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Abstract. In this paper, we consider the endomorphism algebra of an infinitely generated
tilting module of the form RU ˚RU=R over a tame hereditary k-algebra R with k an
arbitrary field, where RU is the universal localization of R at an arbitrary set U of sim-
ple regular R-modules. We show that the derived module category of this endomorphism
algebra is a recollement of the derived module category D.R/ of R and the derived mod-
ule category D.AU/ of the adèle ring AU associated with U. When k is an algebraically
closed field, the ring AU can be precisely described in terms of Laurent power series ring
k..x// over k. Moreover, if U is a union of finitely many cliques, we give two different
stratifications of the derived category of this endomorphism algebra by derived categories
of rings such that the two stratifications are of different finite lengths.
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1 Introduction

Tilting modules over tame hereditary algebras have played a special role in the
development of the representation theory of algebras: Finite-dimensional tilting
modules provide a class of minimal representation-infinite algebras which can be
used together with the covering techniques in [4] to decide whether an algebra is
of finite representation type, while infinite-dimensional tilting modules involve the
generic modules discovered by Ringel in [26], Prüfer modules and adic modules.
Very recently, Angeleri-Hügel and Sánchez have classified all tilting modules over
tame hereditary algebras up to equivalence in [3]. One of the main ingredients of
their classification involves the universal localizations at simple regular modules,
which were already studied by Crawley-Boevey in [14]. It is worth noting that
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1850 H. X. Chen and C. C. Xi

Krause and Stovicek have recently shown in [20] that over hereditary rings uni-
versal localizations and ring epimorphisms coincide. For finite-dimensional tilt-
ing modules over tame hereditary algebras, their endomorphism algebras are well
understood from the point of view of torsion theory and derived categories (see
[7, 17, 18, 27] and others). For example, by Happel’s general theorem, the given
tame hereditary algebras and the endomorphism algebras of their tilting modules
are derived equivalent. However, for infinite-dimensional tilting modules, one can-
not get such derived equivalences anymore (see [5]). Nevertheless, if they are good
tilting modules, then the derived module categories of their endomorphism alge-
bras admit recollements by derived module categories of the given tame hereditary
algebras themselves on the one side, and of certain universal localizations of their
endomorphism algebras on the other side, as shown by a general result in [8]. Here,
not much is known about the precise structures of these universal localizations as
well as the derived composition factors of these recollements. In fact, it seems to
be very difficult to describe them in general.

In the present paper, we will study these new recollements arising from a class
of good tilting modules over tame hereditary algebras more explicitly. In this spe-
cial situation, we can describe precisely the universal localizations appearing in
the recollements in terms of adèle rings which occur often in algebraic number
theory (see [23, Chapter V]), determine their derived composition factors, and
provide two completely different stratifications of the derived module categories
of the endomorphism algebras of these tilting modules.

Let R be an indecomposable finite-dimensional tame hereditary algebra over
an arbitrary field k. Of our interest are simple regular R-modules. Now, we fix
a complete set S of all non-isomorphic simple regular R-modules, and consider
the equivalence relation � on S generated by

L1 � L2 for L1; L2 2 S if Ext1R.L1; L2/ ¤ 0:

The equivalence classes of this relation are called cliques (see [14]). It is well
known that all cliques are finite, and all but at most three cliques consist of only
one simple regular module.

Let C be a clique of R and V 2 C . Then there is a unique Prüfer R-module,
denoted by V Œ1�, such that its regular socle is equal to V (see [26]). Moreover, for
any two non-isomorphic simple regular modules in C , the endomorphism algebras
of the Prüfer modules corresponding to them are isomorphic (see, for instance,
Lemma 3.1 (3)). Hence we define D.C/ to be EndR.V Œ1�/ for an arbitrary but
fixed module V 2 C . It is shown that this ring is a (not necessarily commutative)
discrete valuation ring. Therefore, the so-called division ring Q.C/ of fractions of
D.C/ exists, which is the “smallest” division ring containing D.C/ as a subring
up to isomorphism.
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Let U � S be a set of simple regular modules, and let RU stand for the uni-
versal localization of R at U in the sense of Schofield and Crawley-Boevey. Then
it is proved in [2] that the R-module TU WD RU ˚RU=R is a tilting module. Fol-
lowing [3, Example 1.3], if U is a union of cliques, the R-module TU is called the
Reiten–Ringel tilting module associated with U. This class of modules was studied
first in [26] and generalized then in [24]. As a main objective of the present paper,
we will concentrate on the derived categories of the endomorphism algebras of
tilting modules TU for arbitrary subsets U of S .

Let kŒŒx�� and k..x// be the algebras of formal and Laurent power series over
k in one variable x, respectively. For an index set I , we define the I -adèle ring of
k..x// by

AI WD

²
.fi /i2I 2

Y
i2I

k..x// j fi 2 kŒŒx�� for almost all i 2 I
³
;

where
Q
i2I k..x// stands for the direct product of I copies of k..x//. In particu-

lar, if I is a finite set, then AI D k..x//jI j.
Our main result in this paper is the following theorem which provides us with

a class of new recollements different from the one obtained by the structure of
triangular matrix rings.

Theorem 1.1. Let R be an indecomposable finite-dimensional tame hereditary al-
gebra over an arbitrary field k. Let U be a nonempty set of simple regularR-mod-
ules with ¹Ciºi2I , the set of all cliques contained in U where I is an index set,
and let B be the endomorphism algebra of RU ˚RU=R, where RU stands for
the universal localization of R at U. Then there is the following recollement of
derived module categories:

D.AU/ // D.B/ //

hh

vv

D.R/
hh

vv

where AU is the I -adèle ring with respect to the rings Q.Ci / for i 2 I , that is,

A U WD

²
.fi /i2I 2

Y
i2I

Q.Ci / j fi 2 D.Ci / for almost all i 2 I
³

and is Morita equivalent to a universal localization of B . In particular, if k is
algebraically closed, then AU is isomorphic to the I -adèle ring AI of the Laurent
power series ring k..x//.

For more details on the six functors and relationship of the rings in the above
recollement, we refer the reader to the explanation after Proposition 2.11.
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As a consequence of Theorem 1.1, we obtain new stratifications of the derived
categories of the endomorphism algebras of tilting modules arising from universal
localizations at simple regular modules.

Corollary 1.2. LetR be an indecomposable finite-dimensional tame hereditary al-
gebra over an algebraically closed field k. Let r be the number of non-isomorphic
simple R-modules. Suppose that U is a non-empty finite subset of S consisting of
s cliques. Let B be the endomorphism algebra of the Reiten–Ringel tiltingR-mod-
ule associated with U. Then D.B/ admits two stratifications by derived module
categories:

� one is of length r C s with the following composition factors: r copies of the
ring k and s copies of the ring k..x//,

� the other is of length r C s � 1 with the following composition factors: r � 2
copies of the ring k, s copies of the ring kŒŒx�� and one copy of a Dedekind
integral domain contained in the field k.x/ of fractions of the polynomial
algebra kŒx�.

It follows from Corollary 1.2 that a derived module category may have two strat-
ifications with different lengths and different sets of derived composition factors.
This gives a negative answer to a general question whether Jordan–Hölder’s theo-
rem holds true for stratifications of derived module categories by derived module
categories (see [1]).

Observe that if R is the Kronecker algebra and U consists of only one simple
regular module, then we re-obtain the stratifications, shown in the example of
[8, Section 8], from Corollary 1.2.

Now, let us describe the structure of this paper. In Section 2, we fix notation
and recall some definitions and basic facts which will be used throughout the pa-
per. In Section 3, we consider Prüfer modules and their endomorphism algebras.
In Section 4, we make several preparations for proofs of our main results in the
paper. First, we consider universal localizations at simple regular modules over
tame hereditary algebras and establish a crucial result, Corollary 4.9. Second, we
discuss the endomorphism algebras of tilting modules over arbitrary tame hered-
itary algebras. Finally, we reduce our consideration of universal localizations of
arbitrary tame hereditary algebras to the special case of universal localizations of
the Kronecker algebra at simple regular modules. In Section 5, we first apply the
results in the previous sections to prove Theorem 1.1, and then, by using Theo-
rem 1.1 together with a result in [19], determine the derived composition factors
of the derived categories of the endomorphism algebras of Reiten–Ringel tilting
modules, and therefore get a proof of Corollary 1.2. At the end of this section we
mention a few questions related to the results in this paper.
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Recollements induced from tilting modules 1853

2 Preliminaries

In this section, we first recall some standard notation which will be used through-
out this paper, and then develop some properties on universal localizations and
recollements. Finally, we collect some homological facts which are useful for our
proofs.

2.1 Notation

All rings considered are assumed to be associative and with identity, all ring ho-
momorphisms preserve identity, and all full subcategories D of a given category
C are closed under isomorphic images, that is, if X and Y are objects in C , then
Y 2 D whenever Y ' X with X 2 D .

Let R be a ring.
We denote by R-Mod the category of all unitary left R-modules, and byR-mod

the category of finitely generated unitary left R-modules. Unless stated otherwise,
by an R-module we mean a left R-module. For an R-module M , we denote by
add.M/ (respectively, Add.M/) the full subcategory of R-Mod consisting of all
direct summands of finite (respectively, arbitrary) direct sums of copies ofM . If I
is an index set, we denote by M .I / the direct sum of I copies of M .

If f WM ! N is a homomorphism of R-modules, then the image of x 2M
under f is denoted by .x/f instead of f .x/. Also, for any R-module X , the in-
duced morphisms

HomR.X; f / W HomR.X;M/! HomR.X;N /

and
HomR.f;X/ W HomR.N;X/! HomR.M;X/

are denoted by f � and f�, respectively.
Given a class U of R-modules, we denote by F .U/ the full subcategory of

R-Mod consisting of all those R-modules M which have a finite filtration

0 DM0 �M1 � � � � �Mn DM

such thatMi=Mi�1 is isomorphic to a module in U for each i . We say thatM is a
direct union of finite extensions of modules in U ifM is the direct limit of a direct
system of submodules in F .U/ of M (with respect to the inclusion ordering).
Note that ifM is the direct limit of a direct system of submodules ¹M˛º˛2I ofM
(with respect to the inclusion ordering), thenM D

S
˛2I M˛. In addition, ifM is

finitely generated, then M DM˛ for some ˛ 2 I .
Let D.R/ be the (unbounded) derived category ofR-Mod, which is the localiza-

tion of the homotopy category of R-Mod at all quasi-isomorphisms. Furthermore,
we always identify R-Mod with the subcategory of D.R/ consisting of all stalk
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complexes concentrated on degree zero. It is well known that

HomD.R/.X; Y Œn�/ ' ExtnR.X; Y /

for any X; Y 2 R-Mod and n 2 N, where Œn� stands for the n-th shift functor
of D.R/, and that the triangulated category D.R/ has small coproducts, that is,
coproducts indexed by sets exist in D.R/.

Let S be a ring and let M � be a complex of R-S -bimodules. We shall denote
by M � ˝L

S � W D.S/! D.R/ the total left-derived functor of M � ˝�S �, while
RHomR.M �;�/ W D.R/! D.S/ is defined to be the total right-derived functor
of Hom�R.M

�;�/. Note that .M � ˝L
S �;RHomR.M �;�// is an adjoint pair of

triangle functors.
If R is an Artin k-algebra over a commutative Artin ring k, we denote byD the

usual duality, and by � the Auslander–Reiten translation of R.

2.2 Ore localizations and universal localizations

In this subsection, we shall recall the definition of universal localizations, and
mention two special cases of universal localizations: Ore localizations and univer-
sal localizations at a set of modules of projective dimension at most 1.

First of all, we have the following known result on universal localizations.

Lemma 2.1 ([28, Theorem 4.1]). Let R be a ring and † be a set of homomor-
phisms between finitely generated projective R-modules. Then there is a ring R†
and a homomorphism � W R! R† of rings with the following properties:

(1) � is †-inverting, that is, if ˛ W P ! Q belongs to †, then

R† ˝R ˛ W R† ˝R P �! R† ˝R Q

is an isomorphism of R†-modules.

(2) � is universal †-inverting, that is, if S is a ring such that there exists a †-in-
verting homomorphism ' W R! S , then there exists a unique homomorphism
 W R† ! S of rings such that ' D � .

(3) The homomorphism � W R! R† is a ring epimorphism with

TorR1 .R†; R†/ D 0:

We call � W R! R† in Lemma 2.1 the universal localization of R at †. If the
R-module R† has projective dimension at most 1, then � is homological. Recall
that a ring epimorphism R! S is said to be homological if TorRn .S; S/ D 0 for
every n > 0. Of our particular interest are the following two kinds of universal
localizations.

The first one is associated with subsets of elements in rings.
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Let ˆ be a non-empty subset of R. Then we consider the universal localization
of R at all homomorphisms �r with r 2 ˆ, where �r is the right multiplication
map R! R defined by x 7! xr for x 2 R. For simplicity, we write Rˆ for this
universal localization, and say that Rˆ is the universal localization of R at ˆ.
Note that, by the property of universal localizations, Rˆ is also isomorphic to the
“right” universal localization of R at all left multiplication maps �r W RR ! RR
defined by x 7! rx for x 2 ˆ, which are regarded as homomorphisms of right
R-modules. Clearly, if 0 2 ˆ, then Rˆ D 0. If 0 … ˆ, then we consider the small-
est multiplicative subset ˆ1 of R containing ˆ, and get Rˆ D Rˆ1

. Recall that a
subset ˆ of R is said to be multiplicative if 0 … ˆ, 1 2 ˆ, and it is closed under
multiplication.

From now on, we assume that ˆ is a multiplicative subset of R.
Under some extra assumptions on ˆ, the ring Rˆ can be characterized by Ore

localizations which generalizes the notion of localizations in commutative rings.
To explain this point in detail, we first recall some relevant definitions about Ore
localizations. For more details, we refer to [22, Chapter 4].

Definition 2.2. A subset ˆ of R is called a left denominator subset of R if ˆ
satisfies the following two conditions:

(i) For any a 2 R and s 2 ˆ, there holds ˆa \Rs ¤ ;.
(ii) For any r 2 R, if rt D 0 for some t 2 ˆ, then there exists some t 0 2 ˆ such

that t 0r D 0.

If ˆ satisfies only the condition (i), then ˆ is called a left Ore subset of R.

Similarly, we can define the notions of right denominator sets and right Ore sets,
respectively. Clearly, if R is commutative, then every multiplicative subset of R is
a left and right denominator set. Furthermore, if R is a domain, that is, R is a (not
necessarily commutative) ring without left or right zero-divisors, then R n ¹0º is a
left denominator set if and only if it is a left Ore set if and only ifRr1 \Rr2 ¤ ¹0º
for any non-zero elements r1; r2 2 R. We say that R is a left Ore domain if R is a
domain and R n ¹0º is a left denominator set.

The following lemma explains how left Ore localizations arise, and establishes
a relationship between left Ore localizations and universal localizations.

Lemma 2.3 ([22, Theorem 10.6, Corollary 10.11]). Let ˆ be a left denominator
subset of R and � W R! Rˆ be the universal localization of R at ˆ. Then there
is a ring, denoted by ˆ�1R, and a ring homomorphism � W R! ˆ�1R such that

(1) � is ˆ-invertible, that is, .s/� is a unit in ˆ�1R for each s 2 ˆ.
(2) Every element of ˆ�1R has the form ..t/�/�1.r/� for some t 2 ˆ and some

r 2 R.
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(3) ker.�/ D ¹r 2 R j sr D 0 for some s 2 ˆº.

(4) There is a unique isomorphism

� W ˆ�1R �! Rˆ

of rings such that � D ��.

The ring ˆ�1R in Lemma 2.3 is called a left ring of fractions of R (with re-
spect to ˆ � R), or alternatively, a left Ore localization of R at ˆ. Clearly, for
commutative rings, Ore localizations and the usual localizations at multiplicative
subsets coincide.

Similarly, when ˆ is a right denominator subset of R, we can define a right
ring Rˆ�1 of fractions of R. If ˆ is a left and right denominator subset of R,
then ˆ�1R is called the ring of fractions of R, or the Ore localization of R at ˆ.
Actually, in this case, both ˆ�1R and Rˆ�1 are isomorphic to Rˆ. Furthermore,
if R is a left and right Ore domain, then the ring of fractions of R with respect
to R n ¹0º is usually denoted by Q.R/. Notice that, up to isomorphism, Q.R/ is
the smallest division ring containing R as a subring. So we call Q.R/ the division
ring of fractions of R.

Now, we introduce a class of Ore domains, that is, discrete valuation rings.

Definition 2.4. A ring R is called a discrete valuation ring (which may not be
commutative) if the following conditions hold true:

(1) R is a local ring, that is, R has a unique maximal left ideal m,

(2)
T
i�1mi D 0,

(3) m D pR D Rp, where p is some non-nilpotent element of R.

We remark that an equivalent definition of discrete valuation rings is the follow-
ing: A non-division ring R is called a discrete valuation ring if it is a local domain
with m the unique maximal ideal of R such that the only left ideals and the only
right ideals of R are of the form mi for i 2 N.

The element p in the above condition (3) is called a prime element ofR. Clearly,
for each invertible element v of R, both vp and pv are prime elements. A discrete
valuation ring is said to be complete if the canonical map

R �! lim
 �
i

R=mi

is an isomorphism. Note that every discrete valuation ring can be embedded into a
complete discrete valuation ring.

The following lemma collects some basic properties of discrete valuation rings,
which will be frequently used in our proofs.
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Lemma 2.5 ([21, Chapter 1], [22]). Let R be a discrete valuation ring, m be the
unique maximal ideal of R, and p be a prime element of R. Then the following
statements are true:

(1) The ideals mi , with i 2 N, are the only left ideals and the only right ideals
of R.

(2) For any non-zero element x 2 R, there is a unique subset ¹x1; x2º � R nm

such that x D x1pn D pnx2 for some n 2 N.

(3) R is a left and right Ore domain. In particular, the division ring Q.R/ of
fractions of R exists.

(4) Q.R/ is isomorphic to the universal localization of R at the map �p W R! R

defined by r 7! rp for each r 2 R.

The other kind of universal localizations is provided by universal localizations
at injective homomorphisms between finitely generated projective modules, and
therefore related to finitely presented modules of projective dimension at most 1.

Suppose that U is a set of finitely presentedR-modules of projective dimension
at most 1. For each U 2 U, there is an exact sequence of R-modules

0 �! P1
fU
�! P0 �! U �! 0;

such that P1 and P0 are finitely generated and projective. Set

† WD ¹fU j U 2Uº;

and let RU be the universal localization of R at †. If f 0U W Q1 ! Q0 is another
such a sequence of U , then the universal localization ofR at†0 WD ¹f 0U j U 2 Uº

is isomorphic to RU. Hence RU does not depend on the choices of the injective
homomorphisms fU , and we may say that RU is the universal localization of R
at U.

Clearly, we have TorRi .RU; U / D 0 for all i � 0 and U 2 U, and therefore
TorRi .RU; X/ D 0 for all i � 0 and X 2 F .U/.

Now, we recall the following property of universal localizations, which states
that iterated universal localizations are again universal localizations.

Lemma 2.6 ([28, Theorem 4.6]). Let † and � be sets of homomorphisms between
finitely generated projective R-modules. Set � WD ¹R† ˝R f j f 2 �º. Then the
universal localization of R at † [ � is isomorphic to the universal localization of
R† at � , that is, R†[� ' .R†/� as rings.

Finally, we point out a special case of universal localizations which arise from
ring epimorphisms.
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Lemma 2.7. Let � W R! S be a ring epimorphism. If the R-module S is finitely
generated and projective, then � is the universal localization of R at the homo-
morphism �.

Proof. Suppose that RS is finitely generated and projective. Then � W R! S is
a homomorphism of finitely generated projective R-modules. Let † WD ¹�º. To
show that � is the universal localization of R at †, we shall check the condi-
tions (1) and (2) in Lemma 2.1. Actually, since � is a ring epimorphism, we know
that S˝� W S˝RR! S˝R S is an isomorphism of S -modules. Thus � is†-in-
verting and verifies Lemma 2.1 (1). Suppose that ' W R! T is a ring homomor-
phism such that

T ˝ � W T ˝R R �! T ˝R S

is an isomorphism of T -modules. Clearly, the homomorphism � W T ! T ˝R R,
given by t 7! t ˝ 1 for t 2 T , is an isomorphism of T -R-bimodules. Now, we
define

 W S �! T; s 7�! .1˝ s/
�
�.T ˝ �/

��1
for each s 2 S . Clearly,  is well defined and can be illustrated by the following
commutative diagram of homomorphisms of T -R-bimodules:

T
�
//

�.s/ 

��

T ˝R R
T˝�

// T ˝R S

T˝.�s/

��

T
�
// T ˝R R

T˝�
// T ˝R S

where �.s/ W T ! T and �s W S ! S stand for the right multiplication maps by
.s/ and s, respectively. From this diagram, we see that  is a ring homomor-
phism such that ' D � . Further, since � is a ring epimorphism, we know that
if there exists another ring homomorphism  0 W S ! T such that ' D � 0; then
 0 D  . Consequently, � is universal †-inverting and satisfies Lemma 2.1 (2).
Thus � is the universal localization of R at †.

2.3 Recollements induced by tilting modules

Now, let us recall the definition of recollements of triangulated categories. This
notion was first introduced by Beilinson, Bernstein and Deligne in [6] to study
the triangulated categories of perverse sheaves over singular spaces, and later was
used by Cline, Parshall and Scott in [11] to stratify the derived categories of quasi-
hereditary algebras arising from the representation theory of semisimple Lie alge-
bras and algebraic groups.

Let D be a triangulated category. We denote the shift functor of D by Œ1�.
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Recollements induced from tilting modules 1859

Definition 2.8 ([6]). Let D 0 and D 00 be triangulated categories. We say that D is a
recollement of D 0 and D 00 if there are six triangle functors i�; i�; i Š; j Š; j� and jŠ
as in the diagram

D 00
i�DiŠ

// D
j ŠDj�

//

i Š
ZZ

i�

��

D 0

j�
ZZ

jŠ

��

such that

(1) .i�; i�/; .iŠ; i Š/; .jŠ; j Š/ and .j �; j�/ are adjoint pairs,

(2) i�; j� and jŠ are fully faithful,

(3) i Šj� D 0 (and thus also j ŠiŠ D 0 and i�jŠ D 0),

(4) for each object C 2 D , there are two triangles in D :

iŠi
Š.C / �! C �! j�j

�.C / �! iŠi
Š.C /Œ1�

and
jŠj

Š.C / �! C �! i�i
�.C / �! jŠj

Š.C /Œ1�;

where iŠi Š.C /! C and jŠj Š.C /! C are counit adjunction morphisms, and
where C ! j�j

�.C / and C ! i�i
�.C / are unit adjunction morphisms.

In the following, if D is a recollement of D 0 and D 00, we also say that there is
a recollement among D 0, D and D 00, or very briefly, that D admits a recollement.

A well-known example of recollements of derived categories of rings is given by
triangular matrix rings: Suppose that A, B are rings and M is an A-B-bimodule.
Let R D

�
A M
0 B

�
, the triangular matrix ring associated with A;B and M . Then

there is a recollement of derived categories:

D.A/ // D.R/ //

hh

vv

D.B/.
hh

vv

A generalization of this situation is the so-called stratifying ideals defined by
Cline, Parshall and Scott, and can be found in [11].

Another type of examples of recollements of derived categories of rings ap-
pears in the tilting theory of infinitely generated tilting modules over arbitrary
rings (see [8]). Before we state this kind of examples, we first recall the definition
of tilting modules over arbitrary rings from [13], and then construct tilting modules
from universal localizations.
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1860 H. X. Chen and C. C. Xi

Definition 2.9. An R-module T is called a tilting module (of projective dimension
at most 1) if the following conditions are satisfied:

(T1) The projective dimension of T is at most 1, that is, there exists an exact
sequence

0 �! P1 �! P0 �! T �! 0

with Pi projective for i D 0; 1.

(T2) ExtiR.T; T
.˛// D 0 for each i � 1 and each index set ˛.

(T3) There exists an exact sequence

0 �! RR �! T0 �! T1 �! 0

of R-modules such that Ti 2 Add.T / for i D 0; 1.

A tilting R-module T is called good if T0 and T1 in (T3) lie in add.T /, and clas-
sical if T is good and finitely presented.

A special kind of good tilting modules can be constructed from certain universal
localizations.

Lemma 2.10 ([2, Theorem 3.5, Theorem 2.6]). Let R be a ring and † be a set
of homomorphisms between finitely generated projective R-modules. If the uni-
versal localization � W R! R† is injective and the R-module R† has projective
dimension at most 1, then R† ˚R†=R is a tilting R-module with

HomR.R†=R;R†/ D 0:

Now, we state the promised example of recollements as a proposition which
is a consequence of [8, Lemma 6.2, Corollary 6.6]. It is worth noticing that the
recollement in this proposition is, in general, different from the one obtained from
the structure of triangular matrix rings.

Proposition 2.11. Let R be a ring and let U denote a set of finitely presented
R-modules of projective dimension at most 1. Suppose that the universal local-
ization � W R! RU of R at U is injective and that the R-module RU has pro-
jective dimension at most 1. Set B WD EndR.RU ˚RU=R/, S WD EndR.RU=R/

and † WD ¹S ˝R fU j U 2 Uº. Then there is a recollement of derived module
categories

D.S†/ // D.B/ //

hh

vv

D.R/
hh

vv

where S† is the universal localization of S at †, and where the right R-module
structure on S is induced by the ring homomorphism sending r 2 R to the right
multiplication map �r W RU=R! RU=R.
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Recollements induced from tilting modules 1861

Let us give an explicit description of the six functors appearing in the above
recollement.

Let � W R! S be the right multiplication map defined by r 7! .y 7! yr/ for
r 2 R and y 2 RU=R. Clearly, this is a ring homomorphism and endows S with
a natural R-R-bimodule structure. Further, let � W S ! S† be the universal local-
ization of S at †. Then, by Lemma 2.1 (2), there exists a unique ring homomor-
phism � W RU ! S† such that the following diagram of ring homomorphisms is
commutative:

R
�
//

�

��

RU

�

��

S
�
// S†.

Moreover, by [8, Lemma 6.4 (2) and Lemma 6.5 (2)], the ring B can be identified
with the triangular matrix ring

�
RU RU˝RS
0 S

�
up to isomorphism. Now, we define

a homomorphism ' between finitely generated projective B-modules

' W

 
RU

0

!
�!

 
RU ˝R S

S

!
;

 
x

0

!
7�!

 
x ˝ 1

0

!
for x 2 RU:

Since RU and S are R-R-bimodules via � and �, respectively, the map ' can be
regarded as a homomorphism of B-R-bimodule. This implies that the mapping
cone P � of ' between stalk complexes is actually a complex of B-R-bimodule.
Moreover, HomB.P �Œ�1�; B/ is quasi-isomorphic to T WD RU ˚RU=R as com-
plexes of R-B-bimodules. By [8, Lemmas 6.1 and 6.2], the universal localization
of B at ' is given by

� W B D

 
RU RU ˝R S

0 S

!
�! C WD

 
S† S†

S† S†

!
; 

x1 x2 ˝ s2

0 s1

!
7�!

 
.x1/� .x2/�.s2/�

0 .s1/�

!

for xi 2 RU and si 2 S with i D 1; 2. Furthermore, by [8, Theorem 1.1], the map
� is homological, and induces a recollement of derived module categories

D.C /
i�

// D.B/
j Š

//

i Š

hh

i�

vv

D.R/

j�

hh

jŠ

vv
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where

i� WD C ˝L
B �; i� WD C ˝

L
C �; i Š WD RHomB.C;�/;

jŠ WD P
�Œ�1�˝L

R �; j Š WD T ˝L
B �; j� WD RHomR.T;�/:

Observe that C is Morita equivalent to S†. So, we can replace D.C / by D.S†/ in
the recollement, and obtain a recollement of derived module categories in Propo-
sition 2.11.

For a systematic investigation on the recollements induced from pairs of ring
homomorphisms, we refer the reader to the recent preprint [9].

2.4 Homological facts

Finally, we prepare several homological results for our later proofs.

Lemma 2.12. Let R be a ring and let

0 �! X
.f; g/
�! Y ˚Z

h
�! W �! 0

be an exact sequence of R-modules. Assume that f W X ! Y is injective and that
there is a homomorphism Qg W Y ! Z with

g D f Qg W X ! Z:

Then there exists an automorphism  of the module Y ˚Z and an isomorphism
 W W ! Coker.f /˚Z such that the following diagram commutes:

0 // X
.f; g/

// Y ˚Z
h

//



��

W //

 

��

0

0 // X
.f; 0/

// Y ˚Z

�
� 0
0 1

�
// Coker.f /˚Z // 0

where � W Y ! Coker.f / stands for the canonical surjection.

Proof. Set  WD
�
1 � Qg
0 1

�
. Then  is an automorphism of the module Y ˚Z. Since

g D f Qg, we have
.f; g/ D .f; 0/:

Thus there exists a unique homomorphism  W W ! Coker.f /˚Z such that the
above diagram is commutative. Clearly,  is an isomorphism. This completes the
proof.

The following homological facts can be found in the literature. For example,
see [16, Lemma 3.1.6, Lemma 3.3.4] for proofs of (1, ii) and (1, iii).
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Lemma 2.13. Let R be a ring.

(1) If ¹X˛º˛2I is a direct system of R-modules, then:

(i) We have
HomR.lim

�!
˛

X˛;M/ ' lim
 �
˛

HomR.X˛;M/

for any R-module M .

(ii) Let n � 0. If M is an R-module with a projective resolution

� � � �! PnC1 �! � � � �! P1 �! P0 �!M �! 0

such that all Pj , with 0 � j � nC 1, are finitely generated, then

ExtiR.M; lim�!
˛

X˛/ ' lim
�!
˛

ExtiR.M;X˛/

for all i � n. In particular, if M is a finitely presented R-module, then

HomR.M; lim
�!
˛

X˛/ ' lim
�!
˛

HomR.M;X˛/:

(iii) If M is a pure-injective R-module (for example, M is of finite length
over its endomorphism ring), then

ExtiR.lim�!
˛

X˛;M/ ' lim
 �
˛

ExtiR.X˛;M/

for all i � 0. Conversely, if this isomorphism is true for i D 1 and for
every directed system X˛, then M is pure-injective.

(2) If ¹Y˛º˛2I is an inverse system of R-modules, then, for any R-module M ,

HomR.M; lim
 �
˛

Y˛/ ' lim
 �
˛

HomR.M; Y˛/:

Remark. (1) The statement (1, iii) is due to Maurice Auslander.

(2) The class of all pure-injectiveR-modules is closed under products, direct sum-
mands and finite direct sums. In general, it is not closed under extensions.

Lemma 2.14. LetA be a finite-dimensional k-algebra over a field k,M be a finite-
dimensional A-module and N be an arbitrary A-module.

(1) If proj:dim.M/ � 1, then

DExt1A.M;N / ' HomA.N; �M/;

where proj:dim.M/ stands for the projective dimension of M .
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1864 H. X. Chen and C. C. Xi

(2) If inj:dim.M/ � 1, then

Ext1A.N;M/ ' DHomA.��1M;N/;

where inj:dim.M/ stands for the injective dimension of M .

Proof. It is known that every A-module N is a direct limit of finitely presented
A-modules ¹X˛º˛2I (see [16, Lemma 1.2.3]) and that (1) and (2) hold true for
finitely generated modules N . Then, it follows from Lemma 2.13 that

DExt1A.M;N / ' DExt1A.M; lim�!
˛

X˛/ ' D lim
�!
˛

Ext1A.M;X˛/

' lim
 �
˛

DExt1A.M;X˛/ ' lim
 �
˛

HomA.X˛; �M/

' HomA.lim
�!
˛

X˛; �M/ D HomA.N; �M/:

This proves (1). The statement (2) can be shown similarly.

3 Prüfer modules and their endomorphism algebras

In this section, we shall consider the endomorphism algebra of the direct sum of
all Prüfer modules obtained from a given tube. This ring was calculated already
in [26]. For convenience of the reader and also for the later proofs of our main
results, we include here some details of this calculation.

Unless stated otherwise, we assume from now on that R is an indecomposable
finite-dimensional tame hereditary k-algebra over an arbitrary but fixed field k.

Let S WD S .R/ be a fixed complete set of isomorphism classes of all simple
regularR-modules. For each U 2 S and n > 0, we denote by U Œn� theR-module
of regular length n on the ray

U D U Œ1� � U Œ2� � � � � � U Œn� � U ŒnC 1� � � � � ;

and define the Prüfer module corresponding to U as

U Œ1� WD lim
�!
n

U Œn�:

Note that U Œ1� has a unique regular submodule U Œn� of regular length n, and
therefore admits a unique chain of regular submodules, and that each endomor-
phism of U Œ1� restricts to an endomorphism of U Œn� for any n > 0. For further
information on regular modules and Prüfer modules over tame hereditary algebras,
we refer the reader to [26, Sections 4 and 5] and [15].

Recall that we have defined an equivalence relation � on S in Section 1. It is
known that two simple regular modules lie in the same clique if and only if they
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Recollements induced from tilting modules 1865

lie in the same tube. Thus a clique is just the set of all simple regular modules
belonging to a fixed tube.

Let U 2 S and U � S . We denote by C .U / the clique containing U , and
by c.U / the cardinality of C .U /. Similarly, we denote by C .U/ the union of all
cliques C .U / with U 2 U, and by c.U/ the cardinality of C .U/. As mentioned
before, c.U / is always finite, and furthermore, c.U / D 1 for almost all U 2 S .
In fact, there are at most three cliques consisting of more than one element. Also,
we know that R has only two isomorphism classes of simple modules if and only
if every clique of R consists of one simple regular R-module. If the field k is
algebraically closed, this is equivalent to the statement that R is Morita equivalent
to the Kronecker algebra.

Throughout this section, let C be a clique of R, U be an element in C , and
t be the tube of rank m � 1 containing C . Set Ui WD ��.i�1/U for i 2 Z. Then
��mU ' U and C D ¹U1; U2; : : : ; Um�1; Umº which is a complete set of non-
isomorphic simple regular modules in t. Since Uj ' UjCm for any j 2 Z, the
subscript of Uj is always modulo m in our discussion below. It is well known that
EndR.Ui / is a division algebra and HomR.Ui ; Uj / D 0 for 1 � i ¤ j � m, and
that DExt1R.Ui ; Uj / ' EndR.Ui / if j D i � 1, and zero otherwise. Furthermore,
t is an exact abelian subcategory of R-mod, and every indecomposable module
in t is serial, that is, it has a unique regular composition series in t. For example,
for any i 2 Z and j > 0, the module Ui Œj � admits successive regular composition
factorsUi ; UiC1; : : : ; UiCj�1 withUi as its unique regular socle and withUiCj�1
as its unique regular top. For details, see [27, Section 3.1].

Now, we collect some properties of Prüfer modules.

Lemma 3.1. The following statements hold true for the tube t.
(1) For any 1 � i � m and for any regular module X in t, we have

HomR.Ui Œ1�; X/ D 0 D Ext1R.X;Ui Œ1�/:

Further, if 1 � i < j � m, then HomR.Ui Œn�; Uj Œ1�/ D 0 for 1 � n � j �i ,
and HomR.Uj Œn�; Ui Œ1�/ D 0 for 1 � n � m � j C i .

(2) Let i; j 2 N with 1 � i < j . Then, for any n > j � i , there is a canonical
exact sequence of R-modules

0 �! Ui Œj � i � �! Ui Œn�
"i;j Œn�
����! Uj Œn � .j � i/� �! 0:

In particular, we get a canonical exact sequence

0 �! Ui Œj � i � �! Ui Œ1�
"i;j

�! Uj Œ1� �! 0;

where "i;j WD lim
�!n

"i;j Œn�. Moreover, we have

"i;j D "iCm;jCm and "i;j "j;p D "i;p for any p > j .
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1866 H. X. Chen and C. C. Xi

(3) If i; j 2 N with 1 � j � i < m, then "i;j induces an isomorphism of left
EndR.Ui Œ1�/-modules

."i;j /
�
W EndR.Ui Œ1�/

�
�! HomR.Ui Œ1�; Uj Œ1�/;

and an isomorphism of right EndR.Uj Œ1�/-modules

."i;j /� W EndR.Uj Œ1�/
�
�! HomR.Ui Œ1�; Uj Œ1�/:

In particular, we get a ring isomorphism

'i;j W EndR.Ui Œ1�/ �! EndR.Uj Œ1�/; f 7�! f 0

for f 2 EndR.Ui Œ1�/ and f 0 2 EndR.Uj Œ1�/, with f "i;j D "i;jf 0.

(4) Suppose 1 � r; s; t � m. Set

�r;s WD

´
0 if r < s;
1 if r � s;

and define

�r;s WD "r;sC�r;sm 2 HomR.Ur Œ1�; UsC�r;smŒ1�/:

Then

�r;s �s;t D

´
�r;t if �r;s C�s;t D �r;t ;
�r;r�r;t otherwise:

In particular, we have .�i;i /'i;j D �j;j for any 1 � i < j � m.

(5) The ring EndR.Ui Œ1�/ is a complete discrete valuation ring with �i;i as a
prime element. If k is an algebraically closed field, then there is a ring iso-
morphism 'i W EndR.Ui Œ1�/! kŒŒx�� which sends �i;i to x.

Proof. (1) Note that we have DExt1R.X;Ui Œ1�/ ' HomR.Ui Œ1�; �X/ for any
X 2 t by Lemma 2.14 (1), and that every indecomposable module in t is serial.
Thus, to prove the first statement in (1), it suffices to show HomR.Ui Œ1�; Uj / D 0
for all 1 � j � m. In fact, since the inclusion map Ui Œn�! Ui ŒnC 1� induces a
zero map from HomR.Ui ŒnC 1�; Uj / to HomR.Ui Œn�; Uj / for all n. This implies
that

HomR.Ui Œ1�; Uj / D HomR.lim
�!
n

Ui Œn�; Uj / ' lim
 �
n

HomR.Ui Œn�; Uj / D 0:

The last statement in (1) follows from the fact that the abelian category t is
serial.
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(2) For any n > j � i , we can easily see from the structure of the tube t that
there is an exact commutative diagram of R-modules

0 // Ui Œj � i � // Ui Œn�
"i;j Œn�

//

_�

��

Uj Œn � .j � i/� //

_�

��

0

0 // Ui Œj � i � // Ui ŒnC 1�
"i;j ŒnC1�

// Uj Œn � .j � i/C 1� // 0

where the map "i;j Œn� is induced by the canonical inclusion Ui Œj � i � ,! Ui Œn�.
Thus, by taking the direct limit of the above diagram, we obtain the canonical
exact sequence

0 �! Ui Œj � i � �! Ui Œ1�
"i;j

�! Uj Œ1� �! 0 (�)

where "i;j WD lim
�!n

"i;j Œn�. This is the first assertion in (2). In the following, we
shall show that "i;j D "iCm;jCm and "i;j "j;p D "i;p for any p > j . In fact, the
former clearly follows from "i;j Œn� D "iCm;jCmŒn� for any n > j � i since we
have Ui D UiCm and Uj D UjCm by our convention. As for the latter, it follows
that, for any u > p � i , the composite of

"i;j Œu� W Ui Œu� �! Uj Œu � .j � i/�;

and
"j;pŒu � .j � i/� W Uj Œu � .j � i/� �! UpŒu � .p � i/�

coincides with "i;pŒu� W Ui Œu� �! UpŒu � .p � i/�. So

"i;j Œu�"j;pŒu � .j � i/� D "i;pŒu�:

By taking the direct limit of the two sides of this equality, we have "i;j "j;p D "i;p
for any p > j . This completes the proof of (2).

(3) If we apply HomR.Ui Œ1�;�/ to the sequence (�) in the proof of (2), then
we get the following exact sequence:

0 �! HomR.Ui Œ1�; Ui Œj � i �/ �! HomR.Ui Œ1�; Ui Œ1�/
."i;j /

�

�! HomR.Ui Œ1�; Uj Œ1�/

�! Ext1R.Ui Œ1�; Ui Œj � i �/:

Note that HomR.Ui Œ1�; Ui Œj � i �/ D 0 by (1). Thus, to prove that ."i;j /� is an
isomorphism, it suffices to show Ext1R.Ui Œ1�; Ui Œj � i �/ D 0. In fact, this follows
from

Ext1R.Ui Œ1�; Ui Œj � i �/ ' DHomR.��.Ui Œj � i �/; Ui Œ1�/

' DHomR.UiC1Œj � i �; Ui Œ1�/ D 0;

where the last equality holds for 1 � j � i < m by (1).
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Next, by applying HomR.�; Uj Œ1�/ to the sequence (�), we get the following
exact sequence:

0 �! EndR.Uj Œ1�/
."i;j /�
�! HomR.Ui Œ1�; Ui Œ1�/ �! HomR.Ui Œj�i �; Uj Œ1�/:

Since 1 � j � i < m, we have HomR.Ui Œj � i �; Uj Œ1�/ D 0 by (1), and there-
fore ."i;j /� is an isomorphism.

Now, it follows from the isomorphisms ."i;j /� and ."i;j /� that the map

'i;j W EndR.Ui Œ1�/ �! EndR.Uj Œ1�/

in .3/ is well defined and thus a ring isomorphism.
(4) By definition, for 1 � r; s; t � m, one can check

�r;s�s;t D "r;sC�r;sm"s;tC�s;tm

D "r;sC�r;sm"sC�r;sm;tC.�s;tC�r;s/m

D "r;tC.�r;sC�s;t /m:

On the one hand, for any p > r and q > r , we infer from (2) that "r;p D "r;q if
and only if p D q. On the other hand, we always have�r;s C�s;t ��r;t 2 ¹0; 1º.
Consequently, the first statement in (4) follows. In particular, this implies that

�i;j�j;j D �i;i�i;j

for 1 � i < j � m. By the definition of 'i;j in (3), the second statement in (4)
follows.

(5) SetDi WD EndR.Ui Œ1�/. It follows from [26, Section 4.4] thatDi is a com-
plete discrete valuation ring. Let m be the unique maximal ideal of Di . We shall
prove that �i;i is a prime element of Di , that is, m D �i;iDi D Di�i;i . Indeed,
by applying HomR.�; Ui Œ1�/ to the exact sequence

0 �! Ui Œm� �! Ui Œ1�
�i;i

�! Ui Œ1� �! 0;

we obtain another exact sequence of right Di -modules:

0 �! Di
.�i;i /�
�! Di �! HomR.Ui Œm�; Ui Œ1�/ �! 0;

due to Ext1R.Ui Œ1�; Ui Œ1�/ D 0, which follows from [26, Section 4.5]. To show
m D �i;iDi , we first claim that

HomR.Ui Œm�; Ui Œ1�/ ' HomR.Ui ; Ui Œ1�/ ' Di=m

as right Di -modules.
Let

0 �! Ui �! Ui Œm�
"i;iC1Œm�
������! UiC1Œm � 1� �! 0
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Recollements induced from tilting modules 1869

be the exact sequence defined in (2). Then we get the following exact sequence of
k-modules:

HomR.UiC1Œm � 1�; Ui Œ1�/ �! HomR.Ui Œm�; Ui Œ1�/

�! HomR.Ui ; Ui Œ1�/

�! Ext1R.UiC1Œm � 1�; Ui Œ1�/:

Since HomR.UiC1Œm � 1�; Ui Œ1�/ D 0 D Ext1R.UiC1Œm � 1�; Ui Œ1�/ by (1), we
have HomR.Ui Œm�; Ui Œ1�/ ' HomR.Ui ; Ui Œ1�/ as right Di -modules.

It remains to show HomR.Ui ; Ui Œ1�/ ' Di=m as right Di -modules. Let

0 �! Ui
�
�! Ui Œ1�

"i;iC1

�! UiC1Œ1� �! 0

be the exact sequence defined in (2) with � the canonical inclusion. Since

Ext1R.UiC1Œ1�; Ui Œ1�/ D 0

by [26, Section 4.5], we infer that, for any f W Ui ! Ui Œ1�, there is a g 2 Di
such that f D �g. This means HomR.Ui ; Ui Œ1�/ D �Di . Clearly, �Di ' Di=N
as right Di -modules, where N WD ¹h 2 Di j �h D 0º. As the canonical ring ho-
momorphism from Di to EndR.Ui / via the map � induces a ring isomorphism
from Di=m to EndR.Ui /, we have �m D 0, that is, m � N . Since Di is a local
ring and N ¨ Di , we get N D m, and therefore HomR.Ui ; Ui Œ1�/ ' Di=m as
right Di -modules. This finishes the claim.

From the above claim, we conclude that m coincides with the image of .�i;i /�,
that is, m D �i;iDi . Similarly, we have m D Di�i;i . This means that �i;i is a
prime element of Di . As for the second statement in .5/, we note that, for any
p 2 N and 1 � q < m, the canonical inclusion map

Ui ŒpmC q� �! Ui ŒpmC q C 1�

induces an isomorphism

HomR.Ui ŒpmC q C 1�; Ui Œ1�/
'
�! HomR.Ui ŒpmC q�; Ui Œ1�/:

Consequently, we have the following isomorphisms of abelian groups:

Di D HomR.lim
�!
n

Ui Œn�; Ui Œ1�/

' lim
 �
n

HomR.Ui Œn�; Ui Œ1�/

' lim
 �
n

HomR.Ui Œ.n � 1/mC 1�; Ui Œ1�/

' lim
 �
n

kŒx�=.xn/ ' kŒŒx��:
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Here we need the assumption that k is an algebraically closed field. Now, one
can check directly that the composite of the above isomorphisms yields a ring
isomorphism 'i W Di ! kŒŒx��, which sends �i;i to x. This finishes the proof.

By Lemma 3.1 (3), the rings EndR.Ui Œ1�/, with 1 � i � m, are all isomorphic.
From now on, we always identify these rings, and simply denote them by D.C/.
Further, we write m.C/ andQ.C/ for the maximal ideal ofD.C/ and the division
ring of fractions of D.C/, respectively. In particular,

m.C/ D �i;iD.C/ D D.C/�i;i :

Suppose that C is a Z-module and c 2 C . For 1 � i; j � m, we denote by
Ei;j .c/ them �mmatrix which has the .i; j /-entry c, and the other entries 0. For
simplicity, we write Ei;j for Ei;j .1/ if C is a ring with the identity 1. Moreover,
let �i;j be the homomorphisms defined in Lemma 3.1 (4).

Lemma 3.2. There exists a ring isomorphism

� W EndR

 
mM
iD1

Ui Œ1�

!
�! �.C/ WD

0BBBBB@
D.C/ D.C/ � � � D.C/

m.C/ D.C/
: : :

:::
:::

: : :
: : : D.C/

m.C/ � � � m.C/ D.C/

1CCCCCA
m�m

which sends the matrixEm;1.�m;1/ toEm;1.�m;m/ and the matrixEr;rC1.�r;rC1/
to Er;rC1 for 1 � r < m, where the maximal ideal m.C/ of the ring D.C/ is
generated by the element �m;m.

Proof. For any 1 � i < m, by Lemmas 3.1 (2) and .4/, we have the following
exact sequence of R-modules:

0 �! Ui Œm � i � �! Ui Œ1�
�i;m

�! UmŒ1� �! 0:

Summing up these sequences, we can get the following exact sequence:

0 �!

m�1M
iD1

Ui Œm � i � �!

mM
jD1

Uj Œ1�
�
�! UmŒ1�

.m/
�! 0;

where � WD diag.�1;m; �2;m; : : : ; �m�1;m; 1/ is the m �m diagonal matrix with
�i;m in the .i; i/-position for 1 � i < m, and with 1 in the .m;m/-position.

Let D WD EndR.UmŒ1�/, and let m be the unique maximal ideal of D. Set

ƒ WD EndR

 
mM
jD1

Uj Œ1�

!
:
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Recollements induced from tilting modules 1871

Since HomR.Ui Œm � i �; UmŒ1�/ D 0 for 1 � i < m, we see that, for any g 2 ƒ,
there exists a unique homomorphism f and a unique homomorphism h such that
the following diagram is commutative:

0 //

m�1M
iD1

Ui Œm � i � //

f

��

mM
jD1

Uj Œ1�
�
//

g

��

UmŒ1�
.m/ //

h

��

0

0 //

m�1M
iD1

Ui Œm � i � //

mM
jD1

Uj Œ1�
�
// UmŒ1�

.m/ // 0.

This yields a ring homomorphism � W ƒ!Mm.D/ defined by g 7! h. More pre-
cisely, if g D .gu;v/1�u;v�m 2 ƒ with gu;v 2 HomR.UuŒ1�; UvŒ1�/, then we
have h D .hu;v/1�u;v�m 2Mm.D/ with hu;v 2 D satisfying

(a) gu;v�v;m D �u;mhu;v if u < m and v < m,

(b) hm;v D gm;v�v;m if u D m and v < m,

(c) gu;m D �u;mhu;m if u < m and v D m,

(d) hm;m D gm;m.

In particular, the map � sends Eu;u inƒ to Eu;u inMm.D/. In this sense, we may
write � D .�u;v/1�u;v�m, where

�u;v W HomR.UuŒ1�; UvŒ1�/ �! D

is defined by gu;v 7! hu;v.
Clearly, � is injective since

HomR.Uj Œ1�; Ui Œm � i �/ D 0

for 1 � j � m and 1 � i < m by Lemma 3.1 (1). In the following, we shall deter-
mine the image of �, which is clearly a subring of Mm.D/.

On the one hand, for any a 2 EndR.UuŒ1�/, b 2 HomR.UuŒ1�; UvŒ1�/ and
c 2 EndR.UvŒ1�/, we have

.abc/�u;v D .a/�u;u.b/�u;v.c/�v;v:

On the other hand, it follows from Lemma 3.1 (3) that �u;u is always a ring iso-
morphism, and the left EndR.UuŒ1�/-module HomR.UuŒ1�; UvŒ1�/ is freely
generated by �u;v for 1 � u ¤ v � m. This implies that the image of � coin-
cides with the m �m matrix ring having D.�u;v/�u;v in the .u; v/-position if
1 � u ¤ v � m, and D otherwise. By Lemma 3.1 (3) and (4), if 1 � s < t < m
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1872 H. X. Chen and C. C. Xi

and 1 � w < m, we can form the following commutative diagrams:

UsŒ1�
�s;m

//

�s;t

��

UmŒ1�

Ut Œ1�
�t;m

// UmŒ1�,

Ut Œ1�
�t;m

//

�t;s

��

UmŒ1�

�m;m

��

UsŒ1�
�s;m

// UmŒ1�,

UmŒ1�

�m;w

��

UmŒ1�

�m;m

��

Uw Œ1�
�w;m

// UmŒ1�,

Uw Œ1�
�w;m

//

�w;m

��

UmŒ1�

UmŒ1� UmŒ1�.

In other words, we have

.�s;t /�s;t D 1 D .�w;m/�w;m and .�t;s/�t;s D �m;m D .�m;w/�m;w :

Thus, the image of � is equal to the m �m matrix ring having D�m;m as the
.p; q/-entry for 1 � q < p � m, and D as the other entries. By Lemma 3.1 (5),
we know that m D D�m;m. Now, by identifyingD withD.C/ and m with m.C/,
we infer that the image of � coincides with the ring �.C/ defined in Lemma 3.2.
Therefore, we conclude that � W ƒ! �.C/ is a ring isomorphism which sends
Em;1.�m;1/ to Em;1.�m;m/ and Er;rC1.�r;rC1/ to Er;rC1 for 1 � r < m. This
completes the proof.

Combining Lemma 3.2 with Lemma 3.1 (5), we then obtain the following result
which will be used for the calculation of stratifications of derived module cate-
gories in the last section.

Corollary 3.3. Assume that k is an algebraically closed field. Then there exists a
ring isomorphism

� W EndR.
mM
iD1

Ui Œ1�/ �! �.m/ WD

0BBBBB@
kŒŒx�� kŒŒx�� � � � kŒŒx��

.x/ kŒŒx��
: : :

:::
:::

: : :
: : : kŒŒx��

.x/ � � � .x/ kŒŒx��

1CCCCCA
m�m

;

which sendsEm;1.�m;1/ toEm;1.x/ andEr;rC1.�r;rC1/ toEr;rC1 for 1� r < m.

As another consequence of Lemma 3.2, we have the following description of
the universal localization of the endomorphism algebra of the direct sum of all
Prüfer modules from a given tube.
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Recollements induced from tilting modules 1873

Lemma 3.4. Define M WD
Lm
iD1 Ui Œ1�, ƒ WD EndR.M/ and

… WD ¹HomR.M; �r;rC1/ j 1 � r < mº [ ¹HomR.M; �m;1º:

Then the universal localization ƒ… of ƒ at … is isomorphic to Mm.Q.C//, the
m �m matrix ring over Q.C/.

Proof. By Lemma 3.2, there is a ring isomorphism � W ƒ! � WD �.C/, which
sends Em;1.�m;1/ to Em;1.�m;m/ and Er;rC1.�r;rC1/ to Er;rC1 for 1 � r < m.
Let 'm W �Em;m ! �E1;1 and 'r W �Er;r ! �ErC1;rC1 be the canonical homo-
morphisms induced by multiplying on the right by Em;1.�m;m/ and Er;rC1, re-
spectively, and define ‚ WD ¹'r j 1 � r < mº [ ¹'mº. Then, under the isomor-
phism �, we see that ƒ… ' �‚ as rings. It remains to prove �‚ 'Mm.Q.C//.

We first claim that the inclusion f W � ,! e� WDMm.D.C// is the universal
localization of � at the set †0 WD ¹'r j 1 � r < mº.

Indeed, let '�r WD 'r'rC1 � � �'m�1, and let  r W �Er;r ! e�Er;r be the com-
posite of '�r with the right multiplication map �Em;r W �Em;m ! e�Er;r . We de-
fine

†1 WD ¹'�r j 1 � r < mº and †2 WD ¹ r j 1 � r < mº:

Clearly, '�r W �Er;r ! �Em;m is the right multiplication map by Er;m, and we
have

�†0
D �†1

and �Em;m D e�Em;m:
Thus �e� is isomorphic to the direct sum of m copies of �Em;m. This implies
that �e� is a finitely generated projective �-module and the multiplication mape� ˝� e� ! e� is an isomorphism, that is, the inclusion map f is a ring epimor-
phism. By Lemma 2.7, f is the universal localization of � at f . Moreover, due to
the isomorphism e�Ei;j ' e�Er;s of e�-modules, we have

�†1
D �†2

:

Since Er;mEm;r D Er;r , it is easy to see that  r is the right multiplication map
by Er;r and coincides with the inclusion �Er;r ,! e�Er;r . Hence �†2

is the same
as the universal localization �f of � at f , and consequently

�†0
D �f :

This completes the proof of the claim.
By Lemma 2.5 (4), the universal localization D.C/�m;m

of D.C/ at �m;m is
equal to Q.C/. Let '0m W e�Em;m ! e�E1;1 be the right multiplication map by
Em;1.�m;m/. Now, combining Lemma 2.6 with Corollary [8, Corollary 3.5], we
have

�‚ ' e�'0m 'Mm.D.C/�m;m
/ DMm.Q.C//:

Thus ƒ… ' �‚ 'Mm.Q.C// as rings.
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4 Universal localizations of tame hereditary algebras

In this section, we shall consider universal localizations of tame hereditary alge-
bras at simple regular modules, and the endomorphism algebras of tilting modules
produced by these localizations.

Throughout this section, we fix a nonempty subset U of S , where S is a
complete set of isomorphism classes of all simple regular R-modules. Recall that
� W R! RU is the universal localization of R at U. It follows from [28, Theo-
rems 4.9, 5.1 and 5.3] that � is injective and RU is hereditary. By Lemma 2.10,
the R-module

TU WD RU ˚RU=R

is a tilting module with HomR.RU=R;RU/ D 0. Note that we always have an
exact sequence

0 �! R
�
�! RU

�
�! RU=R �! 0

of R-modules with � the canonical surjection.
Set B WD EndR.TU/ and S WD EndR.RU=R/. Recall that the right multipli-

cation map � W R! S , defined by r 7! .y 7! yr/ for r 2 R and y 2 RU=R, is
a ring homomorphism, which endows S with a natural R-R-bimodule structure.
Further, for each U 2 U, we choose a finitely generated projective resolution of
R-modules

0 �! P1
fU
�! P0 �! U �! 0

and define † WD ¹S ˝R fU j U 2 Uº. Then, by Proposition 2.11, we obtain a
recollement of derived module categories

D.S†/ // D.B/ //

hh

vv

D.R/
hh

vv

where S† is the universal localization of S at †.
From now on, we always assume in this section that U D U0 P[U1 � S such

that U0 contains no cliques and U1 is a union of cliques.

4.1 Universal localizations at simple regular modules

In this subsection, we shall calculate S† concretely and show Corollary 4.9. This
will play an important role in proving our main results.

Let UC be the full subcategory of R-Mod, defined by

UC WD ¹X 2 R-Mod j ExtiR.U;X/ D 0 for all U 2 U and all i 2 Nº:
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Recollements induced from tilting modules 1875

By Lemma 3.1 (1), UC contains the Prüfer module V Œ1� for V 2 S nU. Fur-
ther, we have U0 � UC1 and U1 � UC0 . This follows from the fact that ifU 2 U0

and V 2 U1, then they belong to different tubes.
The subcategory UC has the following property, due to [2, Proposition 4.8].

Lemma 4.1. The subcategory UC coincides with the image of the restriction func-
tor �� W RU-Mod! R-Mod. In particular, for any Y 2 UC, the unit adjunction
�Y W Y ! RU ˝R Y , defined by y 7! 1˝ y for y 2 Y , is an isomorphism of
R-modules.

Thus, for an R-module Y 2 UC, we may endow it with an RU-module struc-
ture via the isomorphism �Y , and in this way, we consider the R-module Y as an
RU-module. Note that this RU-module structure on Y extending the R-module
structure of Y is unique.

Concerning the universal localization RU of R at U, there are the following
facts (see [3, Proposition 1.11], [28] and [14]).

Lemma 4.2. The following statements hold:

(1) Suppose that U contains no cliques. ThenRU is a finite-dimensional tame he-
reditary k-algebra. In particular, the tilting R-module TU is classical. More-
over, ¹RU ˝R V j V 2 S nUº is a complete set of non-isomorphic simple
regular RU-modules, and .RU ˝R V /Œ1� ' V Œ1� as RU-modules for each
V 2 S nU.

(2) Suppose that U contains cliques. Then RU is a hereditary order. Moreover,
¹RU˝RV j V 2 S nUº is a complete set of non-isomorphic simpleRU-mod-
ules, and the injective envelope of the RU-module RU ˝R V is isomorphic to
V Œ1� for each V 2 S nU.

(3) Suppose V � S nU. Then

RU[V D .RU/V ;

where V WD ¹RU ˝R V j V 2 Vº. In particular, there are injective ring epi-
morphisms RU ! RU[V and RU[V ! RS .

As remarked in [14, Section 4], in the case of Lemma 4.2 (1), the set of simple
regular RU-modules in a clique is of the form

¹RU ˝R V j V 2 C ; V 62 Uº;

where C is a clique ofR. Further, by Lemma 4.2 (1), for each V 2 CnU, the Prüfer
modules corresponding to RU ˝R V and to V are isomorphic. In particular, they
have the isomorphic endomorphism algebra.
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1876 H. X. Chen and C. C. Xi

Thus, if C1;C2; : : : ;Cs are all cliques from non-homogeneous tubes of R and
if U is a union of c.Ci / � 1 simple regular R-modules from each Ci , then each
clique of RU consists of only one single element. This implies that RU has only
two isomorphism classes of simple modules. If, in addition, the field k is alge-
braically closed, then RU is Morita equivalent to the Kronecker algebra. In this
case, since the set of cliques of the Kronecker algebra are parameterized by P1.k/,
we see that the set of cliques of an arbitrary tame hereditary k-algebra can be in-
dexed by P1.k/.

A description of the structure of the module RU=R was first given in [29], and
a further substantial discussion has been carried out recently in [3]. Especially, the
following lemma is proved in [3, Propositions 1.7 (6) and 1.10].

Lemma 4.3. The following statements hold:

(1) The R-module RU=R is a direct union of finite extensions of modules in U.

(2) Let t � R-mod be a tube of rank m > 1, and let U D ¹U1; U2; : : : ; Um�1º

be a set of m � 1 simple regular modules in t such that UiC1 D ��Ui for all
1 � i � m � 1. Then

RU=R ' U1Œm � 1�
.ıU1

/
˚ U2Œm � 2�

.ıU2
/
˚ � � � ˚ Um�1Œ1�

.ıUm�1
/;

with ıUj
WD dimEndR.Uj / Ext1R.Uj ; R/ for 1 � j � m � 1. Moreover,

RU ˝R Um ' UmŒm�

as RU-modules.

(3) If U is a union of cliques, then, for any finitely generated projective R-mod-
ule P ,

R.RU=R/˝R P '
M
U2U

U Œ1�.ıU; P /;

where ıU;P WD dimEndR.U / Ext1R.U; P /.

Next, we shall show thatRU and EndR.RU=R/ can be interpreted as the tensor
product and direct sum of some rings, respectively.

Lemma 4.4. Let V D V0 P[V1 � S such that V0 contains no cliques and such
that V1 � VC0 . Then the following statements are true:

(1) We have
RV ' RV1

˝R RV0

as RV1
-RV0

-bimodules, and

RV=RV1
' RV1

˝R .RV0
=R/

as RV1
-R-bimodules.
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Recollements induced from tilting modules 1877

(2) If V0 � VC1 , then RV=R ' RV0
=R˚RV=RV0

as R-modules and there is a
ring isomorphism

EndR.RV=R/ �! EndR.RV0
=R/ � EndRV0

.RV=RV0
/:

Proof. (1) By assumption, we have V1 � VC0 . It follows from Lemma 4.1 that
the unit adjunction �V W V ! RV0

˝R V is an isomorphism of R-modules for
any V 2 V1. This implies that every module in V1 can be endowed with a unique
RV0

-module structure that preserves the given R-module structure via the univer-
sal localization �0 W R! RV0

. Consequently, RV D .RV0
/V1

by Lemma 4.2 (3).
Now, we construct the following exact commutative diagram of R-modules:

0

��

0

��

0 // R
�0

// RV0

�1

��

�0
//

��

RV0
=R //

�2

��

0

0 // R // RV

�1

��

// RV=R //

�2

����

0

RV=RV0

��

RV=RV0

��

0 0

(�)

where �1 is the universal localization of RV0
at V1, and �2 is the canonical injec-

tion induced by �1, and where �0, �1 and �2 are canonical surjections.
Clearly, RV0

is a finite-dimensional tame hereditary algebra by Lemma 4.2 (1).
From RV D .RV0

/V1
we see that RV=RV0

is a direct union of finite extensions
of modules in V1 by Lemma 4.3 (1). Since RV1

is the universal localization of
R at V1, we have TorRi .RV1

; V / D 0 for any i � 0 and V 2 V1. Note that the
i -th left derived functor TorRi .RV1

;�/ W R-Mod! Z-Mod commutes with direct
limits. Thus

TorRi .RV1
; RV=RV0

/ D 0

for any i � 0. This implies that the homomorphisms RV1
˝R �1 and RV1

˝R �2
are isomorphisms. Moreover, by Lemma 4.2 (3), we have RV D .RV1

/
V0

with
V0 WD ¹RV1

˝R V j V 2 V0º, and thereforeRV can be regarded as anRV1
-mod-

ule. Since we have a ring epimorphism R! RV1
, the canonical multiplication

map �2 W RV1
˝R RV ! RV is an isomorphism.
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1878 H. X. Chen and C. C. Xi

Now we apply the tensor functor RV1
˝R � to the diagram (�) and get the

following exact commutative diagram of RV1
-R-bimodules:

RV1
˝R R

RV1
˝R�0

// RV1
˝R RV0

RV1
˝R�1'

��

RV1
˝R�0

//

��

RV1
˝R .RV0

=R/ //

RV1
˝R�2'

��

0

RV1
˝R R

' �1

��

// RV1
˝R RV

' �2

��

// RV1
˝R .RV=R/ //

��

0

0 // RV1
// RV

// RV=RV1
// 0

where �1 is the multiplication map, and where the exactness of the last row fol-
lows from Lemma 4.2 (3). Thus RV ' RV1

˝R RV0
as RV1

-RV0
-bimodules and

RV=RV1
' RV1

˝R .RV0
=R/ as RV1

-R-bimodules.
(2) Since RV0

=R is a finite-dimensional k-space and a direct union of finite
extensions of modules in V0 by Lemma 4.3 (1), we haveRV0

=R 2 F .V0/. Thanks
to Lemmas 4.2 (1) and 4.3 (1), we can write

RV=RV0
D lim
�!
˛

X˛

with X˛ 2 F .V1/. Then, by Lemma 2.13 (1, ii) and the inclusion V1 � VC0 , we
have

ExtjR.RV0
=R;RV=RV0

/ ' lim
�!
˛

ExtjR.RV0
=R;X˛/ D 0 for j � 0: (a)

Similarly, it follows from Lemma 2.13 (1, iii) and the inclusion V0 � VC1 that

ExtjR.RV=RV0
; RV0

=R/ ' lim
 �
˛

ExtjR.X˛; RV0
=R/ D 0 for j � 0: (b)

Particularly, the canonical exact sequence

0 �! RV0
=R

�2
�! RV=R

�2
�! RV=RV0

�! 0 (c)

splits in R-Mod, that is,

RV=R ' RV0
=R˚RV=RV0

as R-modules. Since R! RV0
is a ring epimorphism, we have

EndR.RV=RV0
/ D EndRV0

.RV=RV0
/:

It follows from (a) and (b) for j D 0 that

EndR.RV=R/ ' EndR.RV0
=R/ � EndRV0

.RV=RV0
/:
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This isomorphism can be described as follows: For f 2 EndR.RV=R/, it follows
from (c) that there is a unique endomorphism f1 2 EndR.RV0

=R/ and a unique
endomorphism f2 2 EndR.RV=RV0

/ such that �2f D f1�2 and �2f2 D f�2,
and therefore the map

' W EndR.RV=R/ �! EndR.RV0
=R/ � EndR.RV=RV0

/; f 7�! .f1; f2/

is the desired isomorphism of rings. This completes the proof of (2).

As an obvious consequence of Lemma 4.4, we have the following result.

Corollary 4.5. The following statements are true for U:

(1) We have
RU ' RU1

˝R RU0

as RU1
-RU0

-bimodules, and

RU=RU1
' RU1

˝R .RU0
=R/

as RU1
-R-bimodules.

(2) There is a ring isomorphism

EndR.RU=R/ �! EndR.RU0
=R/ � EndRU0

.RU=RU0
/:

Remark. We should point out that U1 can be regarded as a set of simple regular
RU0

-modules, and is a union of cliques ofRU0
. In fact, it follows from U1 � UC0

and Lemma 4.1 that RU0
˝R V ' V as R-modules for V 2 U1, and therefore

each V in U1 can be viewed as an RU0
-module. Hence, by the statements pointed

out after Lemma 4.2, we infer that U1 is a union of cliques of RU0
.

The following result reduces the calculation of S† to the consideration of the
cliques contained in U.

Lemma 4.6. Define
ƒ WD EndRU0

.RU=RU0
/

and
‚ WD ¹ƒ˝RU0

.RU0
˝R fV / j V 2 U1º:

Then S† is isomorphic to the universal localization ƒ‚ of ƒ at ‚.

Proof. Note that the RU0
-module structure on ƒ is given by the ring homomor-

phism RU0
! ƒ, which is defined by the right multiplication map.
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1880 H. X. Chen and C. C. Xi

By Lemma 4.2 (1), we know that RU0
is a finite-dimensional tame hereditary

k-algebra. Moreover, from the remark following Corollary 4.5, we know that U1

can be seen as a set of simple regular RU0
-modules. Thus RU D .RU0

/U1
by

Lemma 4.2 (3). More precisely, for each V 2 U1, we fix a minimal projective
presentation

0 �! P1
fV
�! P0 �! V �! 0

of V in R-mod, and get a projective presentation of V in RU0
-mod

0 �! RU0
˝R P1

RU0
˝RfV

��������! RU0
˝R P0 �! V �! 0:

This is due to the fact that

TorR1 .RU0
; V / ' TorR1 .RU0

; RU0
˝R V / ' Tor

RU0

1 .RU0
; RU0

˝R V / D 0:

Therefore, RU is the universal localization of RU0
at ¹RU0

˝R fV j V 2 U1º.
Recall that

ƒ WD EndRU0
.RU=RU0

/ and ‚ WD ¹ƒ˝RU0
.RU0

˝R fV / j V 2 U1º:

In the following, we shall show that S† is isomorphic to ƒ‚.
Let � WD EndR.RU0

=R/ and ' D .'0; '1/ W S ! � �ƒ, where '0 W S ! �

and '1 W S ! ƒ are the ring homomorphisms given in the proof of Lemma 4.4 (2).
Recall that� W R! S is the right multiplication map. Set�0 D �'0 W R! � and
�1 D �'1 W R! ƒ. Clearly, both �0 and �1 are ring homomorphisms, through
which both ƒ and � have a right R-module structure. Now, we write

† WD ¹S ˝R fU j U 2 Uº

as † D ˆ �‰ with

ˆ WD ¹� ˝R fU j U 2 Uº and ‰ WD ¹ƒ˝R fU j U 2 Uº:

Consequently, the ring isomorphism ' implies that S† ' �ˆ �ƒ‰. To finish the
proof, it suffices to prove that �ˆ D 0 and ƒ‰ ' ƒ‚.

Indeed, we write ˆ D ˆ0 [ˆ1 with

ˆ0 WD ¹� ˝R fU j U 2 U0º and ˆ1 WD ¹� ˝R fU j U 2 U1º:

Then, by Lemma 2.6, we have

�ˆ ' .�ˆ0
/ˆ1

;

where
ˆ1 WD ¹�ˆ0

˝R fU j U 2 U1º:
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Recollements induced from tilting modules 1881

To prove �ˆ D 0, it suffices to prove �ˆ0
D 0. Consider the canonical exact se-

quence of R-modules

0 �! R
�0
�! RU0

�0
�! RU0

=R �! 0:

By Lemma 4.2 (1), the module TU0
WD RU0

˚RU0
=R is a classical tiltingR-mod-

ule, and therefore D.R/ is triangle equivalent to D.EndR.TU0
// in the recolle-

ment of D.R/, D.EndR.TU0
// and D.�ˆ0

/ by Proposition 2.11. Thus �ˆ0
D 0

and �ˆ D 0:
It remains to show ƒ‰ ' ƒ‚. Let �2 W RU0

! ƒ denote the right multiplica-
tion map defined by r 7! .x 7! xr/ for r 2 RU0

and x 2 RU=RU0
. Then, along

the diagram (�) in the proof of Lemma 4.4, one can check that the following dia-
gram of ring homomorphisms commutes:

R
�0
//

�

��

RU0

�2

��

S
'1

// ƒ.

Now, we write ‰ D ‰0 [‰1 with

‰0 WD ¹ƒ˝R fU j U 2 U0º and ‰1 WD ¹ƒ˝R fV j V 2 U1º;

and claim ƒ‰0
D ƒ. It suffices to show that ƒ˝R fU is an isomorphism for any

U 2 U0. However, this follows from ƒ˝R fU ' ƒ˝RU0
.RU0

˝R fU / and
RU0

˝R fU being an isomorphism by the definition of universal localizations.
Hence ƒ‰0

D ƒ.
Now, we have‰1 WD ¹ƒ‰0

˝ƒ h j h 2 ‰1º D ‰1. It follows from Lemma 2.6
that ƒ‰ ' .ƒ‰0

/‰1
' ƒ‰1

. Further, ƒ˝R fV ' ƒ˝RU0
.RU0

˝R fV / for
any V 2 U1. By comparing the elements in ‚ with the ones in ‰1, one knows
immediately that ƒ‰ ' ƒ‚, and therefore S† ' ƒ‚, finishing the proof.

To proceed with our discussion, let us now introduce some notation.
Let C be a clique of R. Recall that D.C/ stands for the endomorphism algebra

of a Prüfer module V Œ1�with V 2 C . ThenD.C/ is a discrete valuation ring with
the division ring Q.C/ of fractions of D.C/. Clearly, D.C/ is a subring of Q.C/.

For U 2 C , let

0 �! U
�U
�! U Œ1�

�U
�! .��U/Œ1� �! 0

be the canonical exact sequence defined in Lemma 3.1(2), where �U is the canon-
ical inclusion.

We write C D ¹U1; U2; : : : ; Um�1; Umº with m � 1 such that UiC1 D ��Ui
for 1 � i � m, where the subscript of Ui is modulo m. If we have U D Uj for
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1882 H. X. Chen and C. C. Xi

some 1 � j � m, then �U is defined to be �j;jC1 W Uj Œ1� �! UjC1Œ1� in Lem-
ma 3.1 (4), where �m;mC1 WD �m;1 by our convention.

To calculate S† efficiently, we first simplify the homomorphisms appearing
in †.

Lemma 4.7. If U is a union of cliques, then, for each U 2 U, there exists an exact
commutative diagram of R-modules

0 // U // .RU=R/˝R P1
.RU=R/˝RfU

//

'

��

.RU=R/˝R P0 //

'

��

0

0 // U
.�U ; 0/

// U Œ1�˚E

�
�U 0
0 1

�
// .��U/Œ1�˚E // 0

where E is an R-module.

Proof. Recall that we have a projective resolution of U ,

0 �! P1
fU
�! P0 �! U �! 0

where P1 and P0 are finitely generated projective R-modules. As � W R! RU is
the universal localization of R at U, the homomorphism

RU ˝R fU W RU ˝R P1 �! RU ˝R P0

is an isomorphism. This yields the exact commutative diagram of R-modules:

0

��

0

��

U

 

��

0 // P1
�˝RP1

//

fU

��

RU ˝R P1
�˝RP1

//

RU˝RfU'

��

.RU=R/˝R P1 //

.RU=R/˝RfU

��

0

0 // P0
�˝RP0

//

��

RU ˝R P0
�˝RP0

// .RU=R/˝R P0 //

��

0

U

��

0

0
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Recollements induced from tilting modules 1883

which provides the following short exact sequence of R-modules:

0 �! U
 
�! .RU=R/˝R P1

.RU=R/˝RfU
����������! .RU=R/˝R P0 �! 0: (a)

Suppose that U is a union of cliques, say U D P
S
i2ICi with I an index set. By

Lemma 4.3 (3), we have

.RU=R/˝R P1 '
M
i2I

M
V 2Ci

V Œ1�.nV / for some nV 2 N,

where nU is non-zero since U can be embedded into .RU=R/˝R P1 and since
HomR.U;W Œ1�/ D 0 for W 2 U with W © U . So we may write

.RU=R/˝R P1 D U Œ1�˚E

with E an R-module and

 D . 1; g/ W U �! U Œ1�˚E

with 0 ¤  1 2 HomR.U; U Œ1�/ and g 2 HomR.U;E/. LetD WD EndR.U Œ1�/.
Then D is a local ring with a maximal ideal m. Moreover, it follows from the
proof of Lemma 3.1 (5) that there is an exact sequence

0 �! m �! D
.�U /�
�! HomR.U; U Œ1�/ �! 0:

This means that, for any ˛ W U ! U Œ1�, there is a homomorphism ˇ 2 D such
that ˛ D �Uˇ, and that if the homomorphism ˛ is non-zero, then ˇ must be an au-
tomorphism. In particular, there is an automorphism ˇ 2 D such that  1 D �Uˇ.
Thus we can form the following commutative diagram:

U
 
// .RU=R/˝R P1

'

��

U
.�U ;g/

// U Œ1�˚E.

(b)

Note that g W U ! E factorizes through �U . Then, by applying Lemma 2.12 to (a)
with the property (b), we obtain the following exact commutative diagram:

0 // U
 
// .RU=R/˝R P1

.RU=R/˝RfU
//

'

��

.RU=R/˝R P0 //

'

��

0

0 // U
.�U ; 0/

// U Œ1�˚E

�
�U 0
0 1

�
// .��U/Œ1�˚E // 0.

This finishes the proof.
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1884 H. X. Chen and C. C. Xi

Next, we show that the universal localizations in Lemma 4.6, which are of in-
terest for us, take actually the form of adèle rings in the algebraic number theory
(see [23, Chapter V, Section 1]).

Lemma 4.8. If U � S is a union of cliques, say U D P
S
i2ICi with I an index

set, then the following statements are true:

(1) The ring S is Morita equivalent to
Q
i2I �.Ci /, where the ring �.C/ is defined

in Lemma 3.2 for each clique C of R.

(2) The ring S† is Morita equivalent to the adèle ring

A U WD

²
.fi /i2I 2

Y
i2I

Q.Ci / j fi 2 D.Ci / for almost all i 2 I
³
:

Proof. (1) By Lemma 4.3 (3), we have

RU=R '
M
i2I

M
V 2Ci

V Œ1�.ıV /

as R-modules, where

ıV WD dimEndR.V / Ext1R.V;R/ D dimEndR.V /op.�V / ¤ 0:

We claim that there is a natural number d such that ıV � d for all V 2 U.
In fact, let ¹Sj j 1 � j � rº be a complete set of isomorphism classes of simple

R-modules with r a natural number. For eachX 2 R-mod, denote by dimX 2 Nr

the dimension vector of X . Now, let h�;�i W Nr �Nr ! Z be the Euler form of
the tame hereditary k-algebra R, that is,

hdimY; dimZi WD dimk HomR.Y;Z/ � dimk Ext1R.Y;Z/

with Y;Z 2 R-mod, and further, let q W Nr ! Z be the quadratic form of R, that
is, q.dimY / WD hdimY; dimY i, and let h D .hi /1�i�r be the minimal positive
radical vector of q. It is known that h is equal to the sum of the dimension vectors
of all simple regular R-modules in t0 for an arbitrary tube t0 of R. Therefore, we
have

ıU � dimk.�U / �
�X

i

hi

��X
j

dimk Sj

�
<1

for U 2 S . In particular, if we take

d D

�X
i

hi

��X
j

dimk Sj

�
;

then ıV � d for all V 2 U, as claimed.
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Recollements induced from tilting modules 1885

Set
N WD

M
i2I

M
V 2Ci

V Œ1� and � WD EndR.N /:

The above claim implies that HomR.RU=R;N / is a finitely generated, projective
generator for S -Mod, and therefore S is Morita equivalent to � .

Note that if i; j 2 I with i ¤ j , then HomR.U Œ1�; V Œ1�/ D 0 for all U 2 Ci
and V 2 Cj . Thus, by Lemma 3.2, we get the following isomorphisms:

� '
Y
i2I

EndR

�M
V 2Ci

V Œ1�

�
'

Y
i2I

�.Ci /:

Thus S is Morita equivalent to
Q
i2I �.Ci /. This finishes the proof of (1).

(2) For any finitely generated projective R-module P , we have

S ˝R P D HomR.RU=R;RU=R/˝R P ' HomR.RU=R; .RU=R/˝R P /

as S -modules. So, we can rewrite

† D ¹HomR.RU=R; .RU=R/˝R fV / j V 2 Uº:

It follows from Lemma 4.7 that S† is the same as the universal localization of S
at †0 WD ¹HomR.RU=R; �V / j V 2 Uº. Since Morita equivalences preserve uni-
versal localizations by [8, Corollary 3.5], we know that S†0 (and also S†) is Morita
equivalent to �ˆ with

ˆ WD ¹HomR.N; �V / j V 2 Uº:

Let U D L P[W be a decomposition such that L is a union of cliques Ci with
i in an index set I0 and that W is a union of cliques Cj with j in an index set I1.
Since I D I0 P[ I1, we obtain the following isomorphisms of rings:

� '
Y
i2I

EndR

�M
V 2Ci

V Œ1�

�
'

Y
i2I

�.Ci / '
Y
i2I0

�.Ci / �
Y
i2I1

�.Ci /: (�)

First of all, we define �0 WD
Q
i2I0

�.Ci / and �1 WD
Q
i2I1

�.Ci /, and decom-
pose ˆ D ˆ0 [ˆ1 where

ˆ0 WD ¹HomR.N; �V / j V 2 Lº and ˆ1 WD ¹HomR.N; �W / j W 2 Wº:

Then � ' �0 � �1 as rings. Note that if two Prüfer modules belong to different
tubes of R, then there are no nonzero homomorphisms between them. So, un-
der these isomorphisms (�), we can regard ˆ0 (respectively, ˆ1) as the set of
homomorphisms between finitely generated projective �0-modules (respectively,
�1-modules), and therefore the calculation of �ˆ can be done along the blocks �0
and �1 of the ring � . In other words, �ˆ ' .�0/ˆ0

� .�1/ˆ1
as rings.
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1886 H. X. Chen and C. C. Xi

Next, we assume that each clique in W is of rank 1, and each clique L in L is
of rank greater than 1. It is known that L is a finite set. Thus the calculation of
.�0/ˆ0

is reduced to each block �.Ci / of �0. It follows from Lemma 3.4 that

.�0/ˆ0
'

Y
i2I0

Mc.Ci /.Q.Ci //:

Clearly, �1 D
Q
i2I1

D.Ci /. Since I1 is not necessarily a finite set, we cannot
express .�1/ˆ1

as a direct product of corresponding universal localization of each
block of �1. Nevertheless, we claim .�1/ˆ1

' AW as rings, where

AW WD

²
.fi /i2I1

2

Y
i2I1

Q.Ci / j fi 2 D.Ci / for almost all i 2 I1

³
:

Actually, for each i 2 I1, the clique Ci consists of only one simple regular
module. Hence we write D.Ci / D EndR.Ci /, which is a discrete valuation ring
with a unique maximal ideal generated by �i .

Define ei WD . ǰ /j2I1
2 �1 by ˇi D 1 and ǰ D 0 if j ¤ i , and let

'i W �1ei �! �1ei

be the right multiplication map defined by g 7! g�i for every g 2 D.Ci /. Under
those isomorphisms (�), we can identifyˆ1 with ¹'j j j 2 I1º. Further, we define
"i WD .�j /j2I1

2 �1 by �i D �i and �j D 1 if j ¤ i . Then, the right multiplica-
tion map "i defined by "i has the following form:

"i D

 
'i 0

0 1

!
W �1ei ˚ �1.1 � ei / �! �1ei ˚ �1.1 � ei /:

Consequently, we have .�1/ˆ1
' .�1/‰ with ‰ WD ¹"j j j 2 I1º.

Now, let ‡ be the minimal multiplicative subset of �1 containing all "j for
j 2 I1. It follows that .�1/‰ is also the universal localization .�1/‡ of �1 at the
set ‡ , that is, the universal localization of �1 at the set of all right multiplication
maps induced by the elements of ‡ (see Section 2.2). Moreover,

‡ D

²
.fi /i2I1

2

Y
i2I1

¹.�i /
n
j n 2 Nº j fi D 1 for almost all i 2 I1

³
� �1;

where .�i /0 WD 1. Next, we show that ‡ is a left and right denominator subset
of �1 (see Definition 2.2).

Indeed, let a D .ai /i2I1
2 �1 and s D .�ni

i /i2I1
2 ‡ with ni 2 N. As D.Ci /

is a discrete valuation ring for each i 2 I1, we have D.Ci /�
ni

i D �
ni

i D.Ci /, and
therefore

�1s D
Y
i2I1

D.Ci /�
ni

i D

Y
i2I1

�
ni

i D.Ci /:
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Recollements induced from tilting modules 1887

This means sa 2 ‡a \ �1s ¤ ;, which verifies condition (i) in Definition 2.2.
Moreover, if as D 0, then ai�

ni

i D 0 for i 2 I1. Since �ni

i ¤ 0 and D.Ci / is a
domain for i 2 I1, we have ai D 0, and so a D 0, which verifies condition (ii) in
Definition 2.2. Thus, ‡ is a left denominator subset of �1. Similarly, we can prove
that ‡ is also a right denominator subset of �1.

By Lemma 2.3, the Ore localization ‡�1�1 of �1 at ‡ does exist and is iso-
morphic to .�1/‡ . Thus

.�1/ˆ1
' .�1/‰ ' .�1/‡ ' ‡

�1�1

as rings. Hence, to prove .�1/ˆ1
' AW , it is sufficient to prove ‡�1�1 ' AW as

rings. However, by Lemma 2.3, it is enough to show that the canonical inclusion
� W �1 ! AW is an Ore localization of �1 at ‡ .

Recall that Q.Cj / denotes the division ring of fractions of the domain D.Cj /
for j 2 I1. This implies that � satisfies both Lemma 2.3 (1) and Lemma 2.3 (3).
Now, suppose f WD .fj /j2I1

2 AW . By definition, there is a finite subset � of
I1 such that fj 2 Q.Cj / if j 2 �, and that fj 2 D.Cj / if j 62 �. Note that
Q.Cj / is the Ore localization of D.Cj / at the subset Sj WD ¹.�j /n j n 2 Nº, due
to Lemma 2.5. It follows from Lemma 2.3 (2) that each x 2 Q.Cj / has the form
t=s with t 2 D.Cj / and s 2 Sj . So, if j 2 �, then we can write fj D tj =sj with
tj 2 D.Cj / and sj 2 Sj . Define g WD .gj /j2I1

by

gj D

´
tj ifj 2 �;
fj ifj 62 �;

and h WD .hj /j2I1
by

hj D

´
sj ifj 2 �;
1 ifj 62 �:

Then g 2 �1, h 2 ‡ and f D g=h 2 AW . Thus � fulfills Lemma 2.3 (2), and
therefore is the Ore localization of �1 at ‡ . This shows

.�1/ˆ1
' ‡�1�1 ' AW :

Summing up what we have proved, we obtain

�ˆ ' .�0/ˆ0
� .�1/ˆ1

'

�Y
i2I0

Mc.Ci /.Q.Ci //

�
�AW ;

where the last ring is Morita equivalent to AU. As S† is Morita equivalent to �ˆ,
we see that S† is Morita equivalent to AU. This completes the proof of (2).

Finally, we give a description of S† up to Morita equivalence for an arbitrary U.
This will be used for the proof of Theorem 1.1.
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Corollary 4.9. Let ¹Ciºi2I be the set of all cliques contained in U, where I is an
index set. Then S† is Morita equivalent to the adèle ring

A U WD

²
.fi /i2I 2

Y
i2I

Q.Ci / j fi 2 D.Ci / for almost all i 2 I
³
:

Proof. We write U D U0 [U1 � S such that U0 contains no cliques and U1 is
a union of cliques Ci with i 2 I . It follows from Lemma 4.6 that S† is isomorphic
to the universal localization ƒ‚ of ƒ at ‚ with

ƒ WD EndRU0
.RU=RU0

/ and ‚ WD ¹ƒ˝RU0
.RU0

˝R fV / j V 2 U1º:

By Lemma 4.2 (1), RU0
is a finite-dimensional tame hereditary k-algebra, and

the endomorphism algebra of the Prüfer module corresponding to a simple regular
module in U1 is preserved (up to isomorphism). Furthermore, by the remark fol-
lowing Corollary 4.5, we can regard U1 as a set of simple regular RU0

-modules.
In this case, U1 is a union of cliques ofRU0

, and each V 2 U1 admits a projective
presentation

0 �! RU0
˝R P1

RU0
˝RfV

��������! RU0
˝R P0 �! V �! 0

in RU0
-mod (see the proof of Lemma 4.6). Now, we can pass from R to RU0

and
apply Lemma 4.8 (2) to RU0

and U1, and deduce that ƒ‚ is Morita equivalent
to AU. Hence, S† is Morita equivalent to AU.

4.2 Endomorphism algebras of tilting modules

In this subsection, we shall discuss the endomorphism algebras of tilting modules
obtained by universal localizations of tame hereditary algebras at simple regular
modules. The consideration here will serve as a part of preparations for the proof
of Corollary 1.2.

First of all, we mention a relationship between universal localizations of an
arbitrary tame hereditary algebra and the ones of the Kronecker algebra.

Lemma 4.10. For the given U � S , there exists a V � S with U \ V D ; such
that, for W WD U [ V , the following statements are true:

(1) There is a finite-dimensional tame hereditary k-algebra ƒ with only two non-
isomorphic simple modules, and a set S of simple regular ƒ-modules such
that RW coincides with the universal localization ƒS of ƒ at S .

(2) TheRU-module T WD RW ˚RW=RU is a classical tilting module. In partic-
ular, RU and EndRU

.T / are derived equivalent.
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Recollements induced from tilting modules 1889

Proof. Write U D U0 P[U1 � S such that U0 contains no cliques and U1 is a
union of cliques. Observe that we may assume U0 D ;. In fact, if U0 is not empty,
we can replace R by RU0

and U by U1 since RU0
is a tame hereditary algebra

and U1 can be seen as a set of simple regular RU0
-modules.

Now, we suppose U0 D ;, that is, U is a union of cliques. Let V be a maximal
subset of S with respect to the following properties: V \U D ; and V contains
no cliques. In other words, from each clique C not contained in U, we choose
c.C/ � 1 elements, and let V be the union of all these elements. Clearly, the choice
of V is not unique in general.

Let W WD U P[V , and let U>1 be the union of all cliques Ci2I in U of rank
greater than one, where I is a finite set. We choose c.Ci / � 1 elements from each
Ci for i 2 I , and let V 0 be the set consisting of all of these elements. Now, we
define L WD V [ V 0 and write W D L P[M.

We claim that statement (1) holds true. Indeed, it follows from Lemma 4.2 (1)
thatRL is a tame hereditary algebra such that all cliques ofRL consist of only one
simple regular module. This means that RL has exactly two isomorphism classes
of simple modules. By Lemma 4.2 (3), we have

RW D .RL/M

with M WD ¹RL ˝R L j L 2Mº. Thus, setting ƒ WD RL and S WDM, we get
statement (1).

In the following, we shall show statement (2). Note that V contains no cliques.
Thus, it follows from Lemma 4.2 (1) that RV is a finite-dimensional tame heredi-
tary k-algebra and RV=R is a finitely presented R-module. By Corollary 4.5 (1),
RW=RU ' RU ˝R .RV=R/ as RU-R-bimodules. This implies that RW=RU is
a finitely presented RU-module, and therefore so are the RU-modules RW and T .
Hence T is a classical RU-module.

As a consequence of Lemma 4.10, we obtain the following result which de-
scribes RU (up to derived equivalence) by a triangular matrix ring with the rings
in the diagonal being relatively simple.

Corollary 4.11. Suppose that U � S is a union of cliques Ci2I with I an index
set. Let V be a maximal subset of S such that V \U D ; and V contains no
cliques, and let C .V/ D P

S
j2JCj with J an index set. Define W WD U [ V and

TU WD RU ˚RU=R. Then the following statements hold true:

(1) There is a canonical ring isomorphism:

EndR.TU/ '

 
RU HomR.RU; RU=R/

0 EndR.RU=R/

!
:
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(2) RU is derived equivalent to the triangular matrix ring

EndRU
.RW ˚RW=RU/ D

 
RW HomRU

.RW ; RW=RU/

0 EndRU
.RW=RU/

!
such that:

(a) RW is the universal localization ƒS of a finite-dimensional tame heredi-
tary k-algebraƒ, which has two isomorphism classes of simple modules,
at a set S of simple regular ƒ-modules,

(b) EndRU
.RW=RU/ is Morita equivalent to

Q
j2J Tc.Cj /�1.EndR.Vj //,

where Vj 2 Cj is a fixed element for each j 2 J , and Tn.A/ stands for
the n � n upper triangular matrix ring over a ring A.

Proof. Clearly, (1) follows from � W R! RU being a ring epimorphism and from
HomR.RU=R;RU/ D 0 (see Lemma 2.10). As to (2), we first show statement (b).
In fact, by the proof of Lemma 4.10, we know RW=RU ' RU ˝R .RV=R/ as
RU-R-bimodules. Since V � UC, we haveRU˝R.RV=R/ ' RV=R asR-mod-
ules by Lemma 4.1, and therefore RW=RU ' RV=R as R-modules. This implies
that

EndRU
.RW=RU/ ' EndR.RW=RU/ ' EndR.RV=R/:

Now, we definemj WD c.Cj / for each j 2 J . Then it follows from Lemmas 4.4 (2)
and 4.3 (2) that

RV=R '
M
j2J

mj�1M
iD1

Ui;j Œmj � i �
.ıi;j /;

where ıi;j > 0 and V \ Cj D ¹Ui;j j 1 � i < mj º such that UiC1;j D ��Ui;j
for all 1 � i < mj � 1. Further, for a fixed j 2 J , we have an exact sequence

0 �! Ui;j �! Ui;j Œmj � i �

�! UiC1;j Œmj � i � 1� �! 0

of R-modules with 1 � i < mj � 1. Since

HomR.Ui;j Œmj � i �; Ui;j / D Ext1R.Ui;j Œmj � i �; Ui;j / D 0

and since
HomR.Ui;j ; UiC1;j Œmj � i � 1�/ D 0;

we see that  induces isomorphisms

EndR.Ui;j Œmj � i �/ ' HomR.Ui;j Œmj � i �; UiC1;j Œmj � i � 1�/

' EndR.UiC1;j Œmj � i � 1/�/:
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Moreover,
HomR.Ur;j Œmj � r�; Us;j Œmj � s�/ D 0

for 1 � s < r � mj � 1. Hence

EndR

 mj�1M
iD1

Ui;j Œmj � i �

!
' Tmj�1.EndR.Vj //;

where Vj is a fixed element of Cj with j 2 J . Note that, up to isomorphism,
EndR.Vj / is independent of the choice of elements of Cj . Thus EndRU

.RW=RU/

is Morita equivalent to
Q
j2J Tmj�1.EndR.Vj // since there is no non-trivial ho-

momorphism between two different tubes.
Note that the other conclusions in (2) are consequences of Lemma 4.10 and

properties of injective ring epimorphisms (see also [8, Lemma 6.4 (2)]). This com-
pletes the proof.

Thus, by Corollary 4.11 (2), the consideration of the derived category D.RU/

needs first to understand universal localizations of tame hereditary algebras with
two isomorphism classes of simple modules, at simple regular modules. If k is an
algebraically closed field, then each tame hereditary algebra with two isomorphism
classes of simple modules is Morita equivalent to the Kronecker algebra. So, in the
next subsection, we shall focus our attention on the universal localizations of the
Kronecker algebra.

4.3 Kronecker algebra

In this subsection, we shall consider a particular tame hereditary algebra, the Kro-
necker algebra. The results obtained here will serve again as a preparation for the
discussion of stratifications of derived module categories in the next section.

Throughout this subsection, k is a field and R is the Kronecker algebra
�
k k2

0 k

�
,

where the k-k-bimodule structure of k2 is given by

a.b; c/d D .abd; acd/

with a; b; c; d 2 k. It is known that R is isomorphic to the path algebra of the
quiver

Q W 2
˛
//

ˇ

// 1;

and that R-Mod (respectively, R-mod) is equivalent to the category of representa-
tions (respectively, finite-dimensional representations) of Q over k.

In this subsection, we denote by V the representation

k
0
//

1

// k:

Brought to you by | Beijing Normal University
Authenticated | xicc@bnu.edu.cn author's copy

Download Date | 5/14/15 4:18 PM



1892 H. X. Chen and C. C. Xi

By [8, Section 8], we have RV DM2.kŒx�/, and the universal localization map
� W R! RV is given by 

a .c; d/

0 b

!
7�!

 
a c C dx

0 b

!
for a; b; c; d 2 k. In particular, the restriction functor �� W RV -Mod! R-Mod
induced by � is fully faithful. Let

e D

 
1 0

0 0

!
2 RV :

Clearly, the tensor functor RV e ˝kŒx� � W kŒx�-Mod! RV -Mod is an equiva-
lence. Now, we define F W kŒx�-Mod! R-Mod to be the composition of the func-
tors RV e ˝kŒx� � and ��. Then F is a fully faithful exact functor, and sends each
kŒx�-module M to the representation

M
1
//

x
// M:

Moreover, we have the following result.

Lemma 4.12 ([25, Theorem 4]). The functor F induces an equivalence between
the category of finite-dimensional kŒx�-modules and the category of finite-dimen-
sional regular R-modules with regular composition factors not isomorphic to V .

Let P be the set of all monic irreducible polynomials in kŒx�. For each polyno-
mial p.x/ 2 P , we denote by kp.x/ the extension field kŒx�=.p.x// of k, and by
Vp.x/ the representation

kp.x/
1
//

x
// kp.x/;

which is the image of kp.x/ under F . Since simple kŒx�-modules are parameterized
by monic irreducible polynomials, it follows from Lemma 4.12 that

S WD ¹V º [ ¹Vp.x/ j p.x/ 2 P º

is a complete set of isomorphism classes of simple regular R-modules. If k is
algebraically closed, then P D ¹x � a j a 2 kº, and therefore S can be identified
with the projective line P1.k/.

The following corollary describes the endomorphism algebras of Prüfer mod-
ules over the Kronecker algebra.

Corollary 4.13. Let t be a variable and p.x/ 2 P . Then there are isomorphisms
of rings:

EndR.V Œ1�/ ' kŒŒt �� and EndR.Vp.x/Œ1�/ ' kp.x/ŒŒt ��:
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Proof. Recall that, for any simple regular R-module U , we have

EndR.U Œ1�/ ' lim
 �
n

EndR.U Œn�/

as rings. If U D V , then EndR.U Œn�/ ' kŒt �=.tn/ for any n > 0, and therefore

EndR
�
U Œ1�

�
' lim
 �
n

kŒt �=.tn/ ' kŒŒt ��:

Suppose U D Vp.x/. It follows from Lemma 4.12 that U Œn� ' F.kŒx�=.p.x/n//
as R-modules and that EndR.U Œn�/ ' EndkŒx�.kŒx�=.p.x/n// ' kŒx�=.p.x/n/
for any n > 0. Thus

EndR.U Œ1�/ ' lim
 �
n

kŒx�=.p.x/n/:

This implies that EndR.U Œ1�/ is a complete commutative discrete valuation ring
(see Lemma 3.1 (5)), and therefore it is a regular ring of Krull dimension 1. Recall
that a regular ring is by definition a commutative noetherian ring of finite global
dimension. For regular rings, the global dimension agrees with the Krull dimen-
sion.

It remains to prove

lim
 �
n

kŒx�=.p.x/n/ ' kp.x/ŒŒt ��:

Actually, this is a straightforward consequences of the following classical result
(see [12, Theorem 15] for details):

Let S be a complete regular local ring of Krull dimension m with the residue
class fieldK. If S contains a field, then S is isomorphic to the formal power series
ring KŒŒt1; : : : ; tm�� over K in variables t1; : : : ; tm.

Hence
EndR.U Œ1�/ ' lim

 �
n

kŒx�=.p.x/n/ ' kp.x/ŒŒt ��;

which finishes the proof.

Finally, we prove the following lemma as the last preparation for the proof of
Corollary 1.2.

Lemma 4.14. Let � be a subset of P , and let U WD ¹V º [ ¹Vp.x/ j p.x/ 2 �º.
Suppose thatD is the smallest subring of the fraction field k.x/ of kŒx� containing
both kŒx� and 1

p.x/
with all p.x/ 2 �. Then RU 'M2.D/, the 2 � 2 matrix ring

overD. In particular,RU is Morita equivalent to the Dedekind integral domainD.

Proof. Define W WD ¹RV ˝R Vp.x/ j p.x/ 2 �º. Then RU D .RV /W by Lem-
ma 4.2 (3). Recall thatRV DM2.kŒx�/ and � W R! RV is the universal localiza-
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tion of R at V . On the one hand, for each p.x/ 2 �, it follows from

Vp.x/ D F.kp.x// D ��.RV e ˝kŒx� kp.x//

that

RV ˝R Vp.x/ ' Vp.x/ D RV e ˝kŒx� kp.x/ D

 
kp.x/

kp.x/

!
as RV -modules. On the other hand, by [8, Corollary 3.5], Morita equivalences
preserve universal localizations. Consequently, we have

RU D .M2.kŒx�//W 'M2.kŒx�‚/

with‚ WD ¹kp.x/ j p.x/ 2 �º � kŒx�-Mod. Now, one may readily see that kŒx�‚
coincides with the localization of kŒx� at the smallest multiplicative subset of
kŒx� containing ¹p.x/ j p.x/ 2 �º, which is exactly the ring D defined in Lem-
ma 4.14. Since kŒx� is a Dedekind integral domain and since localizations of
Dedekind integral domains are again Dedekind integral domains, we see that D is
a Dedekind integral domain. As a result, we have RU 'M2.D/. This completes
the proof.

Remark. (1) If k is an algebraically closed field, then, for any simple regular
R-module U , we can choose an automorphism � W R! R such that the induced
functor �� W R-Mod! R-Mod by � is an equivalence with ��.U / ' V . This im-
plies that, up to isomorphism, Lemma 4.14 provides a complete description of
RV for any subset V of S . In particular, RV is Morita equivalent to a Dedekind
integral domain.

(2) If we localize R at all non-isomorphic simple regular modules S which
is indexed by all monic irreducible polynomials, then, by Lemma 4.14, we have
RS 'M2.k.x// since the smallest subring containing the inverses of all irre-
ducible polynomials p.x/ is just k.x/.

5 Proof of the main results

In this section, we prove our main results, Theorem 1.1 and Corollary 1.2, in this
paper.

5.1 Proof of Theorem 1.1

Recall that
B WD EndR.RU ˚RU=R/

and
S WD EndR.RU=R/:
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By Proposition 2.11, there is a recollement of derived module categories

D.S†/ // D.B/ //

hh

vv

D.R/
hh

vv

(�)

where S† is the universal localization of S at † WD ¹S ˝R fU j U 2 Uº.
Note that I is an index set such that ¹Ciºi2I is the set of all cliques contained

in U. It follows from Corollary 4.9 that S† is Morita equivalent to the adèle ring
AU in Theorem 1.1. So, if we substitute D.S†/ by D.AU/ in (�), then we obtain
the desired recollement of derived module categories in Theorem 1.1:

D.AU/ // D.B/ //

hh

vv

D.R/.
hh

vv

This completes the proof of the first part of Theorem 1.1.
As for the second part, we note that if k is algebraically closed, then, for each

clique C of R, the rings D.C/ and Q.C/ are isomorphic to kŒŒx�� and k..x// by
Lemma 3.1 (5), respectively. Now, combining this fact with the first part of Theo-
rem 1.1, we know that AU is isomorphic to AI . This finishes the proof.

In the following, we give two consequences of Theorem 1.1.
If we take U D S , then the module TS WD RS ˚RS =R is a Reiten–Ringel

tilting R-module (see [26] and [3, Example 1.3]). Actually, this module is of the
form

G.n/ ˚
M
U2S

U Œ1�.ıU /;

where G is the unique generic R-module, and where

n D dimGEndR.G/ and ıU D dimEndR.U / Ext1R.U;R/

for U 2 S (see [3, Proposition 1.10]). Recall that S is parameterized by the
projective line P1.k/ if k is algebraically closed. As a direct consequence of The-
orem 1.1, we have the following corollary.

Corollary 5.1. If k is an algebraically closed field and T is the Reiten–Ringel
tilting R-module TS , then there is a recollement

D.AP1.k// // D.EndR.T // //

tt

jj
D.R/.

ii

uu

Now, let� be a subset of P , the set of all monic irreducible polynomials in kŒx�,
and let U WD ¹V º [ ¹Vp.x/ j p.x/ 2 �º (see Section 4.3 for notation). We define
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the �-adèle ring of kŒx� as follows:

A.�/ WD k..t// �

²
.�p.x//p.x/2� 2

Y
p.x/2�

kp.x/..t// j �p.x/ 2 kp.x/ŒŒt �� for

almost all p.x/ 2 �
³
:

Combining Theorem 1.1 with Corollary 4.13, we get the following result.

Corollary 5.2. Suppose that R is the Kronecker algebra. Let B be the endomor-
phism algebra of the tilting R-module RU ˚RU=R. Then there is a recollement
of derived categories:

D.A.�// // D.B/ //

ii

uu

D.R/:
hh

vv

5.2 Proof of Corollary 1.2

We first recall the definition of stratifications of derived categories of rings.
Following [1, Sections 4 and 5], the derived module category D.A/ of a ring A

is called derived simple if it is not a non-trivial recollement of any derived cat-
egories of rings. A stratification of D.A/ of a ring A by derived categories of
rings is defined to be a sequence of iterated recollements of the following form: a
recollement of A, if it is not derived simple,

D.A1/ // D.A/ //

hh

vv

D.A2/,
hh

vv

a recollement of the ring A1, if it is not derived simple,

D.A11/ // D.A1/ //

ii

vv

D.A12/,
ii

vv

and a recollement of the ring A2, if it is not derived simple,

D.A21/ // D.A2/ //

ii

vv

D.A22/,
ii

vv

and recollements of the rings Aij with 1 � i; j � 2, if they are not derived simple,
and so on, until one arrives at derived simple rings at all positions, or continues to
infinitum. All the derived simple rings appearing in this procedure are called com-
position factors of the stratification. The cardinality of the set of all composition
factors (counting the multiplicity) is called the length of the stratification. If the
length of a stratification is finite, we say that this stratification is finite or of finite
length.
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Proof of Corollary 1.2. Under the assumption that k is an algebraically closed
field, the following two facts are known:

(a) For any simple regularR-module U , the algebras EndR.U / and EndR.U Œ1�/
are isomorphic to k and kŒŒx��, respectively. This is due to Lemma 3.1 (5).

(b) Each tame hereditary algebra with two isomorphism classes of simple modules
is Morita equivalent to the Kronecker algebra.

One the one hand, it follows from Theorem 1.1 that D.B/ is stratified by D.R/
and D.AI /, where I D ¹1; 2; : : : ; sº is an index set of the cliques contained in U,
and the ring AI is defined in the Introduction. Since U is a union of finitely many
cliques of S , we know that AI is equal to k..x//s , the direct product of s copies
of k..x//. Thus D.AI / has a stratification by derived module categories with s
copies of the composition factor k..x//. Note that D.R/ has a stratification by
derived module categories with r copies of the composition factor k, where r is the
number of non-isomorphic simple R-modules. Thus D.B/ has a stratification of
length r C s with the composition factor k of multiplicity r , and the composition
factor k..x// of multiplicity s.

On the other hand, by Corollary 4.11, we know that D.B/ can be stratified
by D.RW /, D.EndRU

.RW=RU// and D.EndR.RU=R//, where W is defined
in Corollary 4.11. Here, we have used the known fact that every 2 � 2 triangular
matrix ring yields a recollement of derived module categories of the rings in the
diagonal. In the following, we shall calculate composition factors of D.B/.

First, it follows from Corollary 4.11 (2) and Lemma 4.14 that RW is Morita
equivalent to a Dedekind integral domain and that EndRU

.RW=RU/ is Morita
equivalent to

Q
j2J Tc.Cj /�1.k/. It is known from [1, Proposition 4.11 (3)] that

every Dedekind domain is derived simple. Thus RW contributes one composi-
tion factor to D.B/. It is easy to see that D.Tc.Cj /�1.k// has a stratification with
c.Cj / � 1 copies of the composition factor k. Thus D.EndRU

.RW=RU// admits
a stratification with

P
j2J .c.Cj / � 1/ copies of k.

Second, combining Lemma 4.8 (1) with Corollary 3.3, we can conclude that
EndR.RU=R/ is Morita equivalent to

Qs
iD1 �.c.Ci //, where U is assumed to

be a union of s cliques Ci with 1 � i � s, and where �.m/ is defined in Corol-
lary 3.3 for each positive integer m. Note that the canonical inclusion f of �.m/
into Mm.kŒŒx��/ is a ring epimorphism and that Mm.kŒŒx��/ is finitely generated
and projective as a left �.m/-module. Let Em;m be the diagonal matrix with 1 in
the .m;m/-entry, and 0 in other entries. Then the sequence

0 �! �.m/
f
�!Mm.kŒŒx��/ �! Coker.f / �! 0

is an add.�.m/Em;m/-split sequence in the category of all left �.m/-modules (see
[30, Lemma 3.1]), and therefore we see that End�.m/.�.m/˚Mm.kŒŒx��// and
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End�.m/.Mm.kŒŒx��/˚ Coker.f // are derived equivalent by [19, Theorem 1.1].
Clearly, the former ring is Morita equivalent to �.m/ and the latter is Morita equiv-
alent to End�.m/.Mm.kŒŒx��/Em;m ˚ Coker.f //. Hence �.m/ is derived equiva-
lent to End�.m/.Mm.kŒŒx��/Em;m ˚ Coker.f //which is just the following matrix
ring: 0BBBBB@

kŒŒx�� k � � � k

0 k
: : :

:::
:::

: : :
: : : k

0 � � � 0 k

1CCCCCA
m�m

:

For a general consideration of derived equivalences between subrings of matrix
rings, we refer to [10]. Thus, we know that D.�.m// has a stratification with the
composition factor kŒŒx�� of multiplicity 1, and the composition factor k of mul-
tiplicity m � 1. Therefore, D.EndR.RU=R// admits a stratification with the fol-
lowing composition factors: s copies of kŒŒx�� and

Ps
iD1.c.Ci / � 1/ copies of k.

Finally, by summarizing up the above discussions, we conclude that D.B/ has
a stratification of length r C s � 1 with the following composition factors: r � 2
copies of k, s copies of kŒŒx�� and one copy of a fixed Dedekind domain. Here, we
use the well-known fact X

C

.c.C/ � 1/ D r � 2;

where C runs over all of the cliques of R. Thus the proof is completed.

Let us end this section by mentioning the following questions suggested by our
results.

(1) For tilting modules of the form RU ˚RU=R, we have provided a recolle-
ment of the derived categories of their endomorphism algebras. It would be
interesting to have a similar result for tilting modules of other types described
in [3].

(2) In Corollary 1.2, it would be nice to know that D.B/ has no other composition
factors (up to derived equivalence) except the ones displayed there.

(3) It would be interesting to generalize the results in this paper to hereditary
orders.

(4) Suppose that the derived category D.A/ of a ring A admits a stratification of
finite length by derived categories of rings. Does D.A/ then have only finitely
many derived composition factors (up to derived equivalence)?
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