn—l

xn+1xnxn—1

w

in A', where agﬁl’;’f})n_l € k and the sum is over all w € X satisfying x,41 <w, T,-1 < w.

Again by induction hypothesis, wz,—1 -+ - x129x € I for all w since w>x,_;. Thus

T w
Tp41TnTn—1 " T1T0T = agcni’lz)n_lxnﬂwxn—l T T1TT

w

+ rzn+1znzn_1xn—2 A R R
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lies in I. This contradiction shows that z,, < x,41 1s impossible, and then finishes the

proof of (1).
Dually, we have

(1") Let « be a maximal element in X. Then zA can be spanned by the set

{xymym—l"'y0+I|m€N, T>Ym > Ym—1 >+ >Yo 1IN X}

over k.

From (1) and (1') we have

(2) vAx 2 k and Az A is finite dimensional.

In fact, that Ax and xA are finite dimensional implies that AxA is also finite di-
mensional. Moreover, we have by (1) that Az admits a k—basis {z, 112, -+, yma} with
Yj = Tj1Tj2 Tjm; and x5 < Tjp < -+ - < Ty, <, where mj > 1 is a natural number for
J <m. By (1) zA has as k-basis the set {z, z6;,---, 26, }, Where 6; = Zjpm, -+~ Tjoz;1.
Since 12, -+, Ym® are k-linear independent, we know z;; # x;; if ¢ # j. Note that

zyjz = 0 for all j according to (1). It is clear that Az A = > Axd;. Since the z;; are
J=1
pairwise orthogonal idempotents, we have that Az A = Ax ® Azxdy @ --- B Axdyy,.

(3) Let z be a maximal element in X. We set X; = X\{z}, equip X; with the order
relation induced by X and consider the algebra A x, as,), where the matrix labelling M,
of X, is the restriction of the given labelling M of X on X;. Let mx and 7; denote the
canonical projections from A' = Ay to A = A(x p) and from A to A/Az A, respectively.
Note that the kernel of the composition of mx and m; is A’z A’ + I. Since X; is a full
convex subposet of X, the algebra A’y is canonically embedded into A'. This embedding
is denoted by pu.

The ideal I(X;,M;) of A’ is mapped to zero under the morphism yrx . In fact, if
p € A is an element of type (1.4.1), then there exists an element p' € A" of the same
type such that p' = p+a with a € A’z A’. In this case we have (p)urxm = (p' —a)rxm =
0—((a)rx)m =0. If p e A’ is of type (1.4.2), then p € [ = I[(X, M), thus (p)urxm = 0.
Hence we deduce that (I(Xy,M;))urxm = 0. Therefore, umrxm induces an algebra
homomorphism v : Ax, m,) — A/AzA, that is, we have the following commutative
diagram:

-
A

ﬂxll Jm

A(Xl,Ml) L) A/AxA

We shall prove that v is an isomorphism of algebras. It is clear that v is surjective. It
remains to show that v is injective. In order to do this, we prove first that for any a € I
with @ = r + b, where r € A’y and b € A'zA’, there holds r € I(Xy, M;). Since I is
generated by the elements of types (1.4.1) and (1.4.2), it is enough to prove the statement
for such generators. For the generators this becomes obvious.
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With the above statement we can show that v is injective. Taking an a + I(Xy, M;) €
Axy,my) with (a+ I(Xy, My))v =0, we have 0 = (a + I(Xy, My ))v = (a)puwx 7. that is,
a € I+ A'zA’. Thus there are elements ' € I and ' € A’z A’ such that a = r' +0' € Ay
If we write r’ as asum of r € A’y and b€ A’z A, thenr € I(X;, M;). Hence a = r+4(b+b')
implies that a = r € I(Xy, My). Therefore, v is injective.

Using induction on the number of elements of X, one can easily see that A x ) is finite
dimensional. ]

1.7 In general, the algebra A(x ) associated with a matrix labelling poset (X, M) may
not be quasi-hereditary (see 1.8). However, Dyer proved that Ax ) is quasi-hereditary
if (X, M) satisfies the conditions in [4, Sect. 3]. In the following we prove that if X is
a tree, the algebra A(x ) 1s also quasi-hereditary. A further study of quasi-heredity of
A(x,uy will be given in a subsequent paper.

Theorem. If X is a tree then for any matriz labelling M, the algebra A x pry 45 quasi-
hereditary.

Proof. From the proof of 1.6 it suffices to prove that A(x sz A(x ar) is a heredity ideal in
A(x,u for each maximal element = in X. To this goal we first prove the following fact.
(1) The elements of the form yzz := yoy1 - YmTz021 2, With y = yp<y; <---
< Ym <T>20>21>-->zp, = zin X form a basis of A(x pr) over k.
Indeed, to each x € X we attach a symbol «, and denote by V, the vector space over
k with the basis set {ay | ¢ <y,y € X}. For z <y in X, by ¥ : V, — V, we denote the
inclusion and by py : Vo — V, the k-linear map such that

Qy, if z =z,
pjlas) = 20w Hy s 2

0, otherwise.

where a.., — a(x,yl)a(yo,yz) a(yn 1,2) (yn,z) and v — ' L s th )
zz! = Qyoyo Ay YnYn Y=Yy <y1 < < Yp < z 18 the unique
maximal chain from y to z.
For z < y in X, one then has
(1.7.1) ipt =Y altmphi?
y<w

that is, V = @,cx Ve becomes a module over A(x ).
Further, foreach z € X, by j, : V., — Vand 7, : V — V, we denote the canonical inclu-
sion and projection respectively. Then by (1.7.1) there is a unique algebra homomorphism

¢+ Acx pmy — Endg (V) such that ¢(z) = 7,5, for 2 € X and

P(zy) = szzjya P(yx) = Tylyjz

if < yin X. It is easy to see that for y < z > z and for ay, € V), one has (ay,)(é(yzz)) =
ay €V, C V. Hence the elements ¢(yzz) with y < z > z are linearly independent over k,
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that is, the elements yzz € A(x u) are linearly independent over k. On the other hand, by
the definition of A(x pr) the elements yzz with y < x > 2z span A(x ) over k. Therefore,
the elements yzz form a basis of A(x »r) over k.

(2) If « is a maximal element in X, the multiplication map

p Aot @k e Ax my — Ax T Ax,m)

1s bijective. This is equivalent to that for every y,z € X, the induced map

tyz Y Ax T @k 2Ax )2 — YA T Ax, vz

is bijective.

Indeed, the dimensions of yAx sz and zA(x a)z over k are at most 1, and that
yAx myr # 0 (resp. xA(x pyz # 0) implies y < x (resp. = > z). If yAx pyz =0 or
rAx,myz = 0, it is obvious that . is bijective. If y A x ynyz # 0 and zA(x m)z # 0,
then one has 0 # yxz € A(x um), and thus p,. is bijective. Hence Ax sz A(x m) is a
heredity ideal of A(x ar).

This finishes the proof. O

1.8 Remark. If the poset X is not a tree, then the statement (1) in the proof of Theorem
1.7 may not be true. Hence in general the defined algebra A(x /) is not quasi-hereditary.
For example, let X be the poset with the following Hasse diagram:

10
0 1
the algebra A(x pr) is given by the following quiver

and with the labelling matrices M(1,4) = [ ] , M(2,5) = [1], M(3,5) = [1]. Then

2

with the relations

ad =7y, af = pa' =0, BB =686, v =n'n, 68" =n'n,
m' =0, ya=4§66, a'y' =p'é.

It is easy to check that A(x ar) is not quasi-hereditary.
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2. The quadratic dual of A x

Let A(x ) be the algebra associated with a finite poset X labelled by M, a family of
matrices (see section 1). In this section we describe the quadratic dual algebra A!(X M)

when A(x ary is quadratic. The first question is when A(x 37 is quadratic, and we have
the following

2.1 Lemma. The algebra A(x pry is quadratic iof and only if the incidence algebra T(X)
18 quadratic.

This follows directly from the definition of A x ).

2.2 For ¢ < y in X, recall that by a maximal chain from z to y of length n we mean a
sequence r = &g < r1 < --- < &, = y. We say that another chainz =z <zj <---<al, =
y 1s adjacent to the first one if n = n’ and there is a unique 1 < 7 < n — 1 such that
z; # x%;. The poset X is called adjacent if for every <y in X and for every two maximal
chains C, D from z to y, there exists a sequence C' = Cy, Cy, -+, = D of maximal

chains from x to y such that C; 1s adjacent to C;11 for 0 < ¢ <m — 1.

Lemma. The incidence algebra I(X) is quadratic if and only if X 1s adjacent.

Proof. 1t is easy to see that the condition is sufficient. We now prove the necessity of the
condition.

Assume that Z(X) is quadratic, then the ideal E(X) is generated by the elements of
the form

TY12 — TY2 2 for z, y1,y2, 2 € X with z<y1 <2z, <y < z.

Suppose z <y. Let C:zx =zg<a; < <zp,=yand D:z=ay<zi<---<al, =
be maximal chains from x to y. We shall prove that C' and D are pre—adjacent, that is,
there is a sequence C' = Cy,C4, -+ ,C, = D of maximal chains from z to y such that C;
is adjacent to Cijyq for 0 <7 < p—1.

From z¢zq -+ 2, — aga) - 2), € E(X) it follows that

[ !
TOTy Ty — TeTy * Ty

(2.2.1)

m

— (—_+)

— ;40 Tis; UV, W4 Uy U, Wi )T4,s8;4+1 Tit;
=1

in 7%, where a; € k and C7 : zjp < -+ < Tjs; S Ui < 07 S W; < Tjg;41 <+ -+ < Tyy; are max-
imal chains in X, ¢ € {1,---m}, 0 € {—, +}. It is easy to see that C; is adjacent to C;"
for all 1 <7 < m. By ¢, d and ¢7 we then denote the elements zgzy - zy, xha) -2,
and @0 - - Tis; U0 W T4 5,41 -+ Tig; i L'y, respectively, where ¢ =1,--- ;m and 0 = —, +.

Without loss of generality, we may assume that z;0 = =, x4, = y for 1 <7 < m, i.e.
C?,1=1,---,m, 0 = —, 4+, are maximal chains from z to y.

79
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Suppose that C;,C;,---,C;,C are pre-adjacent to C' and that C’;Ll,C;'_'H,--- )
C,Ct are not pre-adjacent to C. We claim that D is pre-adjacent to C. Otherwise,

each element in {c} U{c? [1 < j <t, 0 = —,+} is not a k-linear combination of the
elements in {d} U {c7 [t+1<j <m, 0 = —,+} in Ty. According to (2.2.1) we have in
7% that

4

c— Zaj(cj_ - cj') =d+ Z aj(c; — cj')

j=1 j=t+1

By linear independence, we get ¢ — 27;21 aj(c; — cj') = 0, that is,

7
LTy Ty =C= Zaj(cj_ —c;-") € E(X).

On the other hand, we know from the definition of an incidence algebra that for any
maximal chain z¢ < 2y < --- < x,, there holds z¢zy -+ 2, ¢ E(X). Thus we have a con-
tradiction. This shows D is adjacent to C' and finishes the proof. ]

2.3 In order to describe .A!(X My> We define an algebra B(x yr) associated with each matrix
labelling poset (X, M). The algebra Ay is defined as in section 1.

Definition. The algebra B(x ) is the quotient of A’y by the two-sided ideal J(X, M)
generated by the elements of the following two types:

(2.3.1) Fyzz = YTz — agﬁ“’)ywz for z<y, <z,

w

where the sum is over all w € X satisfying y < w, z < w, and
(2.3.2) Qoy = meil S Tim Yy Gy = Zyximi cxpz, forx < yin X,

where the both sums are over all maximal chains = < z;; < -+ < &3, <y from z to y of
length > 2. Note that if there is no maximal chain from z to y of length > 2 in X, then

dey = 0.

2.4 Proposition. For an arbitrary matriz labelling poset (X, M), the algebra B x pry is
quadratic.

Proof. Suppose x < y in X. We denote by Uy, 4] the sum of all length 2 maximal chains

z,y
from x to y in X. If there is no such chain then Uy, ) = 0. It is easy to see that
(2.4.1) Qoy =,y + D, TU- Guy.

<< u<ly
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Further, we denote by J'(X, M) the ideal of B x a) generated by the elements of type
(2.3.1) and of types Uz, ) q[’x’ J for x < y in X, where q[’ | is the image of Uz, ) under ¢
given in 1.2. We shall prove that J(X, M) = J'(X, M).

(1) To prove J(X, M) C J'(X, M) it is enough to show that the elements of type (2.3.2)
lie in J'(X, M).

Suppose z < y in X. By I(z, y) we denote the maximum of lengths of maximal chains
from x to y. We use induction on {(z, y) to prove q,, € J'(X, M). If l(z, y) = 1, then
gzy = 0 € J'(X, M). Now suppose that for every x < y in X with 1 < [(z, y) < n, the
element g, lies in J'(X, M). Choose < y in X with I(z, y) = n. Then for all z < u < y,
there holds I(u,y) < n = I(z, y). By induction hypothesis, ¢,, € J(X, M) for all u. Then
by (2.4.1) one has

z,y

Qoy = Q. T Z Tu - quy € J'(X, M).
r<<u<ly
Similarly, ¢, € J'(X, M). Therefore, J(X, M) C J'(X, M).
(2) The inverse inclusion J'(X, M) C J(X, M) follows from

Uz, y) = Doy — Z Tu - quy € J(X, M).
r<<u<ly

By (1) and (2) we have that J(X, M) = J'(X, M) is generated by quadratic relations,
i.e. B(x ar) is quadratic. O]

2.5 Let z € X be maximal. We set X7 = X\{z} and equip X; with the order relation
induced by X. By M; we denote the labelling of the restriction of M on X;. Then we
have the following

Proposition. There is a canonical algebra isomorphism from the algebra B(x, s,y to
Bx my/Bix,myrBix,my, where Bix pryxB(x my denotes the ideal of Bix ary generated by
the idempotent x.

The proof of this proposition is similar to that of (4) in Proposition 1.6.
2.6 Corollary. For each (X, M), the dimension of B(x pry over k is finite.

Proof. Let x be a maximal element in X. Using a similar argument in the proof of (1) in
Proposition 1.6, one can see that B x p)z is spanned by {z, - - z1zoz + J(X,M) | n €
N, 2z, <<z <wo<x in X} over k and that 2B x ) is spanned by {zym - y1y0 +
JX, M) |meN, e>yp>--->y; >y in X} over k. Thus B(x yyz and zBx ) are
finite dimensional k-space. Therefore, B(x ayzB(x ar) is a finite dimensional k-space.
Using Proposition 2.5 and induction on the number of the elements in X, one can obtain
that B(x a)zB(x,um) is finite dimensional. O]

2.7 Suppose A(x ) is quadratic. Following Manin ( see [7] ), we write the quadratic
algebra in the following form:

Ax,my «— {A1, R(A1) C A1 @4, A1},



B.M. Deng, C.C. Xi: Twisted Double Incidence Algebras of Posets 49

where Ajy is the vector space spanned by x € X and A; is spanned by zy and yx for x < y
in X, and where R(A;) is the vector space spanned by

{uviw —uvow | u, v1, vo, w € X with u< vy <w, u<vy <w}

U{ryszlz, y, 2 € X with z <y, < z}.

In this case, one can also see that A; ®.4, A; 1s the vector space spanned by

S={ryQ@yz=ayz |z, y, z€X with v <y and y<z, or z<y and y>=z

or t>y and y<z, or >y and y>z}.

By definition, the quadratic dual algebra A!(X,M) is given by
Aixiy (AT B(ADT C (AL @a, A1) = Af @, A

where A} = Homg(A;, k), where R(A;)*t = {f € A} ®4, A} | (R(A1))f = 0} and where
the bimodule structure of A} over A is defined in an obvious way. Here we identify
(A1 @a, A1)* with A} @4, AT by sending (a @ b)* to b* ® a*. Then A} @4, A} is the

vector space spanned by

" =1{lyz)" @ (2y)” = (2y @y2)" = (2y2)" | 2, y, z € X, 2yz € 57}

Lemma. As a vector space, R(A)L is spanned by the elements of the following two types

(2.7.1) U, w] = Z(uvw)*, q'ru,w] = Z(wvu)*, u, v, w € X,

v v

where the both sums are over all v such that u < v < w, and

(2.7.2) reo, = (ywz)* + agx"")(yxz)* for y<w, z<w in X,

Yywz z
x

where the sum 1s over all x satisfying x <y, v < z.

Proof. Tt is easy to check that the elements of the types (2.7.1) and (2.7.2) lie in R(A)" .
Conversely, let ® € R(A)*, and we write

d = Z agy:(zyz)* + Z boy-(2y2z)* + Z Cayz(2y2)”

r<Yy< z z>Y>z r< y
<y

+ Z dzyz(xyz)* =P+ P2+ P35 + (I)47

>y
z> 0y

where dgyz, beyz, Coyz, doy. € k and ®; denotes the i—th term in the sum of the above
equality.
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Let [u, w] be a closed subinterval of minimal length 2 in X with the mesh diagram of u
and w of the following form (s > 1):

01
u v; w
Vg
then uv;w — wvjw € R(A) for 1 <, j < s. Thus 0 = (vv;w — uvjw)® = (vv;w)® —
(u;w)® = Guo;w — Guojws 1€ Qupjw = Guoyw for 1 < 4,5 < 5. Therefore, ®; =
agy:(2y2z)* = > aqu[*u W]’ where the sum is over all mesh diagrams of u and
TY< z u, W ’

w for u, win X, and where ayyw = Gyp; for 1 <o < s.
Similarly, @2 = > bry:(2y2)* = 3 buwd'[u, w)-
T>Y>z u,w
Now consider a full subposet of X with the following Hasse diagram.

e
(1) g1 g2 ot Gs hi hy - hy

f
such that ¢1, -+, gs (resp. hy, -+, hy) are all the elements v in X satisfying v < e, v < f

(resp. e< v, f<v) Withs—}—t>1
By definition, reg, f = egif — E a(g“h )ehjf €ER(A),i=1,---,s Then

4

0= (regip)® = (egif)® = Y aly"" (eh; )® = cegi Z Gt G, ¢

Jj=1

thus
d; + Py = Z Coyz(2y2)* + Z dey:(2yz)”

< y >y
Z2< Yy z> vy

_szehf ehf +Z (g;,;) egz )
= ZZaehmehJ-na
e.f J

where the first sum is over all pairs (e, f) such that X contains a full subposet of the form

(1).
From the argument above we conclude that ® = ®&; + &, + &3 + ¥, is a k-linear
combination of the elements of the types (2.7.1) and (2.7.2). This finishes the proof. [
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With the help of the lemma, we now can describe the quadratic dual algebra .A!(X,M).

2.8 Let X be a finite poset. By X°P we denote the opposite poset of X. With each matrix
labelling M on X we associate a matrix labelling —M?* on X°? as follows: Let [z, z] be a
closed subinterval of minimal length 2 in X with the following mesh diagram of x and z:

Y1
T Yi z
Yn
and denote by M(z, z) € k™*™ the labelling matrix to the mesh diagram of z and z. Then

[z, x] is a closed subinterval of minimal length 2 in X°P with the mesh diagram of z and

z of the form:
Y1

Y T

Yn
Now we label the mesh diagram of z and z in X °? by the matrix —M(z, z)!, where M(z, z)!
denotes the transpose of M(z, z). In such a way, X°P becomes a matrix labelling poset,
denoted by (X°P, —M?").

As a consequence of Lemma 2.7, Proposition 2.4 and the construction of the algebra
B(xor, —pty, we have the following

Theorem. For any matriz labelling poset (X, M), if the poset X is adjacent, then

AI(X,M) = B(Xop’ _Mt).

2.9 Remark. The description of the quadratic dual A!(X M) in Theorem 2.8 is a general-

ization of that given in [4]. Namely, if the poset and the labelling M satisfy the conditions
in [4], then 2.8 is just [4, 3.6(a)].

2.10 One interesting question is when the quadratic dual .A!(X M) is quasi-hereditary, i.e.
when B(xop _ppey is quasi-hereditary. The following propositions give a partial answer to
this question.

Proposition 1. If the Hasse diagram of X 1is a tree then .A!(X M) 18 quasi—hereditary.

Proof. We shall prove that B(x ) is quasi-hereditary for any tree X with arbitrary matrix
labelling M. Set B = B(x ar). As in the proof of Proposition 1.6 we can show that for each
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maximal element z in X there holds Endg(Bz) = k. Now we prove that the multiplication
map Bx @i B — BaB is injective. It is equivalent to showing that for each pair y, z in
X the induced map

w:yBr Q@ Bz — yBxBz

is injective. If y = x or y = z then u is clearly bijective. Suppose both y # = and z # x.
Since X is a tree, we have that z1zox23, z3zo11 € J(X, M) for all 21 < 22 < 23 in X. Then
the space yBx is at most of dimension 1. Similarly, the space xBz is at most of dimension
1. If yBx = 0 or zBy = 0, then p is injective. Suppose that yBz # 0 and Bz # 0. Then
yBx = kyx with y < 2 and @Bz = kxz with 2z < 2. In this case, yzz ¢ J(X, M) according
to the definition of B(x pr). Thus u is injective. Hence if x is maximal in X, then BzB is
a heredity ideal in B(x ur).

Now applying induction on the number of elements of X and 2.5, we can see immediately
that B x ar) 1s quasi-hereditary for any poset X whose Hasse diagram is a tree. ]

Let us remark that if X = {1 <2 < --- < n} and if all matrices in the labelling M are
[1], then the algebra B(x ) is just a finite type block of some g-Schur algebra (see [13]).

Proposition 2. If X s a poset with the following Hasse diagram (n > 1):
Y1
T Y z
Yn
Then for an arbitrary labelling matriz M € k™*", the algebra B(x nry 15 quasi-hereditary.

Proof. For simplicity, we write B = B(x py and J = J(X, M). By Proposition 2.5, it is
enough to prove that the following map

U BzQ.,g, 2B — BzB

a®b— ab

is bijective. It is obvious that ¥ is surjective. To see the injectivity we compare the
dimensions of both sides over k. Since zBz =2 k, dimpBz®.5. 2B = dimpBz x dimgzB. One
can easily see, as k—spaces, that Bz has a basis S1 = {z, y12, =+ , Yn2, TY12, -+ , TYn—22},
that zB has a basis Sy ={z, zy1, -, 2Yn, 21T, -+ , 2yn—22} and that BzB has a basis
{ab: a€ Sy, be Sy}, ie. dimBzB = dimgBz x dimyzB = 4n?. This finishes the proof. [J

3. A—subalgebras and global dimensions

In the paper [10] S.K6nig defines A—subalgebras and Borel subalgebras for quasi-hereditary
algebras which might serve as finite-dimensional associative substitutes of Lie theoretic
Borel subalgebras. In this section we prove that if the algebra A(x ar) is quasi-hereditary,
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it always has a A—subalgebra and a Borel subalgebra. The results of this section will be
used in the next two sections to calculate the dimensions of Ext—groups.
Let us recall from [10] some definitions.

3.1 Definition. Let (A, A) be a quasi-hereditary algebra with the weight poset A and
standard modules A(\), A € A. Let B be a subalgebra of A (both algebras have the same
unit element). Then B is called an exact Borel subalgebra of (A, A) if and only if there
exists a bijection between the set of weights of B and the set of weights of A such that the
following conditions are satisfied:

(D) The algebra (B, A) is directed (i.e. quasi-hereditary with simple standard modules
and injective costandard modules) with respect to the partial order induced from the
partial order of the set of weights of A;

(T) Tensor induction A ®p — is an exact functor, thus Ap is projective as a right
B-module;

(W) For each A € A, the following holds:

AR®p EB(/\) = AA(/\),

where Eg(\) denotes the simple B-module corresponding to the weight A.

The algebra B is called a strong exact Borel subalgebra of (A, A) if and only if both
the following condition (S) and the above conditions (T) and (W) are satisfied.

(S) There is a maximal semisimple subalgebra S(A4) of A which is also a maximal
semisimple subalgebra of B, thus simple A-modules and simple B-modules coincide.

It is noted by S.Konig that if a quasi-hereditary algebra has a strong exact Borel subalgebra
B then gl.dim.B < gl.dim.A (see 3.5 below). There is a dual notion of A-subalgebra (see

[10]).

3.2 Definition. Let (A, A) be a quasi-herditary algebra and C' a subalgebra of A, having
the same number of weights. Suppose the weights of C' are identified (via certain bijection)
with the weights of A, and the set of weights of C' in this way is made into a poset.
Assume that the algebra (C°P, A) is directed (i.e. (C, A) is quasi-hereditary with projective
standard modules). Assume that for each weight i the projective A-module A ®¢ Pc(7)
(where Pc(7) is the indecomposable projective C—module corresponding to the weight )
decomposes into a direct sum of exactly one copy Pa(i) (which is the indecomposable
projective A-module corresponding to the weight ) and some indecomposable projective
A-modules having weights different from 7. Fix for each weight ¢ an epimorphism «(z) :
ARc Pc(i) — AA(Z)

Then C is called a A—subalgebra of (A, A) if and only if for each weight 7 the restriction
of k(i) to Po(i) C A®c Pc(7) is an isomorphism of C—modules:

k(1) |pe(iy: Poli) = Aae).

If, in addition, C' contains a maximal semisimple subalgebra of A, then C is called a

strong A-subalgebra of (A, A).
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3.3 Remark. A special case in the definition is that one takes C to be a subalgebra of A
with the same complete set of orthogonal primitive idempotents, that is, 1 =e; +--- + ¢,
with e; € C. In this case A @¢ Po(i) = A®c Ce; & Ae; and k(¢) can be chosen to be the
canonical surjective map Ae; — A 4(2).

As pointed out in [10] the relation between a Borel subalgebra and a A-subalgebra is
as follows.

3.4 Theorem [10]. Let (A, A) be a quasi-hereditary algebra and B a subalgebra of A.
Then B is an ezact Borel subalgebra of (A, A) if and only if B°? 1s a A—subalgebra of
(A°P A).

3.5 Lemma. Let A be a quasi—hereditary algebra which has a strong exact Borel subalgebra
B. Then for each natural number [, for each B-module M, and for each A—module N there
s an 1somorphism of vector spaces:

Exty(A®p M, N) = Ezty(M, N|p),

where N|p denotes the restriction of the A-module N to B.
Proof. The lemma is called Eckmann—Shapiro lemma. For the convenience of readers, we
include a proof here. It is enough to show the above isomorphism of Ext—groups. If [ =0,
this is just the adjunction formula. If M is a projective B—module, there is nothing to be
shown. If M is not projective, then we choose an exact sequence

00— K—P—M-—70
with P a projective B—module. This yields an exact sequence

0 —AQp K — ARy P — AR M — 0.

Thus we have the following commutative diagram:

0— (AQ M,AN)— (A®Q P.aN)— (AQ K,AN)— Exth(A(EQM,AN)—) 0
B B B B

! ! !

0 — (M,N|p) — (P,N|p) — (K,N|p) — Extp(M,N|g) —0

where all vertical maps are adjunctions and where (—, —) denotes the homomorphism
group. This shows that for [ = 1, the lemma is true. For large [, the isomorphism follows
by dimension shift. O

3.6 Now we consider the algebra A x 3 constructed in section 1. Suppose that A x ar) is
quasi-hereditary with respect to X. From the proof of 1.6, the standard A(x ps)-modules
are just the indecomposable projective Z( X )-modules, where Z(X) is the incidence algebra
of the poset X. Hence we have by definition the following
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Theorem. Let X be a finite poset with a matriz labelling M such that the algebra A(x ar)
18 quasi—hereditary. Then the incidence algebra I(X) of X is a strong A-subalgebra of

Acx,m)-

If the labelling 1s symmetric, that is, all matrices are symmetric, then we have an anti—
involution ¢ of the algebra A(x »r) which fixes the complete set of primitive idempotents.
This together with 3.4 yields the following

3.7 Corollary. Let X be a finite poset with a symmetric matriz labelling such that A x ur
is quasi-hereditary. Then A(x ary has a strong ezact Borel subalgebra.

Now we shall prove that 3.7 holds more generally. Suppose A(x ) is quasi-hereditary.
Let B be the subalgebra of A x y) generated by all elements z € X and zy with y < 2

in X. Then B and A(x, p) have the same maximal semisimple subalgebra > kz. If =
zeX
is a maximal element, then A(x aryzA(x ar) 1s a heredity ideal by our assurenption and
rA(x m) can be spanned as a vector space by all elements of the form zgz; - -2, with
Ty <---<x1<29 = 2. Hence the costandard module VA(X,M)(UC) is just the injective
Ax,my-module D(zA(x ), where D = Homy(—, k). Note that the element ¢z -+ - 2y
with 2, <---<2; <9 = = belongs to B. Therefore B = 2 A(x ). Hence the induction
procedure of the proof of 1.6 shows that V4 ., (z) & D(zB) as B-modules for every
element x € X. It follows then from [10, Theorem A] that B is an exact Borel subalgebra

Of A(X,M)-

3.8 Theorem. Let X be a finite poset with a matriz labelling M such that Acx pry is
quasi-hereditary. Then Ax ) has a strong exact Borel subalgebra.

As afirst application of the above results we get an estimate of global dimension of A(x ).
Let It be the ideal of A := A(x u1) generated by all elements zy with z, y € X and
y<x. Then A/IT = I(X). Similarly, let I~ be the ideal of A generated by all elements
zy with z, y € X and x < y. Then B = A/I~. Hence every B-module can be regarded as
an A-module.
Note that the anti-involution ¢ of A’y induces an anti-isomorphism from Z(X) to B.

This implies that dim;A(z) = dim;V(2) for all z € X.

3.9 Theorem. Suppose X is a finite poset with a matriz labelling M such that A x ur
is quasi-hereditary. If the incidence algebra I(X) of X has global dimension m, then
m < gl.dim. A x )y < 2m.

Proof. For every simple Z(X )-module E(z), we have a miminal projective resolution in
Z(X)-mod

0O— P, — -+ — P — Py — E(z) —0,

where [, is a natural number and [, < m. Since P; is projective Z(X )-module and every
indecomposable projective Z(X )-module can be considered as a standard Ay psy-module,
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it follows from Prix)(z) = Auaix(2) = Ax,m) @ E(z) and proj.dim.pE(z) < m

that the projective dimension of P; as A(x pry-module is bounded by m. Using the fact

that if 0 — M, — -+ — M; — My — M — 0 is a long exact sequence and

proj.dim.M; < k for all ¢, then proj.dim.M < n+k, one obtains that gl.dim.A(x ar) < 2m.

The inequality gl.dim.A x asy > m follows from 3.5. 0
As a second application we point out the k—dimension of A(x ar).

3.10 Theorem. Let X = {zy1, ---, x,} be a finite poset with n elements. Suppose M 1is
an arbitrary matriz labelling of X. If A(x amy 18 quasi-hereditary, then

n

dimk.A(X,M) = Z(dimkPI(X)(xi))zv

=1

where P xy(x;) is the indecomposable projective I(X )-module corresponding to the weight
;.

Proof. Let C = (¢;j) be the Cartan—matrix of A(x psy. Then C = (dimA)*(dimV) by [6],
where dimA is an n X n matrix with the i—th row the dimension vector dimA(z;), and
where dimV is defined in a similar way. Since A(x yr) is a basic algebra and dim;A(z;) =
dim V(z;), we have

1<, j<n =1
=1

=1

To end this section let us mention the following conjecture.

3.11 Conjecture. Let X be a finite poset with an arbitrary matriz labelling M. Suppose
that A(x ay 15 quasi-hereditary, then gl.dim. Ax yry = 2 gl.dim.Z(X), where T(X) is the
incidence algebra of X.

4. Ringel duality of A x

For each quasi-hereditary algebra A, C.M.Ringel has defined in [11] another quasi-heredi-
tary algebra R(A) which is the endomorphism algebra of the characteristic module for
A. His construction R behaves like a duality on the category of basic quasi-hereditary
algebras, namely R(R(A4)) = A. Now we call the algebra R(A) the Ringel dual of A. In
this section we study the Ringel dual of A(x ) in case the Hasse diagram of X is a tree
and M is a symmetric, invertible matrix labelling. In this case we show that R(A(x a))
is again of the form Ay, n) for some matrix labelling poset (Y, N).
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4.1 Let A be a quasi-hereditary algebra with the weight poset A. Then we have the
following

(1) The intersection F(A4) N F(V4) contains exactly s(A) indecomposable modules,
where s(A) is the cardinality of A. They may be parametrized as T(\), A € A such that
the following holds. There are exact sequences

(a) 00— AN —T(\) — X(\) —0
(b) 0— Y\ —T(\)— V(\)—0

where X () is filtered by A(u)'s for certain g < A and Y (\) by V(u)’s for certain u < A.
In particular, T(\) has a unique composition factor isomorphic to E(\) and all other
composition factors are of the form FE(p) with g < A, where E(z) denotes the simple
A-module corresponding to the weight « € A. The modules T(\) are called canonical
modules.

(2) The module T := )‘@ T(A) which is a tilting—cotilting module is called the charac-
EA

teristic module for (A, A) and R(A) = End4(T) is called the Ringel dual of A, it is also
quasi-hereditary, with standard modules Ag4y(A) = Homu4 (T, V(X)), where the weight
poset of R(A) is A°P.

(3)

E if n=0 and A=y,

0 otherwise.

Ext}(80, V() = {
For the proofs of the above facts one may see [11].

4.2 Now we consider the algebra A(x ps). From now on, we suppose that X is a tree.
In this case any matrix labelling of X is symmetric. It follows from the definition of the
relations of type (1.4.1) that if all the matrices are invertible, that is, they are non-zero
elements from k, then we can take all these non—zero elements to be 1, since such two
labellings yield two isomorphic algebras. Hence in the following we always assume that all
labelling matrices are [1] € k' *! and simply write Ax for A(x pr) and I(X) for I(X, M).

Proposition. Let X be a tree. Then there is an exact sequence

0— AN) —T(\) — Ej)\T(/,L) — 0

in Ax-mod for all A € X.

Proof. Use induction on the number | X | of elements in X. If | X| = 1 there is nothing to
prove. Suppose the statement is true for all trees X with | X| < n — 1. Let X be a tree
with | X| =n and A € X. If A is not a maximal element in X then we pick up a maximal
element s € X such that A < s. Set X; = X\{s}, then there is an exact sequence in
Ax,—mod

0— AAxl (A) — TAxl (A) — E<B)\TAX1 (n) — 0,
<
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where Ax, denotes the algebra A x, as,) with the matrix labelling M; of M restricting
on X; = X\{s}. Note that Ax, is isomorphic to the factor algebra of Ax by the ideal
AxsAx.

Since T(A) € F({Aax(v)ly # s}) = F(Aay, ), the above exact sequence yields a desired
one in Ax—mod. Hence we may assume that ) is a maximal element in X. Moreover, with
a similar argument as above, we may assume that X is the largest element in X and that
the proposition holds for each x < A.

Let v € X with v < A. Then dim;Extl (A(y), A(X)) =1 by Lemma 3.5. Let x be an

element in X with g < A. Then we have a non—split exact sequence

Nau 0— AN) — Ty — A(p) — 0

with T, obviously being indecomposable.
For each v with v < y, using the canonical inclusion map A(v) — A(u), we can form
the following pullback diagram:

M 0 ——— AN) —— T, —— A(lv) —— 0
Nau 0 —— AN) —— Thy —— A(p) —— 0

We shall prove that the upper exact sequence does not split.

Since A is the largest element in X and p < A, we see from the definition of A(y) that
T, is isomorphic to P(p), the projective Ax—module corresponding to the weight u, and
that dimyHom 4, (P(v), P(r)) = 2. In order to show that the exact sequence does not
split, it suffices to prove that Hom 4, (A(v), P(p)) = k.

On one hand, there holds

1 < dimyHoma, (A(v), P(p)) < dimgHom 4, (P(v), P(u)) = 2.
On the other hand, by Lemma 3.5, there holds
dimyHom 4, (A(v), P(p)) = dimpHomp(E(v), P(p)|B),

where B denotes the Borel subalgebra of Ax (see section 3), where E(v) is the simple
module corresponding to the weight v, and where P(u)|p denotes the restriction of P(u)
to B. By the construction of Ax, we have that vP(u) = vAxp = k(veizy - zpp +
I(X)@k(vey - zppip+ I(X)), where v < 2y < 29 < -+ < 2, < g is the unique maximal
chain from v to u. For z1v € B, one has

zv - (vayze - xpp+ [(X)) = zmyvayzg - xpp + I(X).

Since A is the largest element in X and all labelling matrices of X are [1], one has by
definition that r,,,,, = x1vae; — 12221 € I[(X). Then

Tivxiy - Tap + I(X) = 1292023 - xpp + I(X).
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Analogously, one has that r,,,,., = T2z1792 — 222322 € I(X), then
T1222122x3 - Tpp + [(X) = v120z32003 - 20 + I(X).

Repeating the above argument, one finally gets

zv - (veyzy - xpp + I(X)) = vyvegzg - app + I(X)

=21T2T1T2T3 " xnlu + I(X) — i e

=2122 1T pTop + [(X) = 2120 - - 2ppuip + I(X) # 0.
Therefore, vayzy -+ xppu + [(X) does not lie in soc(P(u)|p) since z1v € rad(B). From
the simplicity of E(v) it follows that }_  Im(f) C soc(P(u)|p), where the sum is over all
f € Homp(E(v), P(i)|B). Then

Homp(E(v), (P(u)|)) SHomp(E(v), soc(P(u)[p)) = v - soc(P(p)|B)
Ck(vayzs - zpuip + I(X))

Thus dimiHomp(E(v), (P(p)|B)) < 1. As a result, Homu4, (A(v), P(p)) = k. We then
conclude that the exact sequence 1y, does not split.

Further, Iet pq, - -+, ps be all the elements in X satisfying u; < A\, e =1, .-+, s. Apply-
ing Hom 4, (—, A()\)) to the exact sequence

0 — A(pi) — T(pi) — & T(y) — 0,

< B
one obtains a long exact sequence

0— Homay(_ & T(7), A(N) — Homa(T(s:), AN) — Homa(Alui), AO)

< i
bi
— Bl (@ T(7), AN)) — Bxth (T(), AQ)) 5Btk (), ANY)
— Extly, (& T(v), A(N)
< i
Since proj.dim.T(y) < 1, we have that Ext _( @ T(y), A())) =0, i.e. ¢; is surjective.

< B
Thus we obtain the following commutative diagram with £),; a non-split exact sequence.

M 0 —— AQ) —— Ty —— Alpi) —— 0
Expi 0 —— A(N\) —— T;\M — T(p;)) —— 0
Now we take the sum of all £y, for all 2 = 1, -, s, and then get the following exact

sequence

O 0 —— DA —— 0Ty, —— T (p) —— 0

2

K J H

2
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Let 0 : ®A(A) — A(N) be the map sending (aq, -+, as) to > a;. By constructing the

pushout diagram, one obtains an exact sequence £y ( see the above diagram ).
We shall prove that Ty € F(A) N (F(V)). Obviously, Ty € F(A). It remains to show
Ty € F(V), and by [11], it suffices to prove

Exty (A(v), Tn) =0 forall v <\

since proj.dim. 4, A(v) = proj.dim.pE(v) < 1 for all v < A.
If v = A, then A(v) = P()) is projective, thus Extly (A(v), Tx) = 0. Now we assume
that v < A. Apply Hom 4, (A(v), —) to &, we get the long exact sequence

0 — Homu (A(v), AXN) — Homa, (AWw), Ta) — Homay (A(v), &7 (1)

2, ExtYy  (A(v), A(N)) — ExtYy (A(v), Tn) — Extl, (A(v:), @T(,ul))

Since T'(p;) € F(V) for all 1 <7 < s, one has ExtYy (A(v), ®T(pi)) = 0 by 4.2 (3). Note

that dimgExtYy (A(v), A(X)) = 1. To prove Exty (A(v), Th) = 0, it is enough to prove
that the connecting map 6 is non—zero. Since X is a tree, there is a unique 1 < j < s such
that v < p;. We denote by f; the composition of the canonical indusion A(v) — T'(u;)
and the canonical embedding T'(p;) — @T(p;). It is easy to see that (f;)6 = nav # 0,

i.e. 6 is non—zero. Therefore,
Extly (A(v), Ta)=0 forall v <A

Thus
T\ € F(A)NF(V).

It remains to prove T = T()), or equivalently, to prove that T) is indecomposable.
This follows from the fact Th € F(A) and the fact that all sequences £y,; do not split.
This finishes the proof. O

4.3 The anti-isomorphism ¢ : Ax — Ax induces a duality £ : Ax —mod — Ax —mod
which fixes all E(\), T()\), A € X. Dually, by Proposition 4.2, one has an exact sequence

0— MiB)\T(/,L) — T(A\) — E(A(N) =V(A) —0

for each \ € X.
Corollary. For every x <y in X, there holds
dimpHom 4, (A(z), T(y)) = 1 = dimgHoma, (T(y), V(2)).

Proof. Let x = xg <21 <--- <z, =y be the unique maximal chain from z to y. We shall
use induction on n to prove

(4.3.1) dimgHom 4, (A(z), T(y)) = 1.
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If n =0, ie. o = y, this follows from 4.1(1). Suppose that for all z < y in X, if
the maximal chain from = to y is of length < n then (4.3.1) holds. Now assume that
x <y and that t = 29 <21 < -+ <2, =y is the maximal chain from z to y. Now apply
Hom 4, (A(z), —) to the exact sequence

0— & T(z) — T(y) — V(y) — 0,

Z< Yy

we obtain the following exact sequence:

0 — Homuy (A(z), © T(z)) — Homay(A(z),T(y)) — Homuay (A(z), V(y)).

z< Yy

Since ¢ < y, there holds Hom 4, (A(z), V(y)) = 0. Thus

dimpHom 4, (A(z), T(y)) = dimpHom 4, (A(z), @ T(z)).

z< y
Because X is a tree, we have dimyHom 4, (A(z), T(z)) = 0 for z< y, 2 # zp—1. Thus
dimgHom 4, (A(z), T(y)) = dimgHomu  (A(z), T(zp—1)).

The maximal chain from x to z,_1 is then of the length n — 1 < n. By induction hy-
pothesis, dimyHom 4, (A(z), T(z,-1)) = 1. Hence dim;Hom 4, (A(z),T(y)) =1. Dually,
dimgHom 4, (T(y), V(z)) = 1. O

4.4 For all < A, by ¢, and 7y, we denote the canonical immersion from T'(¢) to T'(\) and
the canonical projection from T(\) to T'(u), respectively (see 4.2 and its dual). Further,
if v = zo<ay<---<x, = y is the unique maximal chain from = to y, then we set
toy = lwozrlores " lon 1z, A0d Tye = Mo g 1 Tayay Tayao-

Consider a full additive subcategory C of A—mod and the objects Ny, Ny € C, and let
Irre(Ny, N2) := rade(Ny, Na)/rad2 Ny, N2) be the bimodule of irreducible maps from N,
to Ny in C.

Proposition. The two morphisms iy and wa, for p< X in X are irreducible in T :=

add( & T(x)). Moreover,
reX

1 3 < <z,
Jima e (T(2), T<y>>={ goasy ory<se

0 otherwise.

Proof (a) If we have ¢z < y in X, then each f € Homu, (T(z), T(y)) factors through
the canonical inclusion i,y : T(z) — T(y). Indeed, this follows from the fact that
Homa, (T(u), V(v)) =0 for all u < v in X.

(b) For < yin X, if f € Homu, (T(z), T(y)) is not injective, then f factors through
the inclusion (i.,)? : ? T(z) — T(y), where (i,y)! denotes the transpose of (i.y). €
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k1*7(#) and where n(z) is the number of z € X satisfying z < z. Indeed, in case z = y, we
have the following exact sequence

0 —— @ T(z) =k

z< T

T(z) —2— V(z) —— 0.

Since dimgHomyu, (T(z), V(z)) = 1 and f is not injective, we get fp, = 0, i.e. f factors
through (i.,)! : @ T(2) — T(z). Now suppose z < y. By (a), there is an f’ :
z< T

T(z) — T(x) sucH that f = f'izy. Since f is not injective, neither is f'. By the above
argument, f' factors through (i.,), : @ T(z) — T(z). Therefore, f factors through
z<
(i) iy = (i) T(2) — T(y).
(¢) Now suppose that p< A and that ¢, admits a decomposition 7,y = fg with f =
(Fut )i+ T(p) — & T(6;) and g = (g5,2)! : & T(6;) —> T() for some &; € X, 1< i < m,
=1 =1

m

that is, iux = Y fus;gs;:x. We shall prove that f is a split monomorphism or that ¢ is a
=1
split epimorphism.

From i,y = E fus;gs:x and (a), we have

=1

T() 5 T(u) = Tn(iyn) € 3 Tl fus g5.2) € 7o)

Thus N
Z:[m(f#&igéi)\) =T(p) CT(N).

We claim that thereis a é; such that fus; gs; x is injective. Otherwise, by (b), Im( fys; gs,1) C

? T(v) for all 6;. Hence Y Im(fus;96:1) C ? T(y) C T(p), a contradiction. Thus with
r< p i=1 r< p
fus; 95, also fus, is injective. This implies p < ¢; by 4.1(1). If p = ¢é;, then fus, is
invertible, 1.e. f is a split monomorphism. In case p < 6;, we shall show that 6; = A. To
this purpose, it is enough to prove that gs; \ is injective. Suppose that gs; x is not injective.
Using the dual argument of (b) and 4.1(1) we have that T(6;) D A(é;) € Ker(gs; ).
Thus (A(p))fus; S A(65) € Ker(gs; ) since dimgHom 4, (A(p), T(65)) = 1 by Corollary
4.3. Hence A(p) C Ker(fus;95;x) and fus; gs; » is not injective, which is a contradiction.
Therefore, gs,» is injective. This implies 6; < A. Since p< A and p < é;, we must have
6; = A. Then g5, is invertible, that is, ¢ is a split epimorphism. Hence z, is irreducible.
Dually, 7y, 1s irreducible for ;4 < A in X. The rest of the proposition becomes now obvious.
(]

4.5 Proposition. (1) If u< X and vy, -+ , vs are all the elements in X satisfying v; < u,
s >1, then
LA T A = Z T pogi Ly o

=1



