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1 Introduction

For finitely generated modules over noetherian rings, Auslander and Bridge [2] introduced Gorenstein-
projective modules, i.e., modules of G-dimension zero, and this idea was generalized several decades later
by Enochs et al. [8] and Enochs and Jenda [7] for arbitrary modules over arbitrary rings. Nowadays,
the notion of Gorenstein-projective modules plays a very important role in the so-called Gorenstein
homological algebra which has significant applications in commutative algebra, algebraic geometry and
other fields. It is fundamental, but also difficult, to describe all the Gorenstein-projective modules over a
given algebra or ring. Recently, there are many interesting works done in this direction. For example, in a
series of articles [17,22,23], Gorenstein-projective modules over the triangular matrix Artin algebra (4 %)

0B
were determined under some assumptions on the bimodule 4 Ng. A natural generalization of triangular
matrix algebras is the Morita context rings A o) = ( ]‘31 N') with two bimodule homomorphisms zero. A

Morita context ring is generally the 2 x 2 matrix ring A4 ) := ( ¥ associated with a Morita context
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(A,B,pMa, AN, ¢ : M ®4 N — B,v) : N®g M — A) with two bimodule homomorphisms ¢ and 1,
and A4 )-modules are presented by quadruples (X,Y, f, g) (see Section 2 for details). In [10], Gao and
Psaroudakis gave a set of concise sufficient conditions for A g g)-modules to be Gorenstein-projective. To
achieve their results, they required some compatibility conditions on the bimodules M and N, which
were introduced in [23].

In this paper, we consider Morita context rings of the form Ay := A(gy), which is more general
than A(g gy, and characterize their Gorenstein-projective modules. To implement our characterization of
Gorenstein-projective modules, we use weak versions of compatibility conditions (see Subsection 2.2 for
definition). With an additional assumption on a couple of very special Ay-modules related to ingredients
of the given Morita context, we even can show that the weak compatibility conditions are necessary and
sufficient for a Ay-module to be Gorenstein-projective. Our discussion is in the frame of noetherian rings
instead of Artin algebras. Our main results, Theorems 3.5 and 3.11, are summarized as follows.

Theorem 1.1.  Let A and B be noetherian rings, and (A, B, Ma, ANp,0,¢) be a Morita context with
the bimodules pM 4 and s Np finitely generated as one-sided modules. Furthermore, assume that A is the
trivial extension of a subring A of A by the image I of .

(I) The following two sets of conditions are equivalent for the Morita context ring Ay 1= Ao y):

(1) ANB, pMy and pIn are weakly compatible bimodules, (4N,0,0,0) and (41,0,0,0) are semi-
weakly compatible left Ay-modules, and (Ma,0,0,0) and (14,0,0,0) are semi-weakly compatible right
Ay -modules.

(2) A finitely generated Ay-module (X,Y, f, g) is Gorenstein-projective if and only if

(a) pCoker(f) and pCoker(g) are Gorenstein-projective, and

(b) pIm(f) ~ pM ®4 Coker(g), alm(g)/IX ~ osN ®@p Coker(f) and sI1X ~ sI ®4 Coker(g), where
Coker(f) and Im(g) denote the cokernel of f and the image of g, respectively.

(II) Suppose that aNp, pMa and aIn are weakly compatible. If a finitely generated Ay-module
(X,Y, f,q) satisfies the above conditions (a) and (b) in (2), then it is Gorenstein-projective.

Theorem 1.1(I) not only extends greatly the ones on triangular matrix algebras by Xiong and Zhang [22]
and Zhang [23], and on Morita context algebras with two bimodule homomorphisms zero by Gao and
Psaroudakis [10], respectively, to a large class of Morita context rings, but also can be applied to a
class of noncommutative tensor products (see Corollary 4.2 for details). Notably, noncommutative tensor
products generalize usual tensor products over commutative rings, capture many known constructions in
ring theory, and are useful in constructing recollements of derived module categories (see [5,6]).

The rest of this paper is organized as follows. In Section 2, we recall the definition of (weakly)
compatible bimodules, a complete Horseshoe lemma and basic facts on Morita context rings. In Section 3,
we prove the main result, Theorem 1.1, and then formulate it for the special Morita context rings A g o).
In this case, the resulting statement appears in a quite simple form (see Proposition 3.14). Finally, in
Section 4, we apply our result to noncommutative tensor products arising from Morita contexts with two
bimodule homomorphisms zero. This provides in fact a corresponding result for Morita context rings
A(4,0), as indicated by Corollary 4.2.

2 Preliminaries

In this section, we recall basic definitions and facts for later proofs.

Let A be a unitary (associative) ring. We denote by A-Mod (resp. A-mod) the category of all the
(resp. finitely generated) left A-modules. As usual, A-Proj and A-proj are the full subcategories of
A-Mod consisting of all the projective modules and finitely generated projective A-modules, respectively.
Similarly, we have the notations A-Inj and A-inj for the full subcategories of all the injective A-modules
and finitely generated injective A-modules, respectively. For a full subcategory X of A-Mod, we denote
by €' (X) the category of complexes over X, and write €' (A) for € (A-Mod).

The composite of two homomorphisms f: X — Y and g : Y — Z will be denoted by fg instead of gf.
Thus the image of 2 € X under f is written as (z)f or zf, and the image of f is denoted by Im(f).
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A complex X*® = (X*,d%) € €(A) is ezact if the cohomology group H!(X*®) = 0 for all i, and totally
exact if it is exact and the complex Hom 4 (X®, P) is exact for all projective A-modules P. Let X be an A-
module. An exact complex P*® € € (A-Proj) is called a complete projective resolution of X if Ker(d%) = X.
By a total projective resolution of X, we mean a totally exact, complete projective resolution of X.
Following [7], the module 4 X is Gorenstein-projective if X has a total projective resolution. Dually, an
A-module Y is Gorenstein-injective if there is a complete injective resolution I* € %’(A-Inj) such that
Ker(d?) = Y and Homa(FE, I*) is exact for all E € A-Inj. In A-mod, Gorenstein-projective modules
are nothing else than modules of G-dimension 0 in the sense of Auslander and Bridge [2]. We denote
by A-GProj (resp. A-Gproj) the category of all the (resp. finitely generated) Gorenstein-projective
A-modules, and by A-GInj (resp. A-Ginj) the category of all the (resp. finitely generated) Gorenstein-
injective A-modules. Note that A-Gproj contains A-proj and is closed under direct summands, extensions
and kernels of surjective homomorphisms (see [13]).

Since Gorenstein-projective modules involve complete projective resolutions, a complete Horseshoe
lemma is needed. For the convenience of the readers, we state it here for module categories and still refer
it to the Horseshoe lemma. For other versions, see [10,13,23].

Lemma 2.1 (Horseshoe lemma).  Given a short exact sequence 0 — U — W — V — 0 of A-modules
and two ezact complezes X® = (X', dy) and Y* = (Y d}) of A-modules with Ker(d},) = U and
Ker(d)) =V, if Extl(Ker(di ), X?) = 0 for all i > 0 and if Exty (Y =", ITm(dy")) = 0 for alli > 1, then
there are an exact complex Z* = (Z*,d%,) and an exact sequence of complezes

0—X*—2°*—Y*—0,

where
Z'=X'eY! d,= (dg? O)
Pt dy
and p' : Y' — X1 s a homomorphism of A-modules such that the induced eract sequence

0 — Ker(d%) — Ker(d%) — Ker(d%) — 0 coincides with the given short ezxact sequence.

Furthermore, if X' = X't Vi = Y+ @i = dif' and diy = dif' for all i, then Z' = Z'*' and
di, = d for alli.

The following easy lemma is often used.
Lemma 2.2. (1) If

c®

0—>C“—>E’d—.>G'—>O

is an exact sequence of complexes of A-modules, then there is an induced exact sequence
0 — Ker(d%) N Ker(dy;) AN Ker(dy)

in A-Mod for any i € Z. In particular, if C* and E*® are exact, then d' is surjective.
(2) Given a 3-dimensional diagram of A-modules with the squares consisting of solid arrows
commutative
K’ c’ A
P P R
B/
K c—=

k//l LA/d /
D B

if 'd =0 = kc and 1 is the kernel of d, then the dashed arrows exist and every new square commutes.

DI

A

)

)
|
|
|
\

L

The next lemma is well known.

Lemma 2.3. Let R be a left noetherian ring, and M and N be finitely generated R-modules.
(1) Every surjective homomorphism f : pM — rM is an automorphism.
(2) If M ~ N and f : M — N is a surjective homomorphism of R-modules, then f is an isomorphism.
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Finally, we recall the definition of approximations. Let D be a full additive subcategory of an additive
category C and X an object in C. A morphism f : X — D in C is called a left D-approzimation of X
if D € D and Home(f, D) : Home(D, D) — Home (X, D') is surjective for any object D’ € D. Dually,
a morphism f : D — X in C is called a right D-approzimation of X if D € D and Home (D', f) :
Home (D', D) — Home (D', X) is surjective for any object D' € D. Left and right approximations are
also termed as preenvelopes and precovers in ring theory, respectively.

2.1 Morita context rings and their modules

Morita context rings stemmed from a description of Morita equivalences of rings (see [3,19]), and now
appear in many situations (see, for example, [12] for some cases). There is a large variety of literature
on Morita contexts, duality and equivalences (see, for example, [3,4,10,11,16,18,19]). Here, we briefly
recall Morita context rings and their modules.

Let A and B be unitary rings, 4N be an A-B-bimodule, gM4 be a B-A-bimodule, ¢ : M ®4 N — B
be a homomorphism of B-B-bimodules and ¥ : N ® g M — A be a homomorphism of A-A-bimodules.
Furthermore, let I := Im(+) and J := Im(¢). The sextuple (A, B, M, N, ¢,) is called a Morita context
(see [19]) if the two diagrams are commutative, i.e.,

NeopgMoaN 22 NepB MoiNos MY Bog M
\Llﬁ@lz\r lmlt J{lM@ﬂ) imlt
A(X>A]\7L>N7 M®AAL>M,

where mlt stands for the multiplication map universally.

Associated with a Morita context (A4, B, M, N, ¢,1), we can define a Morita context ring (see [3,19]),
denoted by A4 ), which has the underlying abelian group of the matrix form with the multiplication
induced by ¢ and :

A (A N) an
@\ B) \mob
an\(a n\ f[ad+mem)y an'+nb
mb) \m' ¥V ma +bm’  (men)o+bb )

In the following, we write Ay for A ). To avoid confusion with Morita algebras in [15], we adopt here

aeA,beB,neN,meM},

the terminology of Morita context rings instead of Morita rings. For simplicity, we write Ay, for A y)-
The description of modules over A, 4y was well known (see, for example, [11,16]). Every Ay y)-

module is determined by a quadruple (X, Y, f, g), where X and Y are modules over A and B, respectively,

f €Homp(M®4X,Y)and g € Hom 4 (N®pY, X) such that the following two diagrams are commutative:

NogMasX 2 Nepy MoiNogy 22 Mo, X

¢®1X\L J{g ¢®1YJ/ if (2.1)

Ay X —= X BepY —=— >,

)

where the two isomorphisms are the multiplication maps.

If (4X,BY, f,g) is a A(yy)-module, then /Coker(g) = 0 and JCoker(f) = 0. This follows from (2.1)
since IX C Im(g) and JY C Im(f). Thus Coker(g) is an A/I-module and Coker(f) is a B/J-module.
Since Homp(M ®4 X,Y) ~ Hom (X, Homp(M,Y)), we denote by f : X — Homp(M,Y) the image of
f under this adjunction. Similarly, we define §: Y — Homu4 (N, X).

A homomorphism from a Ay )-module (X,Y,f,g) to another Ay -module (X', Y’ ', ¢') is a
pair (o, () with @ € Homu (X, X’) and 8 € Homp(Y,Y”’) such that the following two diagrams are
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commutative:

Mo, X -1 v NeogY —% =X

1u®a B NGB o (2.2)
N

Mo X -1~y Nogy —L=X.

Clearly, for a homomorphism (a, ) : (X,Y, f,g9) = (X', Y, f',g") of A(4,)-modules, its kernel Ker(c, )
is (Ker(a), Ker(5), h, j), where h and j are uniquely given by the commutative diagrams, respectively. It
holds that

M@sKer(@™M2E Mo, X M2 Mo, X! NepKea@) 2% Neopy 2 Neop Y’

O T T T T e

Ker(8) Y Ly, Ker(a) X X .x,
where ix : Ker(a) - X and iy : Ker(8) — Y are the inclusions. Dually, one describes the cokernel of
(a, B).
et 0.5) (a2,62)
0— (X17Y1,f1,91) (X2, Yo, fa,92) = (X3, Y3, f3,93) — 0

be a sequence of A4 y)-modules. This sequence is exact if and only if the induced sequences 0 — X Baill

Xy 2 X35 0and 0 - Y, LN Y, LN Y5 — 0 are exact in A-Mod and B-Mod, respectively.
Given A4 yy-modules (X,Y, f,g) and (X', Y, f',¢’), their direct sum is given by (X © X', Y @ Y”,
fef,g&yg), where

0
fef = (g f’) T MIAaXOMA X' -Y oY
is defined to be the diagonal homomorphism of B-modules.
For X € A-Mod and Y € B-Mod, we denote by ¥y and ®y the composites of the maps, respectively,

\IIX <I)Y

NRp M X ARs X X, M®asN®pY B®pY

Y.

The bimodules pM4 and o4Npg define two natural transformations ¢ and £ between tensor functors
and hom-functors, i.e.,

M®A——>HomA( —) : A-Mod — B-Mod,
CX:M®,4X—>H0rn,4(N,X)7 mez— [n— (n®m)a,

N ®p — — Homp(M, —) : B-Mod — A-Mod,
&y :N®pY — Homp(M,Y), n®y—[m— (men)dy|.

Following [12], we define functors related to Morita context rings as follows:

T4 A-Mod — A(¢’w)—MOd, aX TA(X) = (X,M@A X, 1M®X7\I’X)7
Ha: A-Mod — A4 ¢)-Mod, aX +— Ha(X) = (X,Homa (N, X),(x,0x),
Tp: B-Mod — A(d,,w)—MOd, BY — TB(Y) = (N RpY,Y, Oy, 1N®y)

) =

HB : B-Mod — A((b,w)—h/lod7 BY — HB(Y HOIHB(M Y) Y (SY fy)

(
where dx : N ®p Homa(N,X) — X and 6y : M ®4 Homp(M,Y) — Y are evaluation maps. For
an A-module X with X = 0 and a B-module Y with JY = 0, we can get naturally Ay .)-modules
(X,0,0,0) and (0,Y,0,0), respectively. This gives rise to the functors

ZA/I : (A/I)—Mod — A(¢7w)-MOd, A/]U — ZA/I(U) = (AU,0,0,0),
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ZB/J : (B/J)-Mod — A(qgvd))—MOd, B/JV — ZB/J(V) = (O,B‘/, 0,0)

The actions of the above functors on morphisms are defined naturally. The relation among these functors
is given by the following lemma. Since our proofs only use adjoint pairs of functors in recollements, we
will not recall here the definition of recollements of abelian categories, and just refer the readers to [9,21]
for more details.

Lemma 2.4 (See [12]).  There are the following two recollements of module categories:

Qs Ta
T~
B/JMod — 2~ A, Mod — 4 A-Mod,
W W
Qa T
T~
AJT-Mod — 221 A, -Mod — 22 B-Mod,

W \H_B/
where Ua and Up are the canonical projections to Ay )-Mod and B-Mod, respectively, Qa
= ((A/I) ®4 —)Up and Qp = ((B/J) ®p —)Up, and P4 and Pp are defined on objects (X,Y, f,g)
by taking kernels of f and g, respectively.

Suppose that A and B are noetherian rings, and gM 4 and 4 Np are bimodules such that they are
finitely generated as one-sided modules. Then it is known that A ) is a noetherian ring (see, for
example, [18, Proposition 1.7, p.12]). For a noetherian ring, its identity has a complete decomposition
of orthogonal primitive idempotent elements (see [1, Proposition 10.14, p. 128]). Thus the description of
indecomposable projective modules over the Artin algebra A4 ) in [12, Proposition 3.1] extends to the
one over the noetherian ring Ay y)-

Lemma 2.5.  Suppose that A and B are noetherian rings, and gMa and s Npg are bimodules such that
they are finitely generated as one-sided modules.

(1) (See [12, Proposition 3.1]) An indecomposable finitely generated A4 )-module is projective if and
only if it is given by Tao(P) = (P,M ®4 P,idmyg,p,¥p), or T(Q) = (N ®5 Q,Q,2q,idNngyq), where
P and Q are finitely generated, indecomposable projective modules over A and B, respectively.

(2) (See [20, Corollary 2.2]) An indecomposable Ay )-module is injective if and only if it is of the
form Ha(U) = (U,Homu(N,U), Cy,0v), or Hg(V) = (Homp(M,V),V,év,&y), where U and V are
indecomposable injective modules over A and B, respectively.

2.2 Weakly and semi-weakly compatible modules

Compatible modules were defined in [23] to describe a class of Gorenstein-projective modules for triangular

matrix Artin algebras which are of course special Morita context rings. They were further pursued in [10]

for the Morita context Artin algebras A o). We use weakly and semi-weakly compatible modules to

characterize Gorenstein-projective modules over the noetherian rings A, that are more general than A g o).
Let A and B be unitary rings. First, we recall the definition of (weakly) compatible bimodules.

Definition 2.6 (See [23, Definition 1.1] and [14, Definition 4.1]).  Let 4Np be a bimodule.
(1) aNp is compatible if
(C1) Hom4 (P®, N) is exact for all totally exact complexes P* € € (A-proj), and
(C2) N ®p Q° is exact for all exact complexes Q°® € €' (B-proj).
(2) aNp is weakly compatible if it satisfies (C1) and
(C3) N ®p Q° is exact for all totally exact complexes Q°® € € (B-proj).
Weakly compatible bimodules require exactness only for totally exact complexes Q* € %(B-proj)

in (C3), and the notion of weakly compatible bimodules is a proper generalization of the one of compatible
bimodules (see [14, Example 4.3]).
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Definition 2.7. A left A-module 4X is semi-weakly compatible if it satisfies (Cl), i.e.,
Hom 4 (P*, X) is exact for all totally exact complexes P* € € (A-proj).

Lemma 2.8. Let A, B and C' be rings.

(1) A right B-module Yg is semi-weakly compatible if and only if Y @ g Q*® is exact for all totally exact
complezes Q°® € € (B-proj).

(2) Let sNp be an A-B-bimodule.

(i) If the modules AN and Np are of finite injective dimension, then aNp is a weakly compatible
A-B-bimodule.

(ii) If there is an exact complex P® = (P* d%) € € (B-proj) such that Tor? (N, Ker(ds)) # 0 for an
integer i, then ANp is not compatible.

(3) If bimodules aXp and qov Ygor are compatible, then the bimodule s X ®p Yo is weakly compatible.

Proof. (1) For a finitely generated projective module W, there is an isomorphism
V ®4 Hompger (W,U) ~ Hompger (W, V @4 U)

as abelian groups for any bimodule 4Up and A-module V4. If W* € € (B -proj) is totally exact, then
so is Hompger (W, B) € € (B-proj). Hence, Yp is semi-weakly compatible if and only if Hom ger (W*,Y)
is exact if and only if Y ® g Hom ger (W*, B) is exact for all totally exact complexes W* in € (B’ -proj).
Note that Homp(—, B) is a duality between B-proj and B" -proj. Thus (1) holds.

(2) (i) If 4N is injective, then it is semi-weakly compatible. Suppose that 4N is of the injective
dimension n and 0 - N — I — X — 0 is an exact sequence with I injective and 24X of the injective
dimension n — 1. Then 4 X is semi-weakly compatible by induction. For a totally exact complex P*®
€ € (A-proj), since P? is projective, we have an exact sequence of complexes, i.e.,

0 — Hom(P®,N) — Homu(P®,I) —» Hom4(P*, X) — 0

with both Hom (P*, ) and Hom 4 (P*®, X) being exact. Thus Hom4(P*®, N) is exact, and therefore 4N
is semi-weakly compatible. Now, suppose that Np has finite injective dimension. This means that the
left B”-module gor N has finite injective dimension. Thus ger N is semi-weakly compatible. By (1), the
right B-module Ng is semi-weakly compatible. Hence (i) follows.

(i7) The exact sequence 0 — Ker(dis') — P*~! — Ker(dp) — 0 shows that Tor? (N, Ker(db)) # 0
and N @p Ker(ds') — N ®p P! is not an injective homomorphism. This means that the complex
N ®p P*® is not exact in degree 7 — 1, and therefore 4 N is not a compatible A-B-bimodule.

(3) Suppose that P* € € (A-proj) is a totally exact complex. Then each P? is a finitely generated
projective A-module, and there is an isomorphism Hom4 (P!, X ®p Y) ~ Homa(P% X) ®p Y. This
yields an isomorphism of complexes, i.e.,

HOIHA(P.,X®B Y) ~ HOHlA(P.,X) ®BY.

Since 4 X is semi-weakly compatible, the complex Hom 4 (P*, X) is exact. Thus gor Y ® ger Hom 4 (P*, X)
is exact by the compatibility of copYpgor, i.e., Homa(P®, X) @5 Y is exact. Hence, 4 X ®p Y is a
semi-weakly compatible left A-module.

Let Q* € €(C-proj) be a totally exact complex. Since cerYgor is compatible, oY is semi-weakly
compatible. By (1), Yo is semi-weakly compatible. Thus Y ®¢ @Q° is exact. Since 4 Xp is compatible,
the complex X ®p (Y ®c Q°) is exact. Thus, X ® g Y¢ is a semi-weakly compatible right C-module. [

It is not hard to see that a bimodule 4 Np is weakly compatible if and only if 4/N and Np are semi-
weakly compatible. For an Artin algebra A, there is a duality D: A-mod — A" -mod. Thus a left
A-module X € A-mod is semi-weakly compatible if and only if the right A-module D(X) 4 is semi-weakly
compatible. This follows from the isomorphism D(X) ® 4 P®* ~ DHomu4(P*®, X) for all totally exact
complexes P*® in % (A-proj).
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3 Proof of the main result

In the rest of this paper, we assume that all the rings considered are noetherian, that is both left and
right noetherian, and all the modules are finitely generated.
Let (A,B,gMa, ANp, $,7) be a Morita context with ¢ = 0. We consider the Morita context ring

AN

Aw = .
M B

(0,)

Let I :=Im(1). Then IN = MI =0 and I? = 0. Assume further that A is a subring of A with the same
identity and A is the trivial extension of A by I, i.e., A = A x I with the multiplication

No)N 2"y = (AN A" +2)), AN eA, xa el

Thus A ~ A/I. Let 7 : A — A be the canonical surjection. The restriction of w on A is the identity id.
Clearly, I is an ideal of A with I? = 0.
Every A-module restricts to a A-module via the inclusion of A into A. Conversely, every A-module X
induces an A-module A®xy X = X &1 ®p X, and restricts to an A-module via m, i.e., by defining I X = 0.
For a Ay-module (X,Y, f,g), let Ax : X — Coker(g) and py : Y — Coker(f) be the canonical
projections.

3.1 Sufficient conditions for Gorenstein-projective modules

We first prove the following lemma.

Lemma 3.1. If (4X,BY, f,9) € Ay-mod, then

(1) ICoker(g) = 0 and ITm(g) = 0;

(2) there is a unique B-module homomorphism ny : M ® 4 Coker(g) — Y such that f = (1p @ Ax )0y,
and thus Im(f) = Im(ny) and Coker(f) = Coker(ny);

(3) let px : X — X/IX be the canonical projection, and then there is a unique homomorphism
Ox : N ®@p Coker(f) — X/IX of A-modules such that gpx = (1n ® py)0x; thus Im(0x) = Im(gpx );

(4) let mltx : T ®4 X — X be the multiplication map, and then there is a unique homomorphism
my : I ®4 Coker(g) — X of A-modules such that Im(mx) =I1X and mltx = (1; ® Ax)mx.

Proof. (1) Clearly, ICoker(g) = 0 holds for any Morita context rings and their modules. It follows
from IN =0 that I(N ®pY) = 0. Thus, ITm(g) =I(N®pY)g=(I(N®pY))g=0.
(2) There is the exact commutative diagram of B-modules, i.e.,

M @4 N®pY 2L M@, X 22X 0 4 Coker(g) —= 0.

PR1y f 7
— -~ Ay
A

BopY mlt v

Since ¢ = 0, there is a unique homomorphism 7y of B-modules such that f = (157 ® Ax)ny. This implies
Im(f) = Im(ny) because 1)y ® Ax is surjective. Thus it follows from Lemma 2.3 that 7y is injective if
and only if M ® 4 Coker(g) ~ Im(f) as B-modules.

(3) There is the following commutative diagram of A-modules:

NosMosX 2 Nepy Y N gy Coker(f) —— 0

|
w@lxl l!] | 3! 6x
\i

1X¢ X X/IX

N

0 ———— Coker(g) === Coker(yg)
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It follows from Lemma 2.3 that 0x is injective if and only if N ® p Coker(f) ~ Im(g)/IX.

(4) Consider the following commutative diagram of A-modules:

I®saIm(g) —=1I®4 X %IQQA Coker(g) —— 0.

—~
—~
imltx /EH/

- smx
X

-
A

Thanks to IIm(g) = 0, there is a unique homomorphism mx of A-modules such that mltx = (1;®Ax)mx.
Thus, mx is injective if and only if X ~ I ® 4 Coker(g) as A-modules by Lemma 2.3. O

Lemma 3.2. If (XY, f,g) € Ay-mod satisfies
AN ®@p Coker(f) ~ aIm(g)/IX and AsIX ~ 4I ®4 Coker(g),

then Im(g) is the pushout of 1y ®@p 1y and ¥ @x lcoker(g), where ny is given in Lemma 3.1(2).
Proof.  Put U := Coker(g), V := Coker(f) and H := Im(g). Then one gets the canonical exact sequence

0= H- X5 X 2% U050

of A-modules. By Lemma 3.1(4), Im(mx) = IX. Let ix be the inclusion of IX into X and write
mx = m'yix. Consider the diagram

IT®sU

As \x is a homomorphism of A-modules, it holds that
(IX)Ax = I(Im(Ax)) = IU = ICoker(g) =0

by Lemma 3.1(1). Thus there is an injective homomorphism my : IX — H of A-modules such that
ix =mpex. It follows from 4IX ~ 4T ® 4 Coker(g) that m/y is an isomorphism by Lemma 2.3(2).

The isomorphism N ®p Coker(f) ~ Im(g)/IX implies that fx is injective. Thus the proof of
Lemma 3.1(3) implies that there is a homomorphism ¢ : H — N ®p V making the following diagram

commutative:
0 0
| |
IX IX
mpy i/ix
0 H—X o x Xy _——0
O

0—=NopV 2 X/IX 2% U —0.

: |

0 0

This shows Coker(mpg) ~ N ®p V as A-modules. Now, we write g = cex with 0 : N ®pY — H the
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canonical projection and ex : H < X the inclusion, and consider the diagram

PR1x

N M®s X IT®s X
1N®B1\4®)\xi A
Y1y e (3 1)
NRpMaU—1®,U mlbx )
1N®"7Yi lm'XmH
Nopy —2 H—= - X

Since (XY, f, g) is a Ay-module, the out-side square in (3.1) is commutative. From the definition of my,
we know mlty = (1;®Mx)(m/ympy)ex. From the natural homomorphism ¢ : AN®pMa — al4, one sees
that the upper square is commutative. As 1yg,m ® Ax is a surjective map and ex is an injective map,
the down-left corner in (3.1) is commutative. This means that there is the following exact commutative
diagram:

1 1
NogMoiUX Nopg Yy 2 Ny V—>0

|
i¢®1U iff v
mime q v
I1®aU H N®pV ——=0,

0

where the top row is exact because of N ® g — acting on the exact sequence
M@, U 5 gy 25 gV — 0.

By the assumption, A is left noetherian and N ®p V is a finitely generated A-module, whence every
surjective endomorphism of 4N ®pg V is an automorphism. Thus v is an automorphism. This implies
that H is the pushout of 1y ®p ny and ¥ ® 4 1yy. Since M1 = IU =0, we have I @ 4 U ~ I ® U and
NRpM®@aU~N®g M, U as A-modules. Thus H is the pushout of 1y ®p 1y and ¥ ®, 1y, as
desired. O

For p X € A-Mod, we define a quadruple
TaA(X) = (A®r X, BM @a X, 7x,¥x),
where 7x : M ®4 A®p X =~ M ®p X is the canonical homomorphism of B-modules, and
YVx N (MR, X) — A, X, n(mez)— n®m)p@x forne N, me M, z€ X

is a homomorphism of A-modules. Clearly, ©)x = ¥ag,x, YA =¥ and (A X, pM @ X, 7x,¥x) is
a Ay-module. Moreover, for a € Homp (X, X”), the pair (14 ® o, 1y ® @) is a homomorphism from the
Ay-module Tp(X) to To(X’). Thus, we get a functor

TA : A-Mod — Aw—l\/[Od7 AX — TA(X) = (A ®A X,M@A X,Trx,’l/}x>.

Moreover,
Ta(AA X) = (AR X, M @4 AN X, 1o aa0,x, % @ Lagx) ~ Ta(X)

as Ay-modules via the morphism (1ag, x,7x). In particular, To(A) >~ Ayeq, where

140
el = eA
with 14 the identity of A.

To stress the A-decomposition of 4 A ®, X, we sometimes write 4A @5 X as X(I) :== X & T @, X.
Clearly, the A-module structure on X (1) is given by (\,4)(z,j®2') = (A\z,i®z+A\jQz'), N € A, i,j €1
and z, 2’ € X. Thus, TA(X) = (X(I),M @ X,7x,9¥x).
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Lemma 3.3. Let X and X' be A-modules. Then there are the following homomorphisms (or
isomorphisms) of abelian groups, which are natural in X and X'.

(1)

Homy (X, X') ~ Homu (X (I),X’), f+ (g)
for f € Homy (X, X').
(2)
Homy (X, I @5 X') ~ Homa (X, X'(1)), g+ (0,9)
for g € Homy (X, I @5 X7).
(3)

Homp (X, X' @ I ®5 X') ~ Homa(X(I), X'(I)), (a,¢) s [© €
0l;®a

for a € Homp (X, X') and ¢ € Homa (X, I @5 X').

Proof. (1) There are isomorphisms
Homy (X, X') ~ Hom (X, Homa (4 Aa, X)) =~ Homa (A ®x X, X') ~ Homa(X (1), X'),

where the first isomorphism is induced from the isomorphism X’ — Homy(4Ap, X'), ' — {14 — o'},
2’ € X', the second is the adjunction and the third is given by

X(I)—»Aoa X, (z,i®y)— (1r,0) @2+ (0,i) @y, =z,y€ X.

We can check that the composite of the above isomorphisms sends f to ({;) for f € Homy (X, X’), and is
natural in each variable.

(2) For g € Homp (X, I ®5 X’), it suffices to prove that (0,9) : X — X'(I) is a homomorphism of
A-modules. In fact, take a = (A, i) € A, x € X and consider the A-module X as A-module, that is iz =0
and ax = (A, i)z = Az. Then (az)(0, g) = (0, (az)g) = (0, (Ax)g). On the other hand,

a(0, (z)g) = (A, 9)(0, (z)g) = (0, A(x)g) = (0, (Az)g).

Thus, (0,¢) is a homomorphism of A-modules.
(3) The proof is similar to the one of (1). Since we have the isomorphisms

HOHlA(X, X’ DI Rp X’) ~ HomA(X, HOIHA(AAA,X/(I))) ~ HomA(A A X, X’(I))
~ Homu (X (1), X' (1)),

their composite sends (a,c) to (§1,54) for a € Homy (X, X’) and ¢ € Homp (X, ®4 X'). All the
isomorphisms are natural in each variable. O

The next lemma for A o) was indicated in [10]. We state it for Ay and include more details for our
applications. Note that the functor Zp : B-Mod — Ay-Mod, gY +— (0,Y,0,0) is well defined.

Lemma 3.4. Let »X, X’ € A-mod and gY, gY’ € B-mod. Then there are the following isomorphisms
which are natural in each variable:

(1) Homy (X, N ®p Y) ~ Homy , (TA(X), T(Y)), f = (({),0).

(2) HOHIA()(7 X’) ~ HomAw (TA()()7 ZA(X/)

(3) Homp (X, X' @ T @4 X') ~ HOInAw(TA(X),TA X'
andc: X = 1T@p X'

(4) Homp (Y, M ®A X) ~ Homy ,(Tp(Y), TA(X)), h = ((1xn ® h)Yx, h).

)7 (CL,C) = ((811%@)711\/1(80’) fora X =X

(5) Homp(Y,Y") =~ Homy,, (Tp(Y), Ta(Y"), t = (1y @ t,1).
(6) HOIIIB(YV7 Y/) ~ HomAw (TB(Y')7 ZB(Y/)), t— (O,t).
(7) Homp,, (TE(Y),Za(X)) = Homy, (TA(X),Zp(Y)) = 0.
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Proof. (1) There are isomorphisms
Homy (X, N ®pY) ~ Homs(X(I),N ®pY) ~ Homy, (TA(X(I)), Tp(Y)) =~ Homp, (TA(X), Tp(Y)),

where the first isomorphism is given by Lemma 3.3(1), the second one follows from the adjoint
pair (Ta,U4) of functors in Lemma 2.4 and UaTp(Y) = N ®p Y, and the third is given by the
isomorphism T4(X(I)) ~ TA(X). Verifications show that the composite of theses isomorphisms sends
f € Homa (X, N ®pY) to (({),0) and is natural in each variables.

(2) Tts proof is similar to the one of (1).

(3) Due to Lemma 3.3(3), we have Homa (X, X' @ I ®x X') = Homa(X(I),X'(I)). Since T4 is
fully faithful by Lemma 2.4, we have Homa(X(I),X'(I)) ~ Homy,(TA(X(1)), Ta(X'(I))). Due to
Ta(X(I)) ~ Ta(X) for any X, we get Homyp, (TA(X(I)), Ta(X'(1))) ~ Homp, (Ta(X), Ta(X")).
By verification, the composite of these isomorphisms sends (a,c) € Homy (X, X' & I ®5 X') to
((61,%a),1m ®a), and is natural in each variable.

(4) It follows from the adjoint pair (Tp,Up) in Lemma 2.4 and UpTr(X) = M ®5 X that
Homp(Y, M ®; X) ~ Homy , (Tp(Y), Ta(X)), h = ((1x ® h)¥x, h), which is natural in each variable.

(5) This is a consequence of the fully faithful functor Tp in Lemma 2.4.

(6) The proof is similar to the one of (4).

(7) By UpZa(X) = 0 and the adjoint pair (Tp,Up) of functors, we have Homy,(Tp(Y),Za(X))
~ Homp(Y,UpZx(X)) = 0. Similarly, since (T 4,U4) is an adjoint pair of functors and UoZp(Y) = 0,
we have Homy, (TA(X), Zp(Y')) =~ Homyp , (TA(X(1)),Zp(Y)) =~ Hom4 (X (I),UaZp(Y)) = 0. O

Theorem 3.5.  Suppose that A\Np, pMa and pIp are weakly compatible bimodules, and (X,Y, f,g) is
a Ay-module. Then (X,Y, f,g) is Gorenstein-projective if the following hold:

(a) Both pCoker(g) and pCoker(f) are Gorenstein-projective;

(b) pM @4 Coker(g) ~ gIm(f), aN ®p Coker(f) ~ 4Im(g)/IX and aI @ 4 Coker(g) ~ oIX, where
Coker(f) and Im(g) denote the cokernel of f and the image of g, respectively.
Proof.  Suppose that (a) and (b) hold true. Then U := Coker(g) and gV := Coker(f) are Gorenstein-
projective. By definition, there are two totally exact sequences of projective modules, i.e.,

p*:... — P~ —>P0 Pepl ... and Q% — QT —>Q0 Ql

over A and B, respectively, such that \U = Ker(d%) and gV = Ker(d%). To prove (X,Y, f,g) is
Gorenstein-projective, we construct a totally exact complex T* = (T%,d%)icz € € (Ay-proj) such that
Ker(dy) ~ (X,Y, f,g) as Ay-modules. We define T := T, (P?) & T(Q") for all i € Z. Then T*
€ € (Ay-proj) by Lemma 2.5(1). To define d’., we have to define a few families of maps.

(1) A homomorphism p’ : Q* — M ®, P! of B-modules for i € Z.

By assumptions, g My is weakly compatible, this implies that M ®, P*® is exact by Definition 2.6(C3),
and therefore Ker(1y; ® d%) = M ®4 U. Note that M ®, P' € add(zM) for all i. Thus it follows from
Definition 2.6(C1) that Ex‘c}B(Ker(diQ)7 M @ P') =0 for all i >0 and Exty(Q %, Im(1y ® dp’)) = 0 for
i > 1. Thus, starting with the exact sequence

() 0— Mo U5 gy 25 5V —0
and applying Horseshoe Lemma 2.1, we get an exact sequence of complex

(##) 0— Moy P* 5y 2500 —0
of B-modules such that

. _ . . 1 d, 0
VimM@,PeQ and d <M® P )

P dg
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where p' : Q° — M ®, P! is a homomorphism of B-modules, and a* = (1,0) and b* = ({) are canonical
maps for all i. Note that by taking kernels of (xx) at degree 0, we get back the exact sequence (x).

(2) Two homomorphisms o' : P* — I @5 P! and 8¢ : P' - N @ Q! of A-modules for i € Z.

In fact, we write H := Im(g) and get a canonical exact sequence 0 - H — X — 4U — 0 of A-modules,
which restricts to an exact sequence of A-modules

(1) 0— AH 5, X 25 .U —0.

Now, we define

‘ 4 ‘ , 1;d 0
Zi=(TosPYo(NopQ), dy=("""" .
T 1N®dZQ

where 7% = (1y ® p?)(1) @ 1pit+1) is the composite of the homomorphisms of A-modules, i.e.,
. U . 1,5 .
AN ®p Q" MO N ®p M @) P! Y&lpin Al @5 P

We show that Z® = (Z%,d)icz is an exact complex such that H ~ Ker(d%). Indeed, it follows from the
complex Y® that

Iy @dp 0\ (ly®dd' 0\ 0 0\ _,
pi sz pi+1 dg—l pz(1M®dllj_1)+dbpz+1 0

This implies that p? (1, ®d§;"1) —&—d’ép“‘l =0and (Ix®@p")(Ixy @1 ®d§j‘1) +(1y ®d22)(1N ®pitl) = 0.
By multiplying ¥ ® 1pi+2, we further obtain

(Iv®@p)(In @1y @dF) (W ® Lpivz) + (Iy @ dy) (In ® p ) (1) ® 1pivz) = 0.

Due to (1N®1M®dip+1)('l/1®lpi+2) = (1[)®1P1+1)(1]®d§;'_1), we get Ti(1[®dg_1)+(1N®d&)Ti+1 = 0.

Thus,
i i1 (lr®@dp 0 1 ® dy 0
dZdZ = . . . i+1 = 0,
Tt 1N®db Titl 1N®sz

and Z° is a complex. Moreover, there is an exact sequence of complexes of A-modules, i.e.,
OHI@)AP'C—)Z'LN@BQ.HQ

where ¢®* and d® are canonical inclusion and projection, respectively. By the weak compatibility of A1x
and ANp, both I ®, P* and N ®p Q°® are exact complexes of A-modules. Thus Z° is also an exact
complex.

We now show Ker(d%) ~ H. Let

i PR 1pi 0
g =
0 1N®1Qi ez

and 0® = (0%);cz. Then 0® : N @5 Y*® — Z*® is a chain map of complexes such that the following is an
exact commutative diagram in % (A-mod):

Nog Moy P Y2 Nopys 2 Nop Q' — >0

.k

00— > T@yP*—F¢ A N®pQ* —=0.

i’(ﬁ@lp'

d°®
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Considering the differentials in degree 0, we have the following commutative diagram with exact rows:

NoeMeop — % nNgy! Ly b! Nop Q!
1N®W INW . 1N®d22
Y1 p1 o /
NoM® P —>N@Y? - N @5 Q°
\L 1y ®a \L Inv®b
P®1po L py 2
I® P —= Zt N o Q.
y d% 11\%
0 0
I P - z° Z N@pQ°

By enlarging the diagram forward, we get the following exact commutative diagram of A-modules by

Lemma 2.2(2):

IN®ny IN®py

NopMerUL2ENopy 22 N o V —>0
ld’@lU ié
0 [9AU —= ~Ker(d%) -2~ N @y V ——> 0.

This shows that Ker(d}) is the pullback of ¢ ® 1y and 1y ® g7y . By Lemma 3.2, H is also the pushout
of Y ®p 1y and 1y ®p ny. Thus H ~ Ker(d%) as A-modules. Thus there is the decomposition of d}l

d2 —1 0

d
Z%: o 2 (IZ\P N (NopQ™') —2——(I®) PY)® (N®p Q%) — 2= ..

\/

such that the following two diagrams are commutative:

mymy

0——=1I®AU H NV ——0

lh@du ldg o i (3.2)

0——=I®) P'—> @, ToAP O N Q" —> Nws Q' —=0,

0)

d?
N®BY1N®dyN®BY0 IN® YN®BY1
ld iao lo-l
du 0 dz 1
0 H Z Z

Finally, we give the definitions of o’ and £°. In fact, there is the exact sequence
(1) 0—aH 5, X 2%, U — 0.

Since oIy is weakly compatible, Homp(P®, A1) is exact. This yields Ext}(Ker(d}),I) = 0 for all i.
Due to I @4 P* € add(,1), it holds that Ext} (Ker(db),I ® P?) = 0 for all 4 > 0. Similarly, the weak
compatibility of y Np implies that ExtA(Ker(dl ), N ®p Q%) = 0 for all . Thus Ext} (Ker(d%), Z") = 0
for all i > 0. Clearly, Exty (P~% Im(d,")) = 0 for all i > 1. Hence, applying Lemma 2.1 to the exact
sequence () and the exact complexes Z°® and P®, we get an exact sequence of exact complexes, i.e.,

() 00— z* P pr Cpr 0

in ¢ (A-mod), where p® and ¢® are canonical inclusion and projection, respectively, and E* := P! @ (I @,
P & (N ®@p Q%) € A-mod,

dp=10 1,®ds 0 PPo(IoyP)a(NopQ') — P eIey Pt e (Nep ),
0 7 1N®db
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a': PP 5 T @ P and f°: PP - N ®p Q"' are all the homomorphisms of A-modules. Recall that
i = (In®p) (Y @ 1pi+1) : N ®p Q° — I ®5 P! is a homomorphism of A-modules. Here, compared
with Lemma 2.1, the order of direct summands of E? is changed. Note that (f) is obtained by taking
kernels at degree 0 in (ff). Visually, the positive part of ({1) looks as follows:

0 0 0
d()
0 H—"" I, P @ NogQ"° L ~I@AP'&N@pQ' — -
ex (ilf@/ (009) (%09)
0——>AXid—>P0@I®AP0@N®BQ°—d—O>P1@I®AP1@N®BQ1— - = (3.3)
AX E
1 1
Ax (8 (8)
du d%
0 U PO P! ,
0 0 0

where d, x = (Axdy,e1,e2), and both e; : A X — I ®5 P? and e5 : X — N ®p Q" are homomorphisms
of A-modules.

Observe that 1y ® df; and (0,7") are homomorphisms of A-modules. The term P’ ® I @, P has an
A-module structure which is isomorphic to 4 A ® P*. By Lemma 3.3(3), the map

di i , , , ,
P Y ) pig g, P —s Pl g T, P
0 1;®ds

is the image of the homomorphism (di,a’) : P* — Pl ¢ [ @ P of A-modules, and thus it is a

homomorphism of A-modules. Similarly, (%l ): PY(I) - N®p Q! is an A-module homomorphism. Let

&y o p
Fl=P(I)&NopQ, di=|0 1;0d, 0
0 Tt Iy ® de
Then F* = (F*,d%) is a complex of A-modules, which is exact since the restriction of F* to A-modules
is the exact complex E*°.

d d
We show Ker(d%) ~ X as A-modules. First, the exact sequence 0 — A X 23 EO 22 B of A-modules,
with d, x = (Axdy,e1,e2) : X - PP @I @y PP ® N ®p QY can be regarded as an exact sequence of

0
Z-modules, ie., 0 — X 2% [0 A, F' where
dx = ((Axdy,e1),es) : X = F' = (P°@ (I @5 P°)) @ (N @5 Q).

It suffices to show that dx is a homomorphism of A-modules.

Let x € X, a= (\i) € A=AxI. Then (ax)dx = (((ax)\xdy, (ax)er), (ax)es). Since Ax is an A-
homomorphism, it follows from Lemma 3.1 that (/X)Ax = 0 and (az)A\xdy = (Az)Axdy = Ma)Axdy.
Note that (iz)(e1,e2) = (1 @ z)mltx (e, e2). We deduce from the diagrams (3.1)—(3.3) that

mltX(el,eg) = (1] ®Ax)m/XmHex(61,€2> = (1] ®Ax)m/XdeH
= (1[ ®Ax)(1] ®dU)(1,O) = (1[ ® /\de,0).

Thus, (iz)(e1,e2) = (i ® (z)Axdy,0). As e; is a A-homomorphism, it holds that (Az)e; = A(z)e; for
i =1,2. Hence,
(al‘)dx = ((A(l‘))\de, )\(l‘)el +:1® (x))\XdU), )\(26)62)
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It then follows from the module structures of P°(I) and N ®p Q° that
(M) () Axdy, (2)er) = (AMz)Axdu, AM(z)er +i ® (x)Axdy)
and (), 7)(z)es = A(z)es. This shows
a(x)dx = (A i)(x)dx = (A i) (((z)Axdu, (z)er), (x)e2)
= ((Mz)Axdu, Mz)er +i® (2)Axdu), Mz)e2) = (az)dx,

i.e., dx is an A-homomorphism. Thus, 4 X has a complete projective resolution F'®.
At this stage, we define the complex T = (1%, d%) of Ay-modules as follows. Let

L=TA(PY e TR(Q) = F,Y
T A(P") @ Tr(QY) ( ’ ’( 0 O>’< 0 1N®BQi>>

di, o Ik ,
i i i ; 1y ®dp 0
dp = (dp,dy) = 0 1y ®dp 0 »( ; r z)

p dQ

0 Tt 1N®dé2

and

Note that ®g: = 0 since we assume ¢ = 0 in the Morita context ring A.
We have to check that (d%,d} ) is a homomorphism of Ay-modules. In fact, (di, d} ) can be written

1 ey Wit
as (' ,1%) wi
21 "22

) di Oéi ) ) ) ) 7 ) )
t, = P )y @ds | TA(PY) — TA(PY, t, = p 0] s TA(PY) — Tp(Q™),
0 1;®db 0

th = ((0,7),0) : To(Q) — TalP™),  thy = (Iy © dig.dy) - Tr(Q) — Tr(@").

To see that these t;q’s are homomorphisms of Ay-modules, we just note that ¢, is the image of (d%, a*)
under the isomorphism in Lemma 3.4(3). Similarly, it follows from (1), (4) and (5) in Lemma 3.4 that
tiy, 5, and th, are homomorphisms of A,-modules.

We show that T is a total projective resolution of (X,Y, f,g). Actually, the complex T is exact
because F'* and Y* are exact. By Lemma 2.5, each term of T is a projective Ay-module. Thus, T is
an exact complex in € (Ay-proj).

Next, we show that the complex Homy, (7%, Ay) is exact. This is equivalent to saying that the
complexes Homy,, (7%, To(A)) and Homy (T, Tp(B)) are exact, due to the isomorphism A, Ay =~
Ta(A) & Tr(B).

To show that Homy, (7%, TA(A)) is exact, we consider the exact sequence

0 — Za(D) U0 T A) — TH(A) — 0

of Ay-modules, where T (A) := (A, M, 11,0) and po: pM ®4 A — pM is the multiplication map.
Since T is a projective Ay-module, the sequence of complexes

0 — Homy, (T*,Zx(I)) — Homp , (T"*, Ta(A)) — Homy , (T°, TH(A)) — 0

is exact. Thus, to show the exactness of Homy, (7, TA(A)), it is sufficient to prove the one of the
complexes Homp , (T, Z5 (1)) and Homy , (T°, T, (A)). However, it follows from (2) and (7) in Lemma 3.4
that Homa, (TA(P)) ®Tp(Q"),Zx(I)) ~ Homy (P?, I). Then we have the following commutative diagram
for all i:

) . Homy , (d7,Za(1)) i1 i1
Homy,, (Ta(P*) ® Tp(Q"), Za(I)) —————Homy, (TA(P"™) ® Tp(Q"), Za(1))

~ ~

Homy (d,1)

Homy (P, 1) Hompy (P 1).
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To check the commutativity of this diagram, one only needs to notice the definition of Homy, (d%., Za (1))

= HOHlAd’ (tlil, ZA(I)) with
. d ot .
le = P . ) 1]\4 @ d%‘ .
0 17 ®dp

Thus, Homy,, (T°%,ZA(1)) ~ Homy(P*®,I), while the latter complex Hompa(P*,I) is indeed exact,
according to the weak compatibility of AIx. Thus, Homy,, (7%, ZA (1)) is exact. Furthermore, it follows
from the exact sequence

0— Zp(M) — TH(A) — ZA(A) — 0

of Ay-modules and the projectivity of 7% that the following sequence of complexes is exact:
0 — Homy, (T*,Zp(M)) — Homy , (T*, T (A)) — Homy , (T*,Z(A)) — 0.

By (6) and (7) in Lemma 3.4, Homy , (T, Zp(M)) ~ Homp(Q®, M). Since pM, is weakly compatible,
the complex Homp(Q*, M) is exact, and therefore Homy , (T, Zp(M)) is exact. Similarly, by (2) and (7)
in Lemma 3.4, Homp, (T®,Z5(A)) ~ Homa(P*®,A) is exact. Thus, Homp, (T, T\ (A)) is exact, so
Hompy,, (7%, TA(A)) is exact.

Now, we show that Homy, (7%, Tp(B)) is exact. Similarly, from the exact sequence 0 — Z,(N)
— Tp(B) = Zp(B) — 0 of Ay-modules, we get the exact sequence of complexes, i.e.,

0 — Homy, (T*, Zy(N)) — Homy, (T*, Tp(B)) — Homy,, (T*, Z5(B)) — 0.

By (2) and (7) in Lemma 3.4, together with the weak compatibility of  Ng, we can show that the complex
Homy,, (T®,ZA(N)) is exact. By (6) and (7) in Lemma 3.4, Homy , (7, Zp(B)) ~ Homp(Q*®, B). Since
Q* is a totally exact complex, Homp(Q*®, B) is exact. Hence, Homy , (7, Zp(B)) is exact, and so is the
complex Homp , (T'®, Tp(B)). Thus, the complex T € € (Ay-proj) is totally exact.

Finally, we show Ker(d}.) ~ (X,Y, f,g). Clearly, Ker(d%) = X and Ker(d%) =Y. Moreover, we can
verify the following two exact commutative diagrams:

10 ®dY 1y ®dY
Moy X 2% 00, PO v o, F NopY 22U N o, vo Y Ny v?
Tro O o1 O Y po 0 (UFS 0
fl ( g o)l ( oplo)i gi( 0 1N®qu)l< 0 1N®BQ1>i
0
0 Y yo_ & _y1 0 X Fo P

’ dx d%.

This shows Ker(d%) ~ (X, Y, f,g). Thus, (X,Y, f,g) is a Gorenstein-projective Ay-module with a total
projective resolution 7°°. O

3.2 Necessary conditions for Gorenstein-projective modules

In this subsection, we discuss the converse of Theorem 3.5. We start with the following lemma.

Lemma 3.6 (See [16, Proposition 6.1]). Let U := (Ca,Dp,h,k) be a right A4 4)-module with
h € Homper (C ®4 N,Dp) and k € Homyov (D ®@p M4,Ca), and V := (X,Y, f,g) be a left Ay.y)-
module. Then there is an isomorphism of abelian groups

U®A(¢>,w> V=(CesX®eD®pY)/H,
where H is a subgroup of C @4 X ® D ®p Y generated by
{c@w(n@y)g—(c@n)hey|ceCneNyeY}U{do(mez)f—(dom)k®z |de D,z € X,m € M}.

Lemma 3.7. Let C € A°’-mod, X € A-mod, D € B°°’-mod and Y € B-mod. Then there are the
following isomorphisms of abelian groups, which are natural in each variable:
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(1) Zpor (C) @a, TA(X) 2 C @0 X, (¢,0)® ((z,i®@2"),m®@2") = c@x, z,2",2" € X, ceC,icl,
me M.

(2) Zpov (D) ®p, Tp(Y) ~ D

(3) Zaer (C) @4, Tp(Y) = 0.

(4) Zpor (D) ®p,, TA(X) =0.
Proof. ~ 'We only prove (1) and (3), while the rest can be proved similarly and is omitted.

(1) Since 4 A ®x X ~ X(I) as A-modules, we get C ®4 X(I) ¥~ C®4 A®@p X ~ C®@p X. By
definition, Zpor(C) = (C4,0,0,0) and TA(X) = (X(I),M ®p X,7x,%x). By Lemma 3.6, we have
Zpor (C) @a, Ta(X) ~ (C®a X)/H, while the subgroup H is generated by

@pY, (0,d)®@(ney,y)—»doy, vy €Y,de D, neN.

{ca(nem)pr|ceCine Nme M,z € X}.
Thanks to IX = 0, we get H = 0. Thus (1) holds. Precisely, we can define
a:CepX = Zpor(C) ®4p, TaA(X)
by ¢® z — (¢,0) ® ((x,0),0), and
B:Zpor(C) @, TA(X) 2> C@n X, (,0)®((z,i®z),m@a")—cor, x2,2"eX

force C,i €I and m € M. One can check that they are homomorphisms of abelian groups satisfying
af =1 and Ba = 1. Clearly, the isomorphisms of o and 8 are natural in C' and X.

(3) In this case, H =C ®4 N ®p Y in Lemma 3.6. Thus, ZAOP(C) ®A'¢ TB(Y) ~ (O ®a N Xp Y)/H
=0. O

In the rest of this section, we assume that T® = (1%, d%);cz € € (Ay-proj) is a totally exact complex
such that Ker(d}) = (X,Y, f,g) € Ay-mod.
By Lemma 2.5, T = T(P?) @ Tp(Q*) for some P* € A-proj and Q° € B-proj. Thus we may write

precisely
7 — (tzil tZiQ)
T\t thy
with
tiy € Homy , (TA(PY), TA(PT)),
tio € Homy,, (TA(PY), Tp(Q™H)),
thy € Homy , (Tp(Q"), Ta(P™)),
thy € Homy,, (Tp(Q"), T(Q™))

By Lemma 3.4(3), there is a A-module homomorphism (d, '), where d%» : P* — P! and o' : P
— I ®p P! are homomorphisms of A-modules such that

i dp o i
1n= |1y ®@dp .
0 11®d33

Similarly, by (1), (4) and (5) in Lemma 3.4, we have a A-module homomorphism 3 : P* -+ N ®p Q'*!
and two B-module homomorphisms p : Q° — M ®, P! and déz : Q' — Q™! such that

32 = ((%),0) 5 él = ((O,Ti),pi) with Ti = (1N ®pi)¢pi+1,

and thy, = (Ixy ® dzé,dég). Furthermore, the exact complex T® provides two exact complexes
F* = (F',d%) € €(A-mod) and Y* := (Y*,d}) € €(B-mod) by defining

W Fermowesq) 4= ((Vuis) (3)
0,7)  1y®d
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and
, o Iy ®dp 0
Yi=M@yPoQ, d:= ( M )
p dQ
Then Ker(d%) = X and Ker(d)) =Y.
Let Q* := (Q',djy) and P* := (P',dp). Then it follows from di-dit' = 0 and did' = 0 that
dingl =0 and d}dilj'l = 0, respectively. Thus Q®* € ¥ (B-proj) and P* € ¢ (A-proj). Moreover, we
define Z* = (2, d’;) with

_ . . , 1y ®d 0
Z'=I@pP)®(N®p Q") € A-mod, dy = < rede )

Tt 1N®db

Then it follows again from did'd' = 0 that d,d%* = 0, and therefore Z* € € (A-mod).
The complex Y'® gives rise to an exact sequence in € (B-mod):

0— Moy P Sy 2500 o, (3.4)

where a® and b® are canonical inclusion and projection, respectively. Also, we have two exact sequences
of complexes in ¢’ (A-mod):

0——sTorP* 52 “ NezQ* —0, (3.5)
02z 2 p O p o, (3.6)

where ¢®* and p® are canonical inclusions, and d® and ¢°® are canonical projections. Furthermore, there is
a chain map ¢°® in € (A-mod):

. . X 1pi 0
0*=(0")iez : N®pY* = Z*, o' := v P , 1E€Z
0 Iv® lQi
such that the following diagram of complexes of A-modules is commutative and exact:

NopMoyP* Y2Y Nopye 220 N gy @ ——0

|t . |-

00— >T@, P* —F ze

(3.7)

d N@BQ.HO

Lemma 3.8. (1) IfZpyor (M) and Zx(N) are semi-weakly compatible Ay -modules, then Q* € € (B-proj)
is totally exact.

(2) If Zper (I), ZA(I), Zgor (N) and Zg(M) are semi-weakly compatible Ay-modules, then P® €
€ (A-proj) is totally exact.
Proof. (1) Since T* € € (Ay-proj) is a totally exact complex and Zpor (M) is semi-weakly compatible
by assumption, the complex Zor (M) ®4, T* is exact. By (1) and (3) in Lemma 3.7,

Zpyor (M) ®p, (TA(P) @ TE(Q")) ~ M @, P'.
Then we have the commutative diagram for all i,

Zyor (M) @4, (TA(P') @& Tp(QY)) 1edy Zpor (M) @4, (TA(P7H) @ T(QI1))

: -

M P Luedy M @ P,
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To check the commutativity of this diagram, one only needs to note the definition of 1®d}. = 17, 0p (M) ®ti,

with
) d}, al )
o= L1y eds | .
! ((0 1z®d’p> . P)

Hence, Zpor (M) ®4, T* ~ M ®, P* as complexes, and this yields that M ®x P* is exact. It follows
from the exact sequence (3.4) that Q° is an exact complex. Since Zx(N) is semi-weakly compatible,
Homy, (T®,ZA(N)) is exact. As T® is totally exact, the complex Homy (7%, Tp(B)) is exact. Applying
Homy , (T*, —) to the exact sequence 0 — Z5(N) — Tp(B) — Zp(B) — 0, we get the exact sequence of
complexes of Z-modules, i.e.,

0 — Homy , (T°,Zx(N)) — Homy (T, Tp(B)) — Homy ,(T°,Zp(B)) — 0.

It follows that Homp,(7°,Zp(B)) is exact. Similarly, by (6) and (7) in Lemma 3.4, the complex
Homp(Q*, B) ~ Homyp , (T*,Zp(B)) is exact. Hence, Q* is a totally exact complex.

(2) Since T* € € (Ay-proj) is totally exact, it follows from (2) and (4) in Lemma 3.7, together with
the semi-weak compatibility condition on Zger (N), that Zger (N)®a, T® ~ N ®p Q* is exact. Similarly,
by Lemma 3.7(1) and the assumption on Zyer (I), we know that Zyer (1) ®p, T® ~ I ®, P* is exact.
It then follows from the exact sequence (3.5) that Z° is exact. This implies, together with the exact
sequence (3.6), that P* is an exact complex. By the semi-weak compatibility of Zx(I), we deduce that
Homy, (T*,ZA(I)) is exact. From the exact sequence

0= Zo(1) ‘Y T, (A) 5 TH(A) = 0
of Ay-modules, we have the exact sequence
0 — Homy , (T*,Zx(I)) — Hompy , (T*, TA(A)) — Homy , (T°, T (A)) — 0.

This shows that Homy, (7%, T) (A)) is exact. Now, applying Homp
0—Zg(M)— T\ (A) = Z5(A) — 0, we obtain the exact sequence

,(T*,—) to the exact sequence

0 — Homy, (T*,Zp(M)) — Homy , (T°, T} (A)) — Homy, (T*,Zx(A)) — 0.

As Zp(M) is semi-weakly compatible, Homy , (7, Zp(M)) is exact, and therefore so is Homy , (7%, ZA(A)).
By (2) and (7) in Lemma 3.4, Hom (P*®, A) ~ Homy , (7%, Z5(A)) is exact. Hence P* is totally exact. [

Lemma 3.9. Assume that ANp and pMy are weakly compatible. If Zpor (M) and Z5(N) are semi-
weakly compatible Ay -modules, then Zgov (N) and Zg(M) are semi-weakly compatible Ay -modules.

Proof.  Since T* is a totally exact complex of projective Ay-modules, we deduce from Lemma 3.8(1)
that Q° is a totally exact complex. By the assumption, N is semi-weakly compatible. It follows from
Zpor (N) ®p, T* ~ N ®p Q° that Zger (N) @4, T* is exact. Since pM is semi-weakly compatible and
Homy,, (T*,Zp(M)) ~ Homp(Q*, M), we see that Homy , (T°*,Zp(M)) is exact. O

Theorem 3.10.  Assume that \Np, My and I are weakly compatible bimodules and Zyor (M) and
Z)\(N) are semi-weakly Ay-modules. Furthermore, assume that Zyev (I)p, and 5, Zn(I) are semi-weakly
compatible. If a Ay-module(X,Y, f,g) is Gorenstein-projective, then

(a) Coker(f) € B-Gproj and Coker(g) € A-Gproj, and

(b) Im(f) ~ M ®4 Coker(g), Im(g)/IX ~ N ®p Coker(f) and IX ~ I ® 4 Coker(g).

Proof.  Suppose that (X,Y,f,g) lies in Ay,-Gproj. Then there is a totally exact complex
T* € € (Ay-proj) such that Ker(d}) = (X,Y, f,g). By Lemmas 3.9 and 3.8, the foregoing complexes
P* € €(A-proj) and Q* € € (B-proj) are totally exact. Thus U := Ker(d%) € A-Gproj and
V := Ker(dg,) € B-Gproj.

First, we show that Coker(g) is a Gorenstein-projective A-module.
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Since Ker(d%) = X (see notation in (1)), we write dx : X — P°(I) @ (N ®p Q°) for the inclusion of
A-modules. The restriction of dx to A-modules will be denoted by d, x. Then

dyx = (eose1,e2) 1 aX = PP @ (al @4 P°) & (W, N @5 Q°).

We show that eg, e; and ez have the properties (iz)eg = 0, (iz)e; = i ® (x)eg and (iz)ex = 0 for i €
and z € X.
Indeed, the homomorphism dx of A-modules shows that

(((az)eo, (ax)er), (ax)ez) = a[(x)((eo, €1), e2)] = al((z)eo, (x)e1), (x)ez]
for z € X and a = (\,i) € A. Furthermore, the A-homomorphisms e; (i = 0,1,2) show the equality
(((ax)eg, (azx)er), (az)es) = (A(z)eg + (iz)eg, M(x)er + (ix)er), A(z)es + (iz)es).
By the A-module structure of P°(I) and N ®p Q°, one obtains immediately
al((z)eo, (x)er), (x)ez] = (A, ) (((x)eo, (x)er), (x)e2) = (Mz)eo, A(z)er + i ® (x)eo), A(x)e2),

ie., (ix)eg =0, (iz)e; =i ® (x)eg and (iz)ey = 0.
Let dyy be the inclusion of AU into , P°. It follows from the sequence (3.6) that there is an exact
commutative diagram of A-modules, i.e.,

ex Ax

AX U 0

ldz l(eoyﬁl,@) 1 ldu
(349) ($)

04>I®APO@N®BQOHPO@I(@APO@N@BQOHPOHO,

00— Ker(d},)

where all the vertical maps are injective and ey = Axdy. Note that (ix)Axdy = (iz)eg = 0 for ¢ € I and
x € X. Since dy is injective, one must have (iz)A\x = 0. Now, if we consider AU as an A-module, i.e.,
IU =0, then Ay is a homomorphism of A-modules.

Furthermore, ey is a homomorphism of A-modules if yKer(d%) is regarded as an A-module. In fact,
for 2z € Ker(d%), let z, := (2)ex. Then it follows from i ® (z,)ep =i ® (z,)Axdy = 0 that

(iz.)(eo, e1,e2) = (0,i ® (2.)eo,0) = 0.

Since the map (eg,e1,e2) is injective, we obtain iz, = 0, i.e., ITm(ex) = 0. This implies that ex is a
homomorphism of A-modules. Thus there is an exact sequence of A-modules, i.e.,

0 —= Ker(d}) -2~ X 2X. 0, (3.8)

which fits into the following exact commutative diagram of A-modules:

! 0 /

<~ ~=<—0O

0 —= Ker(d}) 2% (I @4 P°) & (N @5 Q°) a (ITexP)® (NopQ')
0 fo P e (% @5 Q") d—%>P1(I) ® (% @p QY
. “i w M 5 Y

; ; ;

with
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in which (0,1) : I ®5 P* — P @® I ®, P! is the canonical inclusion, and with

()

in which ((1)) means the projection map P* @ I ®, P* — P*. Note that all the homomorphisms of A-
modules in the top and the bottom rows are regarded as homomorphisms of A-modules via the canonical
map A — A. According to (1) and (2) in Lemma 3.3, the vertical maps j* and k* are also homomorphisms
of A-modules.

Since Ker(dy,) = Y, we have an inclusion dy : Y < M ®, P* & Q°. Let § : N ®p Y — Ker(d%)
be the homomorphism of A-modules induced from the chain map ¢® in the diagram (3.7). Then 0 is
surjective. Actually, since I, is semi-weakly compatible and we have shown that P® is a totally exact
complex of projective modules, the complex I ®, P*® is exact. Similarly, N ® g Q°® is exact. So the exact
sequence (3.6) implies that the complex Z°® is exact. By the diagram (3.7), the following diagram of
A-modules is exact and commutative:

NopMorU Ny Yy X NeogV ——=0

T

0 ITopaU Ker(d}) —= N @V ——=0.

Therefore, the Snake lemma shows that § is surjective.
Moreover, the diagram (3.7) gives rise to the following one of A-modules:

d 1
NopY —22% (N M®P% & (N o QY)Y

®dy
—~(N®M®PY)®(NopQh)

0 0 oy 9z 1 1 Yp1 0
Ker(d}) — (1@ PY) & (N @5 Q") — > (I® P& (N ©5 Q") (5 )
\ \
X = PYI)& (N @5 Q°) — PY(I) @ (N ®p Q).

F

By the definitions of g, and ex, the two top and two bottom squares are commutative. We can verify

o'j* =as vr for all 1.

Since dx is injective, it holds that dex = g. Thus Coker(g) = Coker(ex) ~ U € A-Gproj.
Next, we prove Coker(f) € B-Gproj. Observe that M ® 4 P®* ~ M ®, P*® as complexes of B-modules.
So the exact sequence (3.4) may be rewritten as the following exact sequence of B-modules:

/
a'®

0—>M®AP‘—>Y’b—.>Q‘—>O

with
ai

a": M@a P =5 M@y P2 Moy P oQ.

This gives rise to the exact sequence of B-modules, i.e.,

0—Me,U 5y 2 v —o.
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Now consider the following diagram of B-modules:

M®a X —(M®a P(I) & (M ®aN g Qo)lM&j%(M ®a PHI)) & (M ®a N Q')

1y ®@Ax f (ﬂ—PO 0>
1p @k° 00 1 @k

M®AU4>M®APO—>M®AP1 (Trplo)
1 ®d% 00
a/l
n;, x
Y Moy PP®Q° M ey Pto QL.
dy dy

By the definition of Ax as an A-module homomorphism, the upper two squares are commutative. By the
definition of n{, the lower two squares are commutative. Moreover,

, i 0
(1 ®k")a' = as e .
0 0

It follows from the injective map dy that (1ps ® Ax)ny = f. Therefore, Coker(f) = Coker(n}) = V
€ B-Gproj and Im(f) ¥ M ®4 U = M ® 4 Coker(g). This completes the proof of (a).

Having proved that Im(f) ~ M ®4 Coker(g), we now prove Im(g)/IX ~ N ®p Coker(f).

Recall that F'* € € (A-mod) stands for the complex defined in (f). Let

) ) ) ) dt @
W= AP @& \NopQ', dy =7 p .
0 1N®db

Due to didi ! = 0, we have di B! + B (1y ®df) = 0 and diydif' = 0. So W* € € (A-mod). Regarding
A-modules as A-modules, we have the exact sequence

#) 0— NogQ® 5w 5 pr— 0

of complexes in ¥’ (A-mod). Since 5 Ny is a weakly compatible bimodule and @Q*® is a totaly exact complex
in €(B-proj), N ®p Q°® is an exact complex. It then follows from the exactness of P® that the complex
W is exact. Now, since 4A @4 F' = gA®@4 (P/(I)® N ®@p Q") ~ P'd (N @5 Q") and 1y @4 di = diy,
we have W*® ~ A ®4 F* as complexes in €(A-mod). Hence, 4A ®4 F* is an exact complex of A-
modules and sKer(d}) ~ 4A ®4 X ~ X/IX. Thus (#) induces the exact sequence of A-modules

03 ANV 25 X/IX LN AU — 0. It follows from A @4 F®* ~ W* that there is a canonical chain
map p} : F* — W* in ¥(A-mod) with
1
PRI
0 1y ® 1@1‘

Now, we take the kernels of p}. at degree 0 and get the canonical projection px : X — X/IX. Considering
the commutative diagram of complexes in %' (A-mod):

Neopys —2%" _ Ne,Q

<¢5’1 1N§1Q7">JJ . (071)i

Ee we
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and the differentials in degree 0 in the diagram, we get the exact commutative diagram

1 d9
N®gY N @p Y0 &ty N®gY!
Y po 0 Y p1 0
/ N ( 0 1N®y 50 < 0 1@@%
X P(I) & (N @5 Q°) v PY(I)& (N ®p Q) b
F
px l % l Pr
0 1N®Bd% 1
N®pV N®pQ N®pQ
/ d % O %
X/IX v P'% (N ®p Q%) - P'® (NopQ')

in ¥ (A-mod) by Lemma 2.2(2). Thus gpx = (1y ® py)s. Since s is injective and 1y ® py is surjective,
we obtain Im(g)/IX ~ N @ V = N ®p Coker(f).

Finally, we show IX ~ I ® 4 Coker(g). Actually, it follows from the chain map ¢* : I @ P®* — Z*
in (3.7) that the following exact commutative diagram exists:

IT@NU—=1®p P° —1®, P!

e

0 — Ker(d%) A VA
Now, consider the diagram
NogMesX O [oaX
1 A
NRIpMuU —10,U

Zi/ i/: mlt x (39)
N®BM®AU@§>[®AU

1N®"7Y\L i/c
ex

N®pV —2 » Ker(d}) - X.

Note that the out-side square is commutative, due to (X,Y, f,g9) € Ay-mod. The down-left square
commutes because of the commutative diagram (3.7), while the upper-left square commutes, due to the
property of 1. Thus it follows from the surjective map ¥ ® 1x that the right-hand side of the square is
commutative. Since ¢ and €, are injective maps, IX ~ I ® 4 U ~ I ®4 Coker(g). This completes the
proof of (b). O

Theorem 3.11.  The following are equivalent for the Morita context ring Ay, :

(1) ANB, BMa and pIn are weakly compatible bimodules, the left Ay-modules (4N,0,0,0) and
(41,0,0,0) and the right Ay-modules (M4,0,0,0) and (14,0,0,0) are semi-weakly compatible.

(2) A Ay-module (XY, f,g) is Gorenstein-projective if and only if

(a) pCoker(f) and pCoker(g) are Gorenstein-projective, and

(b) pIm(f) ~ pM ®4 Coker(g), aIm(g)/IX ~ aN ®p Coker(f) and sIX ~ oI ® 4 Coker(g).

Proof. (1) = (2). This follows from Theorems 3.5 and 3.10.

(2) = (1). This will be done in the rest of this section. So in the following, we always assume (2).
Lemma 3.12. If G € A-Gproj, then To(G) € Ay-Gproj. Similarly, if Q@ € B-Gproj, then Tp(Q)
€ Ay-Gproj.

Proof.  Since TA(G) = (A®r G,M ®) G,ng,¥g) where g : pM ®4 Ay G ~ gM @5 G and
Yo ANQp(M®5G) = AAR G is given by n® (m®@z) — (n@m)yp @z forn € N, m e M and z € G,
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it follows from Coker(mg) = 0 and 4Im(¢g) = I ®4 G that 5Coker(yg) ~ oG and the condition (2)(a) is
satisfied. On the other hand, Im(7g) = M ®5 G ~ M ®, Coker(1g) ~ M ® 4 Coker(tp). We can show
I®sG=1I(A®\G)in A®, G, and therefore Im(¢g)/I(A ®x G) = 0 and I ® 4 Coker(pg) = I ®4 G
~ J(A®p G). This means that the condition (2)(b) is satisfied. Hence, T (G) is a Gorenstein-projective
Ay-module by (2).

Let p@ be a Gorenstein-projective module. By definition, Tp(Q) = (N ®p Q. Q, ®q, 1ngq), and we
show that (a) and (b) in the conditions (2) hold for Tg(Q). However, this is easy to verify by the fact
that ®g : M ®4 N ®p Q — pQ is a zero map. Thus, Tg(Q) is Gorenstein-projective by (2). O

Lemma 3.13. (i) If G € A-Gproj, then Tor}(I,G) = Tor}(M,G) = 0. Thus Tor)(I,G)
= Tor(M,G) =0 for all i > 0.
(ii) If gW € B-Gproj, then Tory (N, W) = 0. Thus Tor? (N, W) =0 for all i > 0.

Proof.  Assume that P* = (P d%) is a total projective resolution of G with Ker(d%) = G. Let
H := zKer(dp') and V' : H < P~! be the inclusion. By Lemma 3.12,

Ta(H) = (H(I),M ®x H, 7 ,%n) € Ay-Gproj.

Since H(I) is a finitely generated A-module, Homu(H (1), 4A4) is a finitely generated right A-module.
Suppose that f1, fa,..., fs form a set of generators for Hom 4 (H (I), 4A44). Then

a: H(I) T (a)0

is a left add(4A)-approximation of H(I). So we assume that o : H(I) — Q is a left add(4A)-
approximation of H(I) with @ € add(4A). Since A is the trivial extension of A by I, we may further
assume @ = P(I) for some P € add(pA). Then by Lemma 3.4(3),

d
a=[* " HeloyH — Palo,P,
01l;®a

where a : H =+ P and d : H — I ®, P are homomorphisms of A-modules. We show that a : H — P is
an injective left add(yA)-approximation of H. Actually, for b : H — P’ with P’ in A-proj, we have an

A-module homomorphism
_ b 0
b:= : H(I) — P'(I).
01r®b

Since « is an approximation, there is a homomorphism

= (C ¢ ):P(I)—>P’(I)

0l;®c

b 0 _fa d c e
01;,®b 01l;®a) \01;®c)

This implies that b = ac and a is a left add(sA)-approximation of H. Taking b = V', we see immediately

such that b = ag, i.e.,

that a is injective.
Since a is a left add(yA)-approximation of H, there is a homomorphism ¢ : P — P! of A-modules
such that the following diagram is exact and commutative:

0 —= H —*> P —— Coker(a) —= 0

B

0—H— P! G 0.
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Thus the right-hand side of the square is a pushout and pullback diagram. This induces an exact sequence
of A-modules, i.e.,
0 —— P ——> P! @ Coker(a) —= G ——=0.

As oG is Gorenstein-projective, we always have Extﬁ\(G,X ) = 0 for ¢ > 0 and any module X of
finite projective dimension. Thus the exact sequence splits and Coker(a) & P~! ~ G @ P as A-modules.
Therefore, to show Lemma 3.13, it is sufficient to show that

Tor? (I, Coker(a)) = Tor} (M, Coker(a)) = 0,

i.e., the maps 17 ® a and 1y ® a are injective. This will be done by considering the left add(a,Ay)-
approximation of Ta(H).

In fact, we have p, Ay = Ta(A)@Tp(B). Since T4 is a fully faithful additive functor (see Lemma 2.4),
it follows from the left add(4A)-approximation « : H(I) — P(I) of H(I) that

TA(a) : TA(H(I)) — TA(P(I))

is a left add(T 4(A))-approximation of T 4(H(I)). This also implies that

((g 116(;(1) Ay ® a> :TA(H) = Ta(P)

is a left add(Ta(A))-approximation of Tx(H). Let

a d
B = ((O 11@@),1M®a>.

Take a left add(T p(B))-approximation of Ty (H), i.e., 0 : TAo(H) — Tp(Q) for some Q) € add(gB). By
Lemma 3.4(1), 6 is of the form ((g),O) with o € Homp(H,N ®p Q). Then we get a left add(s,Ay)-
approximation (3,0) : To(H) — Ta(P) & Tp(Q) of TA(H). Since To(H) € Ay-Gproj by Lemma 3.12,
there is an injective homomorphism from Ta(H) to a projective Ay-module, and therefore (5,6) is
injective. This shows that the homomorphisms

(a d h) HoIo H Pl PEN®5Q
01r®a 0
of A-modules and (1p; ®a,0) : M ®x H = M @5 P®Q of B-modules are injective. Therefore, 1; ® a and
1)/ ®a are injective. Thus, Tor{ (M, Coker(a)) = 0 and Tor?' (I, Coker(a)) = 0. Therefore, Tor (I, G) = 0.
A dimension shift argument shows Tor? (I, G) = 0 for i > 0.

Now, let W € B-Gproj with Q® be a totally exact complex in €' (B-proj) such that Ker(d%) =Ww.
Then there is the short exact sequence 0 — V —= Q7' -5 W — 0 of B-modules with V = Ker(dél).
This yields an exact sequence of Ay-modules, i.e.,

(In®w,w)

0— (U, V,5,8) " T Y " o) — 0

with i : AU — 4N ®p Q7! the kernel of 1y ® w. By the diagram (2.2) (see Subsection 2.1), the
homomorphisms s and ¢ fit in the exact commutative diagrams, respectively,

MoaU2 Mo, NogQ! NopV 2L NepQ ' X NopW — >0
| | |
0 1% o 01, 0 U—' > NezQ 2L Ny W ——0.

Since the homomorphism v is injective, we get s = 0. By the Snake lemma, ¢ is surjective. Therefore
Coker(s) =V and Coker(t) = 0.
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By Lemma 3.12, Tg(W) € Ay-Gproj. Since Ay-Gproj is closed under taking kernels of surjective
homomorphisms (see [13, Theorem 2.7]), we have (U,V,s,t) € Ay-Gproj. By the assumption (2), we
have U ~ I ®, Coker(t) = 0 and Im(¢)/IU ~ N ®p V. Hence Im(t) = U ~ N ®p V. This implies
further that ¢ is an isomorphism by Lemma 2.3(2) and 1y ® v is injective. Thus, Tor? (N, W) =0. O

(I) We show that g M, ANp and pIx are weakly compatible.

Suppose that P*® is a totally exact complex in %’(A-proj). Then sKer(d%) is Gorenstein-projective. It
follows from Lemma 3.13 that M ®j P® and I ®, P® are exact. This further implies that the complex
T := Tp(P*) = (Ta(P?),d}) with df = (14 ® db, 1y ® db) of Ay-modules is exact and Ker(dk)
= Ta(Ker(d)). By Lemma 3.12, Tx(Ker(dp)) € Ay-Gproj. Thus Ker(dy) € Ay-Gproj for all i.
This implies that T* is a totally exact complex. It follows from Lemma 3.4(1) that Homy (P®, N)
~ Homy, (T, Tp(B)) is exact.

Next, we show that Homy (P, I) is exact. Consider the exact sequence of A -modules:

((0,1),0)

0— Zx(I) Ta(A) — T4 (A) — 0,

where T)(A) := (4A, M, p,0) with 4 : M ®4 A — M being the multiplication map, and Zx(I)
= (4l,0,0,0) € Ayp-mod. As T" := T,(P?) is a projective Ay-module (see Lemma 2.5(1) and
M ®4 P'~ M ®, P"), we have the exact sequence

0 — Homy , (T°,Zx(I)) — Homp , (T°, TA(A)) — Homy, (T*, T\ (A)) — 0.

Due to the total exactness of 7', the complex Homy, (7%, To(A)) is exact. Then it follows from the
exactness of Homy (P®, A) and the isomorphism

Homy,, (T, T (A)) = Homy, (TA(P*), T (A)) ~ Homy (P*, A)

as complexes of Z-modules that Homp,(7°,Z5(I)) is exact. This implies that Homa(P®,I) =
Homy (P, 1) is exact. Hence, I is a weakly compatible bimodule.

To complete the proof that pMy and ANp are weakly compatible, it remains to show that
Homp(Q*, sM) and N ®p Q° are exact for any totally exact complex Q* € €(B-proj). Actually,
Torg (N, Ker(dég)) = 0 for all 4 by Lemma 3.13(ii). Thus N ®p Q°® is exact, and therefore E*® := Tp(Q*)
is exact with Ker(dy) = Tp(Ker(dy)). It follows from Lemma 3.12 that Ker(dj) € Ay-Gproj, whence
E* is a totally exact complex in € (Ay-proj). Now, by Lemma 3.4(4), we know that Homp(Q®, M)
~ Homy , (E*®, TA(A)) is exact.

(IT) We prove that Zyo» (M), ZA(N), Zpor(I) and Z(I) are semi-weakly compatible Ay-modules.

Let T* := (T%,d}) be a totally exact complex in € (Ay-proj). By definition, we have to show that
Zpow (M) @p, T®, Zpor (I) ®a,, T®, Homy , (T*,ZA(N)) and Homp , (T, Zx (1)) are exact complexes.

By Lemma 2.5, T'® is of the form

T — TA(P_I) EBTB(Q_I) £> TA(PO) @TB(QO) d—(%> TA(Pl) EBTB(QI) —

and induces a complex F'® = (F', d%) € ¢ (A-proj) and two complexes P* = (P? d%) and Z°* = (Z¢,dY%)
€ ¢ (A) as in (f) and the sequence (3.6). By (1) and (3) in Lemma 3.7, to show that Zje» (M) ®4, T*
and Zpop (1) ®n, T* are exact, it is sufficient to prove that M ®, P® and I ® P*® are exact. Similarly,
by (2) and (7) in Lemma 3.4, it is sufficient to show that Homa (P®, N) and Homy (P*®,I) are exact
complexes. Since we have shown that gMy, AN and pIp are weakly compatible, it is enough to show
that P*® is a totally exact complex. This is equivalent to saying that P* is exact in degree i and Ker(d%)
is Gorenstein-projective for all 7.

Now, we prove this statement for i = 0. Let (X,Y, f,g) := Ker(d%), V := Coker(f), U := Coker(g),
(E,F,k,l) := Ker(ds), T := Coker(k) and S := Coker(l). Then (X,Y,f,g) and (E,F, k) are
Gorenstein-projective Ay-modules. Consider the following canonical exact sequence of Ay-modules:

0— (X,Y, f,9) %) 10 (B, F k1) —0
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with dX : AX — APO(I) @AN ®pB QO, dY : BY — BM &A PO D QO. Then (dx,dy) is a left add(AwAd,)—
approximation of (X,Y] f, g). By the diagram (2.2), there is the exact commutative diagram of A-modules,
ie.,

N@Y —N@pMOAP & NRpQ*' — N@g F ——=0

g (wopo 1N®OBQ0) !
0 X dx PY(I)& N ®p Q° E 0
Ax (3.10)
U aw PO bs S 0
0 0 0

The bottom row is exact by the Snake lemma, and thus an exact sequence of A-modules by Lemma 3.1(1).
Let d,x = (eg,e1,e2) : AX — PO @ T ®p P°® N ® QY denote the restriction of dx to A-modules. Then
the above diagram shows ey = Axay.
Similarly, let Ker(d;l) = (B, F',K,l'), and (tx,ty): T~' — Ker(d}) = (X,Y, f,g) be the canonical
projection. Then there is a canonical exact sequence
0 (B F K1) =T "8 (X, f,9) =0

of Ay-modules. This supplies us with the exact commutative diagram of A-modules, i.e.,

N@pF —>N@pM)a, P 1o NepQ ! —=N®gY ——=0

& 5 ) )

0 E PYI)&NwzQ! fx X 0 (3.11)
| | |
s’ os Pl bu U 0.

Due to d' = (tx,ty)(dx,dy), we have txdx = dp'. Thus the diagrams (3.10) and (3.11) provide the
following commutative diagram of A-modules:

PN e NesQ ' 2% X X PN o NopQ°

' P l

p1 U— . po

where the two unnamed vertical maps are natural projections. Since d;l =txdx, we get byay = d;l.

We show that ay is injective. Consider ay as a homomorphism of A-modules. Since (XY, f,g) is
Gorenstein-projective, we know U € A-Gproj by the assumption (2). Thus, for ay to be injective,
it suffices to show that ay is a left add(yA)-approximation of U. Actually, for P € add(,A) and a
homomorphism ag : U — P of A-module, we have to find a homomorphism e : P® — P of A-modules
such that ag = aye. To define e, we construct a A-module homomorphism a; : A X — I ®, P, where X
is regarded as a A-module by restriction and a B-module homomorphism A : Y — M ®, P such that
a := (Axag,a1) is a homomorphism of A-modules, and (a,h) : (X,Y, f,g) = Ta(P) is a homomorphism
of Ay-modules.

Step 1.  Construction of h. By Lemma 3.1(2), we have a commutative diagram

A,
BM @4 X > pM @, U —=0,

W%

BY
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where Xy is the composite of 13 ® Ax with the isomorphism M ®4 U — M ®, U as B-modules. By
the assumption, Im(f) ~ M ®, U. This means that 7y is injective and there is an exact sequence of
B-modules, i.e.,

0—Me,U 5y 2 v —o.

Since gV € B-Gproj and pM is semi-weakly compatible, it holds that Ext}g(V,M ®a P) = 0. This
shows that Homp(ny, M ® P) is surjective, and therefore there is a homomorphism i : Y — M ®, P
of B-modules such that nyh = 1)/ ® ag-

Step 2.  Construction of a;. From nyh = 1) ® ag, one gets (1y @ ny)(Iy ® h) = 1y @5 1y ® ag.
It follows from the natural property of ¢ that the diagram of A-modules is commutative

NogMorUY NoyY

\Lw@)lu

IT®aU

\L(lz\f@h)(w@l}j)

1/®ao T &, P.

Now, let H :=Im(g) and g = oex with o0 : N®pY — H the canonical projection and ex : H <— X the
inclusion. According to Lemma 3.2 and its proof, there exists an injective homomorphism m : 41 @ U
— aH, such that the following is a pushout diagram:

NopMayU22Y NeyY

iw@ny i

0 I®\U Ui H.

By a universal property of pushouts, there is a A-module homomorphism ¢ : H — [ ®, P such that
ly®ag=mt and (1xy ® h)(v ® 1p) = ot.

The exact sequence 0 — H =5 X Ax, AU — 0 of A-modules restricts to an exact sequence of
A-modules, i.e.,

0— H 5 , X 25 7 0.

It follows from AU € A-Gproj and the semi-weak compatibility of oI that Ext) (U, I ®, P) = 0, and
therefore Homy (ex, I ®4 P) is surjective. Hence, there is a homomorphism a; : X — I®, P of A-modules
such that exa; = t.

Step 3.  We show that (Axag,a1) : X - P®I®y P is a homomorphism of A-modules. We write a for
(Axag, ap) for simplicity. On the one hand, 17 ® ag = mt = mexa;. On the other hand, by the definition
of m (see Lemma 3.2), the following diagram commutes:

mlt x

I X ——X

1[®Ax\L TEX

IeaU-"—~H,
ie, mltxy = (1; ® Ax)mex. Thus, for i € I and z € X, it holds that
(ix)a; = (((@x)mltx)a; = [ @ z)((1r @ Ax)mex)]ar = (i@ z)[(1 @ Ax)(1; ® ag)] =i ® (x)Axag.
Clearly, (iz)Axag = 0. Now it is easy to verify that a is a homomorphism of A-modules.

Step 4.  We prove that (a, k) is a homomorphism of Ay-modules. First, we show that the out-side
square of the following diagram of A-modules is commutative:

N®gY I &h

g H PYp
(0,¢)
% \
X 4 P(I).

N®p M ®p P
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In fact, since exAxao = 0, we have exa = (0,exay) = (0,t) by Step 2. It follows from (1y ® h)() @ 1p)
= ot that (1y ® h)p = 0(0,t). Then ga = (cex)a =c(0,t) = (1x ® h)Yp.
Second, we show that the out-side square of the following diagram of B-modules is commutative:

1y ®a

M®as X M@AP(I)
\/\’xA
f M @A U TP
1 ®ag
Ny \
Y h M @, P.

Note that Nyny = f and nyh = 1y ® ag. A straightforward verification shows fh = (15 ® a)mp. Thus,
the pair (a, k) is a homomorphism of Ay-modules.

Step 5.  Definition of e. Since (dx,dy) is a left add(x, Ay )-approximation of (X,Y, f,g) and TA(P)
€ add(s,Ay), there are a homomorphism u : Tx(P?) — TA(P) and a homomorphism v : Tp(Q°)
— TA(P) such that

(andY)(Z> = (a, h).

By (3) and (4) in Lemma 3.4, there exists a homomorphism e : P — P° of A-modules satisfying
epe = Axag. Because ey = Axay and Ax is surjective, it holds that aye = ag. Hence, ay is a left
add(pA)-approximation of AU. This completes the proof of ay being injective.

Now we show that the complex P* is totally exact. From the exact sequence

0— U2 pols,g 4y

of A-modules, we proceed with a similar proof of ay being a left add(pA)-approximation of U with
d;l = byay, and replace U with S to show that there is an injective homomorphism ag : S — P!
such that d% = bsas. This implies that Ker(d%) = Ker(bs) = Im(ay) ~ U € A-Gproj. Due to
Im(dp") = Im(ay ), we see that Ker(d%) = Im(dp') and P* is exact in degree 0 with Ker(d%) € A-Gproj.
Similarly, we can show that P* is exact in any degree i with Ker(d%) € A-Gproj. Thus, P* is a totally
exact complex. This finishes the proof of (2) implying (1). O

For the special Morita context ring A g o), it was shown in [10] that the compatibility conditions suffice
a class of modules over A (g o) to be Gorenstein-projective. Next, we point out that the weak compatibility
conditions are both necessary and sufficient.

Proposition 3.14.  For the Morita context ring Ao o), the following are equivalent:

(1) aANp and M, are weakly compatible bimodules; (4N,0,0,0) and (My,0,0,0) are semi-weakly
compatible left and right A g 0)-modules, respectively.

(2) A Ago,0)-module (X,Y, f,g) is Gorenstein-projective if and only if

(a) pCoker(f) and 4Coker(g) are Gorenstein-projective, and

(b) pIm(f) ~ pM ®4 Coker(g) and 4Im(g) ~ 4N ®p Coker(f), where Coker(f) and Im(g) denote the
cokernel of f and the image of g, respectively.

Proof.  This follows immediately from Theorem 3.11 because I = 0 in A o). O

The following was proved in [10, Theorem A(i)]. Assume that both M and N are compatible bimodules
over Artin algebras. If a A (g gy-module (X,Y, f, g) fulfills the conditions (a) and (b) in Proposition 3.14,
then (X,Y, f,g) is Gorenstein-projective. It seems that the weak compatibility conditions are more
suitable for describing Gorenstein-projective modules over A g q)-

4 Applications to noncommutative tensor products

In this section, we describe Gorenstein-projective modules over the noncommutative tensor products of
exact contexts arising from Morita contexts with two bimodule homomorphisms zero. This description
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is related to Gorenstein-projective modules over the Morita context rings A4 o).

Definition 4.1 (See [5]). Let A\: R — S,u: R — T be homomorphisms of unitary rings, and sWr be
an S-T-bimodule with w € W. If the sequence

(o

0—-RMgarlw o

is exact of abelian groups, then (A, u, W, w) is called an exact context, where -w : S — W is the right
multiplication by w. The noncommutative tensor product of (A, u, W, w) is well defined.

Morita contexts provide prominent examples of exact contexts. For a Morita context (A,T", pMa, 4 Nr,

¢, v), let
A0 AN A0 1 0)
R:= , Si= , T := , Wi=A , W= .

If A and p are the inclusions, then (A, u, W, w) is an exact context. Its noncommutative tensor product,
denoted by C(A,T',M,N,¢,), can be described explicitly: C(A,I',M,N,¢,v) has the underlying

abelian group of the matrix form
A N
MT&(M®aN)

with the multiplication o defined by

al ni az n2
[¢]
my (b1, m®n) ma (ba,m' @ n')

. aijas + (nl X mg)l/} aing + nlbg + nl(m' X 77,/)(25
miag + byme + (m @ n)gms (biba, my @ ny + (bym’) @ n' + m ® (nby) + m @ (n @ m')yn’) ’

where ay,as € A, by,bs € T, ny,na,n,n’ € N and my, ma, m,m’ € M. For details, we refer the readers
to [5].

Let C := C(A,T,M,N,0,0), and B := ' x (M ®4 N) be the trivial extension of I" with the I'-
bimodule M ® 4 N. We may regard M as a B-A-bimodule and N as an A-B-bimodule via the canonical
surjective homomorphism B — I'. Thus we have a Morita context (A, B, M, N, ¢,0), where ¢ : M ® 4 N
— B, m®n+— (0,m®n) forme M and n € N, and the Morita context ring

AN
Aoy = :
(6.0) (M B)
(6.0)

which is isomorphic to C'. Thus, the dual versions of Theorems 3.5 and 3.10 also describe the Gorenstein-
projective modules over the noncommutative tensor product C. For example, we have the following
specifical corollary.

Corollary 4.2. Suppose that the bimodules tMa, aNr and tM ®4 Nr are weakly compatible. Let
B=TxJ with J:= M ®&a N. Then a C-module (4 X, BY, f,g) is Gorenstein-projective if
(i) rCoker(f) and sCoker(g) are Gorenstein-projective, and

(ii) AN ®p Coker(f) ~ sIm(g), M ®4 Coker(g) ~ gIm(f)/JY and pJ ®p Coker(f) ~ gJY, where
Coker(f) and Im(g) denote the cokernel of f and the image of g, respectively.
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