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Derived equivalences, matrix equivalences, and homological conjectures

Xiaogang Li and Changchang Xi*

Abstract

Centralizer matrix algebras were investigated initially by Georg Ferdinand Frobenius in the Crelle’s
Journal around 1877. By introducing three new equivalence relations on all square matrices over a
field, we completely characterize Morita, derived and almost v-stable derived equivalences between
centralizer matrix algebras in terms of these matrix equivalences, respectively. Thus the categori-
cal equivalences are reduced to matrix equivalences in linear algebra. Further, we show that a de-
rived equivalence between centralizer matrix algebras of permutation matrices induces both a Morita
equivalence and additional derived equivalences for p-regular parts and for p-singular parts. As ap-
plications, we show that the finitistic dimension conjecture and Nakayama conjecture are valid for
centralizer matrix algebras.
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1 Introduction

Derived categories and equivalences between them are the piece de résistance of modern homological
algebra. They were initiated by Grothendieck around 1960’s and developed further by Verdier (see [40]).
Since then a lot of applications and connections have been discovered to other branches in mathematics.
For instance, in representation theory, Happel applied them successfully to generalized tilting modules
over finite-dimensional algebras [20]. Moreover, Rickard advanced Happel’s work and developed a beau-
tiful Morita theory for derived categories of rings (see [37, 38]). Also, Keller established a Morita theory
for differential graded algebras (see [29]). All of these provide powerful tools to understand derived mod-
ule categories and equivalences of both rings and differential graded rings. However, it is still a hard and
untractable, but fundamental, problem to decide whether two algebras are derived equivalent or not. This

* Corresponding author. Email: xicc@cnu.edu.cn; Fax: 0086 10 68903637.

2020 Mathematics Subject Classification: Primary 16E35, 20C05, 15A27, 16G10; Secondary 16S50,05A05, 16D90, 18G80.

Keywords: Centralizer matrix algebra; D-equivalence relation; Derived equivalence; Elementary divisor; finitististic dimen-
sion conjecture; Morita equivalence; Nakayama conjecture.


https://arxiv.org/abs/2509.26353v1

can be seen from a not yet solved conjecture by Broué, which says that a block algebra of a finite group
algebra with abelian defect subgroup should be derived equivalent to its Brauer corresponding block al-
gebra [5]. Though many efforts have been made in the last decades, the conjecture seems far away from
being solved completely. For some advances about this conjecture, we refer to [8, 39].

To understand derived equivalences between algebras, one may generally pursue two strategies. One
of them is to focus on special derived equivalences between arbitrary algebras (see [23] for example). The
other is to consider arbitrary derived equivalences between special algebras (see [16] for example).

In this article we consider arbitrary derived equivalences between centralizer matrix algebras. This
class of algebras was investigated long time ago by G. F. Frobenius (see [17]), and appeared in the study
of characters of general linear groups by J. A. Green [19]. Centralizer matrix algebras can have arbi-
trary representation types and arbitrary large or even infinite global dimensions. They cover a class of
quasi-hereditary algebras, and the algebras of centrosymmetric matrices which arise as transition matri-
ces for certain Markov processes (see [41]) and have applications in engineering problems and quantum
physics (see [12]). Moreover, for centralizer matrix algebras, the famous Auslander—Reiten conjecture (or
Auslander—Alperin conjecture) on stable equivalences holds true [49], while the conjecture states that sta-
bly equivalent algebras should have the same number of non-isomorphic, non-projective simple modules.

The purpose of this article is

(1) to provide complete descriptions of Morita, derived and almost v-stable derived equivalences for
centralizer matrix algebras. This will be done by introducing new equivalence relations on square matrices
in terms of elementary divisors. Thus we reduce complicated categorical equivalences of centralizer
matrix algebras to the equivalences of matrices in linear algebra; and, as an application of our methods,

(2) to show that the Nakayama and finitistic dimension conjectures are valid for centralizer matrix
algebras over fields.

An unexpected phenomenon is that Morita and derived equivalences of centralizer matrix algebras
depend upon ground fields.

In the following, we will introduce our main results and their consequences more precisely.
Let R be a field. We denote by M, (R) the full n x n matrix algebra over R with the identity matrix /.
For a nonempty subset X of M, (R), the centralizer algebra S,(X,R) of X in M,(R) is defined by

Su(X,R) :={a eM,(R) |ax=xa,Vx € X}.

Clearly, S,(X,R) = NeexSu({c},R). Thus it is of interest first to study the case X = {c}. For simplic-
ity, we write S, (c,R) for S, ({c},R), and term S, (c,R) as a centralizer matrix algebra in this article.

Centralizer matrix algebras seem to be first studied by Georg Ferdinand Frobenius (see [17]). He
proved a nice dimension formula in terms of the degrees of invariant factors of the given matrix (see [44,
Theorem 1, Theorem 2, p.105-106]). Precisely, it reads as follows.

Theorem (Frobenius). Let d; (x), - -+ ,d;(x) be the invariant factors of positive degree of a matrix ¢ €
M, (R) over a field R, and let n; be the degree of d;(x),1 <i<s. Then dimgS,(c,R) =Y;_;(2s—2i+1)n;.

Typical examples of centralizer matrix algebras are centrosymmetric matrix algebras (see [41, 46])
and the quasi-hereditary Auslander algebras of the truncated polynomial algebras R|[x]/(x") for all n (see
[47]), which play a crucial role in the classification of parabolic subgroups of classical groups with a finite
number of orbits on the unipotent radical (see [21]). Also, all algebras of the form R[x]/(f(x)) can be
realized as centralizer matrix algebras.

If c is an invertible matrix, then the centralizer matrix algebra of c is the invariant algebra of the action
of cyclic group (c¢) on M, (R) by conjugation. In general, if X consists of invertible matrices, then S, (X, R)
is just the invariant algebras which can be dated back to the classical invariant theory (see [42]). If cis a
nilpotent matrix in M, (IF,), where F, is a finite field with g elements, then the determinants of matrices



in S,(c,IF,) are completely described (see [4]). Also, for a nilpotent matrix c, it is shown that S,(c,R) is
the so-called GIGS algebra (see [10]), that is a gendo-symmetric properly stratified Gorenstein algebra
having a duality. In general, if X consists of nilpotent matrices over an algebraically closed field R, then
all nilpotent matrices in S, (X, R) form a variety which is of significant interest in semisimple Lie algebras
(see [35, 36]). Centralizer matrix algebras are also studied in invariant orbits (see [3]), and in maximal
doubly stochastic matrix theory (see [11]). Recently, a lot of new structural and homological properties of
Su(c,R) are revealed in a series of papers [47, 48, 49]. For instance, S, (c, R) is always a cellular R-algebra
in the sense of Graham-Lehrer (see [18]) if the field R is algebraically closed. Further, S, (c,R) is always
a Gorenstein algebra.

Since Morita and derived equivalences are fundamental algebraic equivalences and of great interest
in the representation theory of algebras and groups (for example, see [39]), we consider the following
question.

Question: Let R be a field, c € M,(R) and d € M,,,(R). What are necessary and sufficient conditions
for S, (c,R) and S,,(d, R) to be Morita or derived equivalent?

To answer this question, we introduce the so-called M-equivalence, D-equivalence and AD-equivalence.
These matrix equivalences reflect information on maximal elementary divisors of matrices. We refer the
reader to Section 3 for precise definitions).

A complete answer to the above question reads as follows.

Theorem 1.1. Let R be a field, ¢ € M,,(R) and d € M,,,(R). Then the centralizer matrix algebras of ¢ and
of d are Morita equivalent (respectively, derived equivalent, or almost v-stable derived equivalent) if and
only if the matrices c and d are M-equivalent (respectively, D-equivalent, or AD-equivalent).

Thus the existence of a Morita equivalence, a derived equivalence or an almost v-stable derived equiv-
alence between centralizer matrix algebras can be read off directly from the elementary divisors of given
matrices, and therefore is reduced to marix equivalences in linear algebra.

As an application of our methods, we consider the Nakayama conjecture [34] and the finitistic dimen-
sion conjecture [2].

Nakayama Conjecture (NC): An Artin algebra is self-injective if it has infinite dominant dimension.
Finitistic Dimension Conjecture (FDC): The finitistic dimension of an Artin algebra is always finite.

These are two of the central conjectures in the representation theory and homological algebra of Artin
algebras (see [1, Conjectures, p.409]). They are still open up to date. But we will show in Section 4.2 that
the conjectures hold true for centralizer matrix algebras.

Theorem 1.2. (1) The finitistic dimension conjecture holds true for centralizer matrix algebras over
fields. Particularly, the Nakayama conjecture holds true for centralizer matrix algebras over fields.

(2) If two centralizer matrix algebras are derived equivalent, then they have the same dominant di-
mension.

Consequently, (FDC) is valid for any algebras that are derived equivalent to centralizer matrix algebras
because the finiteness of finitistic dimensions is invariant under derived equivalences.
Next, we state some corollaries of Theorem 1.1. For unexplained notation, we refer to Subsection 3.1.

Corollary 1.3. Let R be a field, c € M,(R) and d € M,,,(R).
(1) If ¢ and d are permutation matrices, then S,(c,R) and S,,(d,R) are Morita equivalent if and only
if they are derived equivalent.
(2) If the field R is perfect, then the following are equivalent.
(a) Sp(c,R) and S,,(d,R) are almost v-stable derived equivalent.
(b) Sy(c,R) and S, (d,R) are stably equivalent of Morita type, and there is a bijection T : M.\ R, —
M \ Ra, such that R[x]/(f(x)) ~ R[x]/((f(x))7) for f(x) € M\ Re.



For a derived equivalence of the centralizer matrix algebras of permutation matrices, we can addition-
ally get two more derived equivalences, that is, derived equivalences from their p-regular and p-singular
parts of permutations, where p is a prime number. The p-regular part r(G) and the p-singular part s(c) of
G € X, are defined in terms of the cycle type of 6. For more details, we refer to Section 4.4.

Let ¢ := Y1 €; (i) € Mu(R) be the permutation matrix of 6, where ¢;; is the matrix with 1 in (i, j)-
entry and O in all other entries.

Corollary 1.4 (Proposition 4.12). Let R be a field of characteristic p >0, 6 € X, and t € ¥,,. If Sy(cs,R)
and Sy (cz,R) are derived equivalent, then

(1) Su(cy(o),R) and Sy (cy(x),R) are derived equivalent, and

(2) Su(cs(o),R) and Sy (cy(v),R) are derived equivalent.

The paper is organized as follows. In Section 2 we fix notation, recall basic definitions and termi-
nology, and prove a few preliminary lemmas needed in the later proofs. In Section 3 we introduce 3
new equivalence relations on square matrices over fields. As examples, we describe representation-finite
centralizer matrix algebras. In Section 4 we prove the main results and their corollaries. In Section 5 we
present examples to show that the converse of Corollary 1.4 may be false and that even for centralizer
matrix algebras over a field, the notions of Morita, derived and almost v-stable derived equivalences are
distinct, though they may coincide in many cases. Finally, we propose some open problems for further in-
vestigation. For example, can one generalize the main results in this article to the case that R is a principal
ideal domain?

2 Preliminaries

In this section we recall some basic definitions and terminologies on derived equivalences, and prepare a
few lemmas on modules over polynomial algebras for our proofs.

2.1 Definitions and notation

In this paper, R is a field unless stated otherwise. By an algebra we mean a finite-dimensional unitary
associative algebra over R. By a module we mean a left module.

Let A be an algebra. By rad(A) and LL(A) we denote the Jacobson radical and Loewy length of A,
respectively. Let A” and A stand for the opposite algebra and the enveloping algebra A @ A% of A,
respectively.

We write A-mod for the category of all finitely generated A-modules, A-mod g for the full subcat-
egory of A-mod consisting of modules without any nonzero projective direct summands, and A-proj
(respectively, A-inj) for the full subcategory of A-mod consisting of projective (respectively, injective)
A-modules.

For an A-module M € A-mod, ¢(M) denotes the composition length of M, and add(M) denotes the full
subcategory of A-mod consisting of all modules isomorphic to direct summands of direct sums of finitely
many copies of M. If M € A-proj, we denote by pres(M) the full subcategory of A-mod consisting of those
modules L such that there is an exact sequence Py — Py — L — 0 with Py, P; € add(M). The basic module
of M is by definition the direct sum of all non-isomorphic indecomposable direct summands of M. This
is uniquely determined by M up to isomorphism, and denoted by B(M). Let M » be the submodule of M
such that M 5 has no nonzero projective direct summand and M /M is projective. Thus M» € A-mody.

For homomorphisms f: X —Y and g: Y — Z in A-mod, we write fg for their composition. This
implies that the image of an element x € X under f is denoted by (x)f. Thus Hom, (X,Y) is naturally an
End4 (X)-Endy (Y)-bimodule, where End4 (X) stands for the endomorphism algebra of the module X.



The composition of functors between categories is written from right to left, that is, for two functors
F:C—Dand G: D — X, we write Go F, or simply GF, for the composition of F with G. The image
of an object X € C under F is written as F(X).

Let D be a class of A-modules. By the number of modules in D we always mean the number of the
isomorphism classes of modules in D.

A homomorphism f : M — N in A-mod is right almost split if f is not a split surjection and any

homomorphism X — N which is not a split surjection factorizes through f. Dually, left almost split

homomorphisms are defined. An exact sequence 0 — M I L8 N — 0 of A-modules is called an almost

split sequence if f is left almost split and g is right almost split. We refer to [1] for further information on
almost split sequences. The homomorphism f is called a radical homomorphism if, for any Z € A-mod,
g € Homy(Z,M) and h € Homy (N, Z), the composition gfh is not an automorphism of Z.

Let D = Homg(—,R) : A-mod — A”-mod be the usual duality of A. The Nakayama functor v4 :=
DHomy (—,A) ~ D(A) ®4 — : A-mod — A-mod restricts to an equivalence between A-proj and A-inj.
An A-module M € A-mod is said to be v-stably projective if VZM is projective for all i > 0. Let A-stp
denote the full subcategory of A-mod consisting of all v-stably projective A-modules. Clearly, there is an
idempotent e € A such that A-stp = add(Ae). The self-injective algebra eAe is called the Frobenius part of
A, which is unique up to Morita equivalence (see [24] or [32] for more details).

The R-algebra A is said to be elementary if A/rad(A) is isomorphic to the direct product of copies of
R, and split if there exist positive integers ny,- - - ,n; such that A /rad(A) ~ ® My, (R) as algebras. So
elementary R-algebras are always split.

Let 2°(A) stand for the bounded derived category of A-mod. It is known that 2°(A) is an R-linear,
triangulated category. Let A-mod denote the stable module category of A-mod, which is the quotient
category of A-mod modulo the full subcategory A-proj. In general, A-mod is not a triangulated category.
But, if A is self-injective, then A-mod is an R-linear triangulated category.

Definition 2.1. Algebras A and B over a field R are said to be

(1) Morita equivalent if their module categories A-mod and B-mod are equivalent as R-linear cat-
egories. In this case, an equivalence F : A-mod — B-mod of R-linear categories is called a Morita
equivalence between A and B.

(2) Derived equivalent if their derived categories 9*(A) and 2°(B) are equivalent as R-linear tri-
angulated categories. In this case, an equivalence F : 2°(A) — 2°(B) of R-linear triangle categories is
called a derived equivalence between A and B.

(3) Stably equivalent if their stable module categories A-mod and B-mod are equivalent as R-linear
categories. In this case, an equivalence F : A-mod — B-mod of R-linear categories is called a stable
equivalence between A and B.

For further information on derived categories and equivalences of rings, we refer to [37, 38].

If F is a stable equivalence between algebras A and B, then F induces a one-to-one correspondence
between non-isomorphic, indecomposable, non-projective modules in A-mod s and B-mod 5.

The following is a simple observation on Morita equivalences.

Lemma 2.2. Let A be an algebra and M,N € A-mod. Then Ends(M) and Ends(N) are Morita equiva-
lent if and only if add(M) and add(N) are equivalent as R-linear categories. Moreover, if A is a local,
Nakayama algebra, then the algebras Ends(M) and Ends(N) are Morita equivalent if and only if the
basic modules B(M) and B(N) are isomorphic.

Proof. We only prove the second statement. Suppose that A is a local, Nakayama algebra with
LL(A) =n. Then {A/rad'(A) [0 <i <n— 1} is a complete list of all non-isomorphic indecomposable
A-modules, and Ends (A/rad'(A)) ~ A/rad'(A) as algebras for 0 < i < n— 1. Thus, for indecomposable



A-modules X and Y, Ends(X) ~ End4(Y) if and only if X ~ Y. Suppose that Ends (M) and End4(N)
are Morita equivalent. Then there is an R-linear equivalence G : add(M) — add(N). In particular, we
have End4 (C) ~ End4(G(C)) for C € add(M), and therefore C ~ G(C) for any indecomposable module
C € add(M). Hence B(M) ~ B(N) as A-modules. The converse is clear by the fact: add(M) = add(B(M))
for any M € A-mod. [

The second statement in Lemma 2.2 is not true in general. For example, if A is an algebra over an
algebraically closed field R and has at least two (non-isomorphic) simple A-modules M and N such that
End4 (M) ~ R ~ End, (N, then we cannot get M ~ N.

As a special class of derived equivalences, almost v-stable derived equivalences were introduced in
[22]. Recall that a tilting complex is called a radical tilting complex if all of its differentials are radical
homomorphisms. Every tilting complex over an algebra A is isomorphic to a radical tilting complex in
PP (A) (see [22, (a), p.112]).

Definition 2.3. [22] Let F : 9°(A) — 2"(B) be a derived equivalence of algebras A and B. Suppose that
Q°* and Q° are radical tilting complexes associated to F and the quasi-inverse F~' of F, respectively. By
applying the shift functor if necessary, we may assume that Q* and Q° are of the form

0—Q0"—...—0Q0'—0"—0 0—-0"—90'—...—0"—0,

respectively. Let Q = @}, O "and Q = b, Q". The derived equivalence F is said to be almost
v-stable provided that add(,Q) = add(v4Q) and add(3Q) = add(vzQ).

One of the significant properties of almost v-stable derived equivalences is that such an equivalence
between algebras always induces a stable equivalence of Morita type (see [22, Theorem 1.1]), and thus
preserves global and dominant dimensions of algebras. This generalises a result of Rickard on derived
equivalences of self-injective algebras (see [38, Corollary 5.5]).

Definition 2.4. [6] Algebras A and B are stably equivalent of Morita type if there exist bimodules sMp
and gNy such that M and N are projective as one-sided modules, M @g N ~A D P and N Qs M ~ B® Q
as bimodules, where P is a projective A°-module and Q is a projective B®-module.

In this definition, the exact functor N ®4 — : A-mod — B-mod induces a stable equivalence N ®4 — :
A-mod — B-mod.

Examples of stable equivalences of Morita type are the derived equivalences between self-injective
algebras (see [38, Corollary 5.5]). Another example is that a commutative ring R and a separable R-algebra
A are stably equivalent of Morita type. Here, an R-algebra A is separable over R if 4A,4 is a projective
A¢-module.

An algebra is said to be representation-finite if it has only finitely many non-isomorphic indecom-
posable modules. Consequently, given A-modules M and N with add(N) C add(M), if Ends (M) is
representation-finite, then so is End4(N). Equivalently, if A is representation-finite, then so is eAe for
alle = € A.

2.2 Basic facts on derived equivalences of algebras

Derived equivalences of algebras were described by Rickard in terms of tilting complexes in [37]. How-
ever, for our purpose, we will follow the approach in [24] to construct derived equivalences of algebras.
For further information on constructing derived equivalences of algebras, we refer to [45].

Let C be an additive category and D a full subcategory of C. Given an object Y € C, a morphism
f:M —Y in Cis called a right D-approximation of Y if M € D and each morphism D — Y with D € D
factorizes through f. A left D-approximation of an object X in ( is defined dually. As usual, we denote
by End(Y) the endomorphism ring of an object Y € C.



Definition 2.5. [24] A sequence X LM i> Y of morphisms in C with M € D is called a ‘D-split sequence
if g is both a kernel of f and a left D-approximation of X, and if f is both a cokernel of g and a right
D-approximation of Y.

Examples of add(M)-split sequences capture almost split sequences X — M — Z in A-mod. Also, for
any projective-injective module M and a submodule X of M, the exact sequence X — M — M /X is an
add(M)-split sequence.

Lemma 2.6. [24, Theorem 1.1] Let A be an algebra, and let C be a full additive subcategory of A-mod
and M an object in C. Suppose that X — M' — Y is an add(M)-split sequence in C. Then End-(M & X)
and End-(M @Y ) are derived equivalent.

As a consequence of Lemma 2.6, we get the following result (see also [22, Section 3, Remark]).

Lemma 2.7. Let A be a self-injective algebra and X € A-mod. Then Ends(A® X ) and Enda (A & Q4 (X))
are almost v-stable derived equivalent.

The next result is somehow a converse of Lemma 2.7.

Lemma 2.8. [7, Theorem 4.4] Let A and B be symmetric algebras, and let F be an almost v-stable derived
equivalence between Ends (A ®M) and Endg(B@ N), where AM and gN are basic non-zero modules with-
out nonzero projective summands. Then A and B are (almost v-stable) derived equivalent. Furthermore,
F induces a stable equivalence F : A-mod — B-mod with F (M) = N.

Lemma 2.9. Let A and B be commutative self-injective algebras, and let ;M and gN be faithful modules
over A and B, respectively. If End4(M) and Endg(N) are derived equivalent, then A ~ Z(Ends(M)) ~
Z(Endg(N)) ~ B, where Z(C) denotes the center of an algebra C.

Proof. For an algebra C and a faithful C-module X, one always has an embedding Z(C) — Z(End¢(X)).
Thus A — Z(End4 (M)) since A is commutative. Note that a faithful module over a self-injective algebra
is clearly a generator-cogenerator. This implies that Mg, (a) 18 a right faithful module and the bimodule
AMEnq, (m) has the double centralizer property, that is Endgyg, (ar)or (M) ~ A. Thus there is an embed-
ding Z(Enda(M)) — Endgpg, (p)er (M) ~ A. Hence A ~ Z(Enda(M)). Now, assume that Enda (M) and
Endp(N) are derived equivalent. Then Z(Ends (M) ~ Z(Endg(N)) by [37, Proposition 9.2], and therefore
A~Z(Endg(M)) ~Z(Endg(N)) ~B. O

2.3 Modules over quotients of polynomial algebras

In this subsection we recall some basic facts on modules over the polynomial algebra R[x], where R is a
field, and prove a few basic lemmas for later proofs.

Throughout this section, let f(x) be a fixed irreducible polynomial in R[x] and A := R[x]/(f(x)")
for a natural number n > 0. Then A is a local, commutative, symmetric, Nakayama algebra (see, for
instance [1, Example, p.127]). Thus A has n indecomposable modules M (i) := R[x]/(f(x)") for i € [n].
We write M(0) = 0. Clearly, Homy (M (i),A) ~ Homg (M (i),R) ~ M(i) as A-modules, and ¢(M(i)) = i for
all i € [n]. Moreover, for i, j € [n], we see that i < j if and only if there is an injective homomorphism in
Homy (M (i), M(j)) if and only if there is a surjective homomorphism in Homgu (M (j),M(i)).

For B := R[x|/(f(x)™) with m < n, there is a canonical surjective homomorphism 7 : A — B of R-
algebras, and therefore each B-module can be viewed as an A-module via . Up to isomorphism, indecom-
posable A-modules coming from B-modules are exactly those M (i) with i € [m]. Clearly, Homy (M,N) =
Homg(M,N) for M,N € B-mod.



For an irreducible polynomial g(x) € R[x] and a positive integer m, if A ~ R[x]/(g(x)") as R-algebras,
then n = LL(R[x]/(f(x)")) = LL(R[x]/(g(x)™)) = m and, for ¢ € [n], the indecomposable B-module
R[x]/(g(x)") is isomorphic to the A-module M (t).

Now, suppose that G : A-mod — A-mod is a stable equivalence. For n > 2, we define I, := {M(i) |
i € [n—1]} C A-mod . Then G induces a permutation G on I',_, namely, for M € T,,_, G(M) is the
unique module in [, such that G(M) ~ G(M) in A-mod. Clearly, Q4 (M(i)) = M(n — i), where Q, is
the syzygy operator of A.

Lemma 2.10. Let n > 2. If G : A-mod — A-mod is a stable equivalence, then the induced action G on
I',—1 coincides with either Q4 or the identity action.

Proof. 1If n = 2, then A has only one non-projective indecomposable A-module S and Q(S) ~ S.
Thus the conclusion is true. Now suppose n > 3. For A-modules X and Y, let Irr(X,Y) be the R-space
rad (X,Y)/rad%(X,Y). For i,j € [n— 1], it follows from the shape of the Auslander-Reiten quivers of
Nakayama algebras that Irr(M(i),M(j)) # 0 if and only if |i — j| < 1. By a general result on stable
equivalences (see [1, Lemma 1.2, p.336]), we have Irr(X,Y) ~Irr(G(X),G(Y)) as R-spaces for X,Y €
A-mod . It then follows that G(M(1)) ~ M (1) or G(M(1)) ~M(n—1) = Q4 (M(1)). This implies that
G(M(i)) = M(i) for i € [n— 1] or G(M(i)) ~ Qa(M(i)) for i € [n —1]. Hence G is the identity map or
equals Q4. O

Lemma 2.11. Leta,b,c,d € {0,1,--- ,n} suchthatb<a<c,b<d<canda+d=>b+c. If 4X € A-mod
has no indecomposable direct summands N with b < {(N) < ¢ and AY := sX &M (b) & M(c), then there
is an add(4Y)-split sequence 0 — M(a) — M(b) ®M(c) — M(d) — 0.

Proof. Let g : M(b) — M(d) and h: M(c) — M(d) be the canonical injective and surjective homomor-
phisms, respectively, and define v:= (§ ). Then v : M(b) &M (c) — M(d) is a surjective homomorphism.
Similarly, let p : M(a) — M(b) and q : M(a) — M(c) be the canonical surjective and injective homomor-
phisms, respectively, and define u := (—p,q). Then u : M(a) — M(b) & M(c) is an injective homomor-
phism. By the definition of M(i), we have uv = 0. It follows from a + d = b + ¢ that the sequence

(¥) 0— M(a) 5 Mb)®M(c) - M(d) — 0

of A-modules is exact. This can also be seen from the Auslander—Reiten quivers of Nakayama algebras.

We shall show that u and v are left and right add(4Y )-approximations of M(a) and M(d), respectively.
In fact, we need only to show that v is a right add(4Y )-approximation of M(d) because the dual functor
Homg(—,R) transforms right add(4Y )-approximations to left add(4Y )-approximations. To show that v is
aright add(4Y )-approximation of M(d), it suffices to prove that, for any indecomposable direct summand
Z of oY, each homomorphism % : Z — M(d) factorizes through v. Let Im(k) denote the image of h. By
the assumption on X, we have either £(Z) < b or (Z) > c.

Suppose ¢(Z) < b. Then ¢(Im(h)) < U(Z) <b=L((M(b))g). Since (M(b))g is maximal submodule
of M(d) of length b, we have Im(h) C (M(b))g. Let s : Z — M(b) & M(c) be the map defined by (z)s :=
((z)h)g~",0) for z € Z. Clearly, i is a homomorphism of A-modules such that & = sv, that is, & factorizes
through v.

Suppose £(Z) > c¢. Then max{a,b,c,d} < {(Z). Let B := R[x]/(f(x)"®). Then B is the quotient
of A by the ideal (f(x))"“@ + (f(x)") and Z ~ M(¢(Z)) = R[x]/(f(x)!®)) = B as A-modules. This
shows that Z is also a projective B-module. Thus the exact sequence (*) can be viewed as a sequence
of B-modules. So the exactness of Homp(Z, —) implies that 4 factorizes through v in B-mod. Since
Homy (M,N) = Homg(M,N) for M,N € B-mod, we see that & factorizes through v in A-mod. [J

Lemma 2.12. Let n =Y, {; with {; € Z~¢. For 6 € X, and j € [s], define M; := M(Z{Zl ;) and M;’ =
M(Z{Zl L(i)s)- Then Enda(Dj_ M) and Enda (D M7) are derived equivalent.
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Proof. The symmetric group X is generated by the transpositions (7,7 + 1),¢ € [s — 1]. In particular,
G € X, can be written as a product of these transpositions, say ¢ = Hﬁ-‘:l(ti,t,- +1) for #; € [s — 1]. Set
Ors1 :=id and o, := [T*_,(t;,2; + 1) for all € [k]. Then 6 = & and (¢,,t, + 1), = 6,1 for r € [k]. In
particular, (¢,)6,4+1 = (t,+ 1)6,, (t, + 1)0,41 = (t,)0, and (¢)0,41 = (1)o, forr € [s]\ {t,7,+ 1}.

Since Enda (D) M7) = Endy (D5, M;S') and Enda (6D’—; M;) = Endy (D’ M;?"“, it suffices to
show that there is a derived equivalence between Enda (@@, M$") and End, (@, M) for all r € [k].

Indeed, for any T € X, we define Zﬁ;l lie=0 iftr = 1. Forre [k],leta, :== £, 11)s,,, —l—Z?;ll Liye, 1 br
Y ey er = X iy, dr = Zi-’:lf( 10,010 Xr 1= @ e j—z2 M7 and Y, i= @ jerg oz M7
Then b, < a, < ¢;,b, < d, < ¢y,a,+d, = b, +c¢, and

t,—1 t+1

= M( ; g(i)ﬁm) @M( ; Z(l')<5r+1) ® @ M;'M] =M(b,) ©M(c;) B X,

J€ls],lj—t>2

Clearly, for any indecomposable direct summand Z of X, = @ j¢(] | j—, |>2 M(.S’+1 either £(Z) < Zt’ z Cyorsn
<b,orl(Z)> ZI’H C(j)s,., > ¢r- It then follows from Lemma 2.11 that there is an add(Y,)-split sequence

0 —>M(a,) — M(b,) ®M(c,) — M(d,) — 0.

Clearly, “}ZlM;-’* =Y, ®M(a,) and @j-le?’“ =Y, ®M(d,). By Lemma 2.6, EndA(GBj-:le’) and
End (D, M(.”“) are derived equivalent. [J

Remark 2.13. The sums Zl £i and Zl 1 £(i)s»> appearing in Lemma 2.12, are related to the definition of
D-equivalences of matrices (see Section 3.1 below). For s > 2 and a series of integers m; > mg_1 > -+ >

my > 1, let 41 :=my and ¢; == m; —m,_; for2 <i<s. Thenm; = {:1&' for j € [s]. For another series
of integers ny > ng_1 > -+~ >ny > 1,if {{ms—ms_1,--- ;m}} = {{n; —ns_1,--- ,n1 }} as multisets, then
there exists some 6 € X such that nj = Y!_ £, for j € [s]. Moreover, if {{m;—my_y,--- ,mi }} = {{ns—

ng—1,---,np }} and if there are two irreducible polynomials f(x) and g(x) in R[x] such that R[x]/(f(x)™s) ~
R[x}/(g( )”A) as algebras, then it follows from Lemma 2.12 that Endgy /( r(xyms) ( Brefs) RIx]/ (f (x)™)) and

Endgpy/(g(x)s) (Dre i R[x]/ (g(x)" ¢)) are derived equivalent.

Recall that a polynomial g(x) € R[x] of positive degree is separable if it has only simple roots in its
splitting field.

Lemma 2.14. [f the irreducible polynomial f(x) is separable, then K := R[x]/(f(x)) is a separable field
over R, the algebra A can be viewed as a K-algebra, and A ~ K|x|/(x") as K-algebras.

Proof. Since f(x) is separable and rad(A) = (f(x))/(f(x)"), we know that A /rad(A) ~ K is a separable
R-algebra. By Wedderburn-Malcev Theorem [43, Theorems 24 and 28], there exists a subalgebra S of A
such that A = S G rad(A) as R-vector spaces. Consequently, S ~ A /rad(A) ~ K. So A can be viewed as a
K-algebra. Since A is a finite-dimensional, elementary, local K-algebra of representation-finite type, there
is a natural number m such that A ~ K|[x]/(x™) as K-algebras. By considering the chain R[x] 2 (f(x)) 2

=

(f(x)>) 2 --- 2 (f(x)") 2 0 and comparing the K-dimensions of the algebras in this isomorphism, we get

- =

n=m. 0O

Corollary 2.15. If the polynomial f(x) is separable and g(x) € R[x| is irreducible such that A is stably
equivalent to R[x]/(g(x)™) for an integer m > 2, then A ~ R|[x]/(g(x)™) as R-algebras and m = n.

Proof. Since stably equivalent algebras of representation-finite type have the same number of non-
isomorphic, non-projective, indecomposable modules, we have n — 1 = m — 1, and therefore n = m. Set
B := R[x]/(g(x)™). Let F : A-mod — B-mod be a stable equivalence, and let S be the unique simple

b, =



A-module (up to isomorphism). Then F induces a one-to-one correspondence between the set of non-
isomorphic, non-projective, indecomposable modules in A-mod s and the one in B-modg. Thanks to
n=m > 2, the module S is not projective and End4 (S) ~ End, (S). Thus F(S) is indecomposable and

End, (S) =~ End, (S) =~ Endy(F (S)) = Endg(F (S))/P(F (S), F (S))

is a division ring, where P(F(S),F(S)) is the set of all homomorphisms that factorize through projective
B-modules. Since P(F(S),F(S)) C rad(Endg(F(S))), we have P(F(S),F(S)) = rad(Endg(F(S))). This
yields the following isomorphisms of algebras:

RI/(£(x)) ~ A/rad(4) ~ End, () ~ End, (F(S)) ~ B/rad(B) ~ R[x]/ (g(x)).

In particular, g(x) is also a separable polynomial. Let K := R[x]/(f(x)). Then Lemma 2.14 implies that
A ~ K[x]/(x") ~ B as K-algebras, and therefore also as R-algebras. [J]

For ¢ € M, (R), set A. := R[x]/(Ker(@)) = R[x]/(m¢(x)) ~ R[c]. Then the characteristic matrix xI, — ¢
of ¢ is a matrix over the principal ideal domain R[x]. Suppose that xI, — ¢ has invariant factors d; (x), - - - ,d,(x)
of positive degree with r <n and d;|d; ) for 1 <i<r. Letd,(x) = fi(x)"--- fs(x)¢>, where fi(x), -, fs(x)
are pairwise coprime, irreducible polynomials, and e,; > 0 is an integer for j € [s]. Then, fori € [r—1], we
can write d;(x) = fi(x)%" - - fy(x), where 0 < ¢;; < e;1; < --- < e,;. The polynomials f;(x)%, with e;;
positive for i € [r] and j € [s], are called the elementary divisors of c. This can be interpreted alternatively
in the following way.

Let R" be the set of n x 1 matrices with entries in R. Then ¢ can be viewed as a linear transformation G,
on R" by 6.-v:=cvforv e R". Note that m.(x) = d,(x) = fi(x)°" - - fy(x)°*. Set M; := Ker(f;(o.)*7) for
J € [s]. Then M is a 6 -invariant subspace (equivalently, R[c]-submodule) of R" and R" = @’_; M. Note
that the minimal polynomial of the restriction of 6. to M; is fj(x)/. By [9, Theorem 4.11], we see that
M;= @f’: 1M ; can decompose into direct sum of 6.-cyclic subspaces M j;, and the minimal polynomial of
the restriction of o, to the subspace M ; is f;(x)%. The multiset of these polynomials f;(x)%7 is in fact the
multiset of elementary divisors of ¢ (over R). Note that R” can be regarded as an R[x]-module by letting x
act on R" as 6X and the decomposition R" = | EBf’: | Mj; is in fact a decomposition of R" as a direct
sum of indecomposable submodules. That the minimal polynomial of the restriction of G, to the subspace
M is fj(x)% is equivalent to saying that M j; ~ R[x|/(f;(x)%/) as R[x]-modules. Thus

() R =D RN/ ™)

j=1i=1

as R[x]-modules (see [9, Chapter 4, p.130-133] for more details).
For ¢ € M,,(R), we deine Z. to be the set of elementary divisors of ¢. Here, we understand that a set
always has no duplicate elements. Further, we define the set of maximal divisors of ¢ by

M, :={f(x) € E.| f(x) is maximal with respect to polynomial divisibility}.
The next lemma follows immediately from (x).
Lemma 2.16. If R" is identified with the A.-module @'_, @f’: {Rx]/(fi(x)97) in (%), then there is a

bijection T from ‘E. to the set of pairwise non-isomorphic indecomposable direct summands of the A.-
module R", sending h(x) to the A.-module R[x|/(h(x)) for h(x) € E..

Suppose that the characteristic of R is p > 0. For a positive integer m, there exist uniquely determined
integers s,m’ € N such that m = p*m’ and p t m’, we define v, (m) := s. Here, we understand v, (m) := 0
if p=0. Suppose that 6 € £, is a permutation of cycle type (A1, ,Ax). Let g(x) be an irreducible factor
of the minimal polynomial ., (x) of the permutation matrix c; of 6, we define gy (,) 1= max{v,(A;) | j €
[k], such that g(x) divides x* — 1}. Note that q(x) depends upon the cycle type of G.
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Lemma 2.17. Suppose that the characteristic of R is p > 0 and 6 € ¥, is a permutation of cycle type
(A1, ,Ax). Then

E. = {g(x)pvP(M) |i € [k],g(x) is an irreducible factor of X — 1} and

M., = {g(x)? Pt | g(x) is an irreducible factor of m. (x)}.

Proof. For conjugate permutations in X,, their corresponding permutation matrices are similar, and
therefore have the same elementary divisors. Thus, without loss of generality, we may assume that
o=(1,---, A (A1 +1,--- | A +X2)-'~(le‘.;{7»j+1,-~ ,n). Then ¢ is a diagonal block matrix, that is ¢s=
diag{cs,,¢s,,"** ,Co, }, Where G; is a A;-cycle in Xy, for i € [k]. In particular, m,(x) is the least common
multiple of x* — 1 for i € [k] and E,, = Uiely Eeo,- For a matrix d € Mu(R), let xq(x ) denote the charac-
teristic polynomial of d in R[x]. For i € [k], we wrlte A = pYrMAN with pt AL Then x% — 1 = Hif": | fij(x),
where f1(x), fia(x),- -, fin,(x) are distinct irreducible (monic) polynomials in R[x|. From the following
equalities

hy
Aoy (1) =24 — 1 =x?"" M1 = (M — 1) =H
We get Yc,, (X) = me, (X) = x% — 1. Hence Eeo, = Me,,- This implies

Eeo = {g(x)* e | i € [k],g(x) is an irreducible factor of x* —1}.

Clearly, M, is of the form {g; (x)™, g2(x)"2, -+, g/(x)™}, where g;(x), g2 (x), -+, g(x) form a com-
plete set of distinct (monic) irreducible factors of m,,(x) and Where my,my, -+ ,my; are positive integers.
Let g,(x) be an irreducible factor of m,_(x). Then g;(x) divides x* — 1 for at least one i € [k], and therefore

the set S(gs(x)) := {gs(x)”Vp(xj ) | j € [k] and g(x) divides x* — 1} # @. By the description of %, we
see that S(gs(x)) is exactly the elementary divisors of ¢ which are divided by g;(x). Thus g (x)l’qg‘Y “isa
maximal elementary divisor of ¢ by the definition of g, (,). Hence

M., = {g(x)pqg(x) | g(x) is an irreducible factor of m,(x)}. O

Now, we prove a result on congruences of matrices that appear as the Cartan matrices of the en-
domorphism algebras of modules over polynomial algebras. Note that two multisets {{xj, -+ ,x;}}
and {{y1, -+ ,ys}} are equal if and only if there exists a permutation 6 € ¥ such that (y;,---,y)® :=

V1yos 3 V(s)e) = (X150 5 Xs).

Lemma 2.18. For an integer s > 2, letm; >my > --- >my > 1 andny >ny > --- > ng > 1 be two series of
integers withm; =nj. Set X ==Y, (Zé‘zl my (e +ew) — mkekk) EM{(Z)andY :=Y;_, (25{:1 ni(ex +
ewn) — nkekk) € My(Z). Then X and Y are congruent in Ms(7Z) if and only if there is 6 € ¥ such that
(ny —na,--- ,ng_y —ng,ng) = (my —my,- - ,ms_y —my,my)°.

Proof. We define three matrices in M (Z) by U := I, — Y~ le,,,ﬂ, D, :=diag(m; —my,--- ,ms_1 —
mg,my) and Dy :=diag(n; —ny,- -+ ,ny_1 —ng,ng). Then U"XU = D and U"YU = D,, where U"" stands
for the transpose of U. Thus X and Y are congruent in M;(7Z) if and only if D; and D, are congruent in
M(Z). Now, we show that D; and D, are congruent in M,(Z) if and only if there is an element ¢ € X, such
that (ny —np, - ,ng_1 —ng,ng) = (my —my, -+ ,mg_1 —mg,my)°. Indeed, if (n; —ny, -+ ,ng_ —ng,ng) =
(my —my,- -+ ;ms_1 —mg,my)° for some ¢ € X, then c¢/Djcs = D,. This means that D; and D, are
congruent in M;(Z). Conversely, suppose that D; and D, are congruent in M (Z). Then there is an
invertible matrix H = (h;;)1<i j<s € Ms(Z) such that H"D{H = D,. This implies
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s—1

S N
(#) Y (X R (=) + (X By = ny = my.
r=1 k=1 k=1

Since H is invertible in M(Z), each column of H has a nonzero element, and therefore Yo hir > 1 for
r € [s]. Now it follows from (x) that Y'5_, h?, = 1 for all r € [s]. Thus each row and column of H has only
one nonzero entry which is either 1 or —1. This implies that H = €c; for T € ¥; and a diagonal matrix € with
the entries in {1, —1}. Hence H"" = H~!. This shows that the diagonal matrices D; and D, are similar, and
therefore they have the same eigenvalues (counting multiplicities). So {{m; —my,--- ,ms_; —mg,ms}} =
{{n1 —na,--- ,ny_1 —ng,ns}} as multisets, that is, (n; —na,--- ,ns_1 — ng,ng) = (Mg —ma, -+ ,Ms_1 —
mg, my)° for some 6 € X. [

3 New equivalence relations of matrices

In this section we introduce three new equivalence relations on square matrices over a field, and present
necessary and sufficient conditions for centralizer matrix algebras to be representation-finite.

3.1 Definitions of matrix equivalences

Let R[x] be the polynomial algebra over a field R in one variable x. Given polynomials f(x) and g(x)
of positive degree, if f(x) divides g(x), that is, g(x) = f(x)h(x) with h(x) € R[x], we write f(x) | g(x).
Observe that this divisibility of polynomials defines a partial order on the set of all monic polynomials of
positive degree in R|[x].

Let n be a natural number and ¢ € M, (R). Recall that £, denotes the set of elementary divisors
of ¢, and M. := {f(x) € E. | f(x) is maximal with respect to polynomial divisibility} is called the set of
maximal divisors of c. In fact, M, is determined completely by the invariant factor d,(x) or m(x).

Let R := {f(x) € M. | f(x) is reducible}. This is the set of all reducible maximal divisors of c.

For f(x) € M,, we define the set P,.(f(x)) of power indices in ‘E,. by

P.(f(x)) := {i > 1| Jirreducible polynomial p(x) such that p(x) divides f(x), p(x)' € E.}.

Let Z~¢ be the set of all positive integers and s € Z~. For a subset T := {my,my,--- ,ms} of Z~q
with my > my > -+ > my, we define a set Jy := {m,m; —my,--- ;m; —m,} and a multiset Hy := {{m; —
my,--- ,mg_1 —mg,mg}}. Note that we allow duplicate elements to occur in multisets. If s = 1, then

Hr = Jr =T. Observe that if H = {ny,ny,--- ,n,} is another subset of Z~o with n; > ny > - > ng, then
H=Jrifand only if T = Jy.

Now we introduce three new equivalence relations on the set of all square matrices over a field.

Definition 3.1. Two matrices ¢ € M,,(R) and d € M,,(R) are said to be

(1) M-equivalent if there is a bijection ® : M, — My, such that R[x]/(f(x)) ~ R[x]/((f(x))®) as
algebras and P.(f(x)) = Ps((f(x))®) for all f(x) € M, where (f(x))m denotes the image of f(x) under
the map w. In this case, we write ¢ Xa.

(2) D-equivalent if there is a bijection ™ : M. — My, such that Rx]/(f(x)) ~ R[x]/((f(x))n) as
algebras and Hp,( ¢(x)) = Hp,((s(x))x) for all f(x) € M. In this case, we write ¢ 2a.

(3) AD-equivalent if there is a bijection T : M, — My, such that Rlx]/(f(x)) ~ R[x]/((f(x))®) as
algebras and either P.(f(x)) = Py((f(x))%) or Po(f(x)) = Ip,((s(x))n) for all f(x) € M. In this case, we

. _AD
write ¢ '~ d.

Clearly, ¢ d d,c R dand ¢ d are equivalence relations on the set of all square matrices over R.
Here are examples of the D-equivalences. Let R be a field and J,(A) the n x n Jordan matrix with the
eigenvalue A € R.
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(1) We take ¢ = J5(1) @ J4(1) ®J3(0) ©J2(0) and d = J3(0) B J4(0) ® J3(1) ® J>(1). Here, & means
forming a diagonal block matrix. In general, m.q4(x) = [m.(x),my(x)], where [f(x),g(x)] stands for the
least common multiple of f(x) and g(x) in R[x]. Then m.(x) =x*(x — 1)*, E. = {x?,3, (x— 1)?, (x = 1)*},
M, = {3, (x —1)*}, P.(x}) = {2,3}, P.((x— 1)*) = {3,4}, and my(x) = x*(x — 1)3, Ey = {3, 2%, (x -
D2, (x—1)3, My = {x*, (x—1)*}, Py(x*) = {3,4}, Ps((x— 1)?) = {2,3}. Let T : M, — M be the map:
¥ (x—1)3 (x—1)*+— x* Then ¢ * d. Note that ¢ and d are not conjugate since they have different
minimal polynomials.

(2) Let a := J5(0) @.14(0) @JQ(O) € MU(R) and b := .]5(0) @Jg,(()) & J (0) S Mg(R). Then E, =
{224, By = {0,000}, My = My = {x°}, Pu(x°) = {2,4,5}, P, (x°) = {1,3,5} and Hp, sy = {{1,2,2}}

M
= Hy, 5)- By definition, a X b, but a 4 b.

3.2 Representation-finite centralizer matrix algebras

In this subsection we characterize representation-finite centralizer matrix algebras.

Lemma 3.2. For c € M,(R), the following hold true.

(1) There are isomorphisms of R-algebras: S,(c,R) ~ Sy(c'",R) ~ S,(c,R)" ~ Enda_(R"), where "
denotes the transpose of the matrix c.

(2) Let Y(x) be the characteristic polynomial of c. Then S,(c,R) = R[c| if and only if ¥ (x) = m.(x).

Proof. (1) The first isomorphism follows from the fact that any matrix over a field is similar to its
transpose [28, Theorem 66, p.76], the second isomorphism is given by sending a matrix in S, (c¢'", R) to its
transpose in S,(c,R)", and the last isomorphism follows by interpreting c as a linear transformation on
the n-dimensional R-space R".

(2) This follows from Frobenius’s dimension formula (see Section 1). [J

In general, S,(c, R) is neither equal to R[c], nor representation-finite (see Example 3.5(2) below). But
we point out when S, (c,R) is representation-finite.

Lemma 3.3. Suppose that R is a perfect field, c € M,,(R) and g(x) € M,. Let by(,y :=max{P.(g(x)) U{3}}.
Then S, (c,R) is representation-finite if and only if P.(g(x)) C {1,bg(x) — 1,bg(y) } for all g(x) € M.

Proof. Clearly, S,(c,R) is representation-finite if and only if every block of S, (c,R) is representation-
finite. The blocks of S,(c,R) are parameterized by M. Let g(x)* € M. with g(x) € R[x] an irreducible
polynomial and s € N. Then b,(,)s = max{3,s} by definition. Since g(x)* lies in M, the algebra
R[x]/(g(x)*) is a block of A := R[x]/(m.(x)). Let M be the component of the A.-module R", which
belongs to the block R[x]/(g(x)*), that is, M is the sum of those indecomposable direct summands of R"
that belong to the block R[x]/(g(x)*). Then Endg(y/(4(x)s)(M) is a block of the endomorphism algebra
Endy, (R"). By Lemma 2.2, Endgy/(4(x)s) (M) is Morita equivalent to Endg(y /(4(x)s)(B(M)). According to
Lemma 2.16, B(M) ~ ,cp, (4(x)) R[¥]/ (¢(x)") as Ac--modules. Thus it follows from S, (c,R) ~ Endy, (R")
that each block of S, (c,R) is Morita equivalent to

Eg(xy :=Endgp e ( D R/ (g(x)"))
1P (g(x)")

for some g(x)* € M..

Since R is a perfect field, the algebraic closure R of R is a separable extension of R. By [27, The-
orem 3.3] which says that, for a separable extension L/R of fields, a finite-dimensional R-algebra A
is representation-finite if and only if so is the L-algebra L ®r A. Hence it suffices to consider when
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R®pg E,(y) is representation-finite. Since R is a perfect field, all irreducible factors of m.(x) are separable
over R. Suppose g(x) = (x—04y) -+ (x — Oy), Where 0y, - -+ , 0, € R are pairwise distinct. Then

E®REg(X)“ = Endﬁ@xR[ 1/(g(x)%) (R @R @zep (3(x)?) R[x ]/(g(x)t))
=~ Endgp /e (—on)) ( Dren g0 R/ (T (x — 04)") ).

Thus each block of R ®g Eyy)s is isomorphic to Endg () (Byep,(g(x)) RI¥/(+)) - Now, it follows from
[14, Theorem 2.1 (i)] (see also [13]) that the endomorphlsm algebra EndRM I (@te Po(e(x)) RIX]/ (X )
is representation-finite if and only if either s < 3 and P.(g(x)*) C {1,2,3} or s > 4 and P (g(x)*) C
{1,5—1,s}. This is equivalent to saying that P.(g(x)*) C {1,bg(x)s — 1,bg(x)s }. U

As a corollary of Lemma 3.3, we have the following.

Corollary 3.4. Let R be a perfect field of characteristic p > 0, and let 6 € X,, be a permutation of cycle
type (M,- -+, Ag). Then S, (cs,R) is representation-finite if and only if there exists a positive integer t such
that v, (A;) € {0,t} for all i € [s].

Proof. Let ¢ :=cs € M, (R). If p=0, then v,(A;) =0 for all i € [s]. In this case, S,(c, R) is semisimple,
and hence representation-finite. Actually, let G be the subgroup of X, generated by 6. Then the group
algebra R[G] is semisimple. Since there is a surjective homomorphism from the algebra R[G] to the algebra
R[c] by sending G to ¢, we see that R[c] is semisimple. Hence S, (c, R) ~ Endg((R") is semisimple. Thus
Corollary 3.4 is true for p = 0.

Now, we assume p > 0. By Lemma 2.17, for g(x) € M, all the integers in P.(g(x)) are p-powers and
the polynomial (x — l)pv’M") is an elementary divisor of ¢ for i € [s]. Let m := max{v,(A;) | i € [s]}. Then
(x— 1" € M and P.((x— 1)P") = {p¥»*) | i € [s]}.

Suppose that S,(c,R) is representation-finite. By Lemma 3.3, we deduce that P.((x — 1)?") does not
contain two different p-powers p® > 1 and p? > 1 with a # b. Since p"r®*) € P.((x— 1)?") for i € [s],
there do not exist A; and A; with i, j € [s] such that v,(A;) > v,(A;) > 1, that is, there exists an integer
t > 0 such that v, (A;) € {0,7} for all i € [s].

Conversely, suppose that there exists an integer # > 0 such that v,(A;) € {0,¢} for all i € [s]. Then, for
g(x) € M., we deduce from Lemma 2.17 that P.(g(x)) C {1,p'}. Thus it follows from Lemma 3.3 that
Su(c,R) is representation-finite. [J

Now we give nontrivial examples of representation-finite and -infinite centralizer matrix algebras.

Example 3.5. (1) Let R be a field of characteristic 3 and 6 = (123)(45) € Xs. Then A := Ss(cg,R)
is representation-finite by Corollary 3.4. Now, we work out the quiver and relations for A. Let f] :=
el +exn+e33, f2 1= eqqtess, fa5:= ess+esq,ha1 := fas — fr and hyp := — fr — fas. Then fo = hy1 +hao
and the set { f1,h21,h2} is a complete set of primitive orthogonal idempotents of A. Hence 4A = Af} ®
Afy = Afi ©Ahy © Ahy. By calculations, we have dimg(Af;) = 4, dimg(Ahy;) = 2, dimg(Ahy) =1,
dimR (hzzAfl) = dimR (flAhzz) = 0, dimR (h21Ah22) = dimR (hzzAh21) = 0, dimR (flAfl) = 3, dimR (flAfz)
=1, dimR(hzzAfl) =0 and dimR(hzzAfz) = 1. Let e3 := hpp,ep :=hp1,e1 := f1,€ = f1 — 1, =e14 +
ers+ezateis+eu+essand = —a!". Then A can be represented by the quiver with relations

p
A: e 2o<7*>0138 of =€, e = Be = Pa=0.
o
The Loewy structures of the indecomposable projective A-modules P(i) are visually pictured as follows:

P(1): 1 P(2): 2 P(3): 3
/ N\ \
1 2 1
A
1
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Since A/soc(Ae;) is representation-finite and A has one more non-isomorphic indecomposable module
than A /soc(Ae;) does, A is representation-finite.

(2) Let R be an algebraically closed field of characteristic 2, and let 6 = (1234)(56) € X¢ and ¢ :=
cs € Mg(R). Then E. = {(x—1)*, (x—1)?} by Lemma 2.17, m.(x) = (x — 1)* and R[c] ~ R[x]/((x — 1)*).
Then the R|c]-module RS is isomorphic to R[x]/((x — 1)*) ® R[x]/((x — 1)?) by (%) in Section 2.3. Hence

Se(c,R) EEndR[c](Ré)NEndRH/( _p (R [x]/((x—1)4)@R[x]/((x—1)2))
~ Endgpy/ (v (RIx]/ (x*) @ Rx]/ (%))

/(
By calculations, the algebra A := Endp, /() (R[x]/ (x*) ®R[x]/(x?)) can be represented by the quiver with
relations:

DL 2 _ _ _
YCTT-;QT]7 n _Ba_ovyz_aﬁvﬁy_nBaan_Ya'

The Loewy structures of the indecomposable projective A-modules P(1) and P(2) can be pictured:

P(1): L, P(2): 2
IY/ 13\2 IB/ \n2
Y Im
1><2 Y\l/ﬁ
Y\I/B

One can easily check that A /rad?(A) is representation-infinite, and therefore S (c, R) ~ A is representation-
infinite. This also follows from Corollary 3.4.

4 Derived equivalences and homological conjectures

This section is devoted to proving all results mentioned in the introduction.
Assume that the characteristic of R is p > 0. Recall that, for ¢ € M,,(R), we write A. := R[x]/(m.(x)),
where m,(x) is the minimal polynomial of ¢ over R. Now, let d € M,,(R), we assume the following:

I la
me(x) = Hfi(x)”i forn; > 1 and my(x) = ng(x)mf form; > 1,
i=1 =1
Ui :=R[x]/(fi(x)") fori € [I.] and V;:=R[x]/(g;(x)"™) for j € [I4],
where fi(x), -, fi,(x) are pairwise distinct monic irreducible polynomials in R[x], and where g (x),-- - , g7, (x)
are pairwise distinct monic irreducible polynomials in R[x]. Then U; and V; are local, symmetric Nakayama

R-algebras, and
AUy xUpyx---xUg,and Ag = Vi xVpx---xV,.

Recall that A, ~ R[c]| and R" is viewed as an A.-module. According to these blocks of A, and A;, we
decompose the A.-module R" and the A;-module R™ as

I la
= EBMi and R" = @Nj,
i=1 j=1

where M; is the sum of indecomposable direct summands of R" belonging to the block U;, and where N;
is the sum of indecomposable direct summands of R belonging to the block V;. Then it follows from
Lemma 2.16 that

() BM)~ D RH/(fix)) and BN)=~ D  RR/(g;(x))

rePe(fi(x)") sE€P;(gj(x)™)
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as U;-modules and V;-modules, respectively. Since R" is a faithful M, (R)-module, R" is also a faithful
R|c]-module, and therefore M,; is a faithful U;-module for i € [l ]. Similarly, N; is a faithful V;-module for
J € [l4]. Further, we set
A,’ = End(_/i (Ml) and Bj = Endvj (Nj)

fori € [I] and j € [l;]. Then A; and B; are indecomposable as algebras for i € [I.] and j € [l4]. Clearly,
A; (respectively, B;) is semisimple if and only if n; = 1 (respectively, m; = 1). In this case, A; ~
Mi(R[x]/(fi(x))) and B; ~ M;(R[x]/(g;(x))) , where k and ¢ are the multiplicities of f;(x) and g;(x))
occurring as elementary divisors of ¢ and d, respectively. By Lemma 3.2,

lc
R) = [ Endy, (M) HA and S, (d,R) HEHdv =[5
i=1

i=1 i=1

As the R[c]-module R" is a generator, we see that the bimodule R[c‘]Rgn(c R) has the double centralizer

property, that is, Endg, .z (R" ) = R[c].

Sn(c.R)

4.1 Characterizations of Morita and derived equivalences: Proof of Theorem 1.1

In this subsection we prove the main result, Theorem 1.1.

Lemma4.1. (1) M, = {f;(x)" | i€ [l]}.
(2) If A; and B; are derived equivalent, then U; ~V; and n; = m;.

Proof. (1) follows by definition. (2) is a consequence of Lemma 2.9. []

Lemma 4.2. Let c € My(R) and d € M,,(R). Then ¢ Xa if and only if there is an isomorphism @ : R[c] ~
R[d] of algebras such that B(R") ~ B(R™), where R"™ is viewed as an R[c|-module via @.

Proof. Suppose ¢ Xa. By definition, there is a bijection 7t : M, — M such that, for any f(x)" € M,
the isomorphism Rx]/(f(x)") ~ R[x]/((f(x)")m) as algebras and P.(f(x)") = P;((f(x)")r). Then I, =
;. It follows from

RlcJ~ [T RK/(f(x)")and Rld]~ T[] RE/(g(x)™)
fx)reMe 8(x)" €My

that there is an isomorphism @ : R[c] ~ R[d]. After reordering the factors in the above products, we may
assume that (f;(x)")m = g;(x)™ for i € [I;]. Then the condition P.(f(x)") = Ps((f(x)")m), together with
(t), implies that B(M;) ~ B(N;) for i € [I.]. Here, N; is viewed as an R[c]-module via ¢. Hence B(R") ~
B(R™), where R™ is viewed as an R[c]-module via @.

Conversely, suppose that there is an isomorphism @ : R[c] ~ R[d] such that B(R") ~ B(R™) when R™
is regarded as an R[c|-module via @. Then /. = I[;. We may assume that @ restricts to an isomorphism
¢; : U; ~V,, that is, R[x]/(fi(x)") ~ R[x]/(gi(x)™) for i € [I.]. This implies n; = m; for i € [I.]. Then the
condition B(R") ~ B(R™) implies that B(M;) ~ B(N;) for i € [I.]. Due to (}), we have P.(fi(x)") =
P;(gi(x)™) fori € [I.]. Now we define a map ©t: M. — My by fi(x)" — gi(x)™ fori € [I.]. Then 7 defines

an M-equivalence ¢ Xa.0O

Proof of Theorem 1.1. Recall that

1(7
R) ~ [ Endy, (M) HA and S,,(d,R) ~ HEndV ]‘[ i1
i=1
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If S,,(c,R) and S,,(d,R) are Morita (or derived, or almost v-stable derived) equivalent, then they have the
same number of blocks, that is, /. = [;. Further, we may assume that A; and B; are Morita (or derived,
or almost v-stable derived)) equivalent and that F; is such an equivalence for i € [I.]. As U; and V; are
local Nakayama algebras for i € [l ], it follows from Lemma 4.1(2) that there is an algebra isomorphism
©; : U; ~V; with n; = m; for i € [I.]. This implies that A, and A, are isomorphic via all @;.

By Lemma 2.2, S, (c,R) = Endg(R") is Morita equivalent to Endg)(B(R")). Similarly, S,,(d,R) =
Endg(y) (R™) is Morita equivalent to Endgi(B(R™)).

(1) Suppose ¢ X d. Then it follows from Lemma 4.2 that Su(c,R) and S,,(d,R) are Morita equivalent.
Conversely, suppose that S, (c,R) and S,,(d,R) are Morita equivalent. Then it follows from Lemma 2.2
that B(M;) ~ B(N;) if N; is regarded as a U;-module via @;. By identifying A, and A, with Rc] and R[d],
respectively, we have R[c] ~ R[d] and R™ can be viewed as an R[c|-module. Thus B(R") ~ B(R™). By
Lemma 4.2, we have ¢ i d.

(2) Suppose ¢ Ra. By the definition of D-equivalences, A, ~ A, as algebras and there is a map
T M — My such that Hp = Hp,((f,(xyi)m) for fi(x)" € M.. Without loss of generality, we as-
sume (f,( )T = gi(x)™ for z E [l ]. Then R[ ]/(ﬁ(x)”’) ~ R[x]/(gi(x)™) as algebras and Hp,(f(xy) =
Hp, (g:(xymi) for i € [Ic]. Tt follows from (T) and Remark 2.13 that Endy,(B(M;)) and Endy,(B(N;)) are
denved equlvalent. Thanks to Lemma 2.2, A; and B; are also derived equivalent for i € [I.]. This implies
that S, (c,R) and S,,(d,R) are derived equivalent.

Conversely, suppose that S, (c,R) and S,,(d,R) are derived equivalent. Without loss of generality, we
assume that A; and B; are derived equivalent for i € [I.]. Then, by Lemma 4.1(2), there is an isomorphism
¢; : U; >~ V; of algebras such that U; /rad(U;) ~ V;/rad(V;), that is, R[x]/(fi(x)) =~ R[x]/(gi(x)) for i € [I.].
Let K; be a splitting field for f;(x)g;(x). Then K; ®z A; and K; ®g B; are derived equivalent since tensor
products preserve derived equivalences (see [38, Theorem 2.1]).

For the irreducible polynomial f;(x) € R[x], there is a separable irreducible polynomial u;(x) € R|x]
and an integer s; € N such that f;(x) = u;(x”") (see, for instance, [26, Corollary 19.9]). Here, for p = 0, we
understand p* = 1. Similarly, there is a separable irreducible polynomial v;(x) and an integer #; € N such
that g;(x) = v;(x?"). It follows from K; ®r (R[x]/(fi(x))) ~ K; ®r (R[x]/(g:(x))) that 5; = #; and that u;(x)
and v;(x) have the same number of roots. Therefore f;(x),g;(x),u;(x) and v;(x) have the same number of
distinct roots in K;. Let w; be the number of roots of u;(x) in K;. Suppose that o1, 0, - - - , Oy, are the
distinct roots of fj(x) in K; and that B;1,Bs2,- - -, Biw, are the distinct roots of g;(x) in K;. Then K; @ U;
= K@ (RD/(F0)") = T, Kb/ (v — i) "). Similarly, K, @ Vi = K; @x (RI/ (5:(0)™) =
[Ty Kile] /(e = Big) ™ 7).

Now, we shall show the equality Hp,((xy) = Hp,(g,(xy). Indeed, given a U;-module R[x]/(fi(x)"),
there is the following isomorphism of TT)”, K, [x] /((x— oclq)”lp ')-modules:
Ki®g (R[x]/ @K ((x—0g)™").

Note that |P.(fi(x)")| equals the number of non-isomorphic indecomposable direct summands of M;.
Since Homy;,(M;,—) : add(M;) — A;-proj is an equivalence, we see that | P.( fj(x)")| equals the number of
indecomposable projective A;-modules, hence the number of simple A;-modules. Similarly, |Py(g;(x)")|
is equal to the number of simple B;-modules. Since derived equivalent algebras have the same number
of simple modules, we get |P.(fi(x)")| = |Ps(gi(x)™)|. Put h; := |P.(fi(x)")|. For h; = 1, we have
Hp, (f(0) = Hp,(g;(xym)- SO we may assume that z; > 2 and P.(f;(x)") = {u;1, -+ ,uip, } with ujg > -+ >
u;n;. Since A; = Endy, ( ;) is Morita equivalent to Endy, (‘B(M;)), the algebra K; @g A; is Morita equivalent
to the algebra K; ®g Endy.(B(M;)) ~ Endk.q v, (Ki @& B(M;)). As B(M;) ~ EBZ":I Rx]/(fi(x)"«) as U;-
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modules, there is the following isomorphism of ;" K;[x]/ ((x— atig)"P")-modules:

K O @ @@K )MikP‘Yi).

q=1 k=1

For g € [wil, set Eciq :=Endy o0y (@ Kila] /(x—0tg) *") ). Then Endg 0, (Ki @r B(M;))

H;ilEcm and E.;, is a block of EndK@RUI (K; ®g B(M;)), which is isomorphic to E,; , for all ¢’ €
[wi]. Tt follows that each block of K; ®gA; is Morita equivalent to E.;, for some g € [w;]. Simi-
larly, we write P;(gi(x)") = {vi1,--+,vin,} with v;j > --- > vy, and have the following isomorphism
of [T, Ki[x]/ ((x—Big)"?")-modules

K; @g B(N, @@K — Big) ).

q=1 k=1

Forg' € [wi], set Ey g := EndK,- [/ ((x—=Bigr )7 ( EBZ; L Kilx] /(e — Biq’)v""pSi )) . Then Endk; e, (Ki @r B(N;))
HZLI Eqiq and Ey; o is ablock of Endg, e v, (K; @& B(N;)), which is isomorphic to Ez ; ,» for all ¢ € [w].
It follows that each block of K; ®g B; is Morita equivalent to E, ; . for some q € wil.

Since K; ®r A; and K; ®g B; are derived equivalent and since derived equivalences preserve blocks, we
see that E.; , and E, ; , are derived equivalent. Note that u;; = n; = m; = v;;, and we have the following
isomorphisms of algebras:

h,‘ hi

Eciig 2 Endy o) (D KX/ () and Egig = Endy o) (D KR/ (7))
k=1 =1

Then the Cartan matrices of E.; , and Ey; » (as K;-algebras) are the h; X h; matrices

h; k h; k
Hiizpsiz Z uik(ex + eix) — ukey) and J; 1= p Z Z vik(ex + enx) — vikew),

respectively. Since the K;-algebras E.; , and E,;; , are derived equivalent and since the Cartan matrices
of derived equivalent, split algebras are congruent by an invertible matrix with integral entries (see [50,
Chapter 6, Proposition 6.8.9]), there exists an invertible matrix CI>,~ € My, (Z) such that & H;®; = J;. Now,
applying Lemma 2.18 to the numbers u;; > --- > u;;, and v;; > --- > vy, as well as to the matrices H; and
Ji, we have Hp (i) = Hp, (g,(xymi) as multisets. Thus we can define a map 7 : M. — My, fi(x)" — gi(x)™

d
fori € [I.]. Then T gives rise to a D-equivalence ¢ Rd.

(3) Suppose ¢®0 4. Then there exists a bijection T : M, — My, fi(x)" — g;(x)™ such that @; : U; ~V;
as algebras and either P.(f;(x)") = Py(gi(x)™) or P.(fi(x )”) = Jpy(gi(xymy for i € [Ic]. By (T) and the
condition P.(f;(x)") = Pa(gi(x)™) or Pe(fi(x)") = Ip,(g,(xy)» We have either B(M;)z» ~ B(N;)z or
B(M;)» ~ Qv.(B(N;) %) as U;-modules. Note that M; (respectively, N;) is a faithful U;-module (re-
spectively, V;-module) which contains the regular module U; (respectively, V;) as a direct summand. It
follows from Lemma 2.2 that A; := Endy,(M;) is Morita equivalent to Endy, (U; ® B(M;)») and that
B; := Endy,(N;) is Morita equivalent to Endy, (V; ® B(N;) »). If B(M;)» ~ B(N;) », then A; and B; are
Morita equivalent. If B(M;)» ~ Qy,(‘B(N;) »), then A; and B; are almost v-stable derived equivalent by
Lemma 2.7. Hence, in any case, A; and B; are always almost v-stable derived equivalent, and therefore
Su(c,R) and S,,(d,R) are almost v-stable derived equivalent.

Conversely, suppose that S,(c,R) and Sy, (d,R) are almost v-stable derived equivalent. Thanks to
Lemma 2.8, the almost v-stable derived equivalence F; induces a stable equivalence, say F;, between U;
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and V;, such that F;(B(M;) ») ~ B(N;) » and m; = n; for i € [I.]. By identifying the algebra V; with the
algebra U; via ¢;, we see that F; is a stable equivalence from U; to itself. Now, according to Lemma 2.10,
we deduce either B(M;) » ~ B(N;) » or B(M;)» ~ Qv,(B(N;) ») as Ui-modules, where N; is viewed
as a U;-module via @;. For i € [l ], it follows from (f) that B(M;)» ~ B(N;) % is equivalent to the
condition P.(fi(x)") = P4(gi(x)™). Similarly, for i € [I.], B(M;)» ~ Qy.(B(N;) » is equivalent to the
condition Pe(fi(x)") = Jp,(g,(xy)- Now we define a map 7t : M. — My by fi(x)" +— gi(x)™ for i € [I.]. By
Definition 3.1(3), © defines an AD-equivalence between ¢ and d. [

As a corollary of Theorem 1.1, we consider nilpotent matrices. For a nilpotent matrix ¢ € M, (R),
the Jordan canonical form cg of ¢ is unique up to the ordering of its Jordan blocks. Further, co has
a Jordan block of size ¢ if and only if rank(c'*!) +rank(c'~!) — 2rank(c’) > 0. We set I := {t > 1 |
co has a Jordan block of size t}. Note that A, consists of only one polynomial of the form x" with r
being the maximal number in /.. Thus I, = P.(x").

Corollary 4.3. Let ¢ € M,(R) be a nilpotent matrix and d € M,,(R). Then S,(c,R) and S, (d,R) are
derived equivalent if and only if d = M, +b with A € R and b being a nilpotent matrix such that H;, = #;..

Proof. Sufficiency. Suppose that b € M,,(R) is a nilpotent matrix and d = Al,, + b with A € R. Then
Sm(d,R) = Smu(b,R). Let x° be the unique polynomial in M,,. Furthermore, the condition Hj, = #;_ implies
Hp, (xr) = Hp,(xs)- It then follows from Theorem 1.1 that S,,(c,R) and S, (b, R) are derived equivalent.

Necessity. Suppose that S,(c,R) and S,,(d,R) are derived equivalent with ¢ being nilpotent. Then
M, = {x"}. It follows from Theorem 1.1 that M,; = {h(x)*} and R[x]/(x") ~ R[x]/(h(x)*) as algebras,
where h(x) is an irreducible monic polynomial in R[x] and s € N. Thus r = s and /(x) = x — A for some
A€ R. Set b:= A, —d. Then my(x) = x*, that is, b is a nilpotent matrix. Clearly, Py(h(x)*) = P(x*).
Therefore %((xr> = }[Pd(h(x)s) = y‘[pb(xx), that is, .7‘[]6 = y‘[]b. (I

Instead of R being a field, we can prove the following for noetherian domains.

Remark 4.4. Suppose that R is a noetherian domain, ¢ € M, (R) and d € M,,(R). If S,(c,R) and S,,(d,R)

. . D . .
are derived equivalent, then ¢ ~ d as matrices over the fraction field of R.

Proof. Assume that R is a noetherian domain with the fraction field K. Then it follows from
Su(c,R) € M,(R) that S,(c,R) is a finitely generated R-algebra. Thus S,(c,R) is a noetherian algebra
and S, (c,R)-mod is an abelian category, and therefore 2°(S,(c,R)) is well defined by our convention.

Regarding K as an R-algebra, we have the isomorphism of K-algebras

©:K@rMy(R) — My(K), Y ai®@b; + Y (ail,)b;
i=1 i=1

where I, is the identity matrix in M, (K). Further, K is a flat R-module and there is the commutative
diagram of K-algebras

K ®g Sp(c,R) —= S,(c,K)

|

K®RMn(R) %Mn(K)

where u is the restriction of @. Remark that Im(u) belongs to S,(c,K). Since K is the fraction field of R,
we can find an element 0 # r € R for each matrix a € M,,(K) such that ra € M, (R). This implies that y is
surjective, and therefore an isomorphism. Thus K ®g Sy, (c,R) =~ Sy(c,K) as K-algebras.

Suppose that the R-algebras S,(c,R) and S,,(d,R) are derived equivalent. Then there is a tilting
complex T over S,(c,R) such that End g (s, ¢ g)) (T) = Sm(d,R) as R-algebras. Since K is a flat R-module,
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TorX(S,(c,R),K) = 0 and TorX(S,,(d,R),K) = 0 for all i > 1. It then follows from [38, Theorem 2.1]
that K@g T is a tilting complex over K ®g S, (c,R) with Endgn ks, (c.r) (K @R T) = K @ Sp(d,R) as
K-algebras. Thus the K-algebras S,(c,K) and S, (d,K) are derived equivalent. By Theorem 1.1, the
. D .
equivalence ¢ ~ d holds as matrices over K. [
It is not known whether the converse of Remark 4.4 is true.

4.2 Homological conjectures: Proof of Theorem 1.2

In this subsection, we prove that the Nakayama and finitistic dimension conjectures are true for centralizer
matrix algebras.

Let A be an Artin algebra, and let 0 — AA — Iy — I} — --- — I; — - - - be a minimal injective resolution
of AA.

Definition 4.5. (1) The dominant dimension of A, denoted dom.dim(A), is the maximalt € N (or eo) such
that all the terms Iy, 1y, - - ,1,—1 in the minimal injective resolution of x/\ are projective.

(2) The finitistic dimension of A, denoted fin.dim(A), is the supremum of projective dimensions of all
A-modules M € A-mod with finite projective dimension.

Related to the two homological dimensions, there are two not yet solved major conjectures, called the
Nakayama conjecture (see [34]) and the finitistic dimension conjecture (see [2]).

Nakayama Conjecture (NC) : An Artin algebra of infinite dominant dimension is self-injective.
Finitistic Dimension Conjecture (FDC): For any Artin algebra A, fin.dim(A) < oo.

As is known, the validity of (FDC) for A implies the validity of (NC) for A. Both conjectures are open
to date (see [1, Conjectures, p.409]). Only a few cases are verified. In the following, we will show that
(FDC) holds true for all centralizer matrix algebras over fields.

Lemma 4.6. [25] If an Artin algebra A has global dimension at most 3, then fin.dim(eAe) < o for any
idempotent e € A.

For a representation-finite Artin algebra A, let {Xj,---,X;} be a complete set of representatives of
isomorphism classes of indecomposable A-modules, the Auslander algebra of A is defined to be the en-
domorphism algebra of the A-module €;_, X;. It is known that Auslander algebras have global dimension
at most 2.

Corollary 4.7. Let A be a representation-finite Artin algebra and A the Auslander algebra of A. Then
fin.dim(eAe) < oo for every idempotent e € A. In particular, if X € A-mod, then fin.dim(Enda (X)) < oe.

Proof. The first statement follows from Lemma 4.6 since gl.dim(A) < 2. For the second statement,
we may assume that X = X' @ --- ®X;" with ¢ < s and integers s; > 1. Let ¢; € A be the canonical
projection from @;_; X; onto X; for 1 <i <s. Then {ej,---,es} is a complete set of pairwise orthogonal
primitive idempotent elements of A. Clearly, End, (X) is Morita equivalent to End, (X; & - -- © X;) which
is isomorphic to the algebra (e; +---+¢;)A(e; +---+¢). Again by Lemma 4.6, we get the second
statement. []

Let M be a generator-cogenerator for A-mod. The rigidity dimension rd(M) of M is defined by
rd(M) := sup{n € N | Ext\ (M,M) =0,V 1 <i<n}.

If no such n exists, we define rd(M) = 0. By [33, Lemma 3], dom.dim(Ends (M)) = rd(M) + 2.

The following lemma describes the dominant dimensions of centralizer matrix algebras and shows
that the Nakayama conjecture holds true for centralizer matrix algebras.

Recall that, for ¢ € M,,(R), we have a block decomposition of S,,(c,R): S,(c,R) = Hf”zlA,- with A; 1=
Endy, (M;) (see the beginning of Section 4).
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Lemma 4.8. (1) dom.dim(4;) € {2,c0}. Particularly, dom.dim(S,(c,R)) € {2,00}.

(2) dom.dim(A;) = e if and only if A; is a symmetric, Nakayama algebra if and only if P.(fi(x)") is
a singleton set. Thus dom.dim(S,(c,R)) = oo if and only if S,(c,R) is a symmetric, Nakayama algebra if
and only if P.(f;(x)") is a singleton set for all i € [I.].

Proof. If A is an Artin algebra and L € A-mod, then it follows from the Auslander-Reiten formula
DExt) (L,L) ~Homy (L,L) that Ext) (L,L) # 0 if T ~ L, where D is the usual duality of an Artin algebra,
T := DTr denotes the Auslander-Reiten translation, and Homy (X, Y) denotes the quotient of Homp (X,Y)
modulo all homomorphisms from X to Y that factorize through injective A-modules.

Let i € [I.]. For the U;-module M;, we have (TM;)» ~ (M;)», and therefore rd(M;) = oo if M; is
projective, and 0, otherwise. Since dom.dim(A;) = dom.dim(Endy;,(M;)) = rd(M;) + 2, we deduce that
dom.dim(A;) € {2,00} and that dom.dim(A;) = o if and only if M; is projective. By (1), M; is projective
if and only if P.(f;(x)") is a singleton set. Note that A; = Endy,(M;) is Morita equivalent to U; if y,M;
is projective. Thus A; is a symmetric, Nakayama algebra if ;;,M; is projective. Clearly, any symmetric
algebra has infinite dominant dimension. Since dom.dim(A & T") = min{dom.dim(A),dom.dim(I")} for
Artin algebras A and I', we have

dom.dim(S,(c,R)) = min{dom.dim(4;) | i € [I.]} € {2,00}.

Thus, dom.dim(S,(c,R)) = e if and only if dom.dim(A;) = oo for all i € [I.] if and only if P.(fi(x)") is a
singleton set for all i € [I.] if and only if S,,(c,R) is a symmetric, Nakayama algebra. [J

Proof of Theorem 1.2. (1) Let R be a field and ¢ € M,,(R). Since Nakayama algebras are representation-
finite [1, Lemma 2.1, p.197], their Auslander algebras have global dimension at most 2. All blocks of
Su(c,R) are of the form A; = Endy,(M;), i € [l;], where U; is a symmetric Nakayama algebra and M; is
a generator for U;-mod. By Lemma 4.7, fin.dim(A;) = fin.dim(Endy,(M;)) < oo for all i € [I.]. Since
fin.dim(S,(c,R)) = max{fin.dim(4A;) | i € [I.]}, we see fin.dim(S,(c,R)) < o. Since the validity of (FDC)
for an Artin algebra A implies the validity of (NC) for the same Artin algebra A. Hence (NC) holds true
for Sy,(c,R). This also follows from Lemma 4.8(2).

(2) Let ¢ € My(R) and d € M,,(R). Suppose that S,(c,R) and Sy, (d,R) are derived equivalent. By
Lemma4.8(1), dom.dim(S,(c,R)) € {2,°}. Thus, to prove that S,(c,R) and S,,(d, R) have the same domi-
nant dimension, we only need to show that dom.dim(S,(c,R)) =  if and only if dom.dim(S,,(d,R)) = co.
However, this follows from Theorem 1.1 about derived equivalences and Lemma 4.8(2) immediately.
Thus S, (c,R) and S,,(d, R) have the same dominant dimension. [J

4.3 Derived equivalences imply Morita equivalences: Proof of Corollary 1.3

To prove Corollary 1.3 , we recall a result on stable equivalences of Morita type.

Following [23, Section 2], we say that a stable equivalence ® : A-mod — B-mod of Morita type [ifts to
a Morita equivalence if there is a Morita equivalence F' : A-mod — B-mod such that the following diagram
of functors is commutative (up to natural isomorphism)

A-mod _® . B-mod

can. T can. T

A-mod — B-mod

Given an idempotent e in an algebra A, the functor Ae ®.4, — : eAe-mod — A-mod is called a Schur
functor that is fully faithful. Clearly, this Schur functor induces a functor on the stable module categories:
eAe-mod — A-mod. For simplicity, the induced functor is still called a Schur functor.
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The following lemma, taken essentially from [23], provides a way to get Morita equivalences from
stable equivalences of Morita type (see Section 2.1 for Definition).

Lemma 4.9. Let A and B be algebras without nonzero semisimple direct summands such that A/rad(A)
and B/rad(B) are separable, and let e € A and f € B be v-stable idempotents such that eAe and fAf are
the Frobenius parts of A and B, respectively. Suppose there is a stable equivalence ® : A-mod — B-mod
of Morita type. Then the following hold.

(1) If ®(S) is isomorphic in B-mod to a simple B-module for each simple A-module S, then ® lifts to
a Morita equivalence.

(2) The functor ® restricts to a stable equivalence ®; : eAe-mod — fBf-mod of Morita type such
that the following diagram is commutative (up to natural isomorphism)

A-mod % . B-mod

[

eAe-mod o fBf-mod
where A stands for the Schur functor. Moreover, if @y lifts to a Morita equivalence, then so does P.

Proof. (1) is just [23, Proposition 3.3]. (2) The first statement follows from [15, Theorem 4.2], see
also [23, Section 3]. The last statement follows from [23, Proposition 3.5]. [J

Proof of Corollary 1.3. Let c € M,(R) and d € M,,(R).

(2) Assume that ¢ and d are permutation matrices and that S, (c,R) and S,,(d, R) are derived equivalent.
Then Sy (c,R) and S,,(d,R) have the same number of blocks, that is, [, = [;. So we may assume that A;
and B; are derived equivalent for i € [I.]. By Lemma 4.1, U; ~ V; and n; = m; for i € [I.]. By Theorem 1.1
on Morita equivalences, it suffices to show that P.(f;(x)") = Py(gi(x)™) for i € [I].

Actually, by Lemma 2.17, the integers in P.(f;(x)") and in P.(g;(x)™) are p-powers for i € [I.]. We
have seen in the proof of Theorem 1.1 about derived equivalences that P.(f;(x)") and P,(g;(x)") have the
same cardinality. Lett; := |P.(f;(x)")| = |Ps(gi(x)")| for i € [I.]. If t; = 1 (this may happen for p = 0), then
P.(fi(x)") = {n;} = {m;i} = Ps(gi(x)™). Now, we may assume that z; > 2 and p > 0. Let P.(f;(x)") :=
{p",---,p"i} withu; > --- >u, and Py(g;(x)™) :={p", -+, p"i } withv; > --- > ;.. By Theorem 1.1 on
derived equivalences, we get {p*! — p"2, ... p"i-t — p"i p"i} = {p" — p"2 ... p¥i-! —p" p"i}. Notice
the following basic facts:

(i) For integers a > b > 0, the number p* — p” is a p-power if and only if p=2anda = b+ 1;

(i) For integers a > b > 0 and s > ¢ > 0, the equality p* — p? = p* — p’ holds if and only if @ = s and
b=t.

By considering the cases p = 2 and p > 3 separately, we get uy = vy for all k € [t;]. Thus P.(f;(x)") =
P;(gi(x)™) for i € [I.]. This implies that A and B are Morita equivalent by Theorem 1.1.

(3) Suppose that the field R is perfect. Then all irreducible factors of m,(x) are separable polynomials
over R. Let A; := Endy,(M;) be a block in S,(c,R) and P an arbitrary indecomposable projective A;-
module. Then P ~ Homy,(M;,X) for some indecomposable direct summand X of the U;-module M;.
Thus Endy, (P) ~ Endy,(X), and therefore

Endy, (top(P)) = Endy, (P) /rad(Endy, (P)) ~ Endy, (X ) /rad(Endy, (X)),

where top(P) denotes the quotient P/rad(P) of a module P by its radical. For the indecomposable
Ui-module X, we have Endy, (X) ~ R[x]/(fi(x)") for some positive integer 7. Thus Endy,(top(P)) ~
Endy, (X)/rad(Endy, (X)) =~ R[x]/(fi(x)) is separable. Hence all the semisimple quotients of blocks of
Su(c,R) are separable. Similarly, all the semisimple quotients of blocks of S,,(d,R) are separable.
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(a) = (b) Suppose that S, (c,R) and S,,(d,R) are almost v-stable derived equivalent. Then, by [22,
Theorem 1.1], there is a stable equivalence F of Morita type between S,(c,R) and S,,(d,R). Further, by
Theorem 1.1, we have ¢ 2 d, that is, there is a bijection T between M. and My such that R[x]/(f(x)) ~
R[x]/((f(x))m) as algebras and either P.(f(x)) = Ps((f(x))7) or Pe(f(x)) = Ip,((r(x))x) for all f(x) € M,.
Clearly, ® maps only irreducible polynomials to irreducible polynomials. Thus 7 induces a bijection
between M, \ R, and My \ R, such that R[x]|/(f(x)) ~ R[x]/((f(x))®) as algebras for f(x) € M.\ R..

(b) = (a) Suppose that S,(c,R) and S, (d,R) are stably equivalent of Morita type and there is a
bijection T : M.\ R, — My \ Ry, such that R[x]/(f(x)) ~ R[x]/((f(x))®) as algebras for f(x) € M.\ R..

By Theorem 1.1, it suffices to show ¢ 22 4. Note that an irreducible elementary divisor f(x) in M, \ R,
corresponds to a semisimple block of S,(c,R), which is Morita equivalent to R[x]/(f(x)). Similarly, an
irreducible elementary divisor g(x) in M, \ R, corresponds to a semisimple block of S, (d,R), which is
Morita equivalent to R[x]/(g(x)). Thus the assumption on 7 implies that the product of semisimple blocks
of Sy(c,R) and the product of semisimple blocks of S,,(d,R) are Morita equivalent. Let A, --- ,A; be the
non-semisimple blocks of S, (c,R) with A; := Endy;,(M;), and let By, - - - , B, be the non-semisimple blocks
of S;(d,R) with B; := Endy,(N;). Suppose that F is a stable equivalence of Morita type between S,(c,R)
and S,,(d,R). Then F induces a stable equivalence of Morita type between @@;_; A; and @’j:l B;. Thus
s =t by [30, Theorem 2.2], and we may assume that F" induces a stable equivalence F; of Morita type
between A; and B; for i € [s].

To show ¢ *2 d, we consider the generator M; for Ui-mod. It follows from v4Homy, (M;,U;) ~
Homy, (M;,vy.U;) (see [23, Remark 2.9 (2)]) that the Frobenius parts of A; and B; are Morita equivalent
to U; and V;, respectively. Since A;/rad(A;) and B;/rad(B;) are separable, we deduce from Lemma 4.9(2)
that F; restricts to a stable equivalence G; of Morita type between U; and V;. As f;(x) is separable and both
A; and B; are non-semisimple, Corollary 2.15 implies U; ~ V;, that is, R[x]/(f;(x)"™) ~ R[x]/(gi(x)"™), and
n; = m,;.

Now we regard V;-modules as U;-modules via this isomorphism. Let A; := Endy,(U; ® B(M,) »),
B; := Endy,(V; ® B(N;) ») and C; := Endy,(V; ® Qy.(B(N;) »)), and let e, f and g be the v-stable idem-
potents of A;, B; and C;, defining their Frobenius parts, respectively. Then any two algebras from the list
{Ai,Zi, B;,B;, a-} are stably equivalent of Morita type (see Lemmas 2.2 and 2.7), and there is the following
commutative (up to natural isomorphism) diagram by Lemma 4.9(2):

A;-mod —* . B;-mod S C;-mod

AT XT XT
— [ —_— ¥ -
eAje-mod — fB;f-mod — ¢C;g-mod

where A is the full embedding of stable module categories induced by the corresponding Schur functor
and where ® and ¥ define stable equivalences of Morita type between A; and B;, and between B; and
C;, respectively, while ®; and W are the restrictions of ® and ¥, respectively. They are again of Morita
type (see Lemma 4.9(2)). Note that eAie ~U; ~V;~ fB;f ~ gC,g, and all of them are local symmetric,
Nakayama algebras. Identifying fB;f with gC;g, we can choose W so that W is the syzygy functor on
fB;f-mod (see the arguments in [31, Proposition 3.3 and Corollary 3.4]). Let S be the unique simple
eA;e-module (up to isomorphism). If we identify eA;e with £B;f, then it follows from Lemma 2.10 that
either ®;(S) ~ S or ®(S) ~ Q7,(S). Thus either P;(S) or ¥; o P;(S) is simple. By Lemma 4.9(1),
either ®; or ¥| o ®; can be lifted to a Morita equivalence, and therefore either ® or W o ® can be lifted to
a Morita equivalence by Lemma 4.9(2). It then follows from Lemma 2.2 that either B(M;) » ~ B(N;) »
or B(M;)» ~ Qv.(B(N;)»). By (1), we have Pe(fi(x)") = Py(gi(x)™) or Pe(fi(x)") = Jp, (g:(xym)- Now
we define a map ' : M, — My, fi(x)" — gi(x)™ for f;(x)" € R, f(x) — (f(x))n for f(x) € M.\ R..

Then T’ defines an AD-equivalence of matrices ¢ and d, that is, ¢ 4D d. O
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Since Morita equivalences preserve dominant, finitistic and global dimensions, we have the following.
Corollary 4.10. [f permutation matrices c € M,(R) and d € M,,(R) are D-equivalent, then
dom.dim((S,(c,R)) = dom.dim((S,,(d,R)), fin.dim(S,(c,R)) = fin.dim(S,,(d,R)) and
gl.dim(S,(c,R)) = gl.dim(S,,(d,R)), where gl.dim(A) denotes the global dimension of an algebra A.

4.4 Derived equivalences for permutation matrices: Proof of Corollary 1.4

In this subsection we discuss relations between derived equivalences of centralizer matrix algebras of per-
mutation matrices on the one hand and derived equivalences of centralizer matrix algebras of permutation
matrices of p-regular and p-singular parts on the other hand. This provides a proof of Corollary 1.4.

Given a prime number p > 0 and a permutation ¢ = G; - - -6} € X, which is the product of disjoint
cycle-permutations o; of cycle type A = (Aj,---,Ax) with A; > 1 for i € [k], we say that G; is p-regular if
p 1\, and p-singular if p | A;. The p-regular part r(c) of c is the product of p-regular cycles of G, and
the p-singular part s(G)) of G is the product of p-singular cycles of 6. Both r(c) and s(c) are considered
as elements in X,, that is, r(o) fixes the elements involved in the p-singular cycles, and s(o) fixes the ones
in p-regular cycles of 6. Let ¢s := Y. ¢; ()6 € M (R) be the permutation matrix of 6, where ¢;; is the
matrix with 1 in (i, j)-entry and O in all other entries.

We start with the following corollary.

Corollary 4.11. Let R be a noetherian domain of characteristic p > 0 and 6 € ¥, be of cycle type A .=
(A1, -+, \k), and let 6 be a permutation in X, 11 of cycle type At := (Ay,--+ , M, 1). Then the following
are equivalent

(a) Sy(cs,R) and Sy+1(co+,R) are derived equivalent.

(b) Su(cs,R) and Sy11(co+,R) are Morita equivalent.

(¢) There exists a natural number i € [k such that p 1 \;.

Proof. Let K be the fraction field of R and [, be the prime field of K. Since ¢4+ is just the diagonal
block matrix diag(cs,1), we have E. , = E., U{x— 1} when ¢ and cs+ are viewed as matrices over
either K or IF),. Note that all A; are exactly the orbit lengths of the cyclic group (G) acting on [n].

(a) = (c) Suppose that S,,(cs,R) and S,41(cs+,R) are derived equivalent. Then it follows from Re-
mark 4.4 that S, (cs,K) and S,+1(cg+, K) are derived equivalent, and hence Morita equivalent by Corollary

1.3. It then follows from Theorem 1.1 that ¢ ~ co+ as matrices over K. Since |Eal = X px)ear, |Pa(f(x))]
for any matrix d, the M-equivalence between ¢ and cs+ implies that || = |E._, |. Now, it follows from
Ee, = Eeo U{x—1} thatx—1 € E.,. But, by Lemma 2.17, x— 1 € £ if and only if there is some i € [k]
such that p 1 A;.

(c) = (b) Assume (c). Then there is some i such that p { A;. It follows from v,(A;) = 0 and Lemma
2.17 thatx—1 € E,. Thus ., = E._, . By Theorem 1.1, S, (cs,F),) and S,,11(cs+,F)) are Morita equiva-
lent. Therefore R ®F, Sy(cs, ;) and R®F, Sy 11(co+,F,) are Morita equivalent. With an argument similar
to the one in Remark 4.4, we obtain the isomorphisms of R-algebras

R ®]Fp Sn(CGan) = Sn(CGaR) and R ®]Fp Sn+1 (CG+7FP) > Spt1 (CG+ 7R)'

Hence S, (cs,R) and S,,+1(cs+,R) are Morita equivalent.
(b) = (a) This is obvious. [J

Proposition 4.12. Let R be a field of characteristic p >0, 6 € £, and t € ¥,,. If S;(cs,R) and Sy, (ct,R)
are derived equivalent, then

(1) Su(cy(o),R) and Sy (cy(x),R) are derived equivalent, and

(2) Su(cs(o),R) and Sy (cy(z),R) are derived equivalent.
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Proof. Let A = (A1, ,A) be the cycle type of 6. We have shown in Lemma 2.17 that m,_(x) =
lem(x" —1,--- 4% — 1), the least common multiple of x — 1, i € [k]. Recall that v,(n) denotes the
largest non-negative integer such that p¥»(") divides n, and for an irreducible factor f(x) of m.,(x), we
define

qf(x) = max{V,(A;) | j € [k] such that f(x) divides X1}

According to Lemma 2.17, we have
(o) E,=A{f (x)pr(x[) |i € [k], f(x) is an irreducible factor of x* — 1}, and

B) M., =A{f (x)qu © | f(x) is an irreducible factor of m,_(x)}.

In particular,
(Y) M, always contains an elementary divisor (x — 1)?* for some integer a > 0.
Note that x — 1 ¢ £ if and only if v,(A;) > O for all i € [k] if and only if 6 = s(c) if and only if
r(0) = id, the identity permutation in X,,.
If p =0, then the statements (1) and (2) are trivially true. In the following, we assume p > 0.
Let {Aj,,---,Aj} be the set of parts A; of A such that p {A;, and let {A; ,---,A; } be the set of parts A;
of A such that v,,(A;) > 0. We define £,(A) := ¥!_, A;, and £5(R) := Y1 M. Thenn = Y =60+

Ls(A). The cycle type of (o) is (Aj,,---,Aj,1,---,1), and the cycle type of s(c) is (A;,---, A, 1,---,1).
~—— ~——
n—L,() n—Lg(A)

It follows from (o) and (B) that

Ferig) = Me,g) :{{ f (xl)}e R[x] | 3a € [1], f(x) is an irreducible factor of x*« —1}
Ux —
={f(x) € E, | f(x) is irreducible } U{x—1},
r {u(x) € E., | u(x) is reducible in R[x]} if s(o) = o,
“© ) {u(x) € E, | u(x) is reducible in R[x]} U{x—1} if s(c) #G.

and
9 — {g(x) € M., | g(x) isreducible } if s(c)#id,
© ) {x—1} if s(0) = id.

Thus, we have the following for the power index sets.

(8) If s(o) # id, then P (h(x)) = Pe,(h(x)) \ {1} for h(x) € M, \ {(x— 1)7"} and P, ((x —
1)) = Py ((x— 1)7"). Similar conclusions hold for T € Z,,,.

Suppose c¢s 2 cq, that 1s, ¢cg i ¢ by Corollary 1.3(2). Then there is a bijection © : M, — M, such
that R[x]/(h(x)) ~ R[x]/((h(x)®) as algebras and P, (h(x)) = P, ((h(x))r) for h(x) € M,,. We show that

(i) (o) = id if and only if r(t) = id.

(ii) s(o) = id if and only if s(t) = id.

In fact, for nonnegative integers a, b, if R[x]/(w(x)*) ~ R[x]/(z(x)") as algebras for two irreducible
polynomials w(x),z(x) € R[x], then a = b and R[x]/(w(x)") ~ R[x]/(z(x)) as algebras for all i < a. Thus
we may extend T to a bijection between Z., and £, such that R[x]/(h(x)) ~ R[x]/((h(x)®) as algebras
for h(x) € ‘E.,. Note that x — 1 ¢ E._ if and only if v, (A;) > 0 for i € [k] if and only if 6 = s(c) if and
only if 1 ¢ P,_(h(x)) for h(x) € M,,. Similarly, the above observation holds for T. Thus we deduce from
P, (h(x)) = P.,((h(x))m) for all h(x) € M, that x—1 ¢ E._ if and only if x — 1 ¢ E_. This implies that
r(o) =id if and only if r(t) = id. Note that s(6) = id if and only if r(6) = ¢ if and only if P,_ (h(x)) = {1}

b
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for h(x) € M, . Thus we deduce from P,_(h(x)) = P..((h(x))r) for h(x) € M, that s(6) = id if and only
if s(t) = id. Hence (i) and (ii) hold.

Now, it follows from (i) and (ii) that (1) and (2) are obviously true for the case r(G) = id or s(c) = id.

From now on, we further assume both r(6) # id and s(G) # id, and therefore r(t) # id and s(t) # id
by (i) and (ii).

By the descriptions of M, and M., , the restriction of 7 to M, , is mapped surjectively to M,
For v(x) € M, , there holds P, (v(x)) = {1} = P, ((v(x))n). Thus c,(s) and ¢,() are M-equivalent,
and therefore D-equivalent by Corollary 1.3(2).

In the sequel, we show that ¢y (s) and ¢,(;) are D-equivalent, or equivalently, M-equivalent.

Actually, due to s(0) # id, M, consists of all reducible polynomials in M. By (ii), M, consists
of all reducible polynomials in M,_. By the first condition of Definition 3.1(1), the map 7 sends irreducible
polynomials to irreducible polynomials. Thus the restriction of T to 9\/[03(6) gives rise to a bijection between
Meys) and M.

By (), there are positive integers a,b such that (x — 1)?* € M, and (x— N e M,,.,- We consider
the two possible cases.

Case 1. ((x—1)?")w = (x—1)?". Then, by (3), we have

o (= D7) = Py (r= 1)) = P ((x = 1)) = P ((x = 1)),

Peyg) (h(x)) = Pey (h ( ) \ {1} for all h(x) € M, \{(x—1)""} and P (g(x)) = Pe.(g(x)) \ {1} for all
g(x) € M, \{(x—1)7 "Y. Thus, for h(x) € Mey \{(x— 1)P"}, the equality holds

Peyio) (A(x)) = Peg (h(x)) \ {1} = Pe, (R()T) \ {1} = P, (h(x)T).

This implies that the restriction of 7 to Mx(@ gives rise to an M-equivalence between c(s) and cy(q).

Case 2. ((x—1)" ) # (x— 1)?". By the definition of 7, we have an algebra isomorphism R [x]/((x—
1)P") =~ R[x]/(((x— 1)P")r). This implies that ((x — 1)?")t = (x+u)?" for some u € R. Similarly, we may
suppose ((x— l)l’b)n_1 = (x+v)”b for some v € R. Due to ((x — 1)P") # (x — l)pb, we have u # —1 and
v # —1. Now we define a map

.
T ﬂ’[cs@ — 9\/[63(1),

(x—1)"" = (x— l)pb, (x—l—v)pb = (x+u)?", h(x) = (h(x))n
for h(x) € M, \{(x— 1)P*, (x+v)P"}. Then it follows from the bijection of 7 that ' is also a bijection.
We show that T’ defines an M-equivalence between Cs(o) and cy(7). By definition, it only remains to
show that the corresponding power index sets are equal. In fact, by (8), for a(x) € M, \ {(x— D7, (x+
v)P"}, we have P, (h(x)) = P, (h(x)T). So, to complete the proof, we have to show

Py (k= 1)) = Poy (x— 1)) and P, (x+9)7") = Py ((x+)7").

On the one hand, P, ((x+ v)”b) C P, ((x—1)"") by (). Similarly, P._((x+u)”") C P..((x— l)pb). On
the other hand, by the definition of M-equivalences, we have Py, ((x+v)?") = P..((x— 1)?") and P, ((x—
1)P") = P..((x+u)?"). Thus a = b and

Pey (640)") = Pey((r= 1)7") = Pey ((x = 1)) = P (x+ )",
Therefore it follows from (8) that P, ((x+ V)P ) =P (x4v)P )\ {1} = P..(x+u)?)\ {1} = P ((x+

u)P") and P ((x— — 1)) =P (x— 1)) =P (x—1)7") = P, ((x—1)7 "). Thus Cs(o) and cy(q) are M-
equivalent. []

Generally, the converse of Proposition 4.12 may be false, see Example 5.1 in the next section.
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S Examples and further questions

In this subsection, we provide examples to illustrate results mentioned in the previous sections, and pro-
pose a few open questions for further considerations.

Example 5.1. Let R be an algebraically closed field of characteristic 5. We take ¢ € X9 with the cycle
type (15,4), and T € Xy with the cycle type (15,3,2). In this case, r(G) is a permutation of the cycle
type (4,1'%) and s(o) is a permutation of cycle type (15,1%), while r(t) has the cycle type (3,2,1'%) and
5(t) has the cycle type (15, 1°). Clearly, S19(¢s(0), R) and Szo(cy(r), R) are derived equivalent by Corollary
4.11. Since .‘MCV(G) ={x—1,x+1,x—m,x+n} and chrm ={x—1,x+1,x+¢x—¢?}, where n and ¢
are 4-th and 3-th primitive roots of unity, respectively, it follows from Theorem 1.1 that S19(c,(s),R) and
S20(¢y(r),R) are derived equivalent.

By Lemma 2.17, M, = {(x—1)°,(x —€)°,(x —€2)’>,x + 1,x —m,x+n} and M, = {(x — 1), (x —
€)’, (x— €)%, x+ 1}. Clearly, | M, | = 6 # 4 = |M,_|. Hence there are no bijections between M, and
M., and therefore Si9(cs,R) and Sx(cz, R) cannot be derived equivalent by Theorem 1.1.

This shows that, in general, derived equivalences for both p-regular parts and p-singular parts of
permutations do not have to guarantee a derived equivalence for the permutations themselves.

The following example shows that the existence of a Morita equivalence between centralizer matrix
algebras depends on the ground field.

Example 5.2. Let6:=(12345)(678---1718),1:=(1234567)(89--- 17 18) € £15. The
minimal polynomials of cs and c; over Q are (x — 1)(x* +x> + x> + x+ 1)(x!2 +x"' +--- +x+1) and
(x—1) (x4 2%+ 4+ x+1) (8 +x7 +---+x+1), respectively. Moreover, M, = {x—1,x* + x>+ x> +x+
LxZ+x x4+ 1} and M, = {x— 1, x'042% +- -+ x+ 1,20 +x° +--- +x+1}. Clearly, there is no
bijection between M., and M, such that all quotient algebras in Definition 3.1 (1) are isomorphic. Hence,
by Theorem 1.1, Si3(cs, Q) and S;g(cr, Q) are not Morita equivalent, while S;g(cs,C) and Sig(cr, C) are
Morita equivalent (see also [48, Theorem 1.2(2)]). By Corollary 1.3(2), this example also shows that
derived equivalences of centralizer matrix algebras over R depend upon the ground field R.

We point out that even in the class of centralizer matrix algebras, derived equivalences do not have to
preserve representation-finiteness, while almost v-stable derived equivalences always preserve representation-
finiteness for arbitrary algebras.

Example 5.3. Let R be an algebraically closed field, ¢ := J5(0) ©J4(0) ©J,(0) € M1o(R) and d := J5(0) B
J2(0)®J1(0) € Mg(R). Then Sio(c,R) and Sg(d, R) are derived equivalent by Theorem 1.1, while S1o(c, R)
is representation-finite, but Sg(d,R) is not by Lemma 3.3.

Having described derived equivalences of centralizer matrix algebras, we propose the following ques-
tions for further study.

Question 1. Let R be a field. Under which conditions on permutations ¢ € S, and T € S,,, does the
converse of Proposition 4.12 hold true?

Question 2. Let R be a field and ¢ € M, (R). Is there any canonical form of the matrix ¢ under the
equivalence relations in Definition 3.1?

Related to generalization of Theorem 1.1 (see also Remark 4.4), we mention the following.
Question 3. Can one extend Theorem 1.1 to the case that R is a principal ideal domain?
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