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Abstract Under semi-weak and weak compatibility conditions of bimodules, we establish necessary and

sufficient conditions of Gorenstein-projective modules over rings of Morita contexts with one bimodule

homomorphism zero. This extends greatly the results on triangular matrix Artin algebras and on Artin algebras

of Morita contexts with two bimodule homomorphisms zero in the literature, where only sufficient conditions

are given under a strong assumption of compatibility of bimodules. An application is provided to describe

Gorenstein-projective modules over noncommutative tensor products arising from Morita contexts. Our results

are proved under a general setting of noetherian rings and modules instead of Artin algebras and modules.
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1 Introduction

For finitely generated modules over noetherian rings, Auslander and Bridge [2] introduced Gorenstein-

projective modules, i.e., modules of G-dimension zero, and this idea was generalized several decades later

by Enochs et al. [8] and Enochs and Jenda [7] for arbitrary modules over arbitrary rings. Nowadays,

the notion of Gorenstein-projective modules plays a very important role in the so-called Gorenstein

homological algebra which has significant applications in commutative algebra, algebraic geometry and

other fields. It is fundamental, but also difficult, to describe all the Gorenstein-projective modules over a

given algebra or ring. Recently, there are many interesting works done in this direction. For example, in a

series of articles [17,22,23], Gorenstein-projective modules over the triangular matrix Artin algebra (A N
0 B )

were determined under some assumptions on the bimodule ANB . A natural generalization of triangular

matrix algebras is the Morita context rings Λ(0,0) = ( A N
M B ) with two bimodule homomorphisms zero. A

Morita context ring is generally the 2× 2 matrix ring Λ(ϕ,ψ) := ( A N
M B ) associated with a Morita context
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(A,B,BMA,ANB, ϕ : M ⊗A N → B,ψ : N ⊗B M → A) with two bimodule homomorphisms ϕ and ψ,

and Λ(ϕ,ψ)-modules are presented by quadruples (X,Y, f, g) (see Section 2 for details). In [10], Gao and

Psaroudakis gave a set of concise sufficient conditions for Λ(0,0)-modules to be Gorenstein-projective. To

achieve their results, they required some compatibility conditions on the bimodules M and N , which

were introduced in [23].

In this paper, we consider Morita context rings of the form Λψ := Λ(0,ψ), which is more general

than Λ(0,0), and characterize their Gorenstein-projective modules. To implement our characterization of

Gorenstein-projective modules, we use weak versions of compatibility conditions (see Subsection 2.2 for

definition). With an additional assumption on a couple of very special Λψ-modules related to ingredients

of the given Morita context, we even can show that the weak compatibility conditions are necessary and

sufficient for a Λψ-module to be Gorenstein-projective. Our discussion is in the frame of noetherian rings

instead of Artin algebras. Our main results, Theorems 3.5 and 3.11, are summarized as follows.

Theorem 1.1. Let A and B be noetherian rings, and (A,B,BMA,ANB , 0, ψ) be a Morita context with

the bimodules BMA and ANB finitely generated as one-sided modules. Furthermore, assume that A is the

trivial extension of a subring Λ of A by the image I of ψ.

(I) The following two sets of conditions are equivalent for the Morita context ring Λψ := Λ(0,ψ) :

(1) ΛNB, BMΛ and ΛIΛ are weakly compatible bimodules, (AN, 0, 0, 0) and (AI, 0, 0, 0) are semi-

weakly compatible left Λψ-modules, and (MA, 0, 0, 0) and (IA, 0, 0, 0) are semi-weakly compatible right

Λψ-modules.

(2) A finitely generated Λψ-module (X,Y, f, g) is Gorenstein-projective if and only if

(a) BCoker(f) and ΛCoker(g) are Gorenstein-projective, and

(b) BIm(f) ≃ BM ⊗A Coker(g), AIm(g)/IX ≃ AN ⊗B Coker(f) and AIX ≃ AI ⊗A Coker(g), where

Coker(f) and Im(g) denote the cokernel of f and the image of g, respectively.

(II) Suppose that ΛNB, BMΛ and ΛIΛ are weakly compatible. If a finitely generated Λψ-module

(X,Y, f, g) satisfies the above conditions (a) and (b) in (2), then it is Gorenstein-projective.

Theorem 1.1(I) not only extends greatly the ones on triangular matrix algebras by Xiong and Zhang [22]

and Zhang [23], and on Morita context algebras with two bimodule homomorphisms zero by Gao and

Psaroudakis [10], respectively, to a large class of Morita context rings, but also can be applied to a

class of noncommutative tensor products (see Corollary 4.2 for details). Notably, noncommutative tensor

products generalize usual tensor products over commutative rings, capture many known constructions in

ring theory, and are useful in constructing recollements of derived module categories (see [5, 6]).

The rest of this paper is organized as follows. In Section 2, we recall the definition of (weakly)

compatible bimodules, a complete Horseshoe lemma and basic facts on Morita context rings. In Section 3,

we prove the main result, Theorem 1.1, and then formulate it for the special Morita context rings Λ(0,0).

In this case, the resulting statement appears in a quite simple form (see Proposition 3.14). Finally, in

Section 4, we apply our result to noncommutative tensor products arising from Morita contexts with two

bimodule homomorphisms zero. This provides in fact a corresponding result for Morita context rings

Λ(ϕ,0), as indicated by Corollary 4.2.

2 Preliminaries

In this section, we recall basic definitions and facts for later proofs.

Let A be a unitary (associative) ring. We denote by A-Mod (resp. A-mod) the category of all the

(resp. finitely generated) left A-modules. As usual, A-Proj and A-proj are the full subcategories of

A-Mod consisting of all the projective modules and finitely generated projective A-modules, respectively.

Similarly, we have the notations A-Inj and A-inj for the full subcategories of all the injective A-modules

and finitely generated injective A-modules, respectively. For a full subcategory X of A-Mod, we denote

by C (X ) the category of complexes over X , and write C (A) for C (A-Mod).

The composite of two homomorphisms f : X → Y and g : Y → Z will be denoted by fg instead of gf .

Thus the image of x ∈ X under f is written as (x)f or xf , and the image of f is denoted by Im(f).
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A complex X• = (Xi, diX) ∈ C (A) is exact if the cohomology group Hi(X•) = 0 for all i, and totally

exact if it is exact and the complex HomA(X
•, P ) is exact for all projective A-modules P . Let X be an A-

module. An exact complex P • ∈ C (A-Proj) is called a complete projective resolution ofX if Ker(d0P ) = X.

By a total projective resolution of X, we mean a totally exact, complete projective resolution of X.

Following [7], the module AX is Gorenstein-projective if X has a total projective resolution. Dually, an

A-module Y is Gorenstein-injective if there is a complete injective resolution I• ∈ C (A-Inj) such that

Ker(d0I) = Y and HomA(E, I
•) is exact for all E ∈ A-Inj. In A-mod, Gorenstein-projective modules

are nothing else than modules of G-dimension 0 in the sense of Auslander and Bridge [2]. We denote

by A-GProj (resp. A-Gproj) the category of all the (resp. finitely generated) Gorenstein-projective

A-modules, and by A-GInj (resp. A-Ginj) the category of all the (resp. finitely generated) Gorenstein-

injective A-modules. Note that A-Gproj contains A-proj and is closed under direct summands, extensions

and kernels of surjective homomorphisms (see [13]).

Since Gorenstein-projective modules involve complete projective resolutions, a complete Horseshoe

lemma is needed. For the convenience of the readers, we state it here for module categories and still refer

it to the Horseshoe lemma. For other versions, see [10,13,23].

Lemma 2.1 (Horseshoe lemma). Given a short exact sequence 0 → U → W → V → 0 of A-modules

and two exact complexes X• = (Xi, diX) and Y • = (Y i, diY ) of A-modules with Ker(d0X) = U and

Ker(d0Y ) = V , if Ext1A(Ker(diY ), X
i) = 0 for all i > 0 and if Ext1A(Y

−i, Im(d−iX )) = 0 for all i > 1, then

there are an exact complex Z• = (Zi, diZ) and an exact sequence of complexes

0 −→ X• −→ Z• −→ Y • −→ 0,

where

Zi = Xi ⊕ Y i, diZ =

(
diX 0

ρi diY

)
,

and ρi : Y i → Xi+1 is a homomorphism of A-modules such that the induced exact sequence

0 → Ker(d0X) → Ker(d0Z) → Ker(d0Y ) → 0 coincides with the given short exact sequence.

Furthermore, if Xi = Xi+1, Y i = Y i+1, diX = di+1
X and diY = di+1

Y for all i, then Zi = Zi+1 and

diZ = di+1
Z for all i.

The following easy lemma is often used.

Lemma 2.2. (1) If

0 → C• c•−→ E• d•−→ G• → 0

is an exact sequence of complexes of A-modules, then there is an induced exact sequence

0 → Ker(diC)
c̄i−→ Ker(diE)

d̄i−→ Ker(diG)

in A-Mod for any i ∈ Z. In particular, if C• and E• are exact, then d̄i is surjective.

(2) Given a 3-dimensional diagram of A-modules with the squares consisting of solid arrows

commutative

K ′

zzvvv
v

//

��

C ′

��

//

zzvvv
v

A′

��

zzvvv
v

L′ l′ //

���
�
�
� D′

��

d′ // B′

��
K

{{vv
v

k // C

zzvvv
vv

c // A,

{{vv
vv

L
l // D

d // B

if l′d′ = 0 = kc and l is the kernel of d, then the dashed arrows exist and every new square commutes.

The next lemma is well known.

Lemma 2.3. Let R be a left noetherian ring, and M and N be finitely generated R-modules.

(1) Every surjective homomorphism f : RM → RM is an automorphism.

(2) If M ≃ N and f :M → N is a surjective homomorphism of R-modules, then f is an isomorphism.
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Finally, we recall the definition of approximations. Let D be a full additive subcategory of an additive

category C and X an object in C. A morphism f : X → D in C is called a left D-approximation of X

if D ∈ D and HomC(f,D
′) : HomC(D,D

′) → HomC(X,D
′) is surjective for any object D′ ∈ D. Dually,

a morphism f : D → X in C is called a right D-approximation of X if D ∈ D and HomC(D
′, f) :

HomC(D
′, D) → HomC(D

′, X) is surjective for any object D′ ∈ D. Left and right approximations are

also termed as preenvelopes and precovers in ring theory, respectively.

2.1 Morita context rings and their modules

Morita context rings stemmed from a description of Morita equivalences of rings (see [3, 19]), and now

appear in many situations (see, for example, [12] for some cases). There is a large variety of literature

on Morita contexts, duality and equivalences (see, for example, [3, 4, 10, 11, 16, 18, 19]). Here, we briefly

recall Morita context rings and their modules.

Let A and B be unitary rings, ANB be an A-B-bimodule, BMA be a B-A-bimodule, ϕ :M ⊗AN → B

be a homomorphism of B-B-bimodules and ψ : N ⊗B M → A be a homomorphism of A-A-bimodules.

Furthermore, let I := Im(ψ) and J := Im(ϕ). The sextuple (A,B,M,N, ϕ, ψ) is called a Morita context

(see [19]) if the two diagrams are commutative, i.e.,

N ⊗B M ⊗A N
1N⊗ϕ //

ψ⊗1N

��

N ⊗B B

mlt

��
A⊗A N

mlt // N,

M ⊗A N ⊗B M
ϕ⊗1M //

1M⊗ψ
��

B ⊗B M

mlt

��
M ⊗A A

mlt // M,

where mlt stands for the multiplication map universally.

Associated with a Morita context (A,B,M,N, ϕ, ψ), we can define a Morita context ring (see [3, 19]),

denoted by Λ(ϕ,ψ), which has the underlying abelian group of the matrix form with the multiplication

induced by ϕ and ψ:

Λ(ϕ,ψ) :=

(
A N

M B

)
=

{(
a n

m b

) ∣∣∣∣∣ a ∈ A, b ∈ B, n ∈ N, m ∈M

}
,(

a n

m b

)(
a′ n′

m′ b′

)
=

(
aa′ + (n⊗m′)ψ an′ + nb′

ma′ + bm′ (m⊗ n′)ϕ+ bb′

)
.

In the following, we write Λψ for Λ(0,ψ). To avoid confusion with Morita algebras in [15], we adopt here

the terminology of Morita context rings instead of Morita rings. For simplicity, we write Λψ for Λ(0,ψ).

The description of modules over Λ(ϕ,ψ) was well known (see, for example, [11, 16]). Every Λ(ϕ,ψ)-

module is determined by a quadruple (X,Y, f, g), where X and Y are modules over A and B, respectively,

f ∈ HomB(M⊗AX,Y ) and g ∈ HomA(N⊗BY,X) such that the following two diagrams are commutative:

N ⊗B M ⊗A X

ψ⊗1X

��

1N⊗f // N ⊗B Y

g

��
A⊗A X

≃ // X,

M ⊗A N ⊗B Y

ϕ⊗1Y

��

1M⊗g // M ⊗A X

f

��
B ⊗B Y

≃ // Y,

(2.1)

where the two isomorphisms are the multiplication maps.

If (AX,BY, f, g) is a Λ(ϕ,ψ)-module, then ICoker(g) = 0 and JCoker(f) = 0. This follows from (2.1)

since IX ⊆ Im(g) and JY ⊆ Im(f). Thus Coker(g) is an A/I-module and Coker(f) is a B/J-module.

Since HomB(M ⊗A X,Y ) ≃ HomA(X,HomB(M,Y )), we denote by f̃ : X → HomB(M,Y ) the image of

f under this adjunction. Similarly, we define g̃ : Y → HomA(N,X).

A homomorphism from a Λ(ϕ,ψ)-module (X,Y, f, g) to another Λ(ϕ,ψ)-module (X ′, Y ′, f ′, g′) is a

pair (α, β) with α ∈ HomA(X,X
′) and β ∈ HomB(Y, Y

′) such that the following two diagrams are
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commutative:

M ⊗A X

1M⊗α
��

f // Y

β

��
M ⊗A X ′ f ′

// Y ′,

N ⊗B Y

1N⊗β
��

g // X

α

��
N ⊗B Y ′ g′ // X ′.

(2.2)

Clearly, for a homomorphism (α, β) : (X,Y, f, g) → (X ′, Y ′, f ′, g′) of Λ(ϕ,ψ)-modules, its kernel Ker(α, β)

is (Ker(α),Ker(β), h, j), where h and j are uniquely given by the commutative diagrams, respectively. It

holds that

M ⊗A Ker(α)

h

���
�
�

1M⊗iX // M ⊗A X

f

��

1M⊗α// M ⊗A X ′

f ′

��
Ker(β) � � iY // Y

β // Y ′,

N ⊗B Ker(β)

j

���
�
�

1N⊗iY // N ⊗B Y

g

��

1N⊗β // N ⊗B Y ′

g′

��
Ker(α) � � iX // X

α // X ′,

(2.3)

where iX : Ker(α) → X and iY : Ker(β) → Y are the inclusions. Dually, one describes the cokernel of

(α, β).

Let

0 → (X1, Y1, f1, g1)
(α1,β1)−→ (X2, Y2, f2, g2)

(α2,β2)−→ (X3, Y3, f3, g3) → 0

be a sequence of Λ(ϕ,ψ)-modules. This sequence is exact if and only if the induced sequences 0 → X1
α1−→

X2
α2−→ X3 → 0 and 0 → Y1

β1−→ Y2
β2−→ Y3 → 0 are exact in A-Mod and B-Mod, respectively.

Given Λ(ϕ,ψ)-modules (X,Y, f, g) and (X ′, Y ′, f ′, g′), their direct sum is given by (X ⊕ X ′, Y ⊕ Y ′,

f ⊕ f ′, g ⊕ g′), where

f ⊕ f ′ =

(
f 0

0 f ′

)
:M ⊗A X ⊕M ⊗A X ′ → Y ⊕ Y ′

is defined to be the diagonal homomorphism of B-modules.

For X ∈ A-Mod and Y ∈ B-Mod, we denote by ΨX and ΦY the composites of the maps, respectively,

N ⊗B M ⊗A X
ψ⊗1X //

ΨX

((
A⊗A X

≃ // X, M ⊗A N ⊗B Y
ϕ⊗1Y //

ΦY

((
B ⊗B Y

≃ // Y.

The bimodules BMA and ANB define two natural transformations ζ and ξ between tensor functors

and hom-functors, i.e.,

M ⊗A − ζ−→ HomA(N,−) : A-Mod −→ B-Mod,

ζX :M ⊗A X −→ HomA(N,X), m⊗ x 7→ [n 7→ (n⊗m)ψ x],

N ⊗B − ξ−→ HomB(M,−) : B-Mod −→ A-Mod,

ξY : N ⊗B Y → HomB(M,Y ), n⊗ y 7→ [m 7→ (m⊗ n)ϕ y].

Following [12], we define functors related to Morita context rings as follows:

TA : A-Mod −→ Λ(ϕ,ψ)-Mod, AX 7→ TA(X) = (X,M ⊗A X, 1M⊗X ,ΨX),

HA : A-Mod −→ Λ(ϕ,ψ)-Mod, AX 7→ HA(X) = (X,HomA(N,X), ζX , δX),

TB : B-Mod −→ Λ(ϕ,ψ)-Mod, BY 7→ TB(Y ) = (N ⊗B Y, Y,ΦY , 1N⊗Y ),

HB : B-Mod −→ Λ(ϕ,ψ)-Mod, BY 7→ HB(Y ) = (HomB(M,Y ), Y, δY , ξY ),

where δX : N ⊗B HomA(N,X) → X and δY : M ⊗A HomB(M,Y ) → Y are evaluation maps. For

an A-module X with IX = 0 and a B-module Y with JY = 0, we can get naturally Λ(ϕ,ψ)-modules

(X, 0, 0, 0) and (0, Y, 0, 0), respectively. This gives rise to the functors

ZA/I : (A/I)-Mod −→ Λ(ϕ,ψ)-Mod, A/IU 7→ ZA/I(U) = (AU, 0, 0, 0),
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ZB/J : (B/J)-Mod −→ Λ(ϕ,ψ)-Mod, B/JV 7→ ZB/J(V ) = (0,BV, 0, 0).

The actions of the above functors on morphisms are defined naturally. The relation among these functors

is given by the following lemma. Since our proofs only use adjoint pairs of functors in recollements, we

will not recall here the definition of recollements of abelian categories, and just refer the readers to [9,21]

for more details.

Lemma 2.4 (See [12]). There are the following two recollements of module categories:

B/J-Mod
ZB/J // Λ(ϕ,ψ)-Mod

UA //

QB

ww

PB
gg

A-Mod,

TA

ww

HA
gg

A/I-Mod
ZA/I // Λ(ϕ,ψ)-Mod

UB //

QA

ww

PA
gg

B-Mod,

TB

ww

HB
gg

where UA and UB are the canonical projections to Λ(ϕ,ψ)-Mod and B-Mod, respectively, QA
= ((A/I) ⊗A −)UA and QB = ((B/J) ⊗B −)UB, and PA and PB are defined on objects (X,Y, f, g)

by taking kernels of f̃ and g̃, respectively.

Suppose that A and B are noetherian rings, and BMA and ANB are bimodules such that they are

finitely generated as one-sided modules. Then it is known that Λ(ϕ,ψ) is a noetherian ring (see, for

example, [18, Proposition 1.7, p. 12]). For a noetherian ring, its identity has a complete decomposition

of orthogonal primitive idempotent elements (see [1, Proposition 10.14, p. 128]). Thus the description of

indecomposable projective modules over the Artin algebra Λ(ϕ,ψ) in [12, Proposition 3.1] extends to the

one over the noetherian ring Λ(ϕ,ψ).

Lemma 2.5. Suppose that A and B are noetherian rings, and BMA and ANB are bimodules such that

they are finitely generated as one-sided modules.

(1) (See [12, Proposition 3.1]) An indecomposable finitely generated Λ(ϕ,ψ)-module is projective if and

only if it is given by TA(P ) = (P,M ⊗A P, idM⊗AP ,ΨP ), or TB(Q) = (N ⊗B Q,Q,ΦQ, idN⊗BQ), where

P and Q are finitely generated, indecomposable projective modules over A and B, respectively.

(2) (See [20, Corollary 2.2]) An indecomposable Λ(ϕ,ψ)-module is injective if and only if it is of the

form HA(U) = (U,HomA(N,U), ζU , δU ), or HB(V ) = (HomB(M,V ), V, δV , ξV ), where U and V are

indecomposable injective modules over A and B, respectively.

2.2 Weakly and semi-weakly compatible modules

Compatible modules were defined in [23] to describe a class of Gorenstein-projective modules for triangular

matrix Artin algebras which are of course special Morita context rings. They were further pursued in [10]

for the Morita context Artin algebras Λ(0,0). We use weakly and semi-weakly compatible modules to

characterize Gorenstein-projective modules over the noetherian rings Λψ that are more general than Λ(0,0).

Let A and B be unitary rings. First, we recall the definition of (weakly) compatible bimodules.

Definition 2.6 (See [23, Definition 1.1] and [14, Definition 4.1]). Let ANB be a bimodule.

(1) ANB is compatible if

(C1) HomA(P
•, N) is exact for all totally exact complexes P • ∈ C (A-proj), and

(C2) N ⊗B Q• is exact for all exact complexes Q• ∈ C (B-proj).

(2) ANB is weakly compatible if it satisfies (C1) and

(C3) N ⊗B Q• is exact for all totally exact complexes Q• ∈ C (B-proj).

Weakly compatible bimodules require exactness only for totally exact complexes Q• ∈ C (B-proj)

in (C3), and the notion of weakly compatible bimodules is a proper generalization of the one of compatible

bimodules (see [14, Example 4.3]).
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Definition 2.7. A left A-module AX is semi-weakly compatible if it satisfies (C1), i.e.,

HomA(P
•, X) is exact for all totally exact complexes P • ∈ C (A-proj).

Lemma 2.8. Let A,B and C be rings.

(1) A right B-module YB is semi-weakly compatible if and only if Y ⊗BQ• is exact for all totally exact

complexes Q• ∈ C (B-proj).

(2) Let ANB be an A-B-bimodule.

(i) If the modules AN and NB are of finite injective dimension, then ANB is a weakly compatible

A-B-bimodule.

(ii) If there is an exact complex P • = (P i, diP ) ∈ C (B-proj) such that TorB1 (N,Ker(diP )) ̸= 0 for an

integer i, then ANB is not compatible.

(3) If bimodules AXB and C
opYBop are compatible, then the bimodule AX ⊗B YC is weakly compatible.

Proof. (1) For a finitely generated projective module WB , there is an isomorphism

V ⊗A HomB
op (W,U) ≃ HomB

op (W,V ⊗A U)

as abelian groups for any bimodule AUB and A-module VA. If W • ∈ C (B
op

-proj) is totally exact, then

so is HomB
op (W •, B) ∈ C (B-proj). Hence, YB is semi-weakly compatible if and only if HomB

op (W •, Y )

is exact if and only if Y ⊗B HomB
op (W •, B) is exact for all totally exact complexes W • in C (B

op

-proj).

Note that HomB(−, B) is a duality between B-proj and B
op

-proj. Thus (1) holds.

(2) (i) If AN is injective, then it is semi-weakly compatible. Suppose that AN is of the injective

dimension n and 0 → N → I → X → 0 is an exact sequence with I injective and AX of the injective

dimension n − 1. Then AX is semi-weakly compatible by induction. For a totally exact complex P •

∈ C (A-proj), since P i is projective, we have an exact sequence of complexes, i.e.,

0 → HomA(P
•, N) → HomA(P

•, I) → HomA(P
•, X) → 0

with both HomA(P
•, I) and HomA(P

•, X) being exact. Thus HomA(P
•, N) is exact, and therefore AN

is semi-weakly compatible. Now, suppose that NB has finite injective dimension. This means that the

left B
op

-module BopN has finite injective dimension. Thus BopN is semi-weakly compatible. By (1), the

right B-module NB is semi-weakly compatible. Hence (i) follows.

(ii) The exact sequence 0 → Ker(di−1
P ) → P i−1 → Ker(diP ) → 0 shows that TorB1 (N,Ker(diP )) ̸= 0

and N ⊗B Ker(di−1
P ) → N ⊗B P i−1 is not an injective homomorphism. This means that the complex

N ⊗B P • is not exact in degree i− 1, and therefore ANB is not a compatible A-B-bimodule.

(3) Suppose that P • ∈ C (A-proj) is a totally exact complex. Then each P i is a finitely generated

projective A-module, and there is an isomorphism HomA(P
i, X ⊗B Y ) ≃ HomA(P

i, X) ⊗B Y . This

yields an isomorphism of complexes, i.e.,

HomA(P
•, X ⊗B Y ) ≃ HomA(P

•, X)⊗B Y.

Since AX is semi-weakly compatible, the complex HomA(P
•, X) is exact. Thus CopY ⊗Bop HomA(P

•, X)

is exact by the compatibility of CopYBop , i.e., HomA(P
•, X) ⊗B Y is exact. Hence, AX ⊗B Y is a

semi-weakly compatible left A-module.

Let Q• ∈ C (C-proj) be a totally exact complex. Since C
opYBop is compatible, CopY is semi-weakly

compatible. By (1), YC is semi-weakly compatible. Thus Y ⊗C Q• is exact. Since AXB is compatible,

the complex X ⊗B (Y ⊗C Q•) is exact. Thus, X ⊗B YC is a semi-weakly compatible right C-module.

It is not hard to see that a bimodule ANB is weakly compatible if and only if AN and NB are semi-

weakly compatible. For an Artin algebra A, there is a duality D: A-mod → A
op

-mod. Thus a left

A-module X ∈ A-mod is semi-weakly compatible if and only if the right A-module D(X)A is semi-weakly

compatible. This follows from the isomorphism D(X) ⊗A P • ≃ DHomA(P
•, X) for all totally exact

complexes P • in C (A-proj).
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3 Proof of the main result

In the rest of this paper, we assume that all the rings considered are noetherian, that is both left and

right noetherian, and all the modules are finitely generated.

Let (A,B,BMA,ANB, ϕ, ψ) be a Morita context with ϕ = 0. We consider the Morita context ring

Λψ :=

(
A N

M B

)
(0,ψ)

.

Let I := Im(ψ). Then IN =MI = 0 and I2 = 0. Assume further that Λ is a subring of A with the same

identity and A is the trivial extension of Λ by I, i.e., A = Λn I with the multiplication

(λ, x)(λ′, x′) = (λλ′, λx′ + xλ′), λ, λ′ ∈ Λ, x, x′ ∈ I.

Thus Λ ≃ A/I. Let π : A→ Λ be the canonical surjection. The restriction of π on Λ is the identity idΛ.

Clearly, I is an ideal of A with I2 = 0.

Every A-module restricts to a Λ-module via the inclusion of Λ into A. Conversely, every Λ-module X

induces an A-module A⊗ΛX = X⊕I⊗ΛX, and restricts to an A-module via π, i.e., by defining IX = 0.

For a Λψ-module (X,Y, f, g), let λX : X → Coker(g) and µY : Y → Coker(f) be the canonical

projections.

3.1 Sufficient conditions for Gorenstein-projective modules

We first prove the following lemma.

Lemma 3.1. If (AX,BY, f, g) ∈ Λψ-mod, then

(1) ICoker(g) = 0 and IIm(g) = 0;

(2) there is a unique B-module homomorphism ηY :M ⊗A Coker(g) → Y such that f = (1M ⊗λX)ηY ,

and thus Im(f) = Im(ηY ) and Coker(f) = Coker(ηY );

(3) let pX : X → X/IX be the canonical projection, and then there is a unique homomorphism

θX : N ⊗B Coker(f) → X/IX of A-modules such that gpX = (1N ⊗ µY )θX ; thus Im(θX) = Im(gpX);

(4) let mltX : I ⊗A X → X be the multiplication map, and then there is a unique homomorphism

mX : I ⊗A Coker(g) → X of A-modules such that Im(mX) = IX and mltX = (1I ⊗ λX)mX .

Proof. (1) Clearly, ICoker(g) = 0 holds for any Morita context rings and their modules. It follows

from IN = 0 that I(N ⊗B Y ) = 0. Thus, IIm(g) = I(N ⊗B Y )g = (I(N ⊗B Y ))g = 0.

(2) There is the exact commutative diagram of B-modules, i.e.,

BM ⊗A N ⊗B Y
1M⊗g //

ϕ⊗1Y

��

M ⊗A X
1M⊗λX//

f

��

M ⊗A Coker(g) //

∃! ηYwwn n n n n n n
0.

B ⊗B Y
mlt // Y

Since ϕ = 0, there is a unique homomorphism ηY of B-modules such that f = (1M ⊗λX)ηY . This implies

Im(f) = Im(ηY ) because 1M ⊗ λX is surjective. Thus it follows from Lemma 2.3 that ηY is injective if

and only if M ⊗A Coker(g) ≃ Im(f) as B-modules.

(3) There is the following commutative diagram of A-modules:

N ⊗B M ⊗A X

ψ⊗1X

��

1N⊗f // N ⊗B Y

g

��

1N⊗µY // N ⊗B Coker(f)

∃! θX
���
�
�

// 0

IX

��

� � // X
pX //

λX

��

X/IX //

λ′
X

��

0.

0 // Coker(g) Coker(g)
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It follows from Lemma 2.3 that θX is injective if and only if N ⊗B Coker(f) ≃ Im(g)/IX.

(4) Consider the following commutative diagram of A-modules:

I ⊗A Im(g) // I ⊗A X

mltX

��

1I⊗λX // I ⊗A Coker(g)

∃! mX
wwo o o o o o o

// 0.

X

Thanks to IIm(g) = 0, there is a unique homomorphismmX of A-modules such that mltX = (1I⊗λX)mX .

Thus, mX is injective if and only if IX ≃ I ⊗A Coker(g) as A-modules by Lemma 2.3.

Lemma 3.2. If (X,Y, f, g) ∈ Λψ-mod satisfies

AN ⊗B Coker(f) ≃ AIm(g)/IX and AIX ≃ AI ⊗A Coker(g),

then Im(g) is the pushout of 1N ⊗B ηY and ψ ⊗Λ 1Coker(g), where ηY is given in Lemma 3.1(2).

Proof. Put U := Coker(g), V := Coker(f) and H := Im(g). Then one gets the canonical exact sequence

0 → H
ϵX−→ X

λX−→ AU → 0

of A-modules. By Lemma 3.1(4), Im(mX) = IX. Let iX be the inclusion of IX into X and write

mX = m′
X iX . Consider the diagram

I ⊗A U

m′
X����

IX
mH

{{v
v
v
v
v

� _

iX
�

0 // H
ϵX // X

λX // U // 0.

As λX is a homomorphism of A-modules, it holds that

(IX)λX = I(Im(λX)) = IU = ICoker(g) = 0

by Lemma 3.1(1). Thus there is an injective homomorphism mH : IX → H of A-modules such that

iX = mHϵX . It follows from AIX ≃ AI ⊗A Coker(g) that m′
X is an isomorphism by Lemma 2.3(2).

The isomorphism N ⊗B Coker(f) ≃ Im(g)/IX implies that θX is injective. Thus the proof of

Lemma 3.1(3) implies that there is a homomorphism q : H → N ⊗B V making the following diagram

commutative:

0

��

0

��
IX
mH��

IX
iX��

0 // H
ϵX //

q
��

X
λX //

pX
��

U // 0

0 // N ⊗B V
θX //

��

X/IX
λ′
X //

��

U // 0.

0 0

This shows Coker(mH) ≃ N ⊗B V as A-modules. Now, we write g = σϵX with σ : N ⊗B Y → H the
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canonical projection and ϵX : H ↩→ X the inclusion, and consider the diagram

N ⊗B M ⊗A X

1N⊗BM⊗λX
����

ψ⊗1X // I ⊗A X

1I⊗λXyysss
sss

sss
s

mltX

��

N ⊗B M ⊗A U

1N⊗ηY
��

ψ⊗1U// // I ⊗A U

m′
XmH

��
N ⊗B Y

σ // // H � � ϵX // X.

(3.1)

Since (X,Y, f, g) is a Λψ-module, the out-side square in (3.1) is commutative. From the definition of mH ,

we know mltX = (1I⊗λX)(m′
XmH)ϵX . From the natural homomorphism ψ : AN⊗BMA → AIA, one sees

that the upper square is commutative. As 1N⊗BM ⊗ λX is a surjective map and ϵX is an injective map,

the down-left corner in (3.1) is commutative. This means that there is the following exact commutative

diagram:

N ⊗B M ⊗A U
1N⊗ηY //

ψ⊗1U

��

N ⊗B Y

σ

��

1N⊗µY // N ⊗B V //

∃ ν
���
�
� 0

0 // I ⊗A U
m′
XmH // H

q // N ⊗B V // 0,

where the top row is exact because of N ⊗B − acting on the exact sequence

BM ⊗A U
ηY−→ BY

µY−→ BV −→ 0.

By the assumption, A is left noetherian and N ⊗B V is a finitely generated A-module, whence every

surjective endomorphism of AN ⊗B V is an automorphism. Thus ν is an automorphism. This implies

that H is the pushout of 1N ⊗B ηY and ψ ⊗A 1U . Since MI = IU = 0, we have I ⊗A U ≃ I ⊗Λ U and

N ⊗B M ⊗A U ≃ N ⊗B M ⊗Λ U as A-modules. Thus H is the pushout of 1N ⊗B ηY and ψ ⊗Λ 1U , as

desired.

For ΛX ∈ Λ-Mod, we define a quadruple

TΛ(X) := (A⊗Λ X,BM ⊗Λ X,πX , ψX),

where πX :M ⊗A A⊗Λ X ≃M ⊗Λ X is the canonical homomorphism of B-modules, and

ψX : N ⊗B (M ⊗Λ X) −→ A⊗Λ X, n⊗ (m⊗ x) 7→ (n⊗m)ψ ⊗ x for n ∈ N, m ∈M, x ∈ X

is a homomorphism of A-modules. Clearly, ψX = ΨA⊗ΛX , ψΛ = ψ and (A ⊗Λ X,BM ⊗Λ X,πX , ψX) is

a Λψ-module. Moreover, for α ∈ HomΛ(X,X
′), the pair (1A ⊗ α, 1M ⊗ α) is a homomorphism from the

Λψ-module TΛ(X) to TΛ(X
′). Thus, we get a functor

TΛ : Λ-Mod −→ Λψ-Mod, ΛX 7→ TΛ(X) := (A⊗Λ X,M ⊗Λ X,πX , ψX).

Moreover,

TA(A⊗Λ X) = (A⊗Λ X,M ⊗A A⊗Λ X, 1M⊗AA⊗ΛX , ψ ⊗ 1A⊗X) ≃ TΛ(X)

as Λψ-modules via the morphism (1A⊗ΛX , πX). In particular, TΛ(Λ) ≃ Λψe1, where

e1 =

(
1A 0

0 0

)
∈ Λψ

with 1A the identity of A.

To stress the Λ-decomposition of AA ⊗Λ X, we sometimes write AA ⊗Λ X as X(I) := X ⊕ I ⊗Λ X.

Clearly, the A-module structure on X(I) is given by (λ, i)(x, j⊗x′) = (λx, i⊗x+λj⊗x′), λ ∈ Λ, i, j ∈ I

and x, x′ ∈ X. Thus, TΛ(X) = (X(I),M ⊗Λ X,πX , ψX).
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Lemma 3.3. Let X and X ′ be Λ-modules. Then there are the following homomorphisms (or

isomorphisms) of abelian groups, which are natural in X and X ′.

(1)

HomΛ(X,X
′) ≃ HomA(X(I), X ′), f 7→

(
f

0

)
for f ∈ HomΛ(X,X

′).

(2)

HomΛ(X, I ⊗Λ X
′) ≃ HomA(X,X

′(I)), g 7→ (0, g)

for g ∈ HomΛ(X, I ⊗Λ X
′).

(3)

HomΛ(X,X
′ ⊕ I ⊗Λ X

′) ≃ HomA(X(I), X ′(I)), (a, c) 7→

(
a c

0 1I ⊗ a

)
for a ∈ HomΛ(X,X

′) and c ∈ HomΛ(X, I ⊗Λ X
′).

Proof. (1) There are isomorphisms

HomΛ(X,X
′) ≃ HomΛ(X,HomA(AAΛ, X

′)) ≃ HomA(A⊗Λ X,X
′) ≃ HomA(X(I), X ′),

where the first isomorphism is induced from the isomorphism X ′ → HomA(AAΛ, X
′), x′ 7→ {1A 7→ x′},

x′ ∈ X ′, the second is the adjunction and the third is given by

X(I) → A⊗Λ X, (x, i⊗ y) 7→ (1Λ, 0)⊗ x+ (0, i)⊗ y, x, y ∈ X.

We can check that the composite of the above isomorphisms sends f to
(
f
0

)
for f ∈ HomΛ(X,X

′), and is

natural in each variable.

(2) For g ∈ HomΛ(X, I ⊗Λ X
′), it suffices to prove that (0, g) : X → X ′(I) is a homomorphism of

A-modules. In fact, take a = (λ, i) ∈ A, x ∈ X and consider the Λ-module X as A-module, that is ix = 0

and ax = (λ, i)x = λx. Then (ax)(0, g) = (0, (ax)g) = (0, (λx)g). On the other hand,

a(0, (x)g) = (λ, i)(0, (x)g) = (0, λ(x)g) = (0, (λx)g).

Thus, (0, g) is a homomorphism of A-modules.

(3) The proof is similar to the one of (1). Since we have the isomorphisms

HomΛ(X,X
′ ⊕ I ⊗Λ X

′) ≃ HomΛ(X,HomA(AAΛ, X
′(I))) ≃ HomA(A⊗Λ X,X

′(I))

≃ HomA(X(I), X ′(I)),

their composite sends (a, c) to ( a c
0 1I⊗a ) for a ∈ HomΛ(X,X

′) and c ∈ HomΛ(X, I ⊗Λ X ′). All the

isomorphisms are natural in each variable.

The next lemma for Λ(0,0) was indicated in [10]. We state it for Λψ and include more details for our

applications. Note that the functor ZB : B-Mod → Λψ-Mod, BY 7→ (0, Y, 0, 0) is well defined.

Lemma 3.4. Let ΛX,X
′ ∈ Λ-mod and BY, BY

′ ∈ B-mod. Then there are the following isomorphisms

which are natural in each variable:

(1) HomΛ(X,N ⊗B Y ) ≃ HomΛψ (TΛ(X),TB(Y )), f 7→ (( f
0
), 0).

(2) HomΛ(X,X
′) ≃ HomΛψ (TΛ(X),ZΛ(X

′)), g 7→ (( g0 ), 0).

(3) HomΛ(X,X
′ ⊕ I ⊗Λ X

′) ≃ HomΛψ (TΛ(X),TΛ(X
′)), (a, c) 7→ (( a c

0 1I⊗a ), 1M ⊗ a) for a : X → X ′

and c : X → I ⊗Λ X
′.

(4) HomB(Y,M ⊗Λ X) ≃ HomΛψ (TB(Y ),TΛ(X)), h 7→ ((1N ⊗ h)ψX , h).

(5) HomB(Y, Y
′) ≃ HomΛψ (TB(Y ),TB(Y

′)), t 7→ (1N ⊗ t, t).

(6) HomB(Y, Y
′) ≃ HomΛψ (TB(Y ),ZB(Y

′)), t 7→ (0, t).

(7) HomΛψ (TB(Y ),ZΛ(X)) = HomΛψ (TΛ(X),ZB(Y )) = 0.
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Proof. (1) There are isomorphisms

HomΛ(X,N ⊗B Y ) ≃ HomA(X(I), N ⊗B Y ) ≃ HomΛψ (TA(X(I)),TB(Y )) ≃ HomΛψ (TΛ(X),TB(Y )),

where the first isomorphism is given by Lemma 3.3(1), the second one follows from the adjoint

pair (TA,UA) of functors in Lemma 2.4 and UATB(Y ) = N ⊗B Y , and the third is given by the

isomorphism TA(X(I)) ≃ TΛ(X). Verifications show that the composite of theses isomorphisms sends

f ∈ HomΛ(X,N ⊗B Y ) to (( f
0
), 0) and is natural in each variables.

(2) Its proof is similar to the one of (1).

(3) Due to Lemma 3.3(3), we have HomΛ(X,X
′ ⊕ I ⊗Λ X ′) = HomA(X(I), X ′(I)). Since TA is

fully faithful by Lemma 2.4, we have HomA(X(I), X ′(I)) ≃ HomΛψ (TA(X(I)),TA(X
′(I))). Due to

TA(X(I)) ≃ TΛ(X) for any X, we get HomΛψ (TA(X(I)),TA(X
′(I))) ≃ HomΛψ (TΛ(X),TΛ(X

′)).

By verification, the composite of these isomorphisms sends (a, c) ∈ HomΛ(X,X
′ ⊕ I ⊗Λ X ′) to

(( a c
0 1I⊗a ) , 1M ⊗ a), and is natural in each variable.

(4) It follows from the adjoint pair (TB ,UB) in Lemma 2.4 and UBTΛ(X) = M ⊗Λ X that

HomB(Y,M ⊗Λ X) ≃ HomΛψ (TB(Y ),TΛ(X)), h 7→ ((1N ⊗ h)ψX , h), which is natural in each variable.

(5) This is a consequence of the fully faithful functor TB in Lemma 2.4.

(6) The proof is similar to the one of (4).

(7) By UBZΛ(X) = 0 and the adjoint pair (TB,UB) of functors, we have HomΛψ (TB(Y ),ZΛ(X))

≃ HomB(Y,UBZΛ(X)) = 0. Similarly, since (TA,UA) is an adjoint pair of functors and UAZB(Y ) = 0,

we have HomΛψ (TΛ(X), ZB(Y )) ≃ HomΛψ (TA(X(I)),ZB(Y )) ≃ HomA(X(I),UAZB(Y )) = 0.

Theorem 3.5. Suppose that ΛNB, BMΛ and ΛIΛ are weakly compatible bimodules, and (X,Y, f, g) is

a Λψ-module. Then (X,Y, f, g) is Gorenstein-projective if the following hold:

(a) Both ΛCoker(g) and BCoker(f) are Gorenstein-projective;

(b) BM ⊗A Coker(g) ≃ BIm(f), AN ⊗B Coker(f) ≃ AIm(g)/IX and AI ⊗A Coker(g) ≃ AIX, where

Coker(f) and Im(g) denote the cokernel of f and the image of g, respectively.

Proof. Suppose that (a) and (b) hold true. Then ΛU := Coker(g) and BV := Coker(f) are Gorenstein-

projective. By definition, there are two totally exact sequences of projective modules, i.e.,

P • : · · · −→ P−1 d−1
P−→ P 0 d0P−→ P 1 −→ · · · and Q• : · · · −→ Q−1

d−1
Q−→ Q0

d0Q−→ Q1 −→ · · ·

over Λ and B, respectively, such that ΛU = Ker(d0P ) and BV = Ker(d0Q). To prove (X,Y, f, g) is

Gorenstein-projective, we construct a totally exact complex T • = (T i, diT )i∈Z ∈ C (Λψ-proj) such that

Ker(d0T ) ≃ (X,Y, f, g) as Λψ-modules. We define T i := TΛ(P
i) ⊕ TB(Q

i) for all i ∈ Z. Then T i

∈ C (Λψ-proj) by Lemma 2.5(1). To define diT , we have to define a few families of maps.

(1) A homomorphism ρi : Qi →M ⊗Λ P
i+1 of B-modules for i ∈ Z.

By assumptions, BMΛ is weakly compatible, this implies that M ⊗Λ P
• is exact by Definition 2.6(C3),

and therefore Ker(1M ⊗ d0P ) = M ⊗Λ U . Note that M ⊗Λ P
i ∈ add(BM) for all i. Thus it follows from

Definition 2.6(C1) that Ext1B(Ker(diQ),M ⊗Λ P
i) = 0 for all i > 0 and Ext1B(Q

−i, Im(1M ⊗ d−iP )) = 0 for

i > 1. Thus, starting with the exact sequence

(∗) 0 −→ BM ⊗Λ U
ηY−→ BY

µY−→ BV −→ 0

and applying Horseshoe Lemma 2.1, we get an exact sequence of complex

(∗∗) 0 −→M ⊗Λ P
• a•−→ Y • b•−→ Q• −→ 0

of B-modules such that

Y i :=M ⊗Λ P
i ⊕Qi and diY =

(
1M ⊗ diP 0

ρi diQ

)
,



Guo Q Q et al. Sci China Math 13

where ρi : Qi →M ⊗ΛP
i+1 is a homomorphism of B-modules, and ai = (1, 0) and bi = ( 01 ) are canonical

maps for all i. Note that by taking kernels of (∗∗) at degree 0, we get back the exact sequence (∗).
(2) Two homomorphisms αi : P i → I ⊗Λ P

i+1 and βi : P i → N ⊗B Qi+1 of Λ-modules for i ∈ Z.
In fact, we write H := Im(g) and get a canonical exact sequence 0 → H → X → AU → 0 of A-modules,

which restricts to an exact sequence of Λ-modules

(†) 0 −→ ΛH
ϵX−→ ΛX

λX−→ ΛU −→ 0.

Now, we define

Zi := (I ⊗Λ P
i)⊕ (N ⊗B Qi), diZ =

(
1I ⊗ diP 0

τ i 1N ⊗ diQ

)
,

where τ i = (1N ⊗ ρi)(ψ ⊗ 1P i+1) is the composite of the homomorphisms of Λ-modules, i.e.,

ΛN ⊗B Qi
1N⊗ρi−→ ΛN ⊗B M ⊗Λ P

i+1 ψ⊗1Pi+1−→ ΛI ⊗Λ P
i+1.

We show that Z• = (Zi, diZ)i∈Z is an exact complex such that H ≃ Ker(d0Z). Indeed, it follows from the

complex Y • that(
1M ⊗ diP 0

ρi diQ

)(
1M ⊗ di+1

P 0

ρi+1 di+1
Q

)
=

(
0 0

ρi(1M ⊗ di+1
P ) + diQρ

i+1 0

)
= 0.

This implies that ρi(1M ⊗di+1
P )+diQρ

i+1 = 0 and (1N ⊗ρi)(1N ⊗1M ⊗di+1
P )+(1N ⊗diQ)(1N ⊗ρi+1) = 0.

By multiplying ψ ⊗ 1P i+2 , we further obtain

(1N ⊗ ρi)(1N ⊗ 1M ⊗ di+1
P )(ψ ⊗ 1P i+2) + (1N ⊗ diQ)(1N ⊗ ρi+1)(ψ ⊗ 1P i+2) = 0.

Due to (1N ⊗ 1M ⊗ di+1
P )(ψ⊗ 1P i+2) = (ψ⊗ 1P i+1)(1I ⊗ di+1

P ), we get τ i(1I ⊗ di+1
P )+ (1N ⊗ diQ)τ

i+1 = 0.

Thus,

diZd
i+1
Z =

(
1I ⊗ diP 0

τ i 1N ⊗ diQ

)(
1I ⊗ di+1

P 0

τ i+1 1N ⊗ di+1
Q

)
= 0,

and Z• is a complex. Moreover, there is an exact sequence of complexes of Λ-modules, i.e.,

0 −→ I ⊗Λ P
• c•−→ Z• d•−→ N ⊗B Q• −→ 0,

where c• and d• are canonical inclusion and projection, respectively. By the weak compatibility of ΛIΛ
and ΛNB , both I ⊗Λ P

• and N ⊗B Q• are exact complexes of Λ-modules. Thus Z• is also an exact

complex.

We now show Ker(d0Z) ≃ H. Let

σi :=

(
ψ ⊗ 1P i 0

0 1N ⊗ 1Qi

)
i∈Z

and σ• = (σi)i∈Z. Then σ• : N ⊗B Y • → Z• is a chain map of complexes such that the following is an

exact commutative diagram in C (A-mod):

N ⊗B M ⊗Λ P
• 1N⊗a•//

ψ⊗1P•

��

N ⊗B Y •

σ•

��

1N⊗b• // N ⊗B Q• // 0

0 // I ⊗Λ P
• c• // Z• d• // N ⊗B Q• // 0.
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Considering the differentials in degree 0, we have the following commutative diagram with exact rows:

N ⊗M ⊗ P 1 1N⊗a1 //

ψ⊗1P1

��

N ⊗ Y 1

σ1

��

1N⊗b1 // N ⊗B Q1

N ⊗M ⊗ P 0

1N⊗1M⊗d0P
66llllllllll

1N⊗a0
//

ψ⊗1P0

��

N ⊗ Y 0

1N⊗d0Y
88rrrrrrrr

σ0

��

1N⊗b0
// N ⊗B Q0

1N⊗d0Q
77pppppppp

I ⊗ P 1 c1 // Z1 d1 // N ⊗Q1.

I ⊗ P 0 c0 //

1I⊗d0P
66lllllllllll

Z0

d0Z
88rrrrrrrrrr d0 // N ⊗B Q0

1N⊗d0Q
77pppppppp

By enlarging the diagram forward, we get the following exact commutative diagram of A-modules by

Lemma 2.2(2):

N ⊗B M ⊗Λ U
1N⊗ηY //

ψ⊗1U

��

N ⊗B Y

δ
��

1N⊗µY // N ⊗B V // 0

0 // I ⊗Λ U
c0 // Ker(d0Z)

d0 // N ⊗B V // 0.

This shows that Ker(d0Z) is the pullback of ψ⊗Λ 1U and 1N ⊗B ηY . By Lemma 3.2, H is also the pushout

of ψ ⊗Λ 1U and 1N ⊗B ηY . Thus H ≃ Ker(d0Z) as A-modules. Thus there is the decomposition of d−1
Z :

Z• : · · ·
d−2
Z // (I ⊗Λ P

−1)⊕ (N ⊗B Q−1)

(( ((RR
RRR

RRR
RRR

RRR
R

d−1
Z // (I ⊗Λ P

0)⊕ (N ⊗B Q0)
d0Z // · · ·

H

dH

66mmmmmmmmmmmmmm

such that the following two diagrams are commutative:

0 // I ⊗Λ U
m′
XmH //

1I⊗dU
��

H

dH
��

q // N ⊗B V //

��

0

0 // I ⊗Λ P
0

(1,0) // I ⊗Λ P
0 ⊕N ⊗B Q0

(01) // N ⊗B Q0 // 0,

(3.2)

N ⊗B Y
1N⊗dY //

σ

��

N ⊗B Y 0

σ0

��

1N⊗d0Y // N ⊗B Y 1

��

//

σ1

��

· · ·

0 // H
dH // Z0

d0Z // Z1 // · · · .
Finally, we give the definitions of αi and βi. In fact, there is the exact sequence

(†) 0 −→ ΛH
ϵX−→ ΛX

λX−→ ΛU −→ 0.

Since ΛIΛ is weakly compatible, HomΛ(P
•, ΛI) is exact. This yields Ext1Λ(Ker(diP ), I) = 0 for all i.

Due to I ⊗Λ P
i ∈ add(ΛI), it holds that Ext1Λ(Ker(diP ), I ⊗ P i) = 0 for all i > 0. Similarly, the weak

compatibility of ΛNB implies that Ext1Λ(Ker(diP ), N ⊗B Qi) = 0 for all i. Thus Ext1Λ(Ker(diP ), Z
i) = 0

for all i > 0. Clearly, Ext1Λ(P
−i, Im(d−iZ )) = 0 for all i > 1. Hence, applying Lemma 2.1 to the exact

sequence (†) and the exact complexes Z• and P •, we get an exact sequence of exact complexes, i.e.,

(††) 0 −→ Z• p•−→ E• q•−→ P • −→ 0

in C (Λ-mod), where p• and q• are canonical inclusion and projection, respectively, and Ei := P i⊕ (I ⊗Λ

P i)⊕ (N ⊗B Qi) ∈ Λ-mod,

diE =


diP αi βi

0 1I ⊗ diP 0

0 τ i 1N ⊗ diQ

 : P i ⊕ (I ⊗Λ P
i)⊕ (N ⊗B Qi) −→ P i+1 ⊕ (I ⊗Λ P

i+1)⊕ (N ⊗B Qi+1),
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αi : P i → I ⊗Λ P
i+1, and βi : P i → N ⊗B Qi+1 are all the homomorphisms of Λ-modules. Recall that

τ i = (1N ⊗ ρi)(ψ ⊗ 1P i+1) : N ⊗B Qi → I ⊗Λ P
i+1 is a homomorphism of Λ-modules. Here, compared

with Lemma 2.1, the order of direct summands of Ei is changed. Note that (†) is obtained by taking

kernels at degree 0 in (††). Visually, the positive part of (††) looks as follows:

0

��

0

��

0

��
0 // H

ϵX

��

dH // I ⊗Λ P
0 ⊕N ⊗B Q0

( 0 1 0
0 0 1 )

��

d0Z // I ⊗Λ P
1 ⊕N ⊗B Q1

( 0 1 0
0 0 1 )

��

// · · ·

0 //___
ΛX

(e1,e2)

66mmmmmmmm
d
ΛX

//___

λX

��

P 0 ⊕ I ⊗Λ P
0 ⊕N ⊗B Q0

d0E

//___(
1
0
0

)
��

P 1 ⊕ I ⊗Λ P
1 ⊕N ⊗B Q1 //___(

1
0
0

)
��

· · ·

0 // U

��

dU // P 0

��

d0P // P 1

��

// · · · ,

0 0 0

(3.3)

where dΛX = (λXdU , e1, e2), and both e1 : ΛX → I ⊗Λ P
0 and e2 : ΛX → N ⊗B Q0 are homomorphisms

of Λ-modules.

Observe that 1N ⊗ diQ and (0, τ i) are homomorphisms of A-modules. The term P i ⊕ I ⊗Λ P
i has an

A-module structure which is isomorphic to AA⊗Λ P
i. By Lemma 3.3(3), the map(

diP αi

0 1I ⊗ diP

)
: P i ⊕ I ⊗Λ P

i −→ P i+1 ⊕ I ⊗Λ P
i+1

is the image of the homomorphism (diP , α
i) : P i → P i+1 ⊕ I ⊗Λ P

i+1 of Λ-modules, and thus it is a

homomorphism of A-modules. Similarly, ( β
i

0
) : P i(I) → N ⊗BQi+1 is an A-module homomorphism. Let

F i := P i(I)⊕N ⊗B Qi, diF :=


diP αi βi

0 1I ⊗ diP 0

0 τ i 1N ⊗ diQ

 .

Then F • = (F i, diF ) is a complex of A-modules, which is exact since the restriction of F • to Λ-modules

is the exact complex E•.

We show Ker(d0F ) ≃ X as A-modules. First, the exact sequence 0 → ΛX
d
ΛX−→ E0 d0E−→ E1 of Λ-modules,

with dΛX = (λXdU , e1, e2) : X → P 0 ⊕ I ⊗Λ P
0 ⊕ N ⊗B Q0, can be regarded as an exact sequence of

Z-modules, i.e., 0 −→ X
dX−→ F 0 d0F−→ F 1, where

dX := ((λXdU , e1), e2) : X → F 0 = (P 0 ⊕ (I ⊗Λ P
0))⊕ (N ⊗B Q0).

It suffices to show that dX is a homomorphism of A-modules.

Let x ∈ X, a = (λ, i) ∈ A = Λ n I. Then (ax)dX = (((ax)λXdU , (ax)e1), (ax)e2). Since λX is an A-

homomorphism, it follows from Lemma 3.1 that (IX)λX = 0 and (ax)λXdU = (λx)λXdU = λ(x)λXdU .

Note that (ix)(e1, e2) = (i⊗ x)mltX (e1, e2). We deduce from the diagrams (3.1)–(3.3) that

mltX(e1, e2) = (1I ⊗ λX)m′
XmHϵX(e1, e2) = (1I ⊗ λX)m′

XmHdH

= (1I ⊗ λX)(1I ⊗ dU )(1, 0) = (1I ⊗ λXdU , 0).

Thus, (ix)(e1, e2) = (i ⊗ (x)λXdU , 0). As ei is a Λ-homomorphism, it holds that (λx)ei = λ(x)ei for

i = 1, 2. Hence,

(ax)dX = ((λ(x)λXdU , λ(x)e1 + i⊗ (x)λXdU ), λ(x)e2).
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It then follows from the module structures of P 0(I) and N ⊗B Q0 that

(λ, i)((x)λXdU , (x)e1) = (λ(x)λXdU , λ(x)e1 + i⊗ (x)λXdU )

and (λ, i)(x)e2 = λ(x)e2. This shows

a(x)dX = (λ, i)(x)dX = (λ, i)(((x)λXdU , (x)e1), (x)e2)

= ((λ(x)λXdU , λ(x)e1 + i⊗ (x)λXdU ), λ(x)e2) = (ax)dX ,

i.e., dX is an A-homomorphism. Thus, AX has a complete projective resolution F •.

At this stage, we define the complex T • = (T i, diT ) of Λψ-modules as follows. Let

T i := TΛ(P
i)⊕ TB(Q

i) =

(
F i, Y i,

(
πP i 0

0 0

)
,

(
ψP i 0

0 1N⊗BQi

))
and

diT := (diF , d
i
Y ) =



diP αi βi

0 1I ⊗ diP 0

0 τ i 1N ⊗ diQ

 ,

(
1M ⊗ diP 0

ρi diQ

) .

Note that ΦQi = 0 since we assume ϕ = 0 in the Morita context ring Λψ.

We have to check that (diF , d
i
Y ) is a homomorphism of Λψ-modules. In fact, (diF , d

i
Y ) can be written

as (
ti11 t

i
12

ti21 t
i
22

) with

ti11 =

((
diP αi

0 1I ⊗ diP

)
, 1M ⊗ diP

)
: TΛ(P

i) −→ TΛ(P
i+1), ti12 =

((
βi

0

)
, 0

)
: TΛ(P

i) −→ TB(Q
i+1),

ti21 = ((0, τ i), ρi) : TB(Q
i) −→ TΛ(P

i+1), ti22 = (1N ⊗ diQ, d
i
Q) : TB(Q

i) −→ TB(Q
i+1).

To see that these tipq’s are homomorphisms of Λψ-modules, we just note that ti11 is the image of (diP , α
i)

under the isomorphism in Lemma 3.4(3). Similarly, it follows from (1), (4) and (5) in Lemma 3.4 that

ti12, t
i
21 and ti22 are homomorphisms of Λψ-modules.

We show that T • is a total projective resolution of (X,Y, f, g). Actually, the complex T • is exact

because F • and Y • are exact. By Lemma 2.5, each term of T • is a projective Λψ-module. Thus, T • is

an exact complex in C (Λψ-proj).

Next, we show that the complex HomΛψ (T
•,Λψ) is exact. This is equivalent to saying that the

complexes HomΛψ (T
•,TΛ(Λ)) and HomΛψ (T

•,TB(B)) are exact, due to the isomorphism ΛψΛψ ≃
TΛ(Λ)⊕ TB(B).

To show that HomΛψ (T
•,TΛ(Λ)) is exact, we consider the exact sequence

0 −→ ZΛ(I)
((0,1),0)−→ TΛ(Λ) −→ T′

Λ(Λ) −→ 0

of Λψ-modules, where T′
Λ(Λ) := (Λ,M, µ, 0) and µ : BM ⊗A Λ → BM is the multiplication map.

Since T i is a projective Λψ-module, the sequence of complexes

0 −→ HomΛψ (T
•,ZΛ(I)) −→ HomΛψ (T

•,TΛ(Λ)) −→ HomΛψ (T
•,T′

Λ(Λ)) −→ 0

is exact. Thus, to show the exactness of HomΛψ (T
•,TΛ(Λ)), it is sufficient to prove the one of the

complexes HomΛψ (T
•,ZΛ(I)) and HomΛψ (T

•,T′
Λ(Λ)). However, it follows from (2) and (7) in Lemma 3.4

that HomΛψ (TΛ(P
i)⊕TB(Q

i),ZΛ(I)) ≃ HomΛ(P
i, I). Then we have the following commutative diagram

for all i:

HomΛψ (TΛ(P
i)⊕ TB(Q

i),ZΛ(I))
HomΛψ

(diT ,ZΛ(I))
//

≃

��

HomΛψ (TΛ(P
i+1)⊕ TB(Q

i+1),ZΛ(I))

≃

��
HomΛ(P

i, I)
HomΛ(diP ,I) // HomΛ(P

i+1, I).
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To check the commutativity of this diagram, one only needs to notice the definition of HomΛψ (d
i
T ,ZΛ(I))

= HomΛψ (t
i
11,ZΛ(I)) with

ti11 =

((
diP αi

0 1I ⊗ diP

)
, 1M ⊗ diP

)
.

Thus, HomΛψ (T
•,ZΛ(I)) ≃ HomΛ(P

•, I), while the latter complex HomΛ(P
•, I) is indeed exact,

according to the weak compatibility of ΛIΛ. Thus, HomΛψ (T
•,ZΛ(I)) is exact. Furthermore, it follows

from the exact sequence

0 −→ ZB(M) −→ T′
Λ(Λ) −→ ZΛ(Λ) −→ 0

of Λψ-modules and the projectivity of T i that the following sequence of complexes is exact:

0 −→ HomΛψ (T
•,ZB(M)) −→ HomΛψ (T

•,T′
Λ(Λ)) −→ HomΛψ (T

•,ZΛ(Λ)) −→ 0.

By (6) and (7) in Lemma 3.4, HomΛψ (T
•,ZB(M)) ≃ HomB(Q

•,M). Since BMA is weakly compatible,

the complex HomB(Q
•,M) is exact, and therefore HomΛψ (T

•,ZB(M)) is exact. Similarly, by (2) and (7)

in Lemma 3.4, HomΛψ (T
•,ZΛ(Λ)) ≃ HomΛ(P

•,Λ) is exact. Thus, HomΛψ (T
•,T′

Λ(Λ)) is exact, so

HomΛψ (T
•,TΛ(Λ)) is exact.

Now, we show that HomΛψ (T
•,TB(B)) is exact. Similarly, from the exact sequence 0 → ZΛ(N)

→ TB(B) → ZB(B) → 0 of Λψ-modules, we get the exact sequence of complexes, i.e.,

0 −→ HomΛψ (T
•,ZΛ(N)) −→ HomΛψ (T

•,TB(B)) −→ HomΛψ (T
•,ZB(B)) −→ 0.

By (2) and (7) in Lemma 3.4, together with the weak compatibility of ΛNB , we can show that the complex

HomΛψ (T
•,ZΛ(N)) is exact. By (6) and (7) in Lemma 3.4, HomΛψ (T

•,ZB(B)) ≃ HomB(Q
•, B). Since

Q• is a totally exact complex, HomB(Q
•, B) is exact. Hence, HomΛψ (T

•,ZB(B)) is exact, and so is the

complex HomΛψ (T
•,TB(B)). Thus, the complex T • ∈ C (Λψ-proj) is totally exact.

Finally, we show Ker(d0T ) ≃ (X,Y, f, g). Clearly, Ker(d0F ) = X and Ker(d0Y ) = Y . Moreover, we can

verify the following two exact commutative diagrams:

M ⊗A X
1M⊗dX//

f

��

M ⊗A F 0
1M⊗d0F//

(
πP0 0
0 0

)
��

M ⊗A F 1

(
πP1 0
0 0

)
��

0 // Y // Y 0
d0Y // Y 1,

N ⊗B Y
1N⊗dY//

g

��

N ⊗B Y 0
1N⊗d0Y //(

ψP0 0
0 1N⊗BQ0

)
��

N ⊗B Y 1(
ψP1 0
0 1N⊗BQ1

)
��

0 // X
dX

// F 0

d0F

// F 1.

This shows Ker(d0T ) ≃ (X,Y, f, g). Thus, (X,Y, f, g) is a Gorenstein-projective Λψ-module with a total

projective resolution T •.

3.2 Necessary conditions for Gorenstein-projective modules

In this subsection, we discuss the converse of Theorem 3.5. We start with the following lemma.

Lemma 3.6 (See [16, Proposition 6.1]). Let U := (CA, DB, h, k) be a right Λ(ϕ,ψ)-module with

h ∈ HomB
op (C ⊗A N,DB) and k ∈ HomA

op (D ⊗B MA, CA), and V := (X,Y, f, g) be a left Λ(ϕ,ψ)-

module. Then there is an isomorphism of abelian groups

U ⊗Λ(ϕ,ψ)
V = (C ⊗A X ⊕D ⊗B Y )/H,

where H is a subgroup of C ⊗A X ⊕D ⊗B Y generated by

{c⊗ (n⊗y)g− (c⊗n)h⊗y | c ∈ C, n ∈ N, y ∈ Y }∪{d⊗ (m⊗x)f − (d⊗m)k⊗x | d ∈ D,x ∈ X,m ∈M}.

Lemma 3.7. Let C ∈ Λop-mod, X ∈ Λ-mod, D ∈ Bop-mod and Y ∈ B-mod. Then there are the

following isomorphisms of abelian groups, which are natural in each variable:
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(1) ZΛop(C)⊗Λψ TΛ(X) ≃ C ⊗Λ X, (c, 0)⊗ ((x, i⊗ x′),m⊗ x′′) 7→ c⊗ x, x, x′, x′′ ∈ X, c ∈ C, i ∈ I,

m ∈M .

(2) ZBop(D)⊗Λψ TB(Y ) ≃ D ⊗B Y , (0, d)⊗ (n⊗ y′, y) 7→ d⊗ y, y, y′ ∈ Y , d ∈ D, n ∈ N .

(3) ZΛop(C)⊗Λψ TB(Y ) = 0.

(4) ZBop(D)⊗Λψ TΛ(X) = 0.

Proof. We only prove (1) and (3), while the rest can be proved similarly and is omitted.

(1) Since AA ⊗Λ X ≃ X(I) as A-modules, we get C ⊗A X(I) ≃ C ⊗A A ⊗Λ X ≃ C ⊗Λ X. By

definition, ZΛop(C) = (CA, 0, 0, 0) and TΛ(X) = (X(I),M ⊗Λ X,πX , ψX). By Lemma 3.6, we have

ZΛop(C)⊗Λψ TΛ(X) ≃ (C ⊗Λ X)/H, while the subgroup H is generated by

{c⊗ (n⊗m)ψ x | c ∈ C, n ∈ N,m ∈M,x ∈ X}.

Thanks to IX = 0, we get H = 0. Thus (1) holds. Precisely, we can define

α : C ⊗Λ X → ZΛop(C)⊗Λψ TΛ(X)

by c⊗ x 7→ (c, 0)⊗ ((x, 0), 0), and

β : ZΛop(C)⊗Λψ TΛ(X) → C ⊗Λ X, (c, 0)⊗ ((x, i⊗ x′),m⊗ x′′) 7→ c⊗ x, x, x′, x′′ ∈ X

for c ∈ C, i ∈ I and m ∈ M . One can check that they are homomorphisms of abelian groups satisfying

αβ = 1 and βα = 1. Clearly, the isomorphisms of α and β are natural in C and X.

(3) In this case, H = C ⊗A N ⊗B Y in Lemma 3.6. Thus, ZΛop(C)⊗Λψ TB(Y ) ≃ (C ⊗A N ⊗B Y )/H

= 0.

In the rest of this section, we assume that T • = (T i, diT )i∈Z ∈ C (Λψ-proj) is a totally exact complex

such that Ker(d0T ) = (X,Y, f, g) ∈ Λψ-mod.

By Lemma 2.5, T i = TΛ(P
i) ⊕ TB(Q

i) for some P i ∈ Λ-proj and Qi ∈ B-proj. Thus we may write

precisely

diT =

(
ti11 t

i
12

ti21 t
i
22

)
with

ti11 ∈ HomΛψ (TΛ(P
i),TΛ(P

i+1)),

ti12 ∈ HomΛψ (TΛ(P
i),TB(Q

i+1)),

ti21 ∈ HomΛψ (TB(Q
i),TΛ(P

i+1)),

ti22 ∈ HomΛψ (TB(Q
i),TB(Q

i+1)).

By Lemma 3.4(3), there is a Λ-module homomorphism (diP , α
i), where diP : P i → P i+1 and αi : P i

→ I ⊗Λ P
i+1 are homomorphisms of Λ-modules such that

ti11 =

((
diP αi

0 1I ⊗ diP

)
, 1M ⊗ diP

)
.

Similarly, by (1), (4) and (5) in Lemma 3.4, we have a Λ-module homomorphism βi : P i → N ⊗B Qi+1

and two B-module homomorphisms ρi : Qi →M ⊗Λ P
i+1 and diQ : Qi → Qi+1 such that

ti12 =

((
βi

0

)
, 0

)
, ti21 = ((0, τ i), ρi) with τ i = (1N ⊗ ρi)ψP i+1 ,

and ti22 = (1N ⊗ diQ, d
i
Q). Furthermore, the exact complex T • provides two exact complexes

F • := (F i, diF ) ∈ C (A-mod) and Y • := (Y i, diY ) ∈ C (B-mod) by defining

(‡) F i := P i(I)⊕ (N ⊗B Qi), diF :=

( diP αi

0 1I⊗diP

) (
βi

0

)
(0, τ i) 1N ⊗ diQ
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and

Y i :=M ⊗Λ P
i ⊕Qi, diY :=

(
1M ⊗ diP 0

ρi diQ

)
.

Then Ker(d0F ) = X and Ker(d0Y ) = Y .

Let Q• := (Qi, diQ) and P • := (P i, diP ). Then it follows from diY d
i+1
Y = 0 and diF d

i+1
F = 0 that

diQd
i+1
Q = 0 and diP d

i+1
P = 0, respectively. Thus Q• ∈ C (B-proj) and P • ∈ C (Λ-proj). Moreover, we

define Z• = (Zi, diZ) with

Zi = (I ⊗Λ P
i)⊕ (N ⊗B Qi) ∈ Λ-mod, diZ =

(
1I ⊗ diP 0

τ i 1N ⊗ diQ

)
.

Then it follows again from diF d
i+1
F = 0 that diZd

i+1
Z = 0, and therefore Z• ∈ C (Λ-mod).

The complex Y • gives rise to an exact sequence in C (B-mod):

0 −→M ⊗Λ P
• a•−→ Y • b•−→ Q• −→ 0, (3.4)

where a• and b• are canonical inclusion and projection, respectively. Also, we have two exact sequences

of complexes in C (Λ-mod):

0 −→ I ⊗Λ P
• c•−→ Z• d•−→ N ⊗B Q• −→ 0, (3.5)

0 −→ Z• p•−→ F • q•−→ P • −→ 0, (3.6)

where c• and p• are canonical inclusions, and d• and q• are canonical projections. Furthermore, there is

a chain map σ• in C (Λ-mod):

σ• = (σi)i∈Z : N ⊗B Y • → Z•, σi :=

(
ψ ⊗ 1P i 0

0 1N ⊗ 1Qi

)
, i ∈ Z

such that the following diagram of complexes of Λ-modules is commutative and exact:

N ⊗B M ⊗Λ P
• 1N⊗a•//

ψ⊗1P•

��

N ⊗B Y •

σ•

��

1N⊗b• // N ⊗B Q• // 0

0 // I ⊗Λ P
• c• // Z• d• // N ⊗B Q• // 0.

(3.7)

Lemma 3.8. (1) If ZΛ
op (M) and ZΛ(N) are semi-weakly compatible Λψ-modules, then Q• ∈ C (B-proj)

is totally exact.

(2) If ZΛ
op (I), ZΛ(I), ZBop (N) and ZB(M) are semi-weakly compatible Λψ-modules, then P • ∈

C (Λ-proj) is totally exact.

Proof. (1) Since T • ∈ C (Λψ-proj) is a totally exact complex and ZΛ
op (M) is semi-weakly compatible

by assumption, the complex ZΛ
op (M)⊗Λψ T

• is exact. By (1) and (3) in Lemma 3.7,

ZΛ
op (M)⊗Λψ (TΛ(P

i)⊕ TB(Q
i)) ≃M ⊗Λ P

i.

Then we have the commutative diagram for all i,

ZΛ
op (M)⊗Λψ (TΛ(P

i)⊕ TB(Q
i))

1⊗diT //

≃
��

ZΛ
op (M)⊗Λψ (TΛ(P

i+1)⊕ TB(Q
i+1))

≃
��

M ⊗ P i
1M⊗diP // M ⊗ P i+1.
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To check the commutativity of this diagram, one only needs to note the definition of 1⊗diT = 1Z
Λ
op (M)⊗ti11

with

ti11 =

((
diP αi

0 1I ⊗ diP

)
, 1M ⊗ diP

)
.

Hence, ZΛ
op (M) ⊗Λψ T

• ≃ M ⊗Λ P
• as complexes, and this yields that M ⊗Λ P

• is exact. It follows

from the exact sequence (3.4) that Q• is an exact complex. Since ZΛ(N) is semi-weakly compatible,

HomΛψ (T
•,ZΛ(N)) is exact. As T • is totally exact, the complex HomΛψ (T

•,TB(B)) is exact. Applying

HomΛψ (T
•,−) to the exact sequence 0 → ZΛ(N) → TB(B) → ZB(B) → 0, we get the exact sequence of

complexes of Z-modules, i.e.,

0 −→ HomΛψ (T
•,ZΛ(N)) −→ HomΛψ (T

•,TB(B)) −→ HomΛψ (T
•,ZB(B)) −→ 0.

It follows that HomΛψ (T
•,ZB(B)) is exact. Similarly, by (6) and (7) in Lemma 3.4, the complex

HomB(Q
•, B) ≃ HomΛψ (T

•,ZB(B)) is exact. Hence, Q• is a totally exact complex.

(2) Since T • ∈ C (Λψ-proj) is totally exact, it follows from (2) and (4) in Lemma 3.7, together with

the semi-weak compatibility condition on ZBop (N), that ZBop (N)⊗Λψ T
• ≃ N ⊗BQ• is exact. Similarly,

by Lemma 3.7(1) and the assumption on ZΛ
op (I), we know that ZΛ

op (I) ⊗Λψ T
• ≃ I ⊗Λ P

• is exact.

It then follows from the exact sequence (3.5) that Z• is exact. This implies, together with the exact

sequence (3.6), that P • is an exact complex. By the semi-weak compatibility of ZΛ(I), we deduce that

HomΛψ (T
•,ZΛ(I)) is exact. From the exact sequence

0 → ZΛ(I)
((0,1),0)−→ TΛ(Λ) → T′

Λ(Λ) → 0

of Λψ-modules, we have the exact sequence

0 −→ HomΛψ (T
•,ZΛ(I)) −→ HomΛψ (T

•,TΛ(Λ)) −→ HomΛψ (T
•,T′

Λ(Λ)) −→ 0.

This shows that HomΛψ (T
•,T′

Λ(Λ)) is exact. Now, applying HomΛψ (T
•,−) to the exact sequence

0 → ZB(M) → T′
Λ(Λ) → ZΛ(Λ) → 0, we obtain the exact sequence

0 −→ HomΛψ (T
•,ZB(M)) −→ HomΛψ (T

•,T′
Λ(Λ)) −→ HomΛψ (T

•,ZΛ(Λ)) −→ 0.

As ZB(M) is semi-weakly compatible, HomΛψ (T
•,ZB(M)) is exact, and therefore so is HomΛψ (T

•,ZΛ(Λ)).

By (2) and (7) in Lemma 3.4, HomΛ(P
•,Λ) ≃ HomΛψ (T

•,ZΛ(Λ)) is exact. Hence P • is totally exact.

Lemma 3.9. Assume that ΛNB and BMΛ are weakly compatible. If ZΛ
op (M) and ZΛ(N) are semi-

weakly compatible Λψ-modules, then ZBop (N) and ZB(M) are semi-weakly compatible Λψ-modules.

Proof. Since T • is a totally exact complex of projective Λψ-modules, we deduce from Lemma 3.8(1)

that Q• is a totally exact complex. By the assumption, NB is semi-weakly compatible. It follows from

ZBop (N) ⊗Λψ T
• ≃ N ⊗B Q• that ZBop (N) ⊗Λψ T

• is exact. Since BM is semi-weakly compatible and

HomΛψ (T
•,ZB(M)) ≃ HomB(Q

•,M), we see that HomΛψ (T
•,ZB(M)) is exact.

Theorem 3.10. Assume that ΛNB, BMΛ and ΛIΛ are weakly compatible bimodules and ZΛ
op (M) and

ZΛ(N) are semi-weakly Λψ-modules. Furthermore, assume that ZΛ
op (I)Λψ and ΛψZΛ(I) are semi-weakly

compatible. If a Λψ-module(X,Y, f, g) is Gorenstein-projective, then

(a) Coker(f) ∈ B-Gproj and Coker(g) ∈ Λ-Gproj, and

(b) Im(f) ≃M ⊗A Coker(g), Im(g)/IX ≃ N ⊗B Coker(f) and IX ≃ I ⊗A Coker(g).

Proof. Suppose that (X,Y, f, g) lies in Λψ-Gproj. Then there is a totally exact complex

T • ∈ C (Λψ-proj) such that Ker(d0T ) = (X,Y, f, g). By Lemmas 3.9 and 3.8, the foregoing complexes

P • ∈ C (Λ-proj) and Q• ∈ C (B-proj) are totally exact. Thus U := Ker(d0P ) ∈ Λ-Gproj and

V := Ker(d0Q) ∈ B-Gproj.

First, we show that Coker(g) is a Gorenstein-projective Λ-module.
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Since Ker(d0F ) = X (see notation in (‡)), we write dX : X → P 0(I) ⊕ (N ⊗B Q0) for the inclusion of

A-modules. The restriction of dX to Λ-modules will be denoted by dΛX . Then

dΛX = (e0, e1, e2) : ΛX → P 0 ⊕ (ΛI ⊗Λ P
0)⊕ (ΛN ⊗B Q0).

We show that e0, e1 and e2 have the properties (ix)e0 = 0, (ix)e1 = i ⊗ (x)e0 and (ix)e2 = 0 for i ∈ I

and x ∈ X.

Indeed, the homomorphism dX of A-modules shows that

(((ax)e0, (ax)e1), (ax)e2) = a[(x)((e0, e1), e2)] = a[((x)e0, (x)e1), (x)e2]

for x ∈ X and a = (λ, i) ∈ A. Furthermore, the Λ-homomorphisms ei (i = 0, 1, 2) show the equality

(((ax)e0, (ax)e1), (ax)e2) = ((λ(x)e0 + (ix)e0, λ(x)e1 + (ix)e1), λ(x)e2 + (ix)e2).

By the A-module structure of P 0(I) and N ⊗B Q0, one obtains immediately

a[((x)e0, (x)e1), (x)e2] = (λ, i)(((x)e0, (x)e1), (x)e2) = ((λ(x)e0, λ(x)e1 + i⊗ (x)e0), λ(x)e2),

i.e., (ix)e0 = 0, (ix)e1 = i⊗ (x)e0 and (ix)e2 = 0.

Let dU be the inclusion of ΛU into ΛP
0. It follows from the sequence (3.6) that there is an exact

commutative diagram of Λ-modules, i.e.,

0 // Ker(d0Z)
ϵX //

dZ
��

ΛX

(e0,e1,e2)

��

λX // U //

dU
��

0

0 // I ⊗Λ P
0 ⊕N ⊗B Q0

( 0 1 0
0 0 1 )// P 0 ⊕ I ⊗Λ P

0 ⊕N ⊗B Q0

(
1
0
0

)
// P 0 // 0,

where all the vertical maps are injective and e0 = λXdU . Note that (ix)λXdU = (ix)e0 = 0 for i ∈ I and

x ∈ X. Since dU is injective, one must have (ix)λX = 0. Now, if we consider ΛU as an A-module, i.e.,

IU = 0, then λX is a homomorphism of A-modules.

Furthermore, ϵX is a homomorphism of A-modules if ΛKer(d0Z) is regarded as an A-module. In fact,

for z ∈ Ker(d0Z), let xz := (z)ϵX . Then it follows from i⊗ (xz)e0 = i⊗ (xz)λXdU = 0 that

(ixz)(e0, e1, e2) = (0, i⊗ (xz)e0, 0) = 0.

Since the map (e0, e1, e2) is injective, we obtain ixz = 0, i.e., IIm(ϵX) = 0. This implies that ϵX is a

homomorphism of A-modules. Thus there is an exact sequence of A-modules, i.e.,

0 // Ker(d0Z)
ϵX // X

λX // U // 0, (3.8)

which fits into the following exact commutative diagram of A-modules:

0

��

0

��

0

��
0 // Ker(d0Z)

ϵX
��

dZ // (I ⊗Λ P
0)⊕ (N ⊗B Q0)

j0��

d0Z // (I ⊗Λ P
1)⊕ (N ⊗B Q1)

j1��
0 // X

dX //

λX ��

P 0(I)⊕ (N ⊗B Q0)
d0E //

k0��

P 1(I)⊕ (N ⊗B Q1)

k1��
0 // U

��

dU // P 0

��

d0P // P 1

��
0 0 0

with

ji =

(
(0, 1) 0

0 1N⊗BQi

)
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in which (0, 1) : I ⊗Λ P
i → P i ⊕ I ⊗Λ P

i is the canonical inclusion, and with

ki =

((
1
0

)
0

)

in which
(
1
0

)
means the projection map P i ⊕ I ⊗Λ P

i → P i. Note that all the homomorphisms of Λ-

modules in the top and the bottom rows are regarded as homomorphisms of A-modules via the canonical

map A→ Λ. According to (1) and (2) in Lemma 3.3, the vertical maps ji and ki are also homomorphisms

of A-modules.

Since Ker(d0Y ) = Y , we have an inclusion dY : Y ↩→ M ⊗Λ P
0 ⊕ Q0. Let δ : N ⊗B Y → Ker(d0Z)

be the homomorphism of A-modules induced from the chain map σ• in the diagram (3.7). Then δ is

surjective. Actually, since IΛ is semi-weakly compatible and we have shown that P • is a totally exact

complex of projective modules, the complex I ⊗Λ P
• is exact. Similarly, N ⊗B Q• is exact. So the exact

sequence (3.6) implies that the complex Z• is exact. By the diagram (3.7), the following diagram of

A-modules is exact and commutative:

N ⊗B M ⊗Λ U
1N⊗ηY //

ψ⊗1U

��

N ⊗B Y

δ
��

1N⊗µY // N ⊗B V // 0

0 // I ⊗Λ U // Ker(d0Z)
// N ⊗B V // 0.

Therefore, the Snake lemma shows that δ is surjective.

Moreover, the diagram (3.7) gives rise to the following one of A-modules:

N ⊗B Y

δ

xxppp
ppp

ppp
ppp

pp

1N⊗dY //

g

��

(N ⊗M ⊗ P 0)⊕ (N ⊗B Q0)(
ψP0 0
0 1N⊗Q0

)

��

1N⊗d0Y//

σ0

uukkkk
kkkk

kkkk
kkkk

kkk
(N ⊗M ⊗ P 1)⊕ (N ⊗B Q1)

σ1

ttiiii
iiii

iiii
iiii

iiii
i

(
ψP1 0
0 1N⊗Q1

)

��

Ker(d0Z)
//

ϵX

&&NN
NNN

NNN
NNN

NNN
N

(I ⊗ P 0)⊕ (N ⊗B Q0)

j0

))SSS
SSSS

SSSS
SSSS

SSSS
d0Z // (I ⊗ P 1)⊕ (N ⊗B Q1)

j1

**UUU
UUUU

UUUU
UUUU

UUUU
UU

X
dX

// P 0(I)⊕ (N ⊗B Q0)
d0F

// P 1(I)⊕ (N ⊗B Q1).

By the definitions of g, δ and ϵX , the two top and two bottom squares are commutative. We can verify

σiji = as

(
ψP i 0

0 1N⊗Qi

)
for all i.

Since dX is injective, it holds that δϵX = g. Thus Coker(g) = Coker(ϵX) ≃ U ∈ Λ-Gproj.

Next, we prove Coker(f) ∈ B-Gproj. Observe that M ⊗A P • ≃M ⊗Λ P
• as complexes of B-modules.

So the exact sequence (3.4) may be rewritten as the following exact sequence of B-modules:

0 −→M ⊗A P • a′•−→ Y • b•−→ Q• −→ 0

with

a′i :M ⊗A P i
≃−→M ⊗Λ P

i ai−→M ⊗Λ P
i ⊕Qi.

This gives rise to the exact sequence of B-modules, i.e.,

0 −→M ⊗A U
η′Y−→ Y

µY−→ V −→ 0.



Guo Q Q et al. Sci China Math 23

Now consider the following diagram of B-modules:

M ⊗A X

1M⊗λX

||xx
xx
xx
xx
xx
x

//

f

��

(M ⊗A P 0(I))⊕ (M ⊗A N ⊗B Q0)

(
πP0 0
0 0

)

��

1M⊗d0F//

1M⊗k0
uullll

lll
lll

lll
lll

l
(M ⊗A P 1(I))⊕ (M ⊗A N ⊗B Q1)

1M⊗k1
sshhhhh

hhhhh
hhhhh

hhhhh
hhhhh

h

(
πP1 0
0 0

)

��

M ⊗A U //

η′Y
""F

FF
FF

FF
FF

FF
F M ⊗A P 0

a′0
))RRR

RRR
RRR

RRR
RRR

RRR 1M⊗d0P
// M ⊗A P 1

a′1

++VVVV
VVVVV

VVVVV
VVVVV

VVVVV
V

Y
dY

// M ⊗Λ P
0 ⊕Q0

d0Y

// M ⊗Λ P
1 ⊕Q1.

By the definition of λX as an A-module homomorphism, the upper two squares are commutative. By the

definition of η′Y , the lower two squares are commutative. Moreover,

(1M ⊗ ki)a′ = as

(
πP i 0

0 0

)
.

It follows from the injective map dY that (1M ⊗ λX)η′Y = f . Therefore, Coker(f) = Coker(η′Y ) = V

∈ B-Gproj and Im(f) ≃M ⊗A U =M ⊗A Coker(g). This completes the proof of (a).

Having proved that Im(f) ≃M ⊗A Coker(g), we now prove Im(g)/IX ≃ N ⊗B Coker(f).

Recall that F • ∈ C (A-mod) stands for the complex defined in (‡). Let

W i := ΛP
i ⊕ ΛN ⊗B Qi, diW :=

(
diP βi

0 1N ⊗ diQ

)
.

Due to diF d
i+1
F = 0, we have diPβ

i+1+βi(1N ⊗diQ) = 0 and diW d
i+1
W = 0. So W • ∈ C (Λ-mod). Regarding

Λ-modules as A-modules, we have the exact sequence

(#) 0 −→ N ⊗B Q• s•−→W • t•−→ P • −→ 0

of complexes in C (A-mod). Since ΛNB is a weakly compatible bimodule and Q• is a totaly exact complex

in C (B-proj), N ⊗B Q• is an exact complex. It then follows from the exactness of P • that the complex

W • is exact. Now, since AΛ⊗A F i = AΛ⊗A (P i(I)⊕N ⊗B Qi) ≃ P i ⊕ (N ⊗B Qi) and 1Λ ⊗A diF = diW ,

we have W • ≃ Λ ⊗A F • as complexes in C (A-mod). Hence, AΛ ⊗A F • is an exact complex of A-

modules and AKer(d0W ) ≃ AΛ ⊗A X ≃ X/IX. Thus (#) induces the exact sequence of A-modules

0 → AN ⊗B V
s−→ X/IX

t−→ AU → 0. It follows from Λ ⊗A F • ≃ W • that there is a canonical chain

map p•F : F • →W • in C (A-mod) with

piF =

((
1
0

)
0

0 1N ⊗ 1Qi

)
.

Now, we take the kernels of p•F at degree 0 and get the canonical projection pX : X → X/IX. Considering

the commutative diagram of complexes in C (A-mod):

N ⊗B Y • 1N⊗b• //(
ψPi 0
0 1N⊗1Qi

)
��

N ⊗B Q•

(0,1)

��
F • p•F // W •
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and the differentials in degree 0 in the diagram, we get the exact commutative diagram

N ⊗B Y
g

{{vv
vv
vv
vv
vv

//

1N⊗BµY

��

N ⊗B Y 0

b0

��

1N⊗Bd0Y //(
ψP0 0
0 1N⊗1Q0

)
vvnnn

nnn
nnn

nnn
N ⊗B Y 1

b1

��

(
ψP1 0
0 1N⊗1Q1

)
vvnnn

nnn
nnn

nnn

X //

pX

��

P 0(I)⊕ (N ⊗B Q0)

p0F

��

d0F

// P 1(I)⊕ (N ⊗B Q1)

p1F

��

N ⊗B V

s
{{ww
ww
ww
ww
w

// N ⊗B Q0

(0,1)vvnnn
nnn

nnn
nnn

1N⊗Bd0Q // N ⊗B Q1

(0,1)vvnnn
nnn

nnn
nnn

X/IX
dW // P 0 ⊕ (N ⊗B Q0)

d0W // P 1 ⊕ (N ⊗B Q1)

in C (A-mod) by Lemma 2.2(2). Thus gpX = (1N ⊗ µY )s. Since s is injective and 1N ⊗ µY is surjective,

we obtain Im(g)/IX ≃ N ⊗B V = N ⊗B Coker(f).

Finally, we show IX ≃ I ⊗A Coker(g). Actually, it follows from the chain map c• : I ⊗Λ P
• → Z•

in (3.7) that the following exact commutative diagram exists:

I ⊗Λ U //

c
��

I ⊗Λ P
0 //

c0��

I ⊗Λ P
1

c1��
0 // Ker(d0Z)

// Z0 // Z1.

Now, consider the diagram

N ⊗B M ⊗A X
1N⊗BM⊗λX ����

ψ⊗1X // I ⊗A X

1I⊗λXwwooo
ooo

oo

mltX

��

N ⊗B M ⊗A U
≃
��

ψ⊗1U // // I ⊗A U
≃
��

N ⊗B M ⊗Λ U

1N⊗ηY
��

ψ⊗1U // // I ⊗Λ U

c
��

N ⊗B Y
δ // // Ker(d0Z)

ϵX // X.

(3.9)

Note that the out-side square is commutative, due to (X,Y, f, g) ∈ Λψ-mod. The down-left square

commutes because of the commutative diagram (3.7), while the upper-left square commutes, due to the

property of ψ. Thus it follows from the surjective map ψ ⊗ 1X that the right-hand side of the square is

commutative. Since c and εx are injective maps, IX ≃ I ⊗A U ≃ I ⊗A Coker(g). This completes the

proof of (b).

Theorem 3.11. The following are equivalent for the Morita context ring Λψ :

(1) ΛNB, BMΛ and ΛIΛ are weakly compatible bimodules, the left Λψ-modules (AN, 0, 0, 0) and

(AI, 0, 0, 0) and the right Λψ-modules (MA, 0, 0, 0) and (IA, 0, 0, 0) are semi-weakly compatible.

(2) A Λψ-module (X,Y, f, g) is Gorenstein-projective if and only if

(a) BCoker(f) and ΛCoker(g) are Gorenstein-projective, and

(b) BIm(f) ≃ BM ⊗A Coker(g), AIm(g)/IX ≃ AN ⊗B Coker(f) and AIX ≃ AI ⊗A Coker(g).

Proof. (1) ⇒ (2). This follows from Theorems 3.5 and 3.10.

(2) ⇒ (1). This will be done in the rest of this section. So in the following, we always assume (2).

Lemma 3.12. If G ∈ Λ-Gproj, then TΛ(G) ∈ Λψ-Gproj. Similarly, if Q ∈ B-Gproj, then TB(Q)

∈ Λψ-Gproj.

Proof. Since TΛ(G) = (A ⊗Λ G,M ⊗Λ G, πG, ψG) where πG : BM ⊗A A ⊗Λ G ≃ BM ⊗Λ G and

ψG : AN ⊗B (M ⊗ΛG) → AA⊗ΛG is given by n⊗ (m⊗x) 7→ (n⊗m)ψ⊗x for n ∈ N , m ∈M and x ∈ G,
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it follows from Coker(πG) = 0 and AIm(ψG) = I⊗ΛG that ΛCoker(ψG) ≃ ΛG and the condition (2)(a) is

satisfied. On the other hand, Im(πG) =M ⊗Λ G ≃M ⊗Λ Coker(ψG) ≃M ⊗A Coker(ψG). We can show

I ⊗A G = I(A ⊗Λ G) in A ⊗Λ G, and therefore Im(ψG)/I(A ⊗Λ G) = 0 and I ⊗A Coker(ψG) = I ⊗A G
≃ I(A⊗ΛG). This means that the condition (2)(b) is satisfied. Hence, TΛ(G) is a Gorenstein-projective

Λψ-module by (2).

Let BQ be a Gorenstein-projective module. By definition, TB(Q) = (N ⊗B Q,Q,ΦQ, 1N⊗Q), and we

show that (a) and (b) in the conditions (2) hold for TB(Q). However, this is easy to verify by the fact

that ΦQ :M ⊗A N ⊗B Q→ BQ is a zero map. Thus, TB(Q) is Gorenstein-projective by (2).

Lemma 3.13. (i) If G ∈ Λ-Gproj, then TorΛ1 (I,G) = TorΛ1 (M,G) = 0. Thus TorΛi (I,G)

= TorΛi (M,G) = 0 for all i > 0.

(ii) If BW ∈ B-Gproj, then TorB1 (N,W ) = 0. Thus TorBi (N,W ) = 0 for all i > 0.

Proof. Assume that P • = (P i, diP ) is a total projective resolution of G with Ker(d0P ) = G. Let

H := ΛKer(d−1
P ) and b′ : H ↩→ P−1 be the inclusion. By Lemma 3.12,

TΛ(H) = (H(I),M ⊗Λ H,πH , ψH) ∈ Λψ-Gproj.

Since H(I) is a finitely generated A-module, HomA(H(I),AAA) is a finitely generated right A-module.

Suppose that f1, f2, . . . , fs form a set of generators for HomA(H(I),AAA). Then

α : H(I)
(f1,...,fs)−→ (AA)

s

is a left add(AA)-approximation of H(I). So we assume that α : H(I) → Q is a left add(AA)-

approximation of H(I) with Q ∈ add(AA). Since A is the trivial extension of Λ by I, we may further

assume Q = P (I) for some P ∈ add(ΛΛ). Then by Lemma 3.4(3),

α =

(
a d

0 1I ⊗ a

)
: H ⊕ I ⊗Λ H −→ P ⊕ I ⊗Λ P,

where a : H → P and d : H → I ⊗Λ P are homomorphisms of Λ-modules. We show that a : H → P is

an injective left add(ΛΛ)-approximation of H. Actually, for b : H → P ′ with P ′ in Λ-proj, we have an

A-module homomorphism

b̄ :=

(
b 0

0 1I ⊗ b

)
: H(I) → P ′(I).

Since α is an approximation, there is a homomorphism

c̄ =

(
c e

0 1I ⊗ c

)
: P (I) → P ′(I)

such that b̄ = αc̄, i.e., (
b 0

0 1I ⊗ b

)
=

(
a d

0 1I ⊗ a

)(
c e

0 1I ⊗ c

)
.

This implies that b = ac and a is a left add(ΛΛ)-approximation of H. Taking b = b′, we see immediately

that a is injective.

Since a is a left add(ΛΛ)-approximation of H, there is a homomorphism c : P → P−1 of Λ-modules

such that the following diagram is exact and commutative:

0 // H
a // P //

c

��

Coker(a) //

���

�
0

0 // H // P−1 // G // 0.
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Thus the right-hand side of the square is a pushout and pullback diagram. This induces an exact sequence

of Λ-modules, i.e.,

0 // P // // P−1 ⊕ Coker(a) // G // 0.

As ΛG is Gorenstein-projective, we always have ExtiΛ(G,X) = 0 for i > 0 and any module ΛX of

finite projective dimension. Thus the exact sequence splits and Coker(a)⊕ P−1 ≃ G⊕ P as Λ-modules.

Therefore, to show Lemma 3.13, it is sufficient to show that

TorΛ1 (I,Coker(a)) = TorΛ1 (M,Coker(a)) = 0,

i.e., the maps 1I ⊗ a and 1M ⊗ a are injective. This will be done by considering the left add(ΛψΛψ)-

approximation of TΛ(H).

In fact, we have ΛψΛψ = TA(A)⊕TB(B). Since TA is a fully faithful additive functor (see Lemma 2.4),

it follows from the left add(AA)-approximation α : H(I) → P (I) of H(I) that

TA(α) : TA(H(I)) → TA(P (I))

is a left add(TA(A))-approximation of TA(H(I)). This also implies that((
a d

0 1I ⊗ a

)
, 1M ⊗ a

)
: TΛ(H) → TΛ(P )

is a left add(TΛ(Λ))-approximation of TΛ(H). Let

β =

((
a d

0 1I ⊗ a

)
, 1M ⊗ a

)
.

Take a left add(TB(B))-approximation of TΛ(H), i.e., θ : TΛ(H) → TB(Q) for some Q ∈ add(BB). By

Lemma 3.4(1), θ is of the form (
(
h
0

)
, 0) with h ∈ HomΛ(H,N ⊗B Q). Then we get a left add(ΛψΛψ)-

approximation (β, θ) : TΛ(H) → TΛ(P ) ⊕ TB(Q) of TΛ(H). Since TΛ(H) ∈ Λψ-Gproj by Lemma 3.12,

there is an injective homomorphism from TΛ(H) to a projective Λψ-module, and therefore (β, θ) is

injective. This shows that the homomorphisms(
a d h

0 1I ⊗ a 0

)
: H ⊕ I ⊗Λ H → P ⊕ I ⊗Λ P ⊕N ⊗B Q

of Λ-modules and (1M ⊗a, 0) :M ⊗ΛH →M ⊗ΛP ⊕Q of B-modules are injective. Therefore, 1I ⊗a and

1M⊗a are injective. Thus, TorΛ1 (M,Coker(a)) = 0 and TorΛ1 (I,Coker(a)) = 0. Therefore, TorΛ1 (I,G) = 0.

A dimension shift argument shows TorΛi (I,G) = 0 for i > 0.

Now, let W ∈ B-Gproj with Q• be a totally exact complex in C (B-proj) such that Ker(d0Q) = W .

Then there is the short exact sequence 0 → V
v−→ Q−1 w−→ W → 0 of B-modules with V = Ker(d−1

Q ).

This yields an exact sequence of Λψ-modules, i.e.,

0 −→ (U, V, s, t)
(i,v)−→ TB(Q

−1)
(1N⊗w,w)−→ TB(W ) −→ 0

with i : AU → AN ⊗B Q−1 the kernel of 1N ⊗ w. By the diagram (2.2) (see Subsection 2.1), the

homomorphisms s and t fit in the exact commutative diagrams, respectively,

M ⊗A U
1M⊗i //

s

��

M ⊗A N ⊗B Q−1

0

��
0 // V

v // Q−1,

N ⊗B V
1N⊗v//

t

��

N ⊗B Q−1 1N⊗w // N ⊗B W // 0

0 // U
i // N ⊗B Q−1 1N⊗w // N ⊗B W // 0.

Since the homomorphism v is injective, we get s = 0. By the Snake lemma, t is surjective. Therefore

Coker(s) = V and Coker(t) = 0.
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By Lemma 3.12, TB(W ) ∈ Λψ-Gproj. Since Λψ-Gproj is closed under taking kernels of surjective

homomorphisms (see [13, Theorem 2.7]), we have (U, V, s, t) ∈ Λψ-Gproj. By the assumption (2), we

have IU ≃ I ⊗Λ Coker(t) = 0 and Im(t)/IU ≃ N ⊗B V . Hence Im(t) = U ≃ N ⊗B V . This implies

further that t is an isomorphism by Lemma 2.3(2) and 1N ⊗ v is injective. Thus, TorB1 (N,W ) = 0.

(I) We show that BMΛ, ΛNB and ΛIΛ are weakly compatible.

Suppose that P • is a totally exact complex in C (Λ-proj). Then ΛKer(diP ) is Gorenstein-projective. It

follows from Lemma 3.13 that M ⊗Λ P
• and I ⊗Λ P

• are exact. This further implies that the complex

T • := TΛ(P
•) = (TΛ(P

i), diT ) with diT = (1A ⊗ diP , 1M ⊗ diP ) of Λψ-modules is exact and Ker(diT )

= TΛ(Ker(diP )). By Lemma 3.12, TΛ(Ker(diP )) ∈ Λψ-Gproj. Thus Ker(diT ) ∈ Λψ-Gproj for all i.

This implies that T • is a totally exact complex. It follows from Lemma 3.4(1) that HomΛ(P
•, N)

≃ HomΛψ (T
•,TB(B)) is exact.

Next, we show that HomΛ(P
•, I) is exact. Consider the exact sequence of Λψ-modules:

0 −→ ZΛ(I)
((0,1),0)−→ TΛ(Λ) −→ T′

Λ(Λ) −→ 0,

where T′
Λ(Λ) := (AΛ,BM,µ, 0) with µ : M ⊗A Λ → M being the multiplication map, and ZΛ(I)

= (AI, 0, 0, 0) ∈ Λψ-mod. As T i := TΛ(P
i) is a projective Λψ-module (see Lemma 2.5(1) and

M ⊗A P i ≃M ⊗Λ P
i), we have the exact sequence

0 −→ HomΛψ (T
•,ZΛ(I)) −→ HomΛψ (T

•,TΛ(Λ)) −→ HomΛψ (T
•,T′

Λ(Λ)) −→ 0.

Due to the total exactness of T •, the complex HomΛψ (T
•,TΛ(Λ)) is exact. Then it follows from the

exactness of HomΛ(P
•,Λ) and the isomorphism

HomΛψ (T
•,T′

Λ(Λ)) = HomΛψ (TΛ(P
•),T′

Λ(Λ)) ≃ HomΛ(P
•,Λ)

as complexes of Z-modules that HomΛψ (T
•,ZΛ(I)) is exact. This implies that HomΛ(P

•, I) =

HomA(P
•, I) is exact. Hence, ΛIΛ is a weakly compatible bimodule.

To complete the proof that BMΛ and ΛNB are weakly compatible, it remains to show that

HomB(Q
•,BM) and N ⊗B Q• are exact for any totally exact complex Q• ∈ C (B-proj). Actually,

Tor1B(N,Ker(diQ)) = 0 for all i by Lemma 3.13(ii). Thus N ⊗B Q• is exact, and therefore E• := TB(Q
•)

is exact with Ker(diE) = TB(Ker(diQ)). It follows from Lemma 3.12 that Ker(diE) ∈ Λψ-Gproj, whence

E• is a totally exact complex in C (Λψ-proj). Now, by Lemma 3.4(4), we know that HomB(Q
•,M)

≃ HomΛψ (E
•,TΛ(Λ)) is exact.

(II) We prove that ZΛop(M), ZΛ(N), ZΛop(I) and ZΛ(I) are semi-weakly compatible Λψ-modules.

Let T • := (T i, diT ) be a totally exact complex in C (Λψ-proj). By definition, we have to show that

ZΛop(M)⊗Λψ T
•, ZΛop(I)⊗Λψ T

•, HomΛψ (T
•,ZΛ(N)) and HomΛψ (T

•,ZΛ(I)) are exact complexes.

By Lemma 2.5, T • is of the form

T • · · · −→ TΛ(P
−1)⊕ TB(Q

−1)
d−1
T−→ TΛ(P

0)⊕ TB(Q
0)

d0T−→ TΛ(P
1)⊕ TB(Q

1) −→ · · · ,

and induces a complex F • = (F i, diF ) ∈ C (A-proj) and two complexes P • = (P i, diP ) and Z
• = (Zi, diZ)

∈ C (Λ) as in (‡) and the sequence (3.6). By (1) and (3) in Lemma 3.7, to show that ZΛ
op (M) ⊗Λψ T

•

and ZΛop(I) ⊗Λψ T
• are exact, it is sufficient to prove that M ⊗Λ P

• and I ⊗Λ P
• are exact. Similarly,

by (2) and (7) in Lemma 3.4, it is sufficient to show that HomΛ(P
•, N) and HomΛ(P

•, I) are exact

complexes. Since we have shown that BMΛ, ΛNB and ΛIΛ are weakly compatible, it is enough to show

that P • is a totally exact complex. This is equivalent to saying that P • is exact in degree i and Ker(diP )

is Gorenstein-projective for all i.

Now, we prove this statement for i = 0. Let (X,Y, f, g) := Ker(d0T ), V := Coker(f), U := Coker(g),

(E,F, k, l) := Ker(d1T ), T := Coker(k) and S := Coker(l). Then (X,Y, f, g) and (E,F, k, l) are

Gorenstein-projective Λψ-modules. Consider the following canonical exact sequence of Λψ-modules:

0 −→ (X,Y, f, g)
(dX ,dY )−→ T 0 −→ (E,F, k, l) −→ 0
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with dX : AX → AP
0(I)⊕ AN ⊗B Q0, dY : BY → BM ⊗Λ P

0 ⊕Q0. Then (dX , dY ) is a left add(ΛψΛψ)-

approximation of (X,Y, f, g). By the diagram (2.2), there is the exact commutative diagram of A-modules,

i.e.,

N ⊗B Y //

g

��

N ⊗B M ⊗Λ P
0 ⊕N ⊗B Q0 //(
ψP0 0
0 1N⊗BQ0

)
��

N ⊗B F //

l

��

0

0 // X
dX //

λX

��

P 0(I)⊕N ⊗B Q0 //

��

E //

��

0

U
aU //

��

P 0 bS //

��

S //

��

0.

0 0 0

(3.10)

The bottom row is exact by the Snake lemma, and thus an exact sequence of Λ-modules by Lemma 3.1(1).

Let dΛX = (e0, e1, e2) : ΛX → P 0 ⊕ I ⊗Λ P
0 ⊕N ⊗Q0 denote the restriction of dX to Λ-modules. Then

the above diagram shows e0 = λXaU .

Similarly, let Ker(d−1
T ) = (E′, F ′, k′, l′), and (tX , tY ) : T

−1 → Ker(d0T ) = (X,Y, f, g) be the canonical

projection. Then there is a canonical exact sequence

0 → (E′, F ′, k′, l′) → T−1 (tX ,tY )−→ (X,Y, f, g) → 0

of Λψ-modules. This supplies us with the exact commutative diagram of A-modules, i.e.,

N ⊗B F ′ //

l′

��

N ⊗B M ⊗Λ P
−1 ⊕N ⊗B Q−1 //(

ψP−1 0
0 1N⊗BQ−1

)
��

N ⊗B Y //

g

��

0

0 // E′ //

��

P−1(I)⊕N ⊗B Q−1 tX //

��

X //

λX

��

0

S′ aS′ // P−1 bU // U // 0.

(3.11)

Due to d−1
T = (tX , tY )(dX , dY ), we have tXdX = d−1

F . Thus the diagrams (3.10) and (3.11) provide the

following commutative diagram of A-modules:

P−1(I)⊕N ⊗B Q−1 tX //

��

X
dX //

λX
��

P 0(I)⊕N ⊗B Q0

��
P−1 bU // // U

aU // P 0,

where the two unnamed vertical maps are natural projections. Since d−1
F = tXdX , we get bUaU = d−1

P .

We show that aU is injective. Consider aU as a homomorphism of Λ-modules. Since (X,Y, f, g) is

Gorenstein-projective, we know U ∈ Λ-Gproj by the assumption (2). Thus, for aU to be injective,

it suffices to show that aU is a left add(ΛΛ)-approximation of U . Actually, for P ∈ add(ΛΛ) and a

homomorphism a0 : U → P of Λ-module, we have to find a homomorphism e : P 0 → P of Λ-modules

such that a0 = aUe. To define e, we construct a Λ-module homomorphism a1 : ΛX → I ⊗Λ P , where X

is regarded as a Λ-module by restriction and a B-module homomorphism h : Y → M ⊗Λ P such that

a := (λXa0, a1) is a homomorphism of A-modules, and (a, h) : (X,Y, f, g) → TΛ(P ) is a homomorphism

of Λψ-modules.

Step 1. Construction of h. By Lemma 3.1(2), we have a commutative diagram

BM ⊗A X
λ′
X //

f��

BM ⊗Λ U

ηYvvmmm
mmm

mmm
// 0,

BY
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where λ′X is the composite of 1M ⊗ λX with the isomorphism M ⊗A U → M ⊗Λ U as B-modules. By

the assumption, Im(f) ≃ M ⊗Λ U . This means that ηY is injective and there is an exact sequence of

B-modules, i.e.,

0 −→M ⊗Λ U
ηY−→ Y

µY−→ V −→ 0.

Since BV ∈ B-Gproj and BM is semi-weakly compatible, it holds that Ext1B(V,M ⊗Λ P ) = 0. This

shows that HomB(ηY ,M ⊗Λ P ) is surjective, and therefore there is a homomorphism h : Y → M ⊗Λ P

of B-modules such that ηY h = 1M ⊗ a0.

Step 2. Construction of a1. From ηY h = 1M ⊗ a0, one gets (1N ⊗B ηY )(1N ⊗ h) = 1N ⊗B 1M ⊗ a0.

It follows from the natural property of ψ that the diagram of A-modules is commutative

N ⊗B M ⊗Λ U
1N⊗ηY //

ψ⊗1U

��

N ⊗B Y

(1N⊗h)(ψ⊗1P )

��
I ⊗Λ U

1I⊗a0 // I ⊗Λ P.

Now, let H := Im(g) and g = σϵX with σ : N⊗B Y → H the canonical projection and ϵX : H ↩→ X the

inclusion. According to Lemma 3.2 and its proof, there exists an injective homomorphism m : AI ⊗Λ U

→ AH, such that the following is a pushout diagram:

N ⊗B M ⊗Λ U
1N⊗ηY //

ψ⊗1U

��

N ⊗B Y

σ

��
0 // I ⊗Λ U

m // H.

By a universal property of pushouts, there is a Λ-module homomorphism t : H → I ⊗Λ P such that

1I ⊗ a0 = mt and (1N ⊗ h)(ψ ⊗ 1P ) = σt.

The exact sequence 0 → H
ϵX−→ X

λX−→ AU → 0 of A-modules restricts to an exact sequence of

Λ-modules, i.e.,

0 −→ H
ϵX−→ ΛX

λX−→ U −→ 0.

It follows from ΛU ∈ Λ-Gproj and the semi-weak compatibility of ΛI that Ext1Λ(U, I ⊗Λ P ) = 0, and

therefore HomΛ(ϵX , I⊗ΛP ) is surjective. Hence, there is a homomorphism a1 : X → I⊗ΛP of Λ-modules

such that ϵXa1 = t.

Step 3. We show that (λXa0, a1) : X → P ⊕ I⊗ΛP is a homomorphism of A-modules. We write a for

(λXa0, a1) for simplicity. On the one hand, 1I ⊗a0 = mt = mϵXa1. On the other hand, by the definition

of m (see Lemma 3.2), the following diagram commutes:

I ⊗A X
mltX //

1I⊗λX ��

X

I ⊗Λ U
m // H,

ϵX

OO

i.e., mltX = (1I ⊗ λX)mϵX . Thus, for i ∈ I and x ∈ X, it holds that

(ix)a1 = ((i⊗ x)mltX)a1 = [(i⊗ x)((1I ⊗ λX)mϵX)]a1 = (i⊗ x)[(1I ⊗ λX)(1I ⊗ a0)] = i⊗ (x)λXa0.

Clearly, (ix)λXa0 = 0. Now it is easy to verify that a is a homomorphism of A-modules.

Step 4. We prove that (a, h) is a homomorphism of Λψ-modules. First, we show that the out-side

square of the following diagram of A-modules is commutative:

N ⊗B Y
1N⊗h //

g

��

σ

%%LL
LLL

LLL
N ⊗B M ⊗Λ P

ψP

��

H

ϵXyysss
sss

sss (0,t)

''PP
PPP

PPP
PP

X
a // P (I).
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In fact, since ϵXλXa0 = 0, we have ϵXa = (0, ϵXa1) = (0, t) by Step 2. It follows from (1N ⊗ h)(ψ ⊗ 1P )

= σt that (1N ⊗ h)ψP = σ(0, t). Then ga = (σϵX)a = σ(0, t) = (1N ⊗ h)ψP .

Second, we show that the out-side square of the following diagram of B-modules is commutative:

M ⊗A X
1M⊗a //

f

��

λ′
X

''PP
PPP

PPP
P M ⊗A P (I)

πP

��

M ⊗Λ U

ηYwwnnn
nnn

nnn
n 1M⊗a0

((QQ
QQQ

QQQ
Q

Y
h // M ⊗Λ P.

Note that λ′XηY = f and ηY h = 1M ⊗ a0. A straightforward verification shows fh = (1M ⊗ a)πP . Thus,

the pair (a, h) is a homomorphism of Λψ-modules.

Step 5. Definition of e. Since (dX , dY ) is a left add(ΛψΛψ)-approximation of (X,Y, f, g) and TΛ(P )

∈ add(ΛψΛψ), there are a homomorphism u : TΛ(P
0) → TΛ(P ) and a homomorphism v : TB(Q

0)

→ TΛ(P ) such that

(dX , dY )

(
u

v

)
= (a, h).

By (3) and (4) in Lemma 3.4, there exists a homomorphism e : P → P 0 of Λ-modules satisfying

e0e = λXa0. Because e0 = λXaU and λX is surjective, it holds that aUe = a0. Hence, aU is a left

add(ΛΛ)-approximation of ΛU . This completes the proof of aU being injective.

Now we show that the complex P • is totally exact. From the exact sequence

0 −→ U
aU−→ P 0 bS−→ S −→ 0

of Λ-modules, we proceed with a similar proof of aU being a left add(ΛΛ)-approximation of U with

d−1
P = bUaU , and replace U with S to show that there is an injective homomorphism aS : S → P 1

such that d0P = bSaS . This implies that Ker(d0P ) = Ker(bS) = Im(aU ) ≃ U ∈ Λ-Gproj. Due to

Im(d−1
P ) = Im(aU ), we see that Ker(d0P ) = Im(d−1

P ) and P • is exact in degree 0 with Ker(d0P ) ∈ Λ-Gproj.

Similarly, we can show that P • is exact in any degree i with Ker(diP ) ∈ Λ-Gproj. Thus, P • is a totally

exact complex. This finishes the proof of (2) implying (1).

For the special Morita context ring Λ(0,0), it was shown in [10] that the compatibility conditions suffice

a class of modules over Λ(0,0) to be Gorenstein-projective. Next, we point out that the weak compatibility

conditions are both necessary and sufficient.

Proposition 3.14. For the Morita context ring Λ(0,0), the following are equivalent:

(1) ANB and BMA are weakly compatible bimodules; (AN, 0, 0, 0) and (MA, 0, 0, 0) are semi-weakly

compatible left and right Λ(0,0)-modules, respectively.

(2) A Λ(0,0)-module (X,Y, f, g) is Gorenstein-projective if and only if

(a) BCoker(f) and ACoker(g) are Gorenstein-projective, and

(b) BIm(f) ≃ BM ⊗ACoker(g) and AIm(g) ≃ AN ⊗B Coker(f), where Coker(f) and Im(g) denote the

cokernel of f and the image of g, respectively.

Proof. This follows immediately from Theorem 3.11 because I = 0 in Λ(0,0).

The following was proved in [10, Theorem A(i)]. Assume that bothM and N are compatible bimodules

over Artin algebras. If a Λ(0,0)-module (X,Y, f, g) fulfills the conditions (a) and (b) in Proposition 3.14,

then (X,Y, f, g) is Gorenstein-projective. It seems that the weak compatibility conditions are more

suitable for describing Gorenstein-projective modules over Λ(0,0).

4 Applications to noncommutative tensor products

In this section, we describe Gorenstein-projective modules over the noncommutative tensor products of

exact contexts arising from Morita contexts with two bimodule homomorphisms zero. This description
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is related to Gorenstein-projective modules over the Morita context rings Λ(ϕ,0).

Definition 4.1 (See [5]). Let λ : R→ S, µ : R→ T be homomorphisms of unitary rings, and SWT be

an S-T -bimodule with w ∈W . If the sequence

0 −→ R
(λ,µ)−→ S ⊕ T

(·ww·)−→W −→ 0

is exact of abelian groups, then (λ, µ,W,w) is called an exact context, where ·w : S → W is the right

multiplication by w. The noncommutative tensor product of (λ, µ,W,w) is well defined.

Morita contexts provide prominent examples of exact contexts. For a Morita context (A,Γ, ΓMA,ANΓ,

ϕ, ψ), let

R :=

(
A 0

0 Γ

)
, S :=

(
A N

0 Γ

)
, T :=

(
A 0

M Γ

)
, W := Λ(ϕ,ψ), w :=

(
1 0

0 1

)
.

If λ and µ are the inclusions, then (λ, µ,W,w) is an exact context. Its noncommutative tensor product,

denoted by C(A,Γ,M,N, ϕ, ψ), can be described explicitly: C(A,Γ,M,N, ϕ, ψ) has the underlying

abelian group of the matrix form (
A N

M Γ⊕ (M ⊗A N)

)

with the multiplication ◦ defined by(
a1 n1

m1 (b1,m⊗ n)

)
◦

(
a2 n2

m2 (b2,m
′ ⊗ n′)

)

=

(
a1a2 + (n1 ⊗m2)ψ a1n2 + n1b2 + n1(m

′ ⊗ n′)ϕ

m1a2 + b1m2 + (m⊗ n)ϕm2 (b1b2, m1 ⊗ n2 + (b1m
′)⊗ n′ +m⊗ (nb2) +m⊗ (n⊗m′)ψn′)

)
,

where a1, a2 ∈ A, b1, b2 ∈ Γ, n1, n2, n, n
′ ∈ N and m1,m2,m,m

′ ∈ M . For details, we refer the readers

to [5].

Let C := C(A,Γ,M,N, 0, 0), and B := Γ n (M ⊗A N) be the trivial extension of Γ with the Γ-

bimodule M ⊗A N . We may regard M as a B-A-bimodule and N as an A-B-bimodule via the canonical

surjective homomorphism B → Γ. Thus we have a Morita context (A,B,M,N, ϕ, 0), where ϕ :M ⊗A N
→ B, m⊗ n 7→ (0,m⊗ n) for m ∈M and n ∈ N , and the Morita context ring

Λ(ϕ,0) =

(
A N

M B

)
(ϕ,0)

,

which is isomorphic to C. Thus, the dual versions of Theorems 3.5 and 3.10 also describe the Gorenstein-

projective modules over the noncommutative tensor product C. For example, we have the following

specifical corollary.

Corollary 4.2. Suppose that the bimodules ΓMA, ANΓ and ΓM ⊗A NΓ are weakly compatible. Let

B = Γn J with J :=M ⊗A N . Then a C-module (AX,BY, f, g) is Gorenstein-projective if

(i) ΓCoker(f) and ACoker(g) are Gorenstein-projective, and

(ii) AN ⊗B Coker(f) ≃ AIm(g), BM ⊗A Coker(g) ≃ BIm(f)/JY and BJ ⊗B Coker(f) ≃ BJY , where

Coker(f) and Im(g) denote the cokernel of f and the image of g, respectively.
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