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Abstract

Centralizer matrix algebras were investigated initially by Georg Ferdinand Frobenius in the Crelle’s
Journal around 1877. By introducing three new equivalence relations on all square matrices over a
field, we completely characterize Morita, derived and almost ν-stable derived equivalences between
centralizer matrix algebras in terms of these matrix equivalences, respectively. Thus the categori-
cal equivalences are reduced to matrix equivalences in linear algebra. Further, we show that a de-
rived equivalence between centralizer matrix algebras of permutation matrices induces both a Morita
equivalence and additional derived equivalences for p-regular parts and for p-singular parts. As ap-
plications, we show that the finitistic dimension conjecture and Nakayama conjecture are valid for
centralizer matrix algebras.
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1 Introduction

Derived categories and equivalences between them are the pièce de résistance of modern homological
algebra. They were initiated by Grothendieck around 1960’s and developed further by Verdier (see [40]).
Since then a lot of applications and connections have been discovered to other branches in mathematics.
For instance, in representation theory, Happel applied them successfully to generalized tilting modules
over finite-dimensional algebras [20]. Moreover, Rickard advanced Happel’s work and developed a beau-
tiful Morita theory for derived categories of rings (see [37, 38]). Also, Keller established a Morita theory
for differential graded algebras (see [29]). All of these provide powerful tools to understand derived mod-
ule categories and equivalences of both rings and differential graded rings. However, it is still a hard and
untractable, but fundamental, problem to decide whether two algebras are derived equivalent or not. This

∗ Corresponding author. Email: xicc@cnu.edu.cn; Fax: 0086 10 68903637.
2020 Mathematics Subject Classification: Primary 16E35, 20C05, 15A27, 16G10; Secondary 16S50,05A05, 16D90, 18G80.
Keywords: Centralizer matrix algebra; D-equivalence relation; Derived equivalence; Elementary divisor; finitististic dimen-

sion conjecture; Morita equivalence; Nakayama conjecture.

1

ar
X

iv
:2

50
9.

26
35

3v
1 

 [
m

at
h.

R
T

] 
 3

0 
Se

p 
20

25

https://arxiv.org/abs/2509.26353v1


can be seen from a not yet solved conjecture by Broué, which says that a block algebra of a finite group
algebra with abelian defect subgroup should be derived equivalent to its Brauer corresponding block al-
gebra [5]. Though many efforts have been made in the last decades, the conjecture seems far away from
being solved completely. For some advances about this conjecture, we refer to [8, 39].

To understand derived equivalences between algebras, one may generally pursue two strategies. One
of them is to focus on special derived equivalences between arbitrary algebras (see [23] for example). The
other is to consider arbitrary derived equivalences between special algebras (see [16] for example).

In this article we consider arbitrary derived equivalences between centralizer matrix algebras. This
class of algebras was investigated long time ago by G. F. Frobenius (see [17]), and appeared in the study
of characters of general linear groups by J. A. Green [19]. Centralizer matrix algebras can have arbi-
trary representation types and arbitrary large or even infinite global dimensions. They cover a class of
quasi-hereditary algebras, and the algebras of centrosymmetric matrices which arise as transition matri-
ces for certain Markov processes (see [41]) and have applications in engineering problems and quantum
physics (see [12]). Moreover, for centralizer matrix algebras, the famous Auslander–Reiten conjecture (or
Auslander–Alperin conjecture) on stable equivalences holds true [49], while the conjecture states that sta-
bly equivalent algebras should have the same number of non-isomorphic, non-projective simple modules.

The purpose of this article is
(1) to provide complete descriptions of Morita, derived and almost ν-stable derived equivalences for

centralizer matrix algebras. This will be done by introducing new equivalence relations on square matrices
in terms of elementary divisors. Thus we reduce complicated categorical equivalences of centralizer
matrix algebras to the equivalences of matrices in linear algebra; and, as an application of our methods,

(2) to show that the Nakayama and finitistic dimension conjectures are valid for centralizer matrix
algebras over fields.

An unexpected phenomenon is that Morita and derived equivalences of centralizer matrix algebras
depend upon ground fields.

In the following, we will introduce our main results and their consequences more precisely.
Let R be a field. We denote by Mn(R) the full n×n matrix algebra over R with the identity matrix In.

For a nonempty subset X of Mn(R), the centralizer algebra Sn(X ,R) of X in Mn(R) is defined by

Sn(X ,R) := {a ∈ Mn(R) | ax = xa, ∀ x ∈ X}.

Clearly, Sn(X ,R) = ∩c∈X Sn({c},R). Thus it is of interest first to study the case X = {c}. For simplic-
ity, we write Sn(c,R) for Sn({c},R), and term Sn(c,R) as a centralizer matrix algebra in this article.

Centralizer matrix algebras seem to be first studied by Georg Ferdinand Frobenius (see [17]). He
proved a nice dimension formula in terms of the degrees of invariant factors of the given matrix (see [44,
Theorem 1, Theorem 2, p.105-106]). Precisely, it reads as follows.

Theorem (Frobenius). Let d1(x), · · · ,ds(x) be the invariant factors of positive degree of a matrix c ∈
Mn(R) over a field R, and let ni be the degree of di(x),1 ≤ i ≤ s. Then dimR Sn(c,R) = ∑

s
i=1(2s−2i+1)ni.

Typical examples of centralizer matrix algebras are centrosymmetric matrix algebras (see [41, 46])
and the quasi-hereditary Auslander algebras of the truncated polynomial algebras R[x]/(xn) for all n (see
[47]), which play a crucial role in the classification of parabolic subgroups of classical groups with a finite
number of orbits on the unipotent radical (see [21]). Also, all algebras of the form R[x]/( f (x)) can be
realized as centralizer matrix algebras.

If c is an invertible matrix, then the centralizer matrix algebra of c is the invariant algebra of the action
of cyclic group ⟨c⟩ on Mn(R) by conjugation. In general, if X consists of invertible matrices, then Sn(X ,R)
is just the invariant algebras which can be dated back to the classical invariant theory (see [42]). If c is a
nilpotent matrix in Mn(Fq), where Fq is a finite field with q elements, then the determinants of matrices
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in Sn(c,Fq) are completely described (see [4]). Also, for a nilpotent matrix c, it is shown that Sn(c,R) is
the so-called GIGS algebra (see [10]), that is a gendo-symmetric properly stratified Gorenstein algebra
having a duality. In general, if X consists of nilpotent matrices over an algebraically closed field R, then
all nilpotent matrices in Sn(X ,R) form a variety which is of significant interest in semisimple Lie algebras
(see [35, 36]). Centralizer matrix algebras are also studied in invariant orbits (see [3]), and in maximal
doubly stochastic matrix theory (see [11]). Recently, a lot of new structural and homological properties of
Sn(c,R) are revealed in a series of papers [47, 48, 49]. For instance, Sn(c,R) is always a cellular R-algebra
in the sense of Graham–Lehrer (see [18]) if the field R is algebraically closed. Further, Sn(c,R) is always
a Gorenstein algebra.

Since Morita and derived equivalences are fundamental algebraic equivalences and of great interest
in the representation theory of algebras and groups (for example, see [39]), we consider the following
question.

Question: Let R be a field, c ∈ Mn(R) and d ∈ Mm(R). What are necessary and sufficient conditions
for Sn(c,R) and Sm(d,R) to be Morita or derived equivalent?

To answer this question, we introduce the so-called M-equivalence, D-equivalence and AD-equivalence.
These matrix equivalences reflect information on maximal elementary divisors of matrices. We refer the
reader to Section 3 for precise definitions).

A complete answer to the above question reads as follows.

Theorem 1.1. Let R be a field, c ∈ Mn(R) and d ∈ Mm(R). Then the centralizer matrix algebras of c and
of d are Morita equivalent (respectively, derived equivalent, or almost ν-stable derived equivalent) if and
only if the matrices c and d are M-equivalent (respectively, D-equivalent, or AD-equivalent).

Thus the existence of a Morita equivalence, a derived equivalence or an almost ν-stable derived equiv-
alence between centralizer matrix algebras can be read off directly from the elementary divisors of given
matrices, and therefore is reduced to marix equivalences in linear algebra.

As an application of our methods, we consider the Nakayama conjecture [34] and the finitistic dimen-
sion conjecture [2].

Nakayama Conjecture (NC): An Artin algebra is self-injective if it has infinite dominant dimension.
Finitistic Dimension Conjecture (FDC): The finitistic dimension of an Artin algebra is always finite.
These are two of the central conjectures in the representation theory and homological algebra of Artin

algebras (see [1, Conjectures, p.409]). They are still open up to date. But we will show in Section 4.2 that
the conjectures hold true for centralizer matrix algebras.

Theorem 1.2. (1) The finitistic dimension conjecture holds true for centralizer matrix algebras over
fields. Particularly, the Nakayama conjecture holds true for centralizer matrix algebras over fields.

(2) If two centralizer matrix algebras are derived equivalent, then they have the same dominant di-
mension.

Consequently, (FDC) is valid for any algebras that are derived equivalent to centralizer matrix algebras
because the finiteness of finitistic dimensions is invariant under derived equivalences.

Next, we state some corollaries of Theorem 1.1. For unexplained notation, we refer to Subsection 3.1.

Corollary 1.3. Let R be a field, c ∈ Mn(R) and d ∈ Mm(R).
(1) If c and d are permutation matrices, then Sn(c,R) and Sm(d,R) are Morita equivalent if and only

if they are derived equivalent.
(2) If the field R is perfect, then the following are equivalent.
(a) Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent.
(b) Sn(c,R) and Sm(d,R) are stably equivalent of Morita type, and there is a bijection π : Mc\Rc →

Md \Rd , such that R[x]/( f (x))≃ R[x]/(( f (x))π) for f (x) ∈ Mc \Rc.
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For a derived equivalence of the centralizer matrix algebras of permutation matrices, we can addition-
ally get two more derived equivalences, that is, derived equivalences from their p-regular and p-singular
parts of permutations, where p is a prime number. The p-regular part r(σ) and the p-singular part s(σ) of
σ ∈ Σn are defined in terms of the cycle type of σ. For more details, we refer to Section 4.4.

Let cσ := ∑
n
i=1 ei,(i)σ ∈ Mn(R) be the permutation matrix of σ, where ei j is the matrix with 1 in (i, j)-

entry and 0 in all other entries.

Corollary 1.4 (Proposition 4.12). Let R be a field of characteristic p ≥ 0, σ ∈ Σn and τ ∈ Σm. If Sn(cσ,R)
and Sm(cτ,R) are derived equivalent, then

(1) Sn(cr(σ),R) and Sm(cr(τ),R) are derived equivalent, and
(2) Sn(cs(σ),R) and Sm(cs(τ),R) are derived equivalent.

The paper is organized as follows. In Section 2 we fix notation, recall basic definitions and termi-
nology, and prove a few preliminary lemmas needed in the later proofs. In Section 3 we introduce 3
new equivalence relations on square matrices over fields. As examples, we describe representation-finite
centralizer matrix algebras. In Section 4 we prove the main results and their corollaries. In Section 5 we
present examples to show that the converse of Corollary 1.4 may be false and that even for centralizer
matrix algebras over a field, the notions of Morita, derived and almost ν-stable derived equivalences are
distinct, though they may coincide in many cases. Finally, we propose some open problems for further in-
vestigation. For example, can one generalize the main results in this article to the case that R is a principal
ideal domain?

2 Preliminaries

In this section we recall some basic definitions and terminologies on derived equivalences, and prepare a
few lemmas on modules over polynomial algebras for our proofs.

2.1 Definitions and notation

In this paper, R is a field unless stated otherwise. By an algebra we mean a finite-dimensional unitary
associative algebra over R. By a module we mean a left module.

Let A be an algebra. By rad(A) and LL(A) we denote the Jacobson radical and Loewy length of A,
respectively. Let A

op
and Ae stand for the opposite algebra and the enveloping algebra A⊗R Aop of A,

respectively.
We write A-mod for the category of all finitely generated A-modules, A-modP for the full subcat-

egory of A-mod consisting of modules without any nonzero projective direct summands, and A-proj
(respectively, A-inj) for the full subcategory of A-mod consisting of projective (respectively, injective)
A-modules.

For an A-module M ∈ A-mod, ℓ(M) denotes the composition length of M, and add(M) denotes the full
subcategory of A-mod consisting of all modules isomorphic to direct summands of direct sums of finitely
many copies of M. If M ∈ A-proj, we denote by pres(M) the full subcategory of A-mod consisting of those
modules L such that there is an exact sequence P1 → P0 → L → 0 with P0,P1 ∈ add(M). The basic module
of M is by definition the direct sum of all non-isomorphic indecomposable direct summands of M. This
is uniquely determined by M up to isomorphism, and denoted by B(M). Let MP be the submodule of M
such that MP has no nonzero projective direct summand and M/MP is projective. Thus MP ∈ A-modP .

For homomorphisms f : X → Y and g : Y → Z in A-mod, we write f g for their composition. This
implies that the image of an element x ∈ X under f is denoted by (x) f . Thus HomA(X ,Y ) is naturally an
EndA(X)-EndA(Y )-bimodule, where EndA(X) stands for the endomorphism algebra of the module X .
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The composition of functors between categories is written from right to left, that is, for two functors
F : C → D and G : D → Σ, we write G◦F , or simply GF , for the composition of F with G. The image
of an object X ∈ C under F is written as F(X).

Let D be a class of A-modules. By the number of modules in D we always mean the number of the
isomorphism classes of modules in D .

A homomorphism f : M → N in A-mod is right almost split if f is not a split surjection and any
homomorphism X → N which is not a split surjection factorizes through f . Dually, left almost split

homomorphisms are defined. An exact sequence 0 → M
f→ L

g→ N → 0 of A-modules is called an almost
split sequence if f is left almost split and g is right almost split. We refer to [1] for further information on
almost split sequences. The homomorphism f is called a radical homomorphism if, for any Z ∈ A-mod,
g ∈ HomA(Z,M) and h ∈ HomA(N,Z), the composition g f h is not an automorphism of Z.

Let D = HomR(−,R) : A-mod → A
op

-mod be the usual duality of A. The Nakayama functor νA :=
DHomA(−,A) ≃ D(A)⊗A − : A-mod → A-mod restricts to an equivalence between A-proj and A-inj.
An A-module M ∈ A-mod is said to be ν-stably projective if νi

AM is projective for all i ≥ 0. Let A-stp
denote the full subcategory of A-mod consisting of all ν-stably projective A-modules. Clearly, there is an
idempotent e ∈ A such that A-stp = add(Ae). The self-injective algebra eAe is called the Frobenius part of
A, which is unique up to Morita equivalence (see [24] or [32] for more details).

The R-algebra A is said to be elementary if A/rad(A) is isomorphic to the direct product of copies of
R, and split if there exist positive integers n1, · · · ,ns such that A/rad(A) ≃ ⊕s

j=1Mn j(R) as algebras. So
elementary R-algebras are always split.

Let Db(A) stand for the bounded derived category of A-mod. It is known that Db(A) is an R-linear,
triangulated category. Let A-mod denote the stable module category of A-mod, which is the quotient
category of A-mod modulo the full subcategory A-proj. In general, A-mod is not a triangulated category.
But, if A is self-injective, then A-mod is an R-linear triangulated category.

Definition 2.1. Algebras A and B over a field R are said to be
(1) Morita equivalent if their module categories A-mod and B-mod are equivalent as R-linear cat-

egories. In this case, an equivalence F : A-mod → B-mod of R-linear categories is called a Morita
equivalence between A and B.

(2) Derived equivalent if their derived categories Db(A) and Db(B) are equivalent as R-linear tri-
angulated categories. In this case, an equivalence F : Db(A)→ Db(B) of R-linear triangle categories is
called a derived equivalence between A and B.

(3) Stably equivalent if their stable module categories A-mod and B-mod are equivalent as R-linear
categories. In this case, an equivalence F : A-mod → B-mod of R-linear categories is called a stable
equivalence between A and B.

For further information on derived categories and equivalences of rings, we refer to [37, 38].
If F is a stable equivalence between algebras A and B, then F induces a one-to-one correspondence

between non-isomorphic, indecomposable, non-projective modules in A-modP and B-modP .
The following is a simple observation on Morita equivalences.

Lemma 2.2. Let A be an algebra and M,N ∈ A-mod. Then EndA(M) and EndA(N) are Morita equiva-
lent if and only if add(M) and add(N) are equivalent as R-linear categories. Moreover, if A is a local,
Nakayama algebra, then the algebras EndA(M) and EndA(N) are Morita equivalent if and only if the
basic modules B(M) and B(N) are isomorphic.

Proof. We only prove the second statement. Suppose that A is a local, Nakayama algebra with
LL(A) = n. Then {A/radi(A) | 0 ≤ i ≤ n− 1} is a complete list of all non-isomorphic indecomposable
A-modules, and EndA(A/radi(A)) ≃ A/radi(A) as algebras for 0 ≤ i ≤ n− 1. Thus, for indecomposable
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A-modules X and Y , EndA(X) ≃ EndA(Y ) if and only if X ≃ Y . Suppose that EndA(M) and EndA(N)
are Morita equivalent. Then there is an R-linear equivalence G : add(M) → add(N). In particular, we
have EndA(C) ≃ EndA(G(C)) for C ∈ add(M), and therefore C ≃ G(C) for any indecomposable module
C ∈ add(M). Hence B(M)≃B(N) as A-modules. The converse is clear by the fact: add(M) = add(B(M))
for any M ∈ A-mod. □

The second statement in Lemma 2.2 is not true in general. For example, if A is an algebra over an
algebraically closed field R and has at least two (non-isomorphic) simple A-modules M and N such that
EndA(M)≃ R ≃ EndA(N), then we cannot get M ≃ N.

As a special class of derived equivalences, almost ν-stable derived equivalences were introduced in
[22]. Recall that a tilting complex is called a radical tilting complex if all of its differentials are radical
homomorphisms. Every tilting complex over an algebra A is isomorphic to a radical tilting complex in
Db(A) (see [22, (a), p.112]).

Definition 2.3. [22] Let F : Db(A)→ Db(B) be a derived equivalence of algebras A and B. Suppose that
Q• and Q̄• are radical tilting complexes associated to F and the quasi-inverse F−1 of F, respectively. By
applying the shift functor if necessary, we may assume that Q• and Q̄• are of the form

0 −→ Q−n −→ ·· · −→ Q−1 −→ Q0 −→ 0, 0 −→ Q̄0 −→ Q̄1 −→ ·· · −→ Q̄n −→ 0,

respectively. Let Q :=
⊕n

i=1 Q−i and Q̄ :=
⊕n

i=1 Q̄n. The derived equivalence F is said to be almost
ν-stable provided that add(AQ) = add(νAQ) and add(BQ̄) = add(νBQ̄).

One of the significant properties of almost ν-stable derived equivalences is that such an equivalence
between algebras always induces a stable equivalence of Morita type (see [22, Theorem 1.1]), and thus
preserves global and dominant dimensions of algebras. This generalises a result of Rickard on derived
equivalences of self-injective algebras (see [38, Corollary 5.5]).

Definition 2.4. [6] Algebras A and B are stably equivalent of Morita type if there exist bimodules AMB

and BNA such that M and N are projective as one-sided modules, M⊗B N ≃ A⊕P and N ⊗A M ≃ B⊕Q
as bimodules, where P is a projective Ae-module and Q is a projective Be-module.

In this definition, the exact functor N ⊗A − : A-mod → B-mod induces a stable equivalence N ⊗A − :
A-mod → B-mod.

Examples of stable equivalences of Morita type are the derived equivalences between self-injective
algebras (see [38, Corollary 5.5]). Another example is that a commutative ring R and a separable R-algebra
A are stably equivalent of Morita type. Here, an R-algebra A is separable over R if AAA is a projective
Ae-module.

An algebra is said to be representation-finite if it has only finitely many non-isomorphic indecom-
posable modules. Consequently, given A-modules M and N with add(N) ⊆ add(M), if EndA(M) is
representation-finite, then so is EndA(N). Equivalently, if A is representation-finite, then so is eAe for
all e = e2 ∈ A.

2.2 Basic facts on derived equivalences of algebras

Derived equivalences of algebras were described by Rickard in terms of tilting complexes in [37]. How-
ever, for our purpose, we will follow the approach in [24] to construct derived equivalences of algebras.
For further information on constructing derived equivalences of algebras, we refer to [45].

Let C be an additive category and D a full subcategory of C . Given an object Y ∈ C , a morphism
f : M → Y in C is called a right D-approximation of Y if M ∈ D and each morphism D → Y with D ∈ D
factorizes through f . A left D-approximation of an object X in C is defined dually. As usual, we denote
by EndC (Y ) the endomorphism ring of an object Y ∈ C .
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Definition 2.5. [24] A sequence X
g→ M

f→Y of morphisms in C with M ∈ D is called a D-split sequence
if g is both a kernel of f and a left D-approximation of X, and if f is both a cokernel of g and a right
D-approximation of Y .

Examples of add(M)-split sequences capture almost split sequences X → M → Z in A-mod. Also, for
any projective-injective module M and a submodule X of M, the exact sequence X → M → M/X is an
add(M)-split sequence.

Lemma 2.6. [24, Theorem 1.1] Let A be an algebra, and let C be a full additive subcategory of A-mod
and M an object in C . Suppose that X → M′ → Y is an add(M)-split sequence in C . Then EndC (M⊕X)
and EndC (M⊕Y ) are derived equivalent.

As a consequence of Lemma 2.6, we get the following result (see also [22, Section 3, Remark]).

Lemma 2.7. Let A be a self-injective algebra and X ∈ A-mod. Then EndA(A⊕X) and EndA(A⊕ΩA(X))
are almost ν-stable derived equivalent.

The next result is somehow a converse of Lemma 2.7.

Lemma 2.8. [7, Theorem 4.4] Let A and B be symmetric algebras, and let F be an almost ν-stable derived
equivalence between EndA(A⊕M) and EndB(B⊕N), where AM and BN are basic non-zero modules with-
out nonzero projective summands. Then A and B are (almost ν-stable) derived equivalent. Furthermore,
F induces a stable equivalence F : A-mod → B-mod with F(M) = N.

Lemma 2.9. Let A and B be commutative self-injective algebras, and let AM and BN be faithful modules
over A and B, respectively. If EndA(M) and EndB(N) are derived equivalent, then A ≃ Z(EndA(M)) ≃
Z
(
EndB(N))≃ B, where Z(C) denotes the center of an algebra C.

Proof. For an algebra C and a faithful C-module X , one always has an embedding Z(C) ↪→ Z(EndC(X)).
Thus A ↪→ Z(EndA(M)) since A is commutative. Note that a faithful module over a self-injective algebra
is clearly a generator-cogenerator. This implies that MEndA(M) is a right faithful module and the bimodule
AMEndA(M) has the double centralizer property, that is EndEndA(M)op(M) ≃ A. Thus there is an embed-
ding Z(EndA(M)) ↪→ EndEndA(M)op(M) ≃ A. Hence A ≃ Z(EndA(M)). Now, assume that EndA(M) and
EndB(N) are derived equivalent. Then Z(EndA(M)≃ Z(EndB(N)) by [37, Proposition 9.2], and therefore
A ≃ Z(EndA(M))≃ Z(EndB(N))≃ B. □

2.3 Modules over quotients of polynomial algebras

In this subsection we recall some basic facts on modules over the polynomial algebra R[x], where R is a
field, and prove a few basic lemmas for later proofs.

Throughout this section, let f (x) be a fixed irreducible polynomial in R[x] and A := R[x]/( f (x)n)
for a natural number n > 0. Then A is a local, commutative, symmetric, Nakayama algebra (see, for
instance [1, Example, p.127]). Thus A has n indecomposable modules M(i) := R[x]/( f (x)i) for i ∈ [n].
We write M(0) = 0. Clearly, HomA(M(i),A)≃ HomR(M(i),R)≃ M(i) as A-modules, and ℓ(M(i)) = i for
all i ∈ [n]. Moreover, for i, j ∈ [n], we see that i ≤ j if and only if there is an injective homomorphism in
HomA(M(i),M( j)) if and only if there is a surjective homomorphism in HomA(M( j),M(i)).

For B := R[x]/( f (x)m) with m < n, there is a canonical surjective homomorphism π : A → B of R-
algebras, and therefore each B-module can be viewed as an A-module via π. Up to isomorphism, indecom-
posable A-modules coming from B-modules are exactly those M(i) with i ∈ [m]. Clearly, HomA(M,N) =
HomB(M,N) for M,N ∈ B-mod.
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For an irreducible polynomial g(x) ∈ R[x] and a positive integer m, if A ≃ R[x]/(g(x)m) as R-algebras,
then n = LL

(
R[x]/( f (x)n)

)
= LL

(
R[x]/(g(x)m)

)
= m and, for t ∈ [n], the indecomposable B-module

R[x]/(g(x)t) is isomorphic to the A-module M(t).
Now, suppose that G : A-mod → A-mod is a stable equivalence. For n ≥ 2, we define Γn−1 := {M(i) |

i ∈ [n− 1]} ⊆ A-modP . Then G induces a permutation G on Γn−1, namely, for M ∈ Γn−1, G(M) is the
unique module in Γn−1 such that G(M) ≃ G(M) in A-mod. Clearly, ΩA(M(i)) = M(n− i), where ΩA is
the syzygy operator of A.

Lemma 2.10. Let n ≥ 2. If G : A-mod → A-mod is a stable equivalence, then the induced action G on
Γn−1 coincides with either ΩA or the identity action.

Proof. If n = 2, then A has only one non-projective indecomposable A-module S and Ω(S) ≃ S.
Thus the conclusion is true. Now suppose n ≥ 3. For A-modules X and Y , let Irr(X ,Y ) be the R-space
radA(X ,Y )/rad2

A(X ,Y ). For i, j ∈ [n− 1], it follows from the shape of the Auslander-Reiten quivers of
Nakayama algebras that Irr(M(i),M( j)) ̸= 0 if and only if |i − j| ≤ 1. By a general result on stable
equivalences (see [1, Lemma 1.2, p.336]), we have Irr(X ,Y ) ≃Irr(G(X),G(Y )) as R-spaces for X ,Y ∈
A-modP . It then follows that G(M(1)) ≃ M(1) or G(M(1)) ≃ M(n−1) = ΩA(M(1)). This implies that
G(M(i)) ≃ M(i) for i ∈ [n− 1] or G(M(i)) ≃ ΩA(M(i)) for i ∈ [n− 1]. Hence G is the identity map or
equals ΩA. □

Lemma 2.11. Let a,b,c,d ∈ {0,1, · · · ,n} such that b < a < c, b < d < c and a+d = b+c. If AX ∈ A-mod
has no indecomposable direct summands N with b < ℓ(N) < c and AY := AX ⊕M(b)⊕M(c), then there
is an add(AY )-split sequence 0 → M(a)→ M(b)⊕M(c)→ M(d)→ 0.

Proof. Let g : M(b)→ M(d) and h : M(c)→ M(d) be the canonical injective and surjective homomor-
phisms, respectively, and define v :=

( g
h

)
. Then v : M(b)⊕M(c)→ M(d) is a surjective homomorphism.

Similarly, let p : M(a)→ M(b) and q : M(a)→ M(c) be the canonical surjective and injective homomor-
phisms, respectively, and define u := (−p,q). Then u : M(a)→ M(b)⊕M(c) is an injective homomor-
phism. By the definition of M(i), we have uv = 0. It follows from a+d = b+ c that the sequence

(∗) 0 −→ M(a) u−→ M(b)⊕M(c) v−→ M(d)−→ 0

of A-modules is exact. This can also be seen from the Auslander–Reiten quivers of Nakayama algebras.
We shall show that u and v are left and right add(AY )-approximations of M(a) and M(d), respectively.

In fact, we need only to show that v is a right add(AY )-approximation of M(d) because the dual functor
HomR(−,R) transforms right add(AY )-approximations to left add(AY )-approximations. To show that v is
a right add(AY )-approximation of M(d), it suffices to prove that, for any indecomposable direct summand
Z of AY , each homomorphism h : Z → M(d) factorizes through v. Let Im(h) denote the image of h. By
the assumption on X , we have either ℓ(Z)≤ b or ℓ(Z)≥ c.

Suppose ℓ(Z) ≤ b. Then ℓ(Im(h)) ≤ ℓ(Z) ≤ b = ℓ((M(b))g). Since (M(b))g is maximal submodule
of M(d) of length b, we have Im(h)⊆ (M(b))g. Let s : Z → M(b)⊕M(c) be the map defined by (z)s :=
((z)h)g−1,0) for z ∈ Z. Clearly, h is a homomorphism of A-modules such that h = sv, that is, h factorizes
through v.

Suppose ℓ(Z) ≥ c. Then max{a,b,c,d} ≤ ℓ(Z). Let B := R[x]/( f (x)ℓ(Z)). Then B is the quotient
of A by the ideal ( f (x))n−ℓ(Z) + ( f (x)n) and Z ≃ M(ℓ(Z)) = R[x]/( f (x)ℓ(Z)) = B as A-modules. This
shows that Z is also a projective B-module. Thus the exact sequence (∗) can be viewed as a sequence
of B-modules. So the exactness of HomB(Z,−) implies that h factorizes through v in B-mod. Since
HomA(M,N) = HomB(M,N) for M,N ∈ B-mod, we see that h factorizes through v in A-mod. □

Lemma 2.12. Let n = ∑
s
i=1 ℓi with ℓi ∈ Z>0. For σ ∈ Σs and j ∈ [s], define M j := M(∑

j
i=1 ℓi) and Mσ

j :=
M(∑

j
i=1 ℓ(i)σ). Then EndA(

⊕s
j=1 M j) and EndA(

⊕s
j=1 Mσ

j ) are derived equivalent.
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Proof. The symmetric group Σs is generated by the transpositions (t, t + 1), t ∈ [s− 1]. In particular,
σ ∈ Σs can be written as a product of these transpositions, say σ = ∏

k
i=1(ti, ti + 1) for ti ∈ [s− 1]. Set

σk+1 := id and σr := ∏
k
i=r(ti, ti + 1) for all r ∈ [k]. Then σ1 = σ and (tr, tr + 1)σr = σr+1 for r ∈ [k]. In

particular, (tr)σr+1 = (tr +1)σr,(tr +1)σr+1 = (tr)σr and (t)σr+1 = (t)σr for t ∈ [s]\{tr, tr +1}.
Since EndA(

⊕s
j=1 Mσ

j ) = EndA
(⊕s

j=1 Mσ1
j

)
and EndA(

⊕s
j=1 M j) = EndA

(⊕s
j=1 Mσk+1

j , it suffices to
show that there is a derived equivalence between EndA

(⊕s
j=1 Mσr

j

)
and EndA

(⊕s
j=1 Mσr+1

j

)
for all r ∈ [k].

Indeed, for any τ∈Σs, we define ∑
tr−1
i=1 ℓ(i)τ = 0 if tr = 1. For r ∈ [k], let ar := ℓ(tr+1)σr+1 +∑

tr−1
i=1 ℓ(i)σr+1 ,br :=

∑
tr−1
i=1 ℓ(i)σr+1 ,cr := ∑

tr+1
i=1 ℓ(i)σr+1 ,dr := ∑

tr
i=1 ℓ(i)σr+1 , Xr :=

⊕
j∈[s],| j−tr|≥2 Mσr+1

j and Yr :=
⊕

j∈[s], j ̸=tr Mσr+1
j .

Then br < ar < cr,br < dr < cr,ar +dr = br + cr and

Yr = M
( tr−1

∑
i=1

ℓ(i)σr+1

)
⊕M

( tr+1

∑
i=1

ℓ(i)σr+1

)
⊕

⊕
j∈[s],| j−tr|≥2

Mσr+1
j = M(br)⊕M(cr)⊕Xr.

Clearly, for any indecomposable direct summand Z of Xr =
⊕

j∈[s],| j−tr|≥2 Mσr+1
j , either ℓ(Z)≤∑

tr−2
j=1 ℓ( j)σr+1

< br or ℓ(Z)≥ ∑
tr+2
j=1 ℓ( j)σr+1 > cr. It then follows from Lemma 2.11 that there is an add(Yr)-split sequence

0 −→ M
(
ar)−→ M(br)⊕M(cr)−→ M

(
dr)−→ 0.

Clearly,
⊕s

j=1 Mσr
j = Yr ⊕M(ar) and

⊕s
j=1 Mσr+1

j = Yr ⊕M(dr). By Lemma 2.6, EndA(
⊕s

j=1 Mσr
j ) and

EndA(
⊕s

j=1 Mσr+1
j ) are derived equivalent. □

Remark 2.13. The sums ∑
j
i=1 ℓi and ∑

j
i=1 ℓ(i)σ, appearing in Lemma 2.12, are related to the definition of

D-equivalences of matrices (see Section 3.1 below). For s ≥ 2 and a series of integers ms > ms−1 > · · ·>
m1 ≥ 1, let ℓ1 := m1 and ℓi := mi −mi−1 for 2 ≤ i ≤ s. Then m j = ∑

j
i=1 ℓi for j ∈ [s]. For another series

of integers ns > ns−1 > · · ·> n1 ≥ 1, if {{ms −ms−1, · · · ,m1}}= {{ns −ns−1, · · · ,n1}} as multisets, then
there exists some σ∈ Σs such that n j =∑

j
i=1 ℓ(i)σ for j ∈ [s]. Moreover, if {{ms−ms−1, · · · ,m1}}= {{ns−

ns−1, · · · ,n1}} and if there are two irreducible polynomials f (x) and g(x) in R[x] such that R[x]/( f (x)ms)≃
R[x]/(g(x)ns) as algebras, then it follows from Lemma 2.12 that EndR[x]/( f (x)ms )

(⊕
k∈[s] R[x]/( f (x)mk)

)
and

EndR[x]/(g(x)ns )

(⊕
k∈[s] R[x]/(g(x)

nk)
)

are derived equivalent.

Recall that a polynomial g(x) ∈ R[x] of positive degree is separable if it has only simple roots in its
splitting field.

Lemma 2.14. If the irreducible polynomial f (x) is separable, then K := R[x]/( f (x)) is a separable field
over R, the algebra A can be viewed as a K-algebra, and A ≃ K[x]/(xn) as K-algebras.

Proof. Since f (x) is separable and rad(A)= ( f (x))/( f (x)n), we know that A/rad(A)≃K is a separable
R-algebra. By Wedderburn-Malcev Theorem [43, Theorems 24 and 28], there exists a subalgebra S of A
such that A = S⊕ rad(A) as R-vector spaces. Consequently, S ≃ A/rad(A)≃ K. So A can be viewed as a
K-algebra. Since A is a finite-dimensional, elementary, local K-algebra of representation-finite type, there
is a natural number m such that A ≃ K[x]/(xm) as K-algebras. By considering the chain R[x] ⊋ ( f (x)) ⊋
( f (x)2)⊋ · · ·⊋ ( f (x)n)⊋ 0 and comparing the K-dimensions of the algebras in this isomorphism, we get
n = m. □

Corollary 2.15. If the polynomial f (x) is separable and g(x) ∈ R[x] is irreducible such that A is stably
equivalent to R[x]/(g(x)m) for an integer m ≥ 2, then A ≃ R[x]/(g(x)m) as R-algebras and m = n.

Proof. Since stably equivalent algebras of representation-finite type have the same number of non-
isomorphic, non-projective, indecomposable modules, we have n− 1 = m− 1, and therefore n = m. Set
B := R[x]/(g(x)m). Let F : A-mod → B-mod be a stable equivalence, and let S be the unique simple

9



A-module (up to isomorphism). Then F induces a one-to-one correspondence between the set of non-
isomorphic, non-projective, indecomposable modules in A-modP and the one in B-modP . Thanks to
n = m ≥ 2, the module S is not projective and EndA(S)≃ EndA(S). Thus F(S) is indecomposable and

EndA(S)≃ EndA(S)≃ EndB(F(S)) = EndB(F(S))/P (F(S),F(S))

is a division ring, where P (F(S),F(S)) is the set of all homomorphisms that factorize through projective
B-modules. Since P (F(S),F(S))⊆ rad(EndB(F(S))), we have P (F(S),F(S)) = rad(EndB(F(S))). This
yields the following isomorphisms of algebras:

R[x]/( f (x))≃ A/rad(A)≃ EndA(S)≃ EndB(F(S))≃ B/rad(B)≃ R[x]/(g(x)).

In particular, g(x) is also a separable polynomial. Let K := R[x]/( f (x)). Then Lemma 2.14 implies that
A ≃ K[x]/(xn)≃ B as K-algebras, and therefore also as R-algebras. □

For c ∈ Mn(R), set Ac := R[x]/(Ker(ϕ)) = R[x]/(mc(x))≃ R[c]. Then the characteristic matrix xIn −c
of c is a matrix over the principal ideal domain R[x]. Suppose that xIn−c has invariant factors d1(x), · · · ,dr(x)
of positive degree with r ≤ n and di|di+1 for 1≤ i< r. Let dr(x)= f1(x)er1 · · · fs(x)ers , where f1(x), · · · , fs(x)
are pairwise coprime, irreducible polynomials, and er j > 0 is an integer for j ∈ [s]. Then, for i∈ [r−1], we
can write di(x) = f1(x)ei1 · · · fs(x)eis , where 0 ≤ ei j ≤ ei+1 j ≤ ·· · ≤ er j. The polynomials f j(x)ei j , with ei j

positive for i ∈ [r] and j ∈ [s], are called the elementary divisors of c. This can be interpreted alternatively
in the following way.

Let Rn be the set of n×1 matrices with entries in R. Then c can be viewed as a linear transformation σc

on Rn by σc ·v := cv for v∈ Rn. Note that mc(x) = dr(x) = f1(x)er1 · · · fs(x)ers . Set M j :=Ker( f j(σc)
er j) for

j ∈ [s]. Then M j is a σc-invariant subspace (equivalently, R[c]-submodule) of Rn and Rn =
⊕s

j=1 M j. Note
that the minimal polynomial of the restriction of σc to M j is f j(x)er j . By [9, Theorem 4.11], we see that
M j =⊕l j

i=1M ji can decompose into direct sum of σc-cyclic subspaces M ji, and the minimal polynomial of
the restriction of σc to the subspace M ji is f j(x)q ji . The multiset of these polynomials f j(x)q ji is in fact the
multiset of elementary divisors of c (over R). Note that Rn can be regarded as an R[x]-module by letting xk

act on Rn as σk
c and the decomposition Rn =

⊕s
j=1

⊕l j
i=1 M ji is in fact a decomposition of Rn as a direct

sum of indecomposable submodules. That the minimal polynomial of the restriction of σc to the subspace
M ji is f j(x)q ji is equivalent to saying that M ji ≃ R[x]/( f j(x)q ji) as R[x]-modules. Thus

(⋆) Rn ≃
s⊕

j=1

l j⊕
i=1

R[x]/( f j(x)q ji)

as R[x]-modules (see [9, Chapter 4, p.130-133] for more details).
For c ∈ Mn(R), we deine Ec to be the set of elementary divisors of c. Here, we understand that a set

always has no duplicate elements. Further, we define the set of maximal divisors of c by

Mc := { f (x) ∈ Ec | f (x) is maximal with respect to polynomial divisibility}.

The next lemma follows immediately from (⋆).

Lemma 2.16. If Rn is identified with the Ac-module
⊕s

j=1
⊕l j

i=1 R[x]/( f j(x)q ji) in (⋆), then there is a
bijection π from Ec to the set of pairwise non-isomorphic indecomposable direct summands of the Ac-
module Rn, sending h(x) to the Ac-module R[x]/(h(x)) for h(x) ∈ Ec.

Suppose that the characteristic of R is p ≥ 0. For a positive integer m, there exist uniquely determined
integers s,m′ ∈ N such that m = psm′ and p ∤ m′, we define νp(m) := s. Here, we understand νp(m) := 0
if p = 0. Suppose that σ ∈ Σn is a permutation of cycle type (λ1, · · · ,λk). Let g(x) be an irreducible factor
of the minimal polynomial mcσ

(x) of the permutation matrix cσ of σ, we define qg(x) := max{νp(λ j) | j ∈
[k], such that g(x) divides xλ j −1}. Note that qg(x) depends upon the cycle type of σ.
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Lemma 2.17. Suppose that the characteristic of R is p ≥ 0 and σ ∈ Σn is a permutation of cycle type
(λ1, · · · ,λk). Then

Ecσ
= {g(x)pνp(λi) | i ∈ [k],g(x) is an irreducible factor of xλi −1} and

Mcσ
= {g(x)pqg(x) | g(x) is an irreducible factor of mcσ

(x)}.

Proof. For conjugate permutations in Σn, their corresponding permutation matrices are similar, and
therefore have the same elementary divisors. Thus, without loss of generality, we may assume that
σ= (1, · · · ,λ1)(λ1+1, · · · ,λ1+λ2) · · ·(∑k−1

j=1 λ j+1, · · · ,n). Then cσ is a diagonal block matrix, that is cσ=
diag{cσ1 ,cσ2 , · · · ,cσk}, where σi is a λi-cycle in Σλi for i ∈ [k]. In particular, mcσ

(x) is the least common
multiple of xλi −1 for i ∈ [k] and Ecσ

=
⋃

i∈[k] Ecσi
. For a matrix d ∈ Mm(R), let χd(x) denote the charac-

teristic polynomial of d in R[x]. For i ∈ [k], we write λi = pνp(λi)λ′
i with p ∤ λ′

i. Then xλ′
i −1 = ∏

hi
j=1 fi j(x),

where fi1(x), fi2(x), · · · , fihi(x) are distinct irreducible (monic) polynomials in R[x]. From the following
equalities

χcσi
(x) = xλi −1 = xpνp(λi)λ′

i −1 = (xλ′
i −1)pνp(λi)

=
hi

∏
j=1

fi j(x)pνp(λi)
,

we get χcσi
(x) = mcσi

(x) = xλi −1. Hence Ecσi
= Mcσi

. This implies

Ecσ
= {g(x)pνp(λi) | i ∈ [k],g(x) is an irreducible factor of xλi −1}.

Clearly, Mcσ
is of the form {g1(x)m1 ,g2(x)m2 , · · · ,gt(x)mt}, where g1(x),g2(x), · · · ,gt(x) form a com-

plete set of distinct (monic) irreducible factors of mcσ
(x) and where m1,m2, · · · ,mt are positive integers.

Let gs(x) be an irreducible factor of mcσ
(x). Then gs(x) divides xλi −1 for at least one i ∈ [k], and therefore

the set S(gs(x)) := {gs(x)pνp(λ j) | j ∈ [k] and gs(x) divides xλ j − 1} ̸= ∅. By the description of Ecσ
, we

see that S(gs(x)) is exactly the elementary divisors of cσ which are divided by gs(x). Thus gs(x)pqgs(x) is a
maximal elementary divisor of cσ by the definition of qgs(x). Hence

Mcσ
= {g(x)pqg(x) | g(x) is an irreducible factor of mcσ

(x)}. □

Now, we prove a result on congruences of matrices that appear as the Cartan matrices of the en-
domorphism algebras of modules over polynomial algebras. Note that two multisets {{x1, · · · ,xs}}
and {{y1, · · · ,ys}} are equal if and only if there exists a permutation σ ∈ Σs such that (y1, · · · ,ys)

σ :=
(y(1)σ, · · · ,y(s)σ) = (x1, · · · ,xs).

Lemma 2.18. For an integer s≥ 2, let m1 >m2 > · · ·>ms ≥ 1 and n1 > n2 > · · ·> ns ≥ 1 be two series of
integers with m1 = n1. Set X := ∑

s
k=1

(
∑

k
l=1 mk(ekl +elk)−mkekk

)
∈ Ms(Z) and Y := ∑

s
k=1

(
∑

k
l=1 nk(ekl +

elk)− nkekk
)
∈ Ms(Z). Then X and Y are congruent in Ms(Z) if and only if there is σ ∈ Σs such that

(n1 −n2, · · · ,ns−1 −ns,ns) = (m1 −m2, · · · ,ms−1 −ms,ms)
σ.

Proof. We define three matrices in Ms(Z) by U := Is −∑
s−1
t=1 et,t+1, D1 := diag(m1 −m2, · · · ,ms−1 −

ms,ms) and D2 := diag(n1 −n2, · · · ,ns−1 −ns,ns). Then U trXU = D1 and U trYU = D2, where U tr stands
for the transpose of U . Thus X and Y are congruent in Ms(Z) if and only if D1 and D2 are congruent in
Ms(Z). Now, we show that D1 and D2 are congruent in Ms(Z) if and only if there is an element σ∈ Σs such
that (n1 −n2, · · · ,ns−1 −ns,ns) = (m1 −m2, · · · ,ms−1 −ms,ms)

σ. Indeed, if (n1 −n2, · · · ,ns−1 −ns,ns) =
(m1 − m2, · · · ,ms−1 − ms,ms)

σ for some σ ∈ Σs, then ctr
σ D1cσ = D2. This means that D1 and D2 are

congruent in Ms(Z). Conversely, suppose that D1 and D2 are congruent in Ms(Z). Then there is an
invertible matrix H = (hi j)1≤i, j≤s ∈ Ms(Z) such that HtrD1H = D2. This implies
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(∗)
s−1

∑
r=1

(
s

∑
k=1

h2
kr)(mr −mr+1)+(

s

∑
k=1

h2
ks)ms = n1 = m1.

Since H is invertible in Ms(Z), each column of H has a nonzero element, and therefore ∑
s
k=1 h2

kr ≥ 1 for
r ∈ [s]. Now it follows from (∗) that ∑

s
k=1 h2

kr = 1 for all r ∈ [s]. Thus each row and column of H has only
one nonzero entry which is either 1 or −1. This implies that H = εcτ for τ∈Σs and a diagonal matrix ε with
the entries in {1,−1}. Hence Htr =H−1. This shows that the diagonal matrices D1 and D2 are similar, and
therefore they have the same eigenvalues (counting multiplicities). So {{m1 −m2, · · · ,ms−1 −ms,ms}}=
{{n1 − n2, · · · ,ns−1 − ns,ns}} as multisets, that is, (n1 − n2, · · · ,ns−1 − ns,ns) = (m1 −m2, · · · ,ms−1 −
ms,ms)

σ for some σ ∈ Σs. □

3 New equivalence relations of matrices

In this section we introduce three new equivalence relations on square matrices over a field, and present
necessary and sufficient conditions for centralizer matrix algebras to be representation-finite.

3.1 Definitions of matrix equivalences

Let R[x] be the polynomial algebra over a field R in one variable x. Given polynomials f (x) and g(x)
of positive degree, if f (x) divides g(x), that is, g(x) = f (x)h(x) with h(x) ∈ R[x], we write f (x) | g(x).
Observe that this divisibility of polynomials defines a partial order on the set of all monic polynomials of
positive degree in R[x].

Let n be a natural number and c ∈ Mn(R). Recall that Ec denotes the set of elementary divisors
of c, and Mc := { f (x) ∈ Ec | f (x) is maximal with respect to polynomial divisibility} is called the set of
maximal divisors of c. In fact, Mc is determined completely by the invariant factor dr(x) or mc(x).

Let Rc := { f (x) ∈ Mc | f (x) is reducible}. This is the set of all reducible maximal divisors of c.
For f (x) ∈ Mc, we define the set Pc( f (x)) of power indices in Ec by
Pc( f (x)) := {i ≥ 1 | ∃ irreducible polynomial p(x) such that p(x) divides f (x), p(x)i ∈ Ec}.
Let Z>0 be the set of all positive integers and s ∈ Z>0. For a subset T := {m1,m2, · · · ,ms} of Z>0

with m1 > m2 > · · ·> ms, we define a set JT := {m1,m1 −m2, · · · ,m1 −ms} and a multiset HT := {{m1 −
m2, · · · ,ms−1 −ms,ms}}. Note that we allow duplicate elements to occur in multisets. If s = 1, then
HT = JT = T . Observe that if H = {n1,n2, · · · ,ns} is another subset of Z>0 with n1 > n2 > · · ·> ns, then
H = JT if and only if T = JH .

Now we introduce three new equivalence relations on the set of all square matrices over a field.

Definition 3.1. Two matrices c ∈ Mn(R) and d ∈ Mm(R) are said to be
(1) M-equivalent if there is a bijection π : Mc → Md , such that R[x]/( f (x)) ≃ R[x]/(( f (x))π) as

algebras and Pc( f (x)) = Pd(( f (x))π) for all f (x) ∈ Mc, where ( f (x))π denotes the image of f (x) under
the map π. In this case, we write c M∼ d.

(2) D-equivalent if there is a bijection π : Mc → Md , such that R[x]/( f (x)) ≃ R[x]/(( f (x))π) as
algebras and HPc( f (x)) = HPd(( f (x))π) for all f (x) ∈ Mc. In this case, we write c D∼ d.

(3) AD-equivalent if there is a bijection π : Mc → Md , such that R[x]/( f (x)) ≃ R[x]/(( f (x))π) as
algebras and either Pc( f (x)) = Pd(( f (x))π) or Pc( f (x)) = JPd(( f (x))π) for all f (x) ∈ Mc. In this case, we

write c AD∼ d.

Clearly, c M∼ d, c D∼ d and c AD∼ d are equivalence relations on the set of all square matrices over R.
Here are examples of the D-equivalences. Let R be a field and Jn(λ) the n×n Jordan matrix with the

eigenvalue λ ∈ R.
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(1) We take c = J3(1)⊕ J4(1)⊕ J3(0)⊕ J2(0) and d = J3(0)⊕ J4(0)⊕ J3(1)⊕ J2(1). Here, ⊕ means
forming a diagonal block matrix. In general, mc⊕d(x) = [mc(x),md(x)], where [ f (x),g(x)] stands for the
least common multiple of f (x) and g(x) in R[x]. Then mc(x) = x3(x−1)4, Ec = {x2,x3,(x−1)3,(x−1)4},
Mc = {x3,(x− 1)4}, Pc(x3) = {2,3}, Pc((x− 1)4) = {3,4}, and md(x) = x4(x− 1)3, Ed = {x3,x4,(x−
1)2,(x−1)3}, Md = {x4,(x−1)3}, Pd(x4) = {3,4}, Pd((x−1)3) = {2,3}. Let π : Mc → Md be the map:
x3 7→ (x− 1)3,(x− 1)4 7→ x4. Then c M∼ d. Note that c and d are not conjugate since they have different
minimal polynomials.

(2) Let a := J5(0)⊕ J4(0)⊕ J2(0) ∈ M11(R) and b := J5(0)⊕ J3(0)⊕ J1(0) ∈ M9(R). Then Ea =
{x2,x4,x5}, Eb = {x,x3,x5}, Ma =Mb = {x5}, Pa(x5)= {2,4,5},Pb(x5)= {1,3,5} and HPa(x5) = {{1,2,2}}

= HPb(x5). By definition, a D∼ b, but a
M
̸∼ b.

3.2 Representation-finite centralizer matrix algebras

In this subsection we characterize representation-finite centralizer matrix algebras.

Lemma 3.2. For c ∈ Mn(R), the following hold true.
(1) There are isomorphisms of R-algebras: Sn(c,R)≃ Sn(ctr,R)≃ Sn(c,R)

op ≃ EndAc(R
n), where ctr

denotes the transpose of the matrix c.
(2) Let χc(x) be the characteristic polynomial of c. Then Sn(c,R) = R[c] if and only if χc(x) = mc(x).

Proof. (1) The first isomorphism follows from the fact that any matrix over a field is similar to its
transpose [28, Theorem 66, p.76], the second isomorphism is given by sending a matrix in Sn(ctr,R) to its
transpose in Sn(c,R)

op
, and the last isomorphism follows by interpreting c as a linear transformation on

the n-dimensional R-space Rn.
(2) This follows from Frobenius’s dimension formula (see Section 1). □

In general, Sn(c,R) is neither equal to R[c], nor representation-finite (see Example 3.5(2) below). But
we point out when Sn(c,R) is representation-finite.

Lemma 3.3. Suppose that R is a perfect field, c∈Mn(R) and g(x)∈Mc. Let bg(x) :=max{Pc(g(x))∪{3}}.
Then Sn(c,R) is representation-finite if and only if Pc(g(x))⊆ {1,bg(x)−1,bg(x)} for all g(x) ∈ Mc.

Proof. Clearly, Sn(c,R) is representation-finite if and only if every block of Sn(c,R) is representation-
finite. The blocks of Sn(c,R) are parameterized by Mc. Let g(x)s ∈ Mc with g(x) ∈ R[x] an irreducible
polynomial and s ∈ N. Then bg(x)s = max{3,s} by definition. Since g(x)s lies in Mc, the algebra
R[x]/(g(x)s) is a block of Ac := R[x]/(mc(x)). Let M be the component of the Ac-module Rn, which
belongs to the block R[x]/(g(x)s), that is, M is the sum of those indecomposable direct summands of Rn

that belong to the block R[x]/(g(x)s). Then EndR[x]/(g(x)s)(M) is a block of the endomorphism algebra
EndAc(R

n). By Lemma 2.2, EndR[x]/(g(x)s)(M) is Morita equivalent to EndR[x]/(g(x)s)(B(M)). According to
Lemma 2.16, B(M)≃

⊕
t∈Pc(g(x)s) R[x]/(g(x)t) as Ac-modules. Thus it follows from Sn(c,R)≃ EndAc(R

n)
that each block of Sn(c,R) is Morita equivalent to

Eg(x)s := EndR[x]/(g(x)s)

( ⊕
t∈Pc(g(x)s)

R[x]/(g(x)t)
)

for some g(x)s ∈ Mc.
Since R is a perfect field, the algebraic closure R of R is a separable extension of R. By [27, The-

orem 3.3] which says that, for a separable extension L/R of fields, a finite-dimensional R-algebra Λ

is representation-finite if and only if so is the L-algebra L ⊗R Λ. Hence it suffices to consider when
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R⊗R Eg(x)s is representation-finite. Since R is a perfect field, all irreducible factors of mc(x) are separable
over R. Suppose g(x) = (x−α1) · · ·(x−αm), where α1, · · · ,αm ∈ R̄ are pairwise distinct. Then

R⊗R Eg(x)s ≃ EndR⊗RR[x]/(g(x)s)

(
R⊗R

⊕
t∈Pc(g(x)s) R[x]/(g(x)t)

)
≃ EndR[x]/(∏m

i=1(x−αi)s)

(⊕
t∈Pc(g(x)s) R[x]/(∏m

i=1(x−αi)
t)
)
.

Thus each block of R⊗R Eg(x)s is isomorphic to EndR[x]/(xs)

(⊕
t∈Pc(g(x)s) R[x]/(xt)

)
. Now, it follows from

[14, Theorem 2.1 (i)] (see also [13]) that the endomorphism algebra EndR[x]/(xs)

(⊕
t∈Pc(g(x)s) R[x]/(xt)

)
is representation-finite if and only if either s ≤ 3 and Pc(g(x)s) ⊆ {1,2,3} or s ≥ 4 and Pc(g(x)s) ⊆
{1,s−1,s}. This is equivalent to saying that Pc(g(x)s)⊆ {1,bg(x)s −1,bg(x)s}. □

As a corollary of Lemma 3.3, we have the following.

Corollary 3.4. Let R be a perfect field of characteristic p ≥ 0, and let σ ∈ Σn be a permutation of cycle
type (λ1, · · · ,λs). Then Sn(cσ,R) is representation-finite if and only if there exists a positive integer t such
that νp(λi) ∈ {0, t} for all i ∈ [s].

Proof. Let c := cσ ∈Mn(R). If p= 0, then νp(λi) = 0 for all i∈ [s]. In this case, Sn(c,R) is semisimple,
and hence representation-finite. Actually, let G be the subgroup of Σn generated by σ. Then the group
algebra R[G] is semisimple. Since there is a surjective homomorphism from the algebra R[G] to the algebra
R[c] by sending σ to c, we see that R[c] is semisimple. Hence Sn(c,R)≃ EndR[c](Rn) is semisimple. Thus
Corollary 3.4 is true for p = 0.

Now, we assume p > 0. By Lemma 2.17, for g(x) ∈ Mc, all the integers in Pc(g(x)) are p-powers and
the polynomial (x−1)pνp(λi) is an elementary divisor of c for i ∈ [s]. Let m := max{νp(λi) | i ∈ [s]}. Then
(x−1)pm ∈ Mc and Pc((x−1)pm

) = {pνp(λi) | i ∈ [s]}.
Suppose that Sn(c,R) is representation-finite. By Lemma 3.3, we deduce that Pc((x−1)pm

) does not
contain two different p-powers pa > 1 and pb > 1 with a ̸= b. Since pνp(λi) ∈ Pc((x− 1)pm

) for i ∈ [s],
there do not exist λi and λ j with i, j ∈ [s] such that νp(λi) > νp(λ j) ≥ 1, that is, there exists an integer
t > 0 such that νp(λi) ∈ {0, t} for all i ∈ [s].

Conversely, suppose that there exists an integer t > 0 such that νp(λi) ∈ {0, t} for all i ∈ [s]. Then, for
g(x) ∈ Mc, we deduce from Lemma 2.17 that Pc(g(x)) ⊆ {1, pt}. Thus it follows from Lemma 3.3 that
Sn(c,R) is representation-finite. □

Now we give nontrivial examples of representation-finite and -infinite centralizer matrix algebras.

Example 3.5. (1) Let R be a field of characteristic 3 and σ = (123)(45) ∈ Σ5. Then A := S5(cσ,R)
is representation-finite by Corollary 3.4. Now, we work out the quiver and relations for A. Let f1 :=
e11 +e22 +e33, f2 := e44 +e55, f45 := e45 +e54,h21 := f45 − f2 and h22 :=− f2 − f45. Then f2 = h21 +h22
and the set { f1,h21,h22} is a complete set of primitive orthogonal idempotents of A. Hence AA = A f1 ⊕
A f2 = A f1 ⊕Ah21 ⊕Ah22. By calculations, we have dimR(A f1) = 4, dimR(Ah21) = 2, dimR(Ah22) = 1,
dimR(h22A f1) = dimR( f1Ah22) = 0, dimR(h21Ah22) = dimR(h22Ah21) = 0,dimR( f1A f1) = 3, dimR( f1A f2)
= 1, dimR(h22A f1) = 0 and dimR(h22A f2) = 1. Let e3 := h22,e2 := h21,e1 := f1,ε = f1 −h21,α = e14 +
e2,5 + e3,4 + e15 + e24 + e35 and β =−αtr. Then A can be represented by the quiver with relations

A : 3• 2•
β // •1
α
oo εff αβ = ε2, εα = βε = βα = 0.

The Loewy structures of the indecomposable projective A-modules P(i) are visually pictured as follows:

P(1) : 1 P(2) : 2 P(3) : 3

1 2 1

1
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Since A/soc(Ae1) is representation-finite and A has one more non-isomorphic indecomposable module
than A/soc(Ae1) does, A is representation-finite.

(2) Let R be an algebraically closed field of characteristic 2, and let σ = (1234)(56) ∈ Σ6 and c :=
cσ ∈ M6(R). Then Ec = {(x−1)4,(x−1)2} by Lemma 2.17, mc(x) = (x−1)4 and R[c]≃ R[x]/((x−1)4).
Then the R[c]-module R6 is isomorphic to R[x]/((x−1)4)⊕R[x]/((x−1)2) by (⋆) in Section 2.3. Hence

S6(c,R) ≃ EndR[c](R6)≃ EndR[x]/((x−1)4)

(
R[x]/((x−1)4)⊕R[x]/((x−1)2)

)
≃ EndR[x]/(x4)

(
R[x]/(x4)⊕R[x]/(x2)

)
.

By calculations, the algebra A := EndR[x]/(x4)(R[x]/(x4)⊕R[x]/(x2)) can be represented by the quiver with
relations:

•γ 99
α1 2
// • ηee

βoo , η
2 = βα = 0, γ

2 = αβ, βγ = ηβ, αη = γα.

The Loewy structures of the indecomposable projective A-modules P(1) and P(2) can be pictured:

P(1) : 1
γ α

P(2) : 2
β η

1
γ

α 2β

η
1

γ

2
β1

γ

2
β

1

1

One can easily check that A/rad2(A) is representation-infinite, and therefore S6(c,R)≃A is representation-
infinite. This also follows from Corollary 3.4.

4 Derived equivalences and homological conjectures

This section is devoted to proving all results mentioned in the introduction.
Assume that the characteristic of R is p ≥ 0. Recall that, for c ∈ Mn(R), we write Ac := R[x]/(mc(x)),

where mc(x) is the minimal polynomial of c over R. Now, let d ∈ Mm(R), we assume the following:

mc(x) =
lc

∏
i=1

fi(x)ni for ni ≥ 1 and md(x) =
ld

∏
j=1

g j(x)m j for m j ≥ 1,

Ui := R[x]/( fi(x)ni) for i ∈ [lc] and Vj := R[x]/(g j(x)m j) for j ∈ [ld ],

where f1(x), · · · , flc(x) are pairwise distinct monic irreducible polynomials in R[x], and where g1(x), · · · ,gld (x)
are pairwise distinct monic irreducible polynomials in R[x]. Then Ui and Vj are local, symmetric Nakayama
R-algebras, and

Ac ≃U1 ×U2 ×·· ·×Ulc and Ad ≃V1 ×V2 ×·· ·×Vld .

Recall that Ac ≃ R[c] and Rn is viewed as an Ac-module. According to these blocks of Ac and Ad , we
decompose the Ac-module Rn and the Ad-module Rm as

Rn =
lc⊕

i=1

Mi and Rm =
ld⊕

j=1

N j,

where Mi is the sum of indecomposable direct summands of Rn belonging to the block Ui, and where N j

is the sum of indecomposable direct summands of Rm belonging to the block Vj. Then it follows from
Lemma 2.16 that

(†) B(Mi)≃
⊕

r∈Pc( fi(x)ni )

R[x]/( fi(x)r) and B(N j)≃
⊕

s∈Pd(g j(x)
m j )

R[x]/(g j(x)s)
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as Ui-modules and Vj-modules, respectively. Since Rn is a faithful Mn(R)-module, Rn is also a faithful
R[c]-module, and therefore Mi is a faithful Ui-module for i ∈ [lc]. Similarly, N j is a faithful Vj-module for
j ∈ [ld ]. Further, we set

Ai := EndUi(Mi) and B j := EndVj(N j)

for i ∈ [lc] and j ∈ [ld ]. Then Ai and B j are indecomposable as algebras for i ∈ [lc] and j ∈ [ld ]. Clearly,
Ai (respectively, B j) is semisimple if and only if ni = 1 (respectively, m j = 1). In this case, Ai ≃
Mk(R[x]/( fi(x))) and B j ≃ Mt(R[x]/(g j(x))) , where k and t are the multiplicities of fi(x) and g j(x))
occurring as elementary divisors of c and d, respectively. By Lemma 3.2,

Sn(c,R)≃
lc

∏
i=1

EndUi(Mi) =
lc

∏
i=1

Ai and Sm(d,R)≃
ld

∏
j=1

EndVj(N j) =
ld

∏
i=1

B j.

As the R[c]-module Rn is a generator, we see that the bimodule R[c]Rn
Sn(c,R)

has the double centralizer
property, that is, EndSn(c,R)(R

n
Sn(c,R)

) = R[c].

4.1 Characterizations of Morita and derived equivalences: Proof of Theorem 1.1

In this subsection we prove the main result, Theorem 1.1.

Lemma 4.1. (1) Mc = { fi(x)ni | i ∈ [lc]}.
(2) If Ai and B j are derived equivalent, then Ui ≃Vj and ni = m j.

Proof. (1) follows by definition. (2) is a consequence of Lemma 2.9. □

Lemma 4.2. Let c ∈ Mn(R) and d ∈ Mm(R). Then c M∼ d if and only if there is an isomorphism ϕ : R[c]≃
R[d] of algebras such that B(Rn)≃ B(Rm), where Rm is viewed as an R[c]-module via ϕ.

Proof. Suppose c M∼ d. By definition, there is a bijection π : Mc → Md such that, for any f (x)ni ∈ Mc,
the isomorphism R[x]/( f (x)ni)≃ R[x]/(( f (x)ni)π) as algebras and Pc( f (x)ni) = Pd(( f (x)ni)π). Then lc =
ld . It follows from

R[c]≃ ∏
f (x)ni∈Mc

R[x]/( f (x)n j) and R[d]≃ ∏
g(x)m j∈Md

R[x]/(g(x)m j)

that there is an isomorphism ϕ : R[c] ≃ R[d]. After reordering the factors in the above products, we may
assume that ( fi(x)ni)π = gi(x)mi for i ∈ [lc]. Then the condition Pc( f (x)ni) = Pd(( f (x)ni)π), together with
(†), implies that B(Mi)≃ B(Ni) for i ∈ [lc]. Here, Ni is viewed as an R[c]-module via ϕ. Hence B(Rn)≃
B(Rm), where Rm is viewed as an R[c]-module via ϕ.

Conversely, suppose that there is an isomorphism ϕ : R[c]≃ R[d] such that B(Rn)≃ B(Rm) when Rm

is regarded as an R[c]-module via ϕ. Then lc = ld . We may assume that ϕ restricts to an isomorphism
ϕi : Ui ≃ Vi, that is, R[x]/( fi(x)ni) ≃ R[x]/(gi(x)mi) for i ∈ [lc]. This implies ni = mi for i ∈ [lc]. Then the
condition B(Rn) ≃ B(Rm) implies that B(Mi) ≃ B(Ni) for i ∈ [lc]. Due to (†), we have Pc( fi(x)ni) =
Pd(gi(x)mi) for i ∈ [lc]. Now we define a map π : Mc → Md by fi(x)ni 7→ gi(x)mi for i ∈ [lc]. Then π defines
an M-equivalence c M∼ d. □

Proof of Theorem 1.1. Recall that

Sn(c,R)≃
lc

∏
i=1

EndUi(Mi) =
lc

∏
i=1

Ai and Sm(d,R)≃
ld

∏
j=1

EndVj(N j) =
ld

∏
i=1

B j.

16



If Sn(c,R) and Sm(d,R) are Morita (or derived, or almost ν-stable derived) equivalent, then they have the
same number of blocks, that is, lc = ld . Further, we may assume that Ai and Bi are Morita (or derived,
or almost ν-stable derived)) equivalent and that Fi is such an equivalence for i ∈ [lc]. As Ui and Vi are
local Nakayama algebras for i ∈ [lc], it follows from Lemma 4.1(2) that there is an algebra isomorphism
ϕi : Ui ≃Vi with ni = mi for i ∈ [lc]. This implies that Ac and Ad are isomorphic via all ϕi.

By Lemma 2.2, Sn(c,R) = EndR[c](Rn) is Morita equivalent to EndR[c](B(Rn)). Similarly, Sm(d,R) =
EndR[d](Rm) is Morita equivalent to EndR[d](B(Rm)).

(1) Suppose c M∼ d. Then it follows from Lemma 4.2 that Sn(c,R) and Sm(d,R) are Morita equivalent.
Conversely, suppose that Sn(c,R) and Sm(d,R) are Morita equivalent. Then it follows from Lemma 2.2
that B(Mi)≃ B(Ni) if Ni is regarded as a Ui-module via ϕi. By identifying Ac and Ad with R[c] and R[d],
respectively, we have R[c] ≃ R[d] and Rm can be viewed as an R[c]-module. Thus B(Rn) ≃ B(Rm). By
Lemma 4.2, we have c M∼ d.

(2) Suppose c D∼ d. By the definition of D-equivalences, Ac ≃ Ad as algebras and there is a map
π : Mc → Md such that HPc( fi(x)ni ) = HPd(( fi(x)ni )π) for fi(x)ni ∈ Mc. Without loss of generality, we as-
sume ( fi(x)ni)π = gi(x)mi for i ∈ [lc]. Then R[x]/( fi(x)ni) ≃ R[x]/(gi(x)mi) as algebras and HPc( fi(x)ni ) =
HPd(gi(x)mi ) for i ∈ [lc]. It follows from (†) and Remark 2.13 that EndUi(B(Mi)) and EndVi(B(Ni)) are
derived equivalent. Thanks to Lemma 2.2, Ai and Bi are also derived equivalent for i ∈ [lc]. This implies
that Sn(c,R) and Sm(d,R) are derived equivalent.

Conversely, suppose that Sn(c,R) and Sm(d,R) are derived equivalent. Without loss of generality, we
assume that Ai and Bi are derived equivalent for i ∈ [lc]. Then, by Lemma 4.1(2), there is an isomorphism
ϕi : Ui ≃Vi of algebras such that Ui/rad(Ui)≃Vi/rad(Vi), that is, R[x]/( fi(x))≃ R[x]/(gi(x)) for i ∈ [lc].
Let Ki be a splitting field for fi(x)gi(x). Then Ki ⊗R Ai and Ki ⊗R Bi are derived equivalent since tensor
products preserve derived equivalences (see [38, Theorem 2.1]).

For the irreducible polynomial fi(x) ∈ R[x], there is a separable irreducible polynomial ui(x) ∈ R[x]
and an integer si ∈N such that fi(x) = ui(xpsi ) (see, for instance, [26, Corollary 19.9]). Here, for p= 0, we
understand psi = 1. Similarly, there is a separable irreducible polynomial vi(x) and an integer ti ∈ N such
that gi(x) = vi(xpti ). It follows from Ki ⊗R

(
R[x]/( fi(x))

)
≃ Ki ⊗R

(
R[x]/(gi(x))

)
that si = ti and that ui(x)

and vi(x) have the same number of roots. Therefore fi(x),gi(x),ui(x) and vi(x) have the same number of
distinct roots in Ki. Let wi be the number of roots of ui(x) in Ki. Suppose that αi1,αi2, · · · ,αiwi are the
distinct roots of fi(x) in Ki and that βi1,βi2, · · · ,βiwi are the distinct roots of gi(x) in Ki. Then Ki ⊗R Ui

= Ki ⊗R
(
R[x]/( fi(x)ni)

)
≃ ∏

wi
q=1 Ki[x]/((x−αiq)

ni·psi ). Similarly, Ki ⊗R Vi = Ki ⊗R
(
R[x]/(gi(x)mi)

)
≃

∏
wi
q=1 Ki[x]/((x−βiq)

mi·psi ).
Now, we shall show the equality HPc( fi(x)ni ) = HPd(gi(x)mi ). Indeed, given a Ui-module R[x]/( fi(x)r),

there is the following isomorphism of ∏
wi
q=1 Ki[x]/

(
(x−αiq)

ni psi
)
-modules:

Ki ⊗R
(
R[x]/( fi(x)r)

)
≃

wi⊕
q=1

Ki[x]/
(
(x−αiq)

rpsi)
.

Note that |Pc( fi(x)ni)| equals the number of non-isomorphic indecomposable direct summands of Mi.
Since HomUi(Mi,−) : add(Mi)→ Ai-proj is an equivalence, we see that |Pc( fi(x)ni)| equals the number of
indecomposable projective Ai-modules, hence the number of simple Ai-modules. Similarly, |Pd(gi(x)ni)|
is equal to the number of simple Bi-modules. Since derived equivalent algebras have the same number
of simple modules, we get |Pc( fi(x)ni)| = |Pd(gi(x)ni)|. Put hi := |Pc( fi(x)ni)|. For hi = 1, we have
HPc( fi(x)ni ) = HPd(gi(x)mi ). So we may assume that hi ≥ 2 and Pc( fi(x)ni) = {ui1, · · · ,uihi} with ui1 > · · · >
uihi . Since Ai = EndUi(Mi) is Morita equivalent to EndUi(B(Mi)), the algebra Ki⊗R Ai is Morita equivalent
to the algebra Ki ⊗R EndUi(B(Mi)) ≃ EndKi⊗RUi(Ki ⊗R B(Mi)). As B(Mi) ≃

⊕hi
k=1 R[x]/( fi(x)uik) as Ui-
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modules, there is the following isomorphism of ∏
wi
q=1 Ki[x]/

(
(x−αiq)

ni psi
)
-modules:

Ki ⊗R B(Mi)≃
wi⊕

q=1

hi⊕
k=1

Ki[x]/((x−αiq)
uik psi

).

For q∈ [wi], set Ec,i,q :=EndKi[x]/((x−αiq)ni psi )

(⊕hi
k=1 Ki[x]/((x−αiq)

uik psi )
)
. Then EndKi⊗RUi(Ki⊗R B(Mi))≃

∏
wi
q=1 Ec,i,q and Ec,i,q is a block of EndKi⊗RUi(Ki ⊗R B(Mi)), which is isomorphic to Ec,i,q′ for all q′ ∈

[wi]. It follows that each block of Ki ⊗R Ai is Morita equivalent to Ec,i,q for some q ∈ [wi]. Simi-
larly, we write Pd(gi(x)ni) = {vi1, · · · ,vihi} with vi1 > · · · > vihi , and have the following isomorphism
of ∏

wi
q=1 Ki[x]/

(
(x−βiq)

ni psi
)
-modules

Ki ⊗R B(Ni)≃
wi⊕

q=1

hi⊕
k=1

Ki[x]/
(
(x−βiq)

vik psi)
.

For q′ ∈ [wi], set Ed,i,q′ :=EndKi[x]/((x−βiq′ )
ni psi )

(⊕hi
k=1 Ki[x]/((x−βiq′)

vik psi )
)
. Then EndKi⊗RUi(Ki⊗R B(Ni))≃

∏
wi
q′=1 Ed,i,q′ and Ed,i,q′ is a block of EndKi⊗RVi(Ki⊗R B(Ni)), which is isomorphic to Ed,i,q′′ for all q′′ ∈ [wi].

It follows that each block of Ki ⊗R Bi is Morita equivalent to Ed,i,q′ for some q′ ∈ [wi].
Since Ki⊗R Ai and Ki⊗R Bi are derived equivalent and since derived equivalences preserve blocks, we

see that Ec,i,q and Ed,i,q′ are derived equivalent. Note that ui1 = ni = mi = vi1, and we have the following
isomorphisms of algebras:

Ec,i,q ≃ EndKi[x]/(xni psi )

( hi⊕
k=1

Ki[x]/(xuik psi
)
)

and Ed,i,q′ ≃ EndKi[x]/(xni psi )

( hi⊕
k=1

Ki[x]/(xvik psi
)
)
.

Then the Cartan matrices of Ec,i,q and Ed,i,q′ (as Ki-algebras) are the hi ×hi matrices

Hi := psi
hi

∑
k=1

(
k

∑
l=1

uik(ekl + elk)−uikekk) and Ji := psi
hi

∑
k=1

(
k

∑
l=1

vik(ekl + elk)− vikekk),

respectively. Since the Ki-algebras Ec,i,q and Ed,i,q′ are derived equivalent and since the Cartan matrices
of derived equivalent, split algebras are congruent by an invertible matrix with integral entries (see [50,
Chapter 6, Proposition 6.8.9]), there exists an invertible matrix Φi ∈ Mhi(Z) such that Φtr

i HiΦi = Ji. Now,
applying Lemma 2.18 to the numbers ui1 > · · ·> uihi and vi1 > · · ·> vihi as well as to the matrices Hi and
Ji, we have HPc( fi(x)ni ) =HPd(gi(x)mi ) as multisets. Thus we can define a map π : Mc →Md , fi(x)ni 7→ gi(x)mi

for i ∈ [lc]. Then π gives rise to a D-equivalence c D∼ d.
(3) Suppose c AD∼ d. Then there exists a bijection π : Mc → Md , fi(x)ni 7→ gi(x)mi such that ϕi : Ui ≃Vi

as algebras and either Pc( fi(x)ni) = Pd(gi(x)mi) or Pc( fi(x)ni) = JPd(gi(x)mi ) for i ∈ [lc]. By (†) and the
condition Pc( fi(x)ni) = Pd(gi(x)mi) or Pc( fi(x)ni) = JPd(gi(x)mi ), we have either B(Mi)P ≃ B(Ni)P or
B(Mi)P ≃ ΩVi(B(Ni)P) as Ui-modules. Note that Mi (respectively, Ni) is a faithful Ui-module (re-
spectively, Vi-module) which contains the regular module Ui (respectively, Vi) as a direct summand. It
follows from Lemma 2.2 that Ai := EndUi(Mi) is Morita equivalent to EndUi

(
Ui ⊕B(Mi)P

)
and that

Bi := EndVi(Ni) is Morita equivalent to EndVi

(
Vi ⊕B(Ni)P

)
. If B(Mi)P ≃ B(Ni)P , then Ai and Bi are

Morita equivalent. If B(Mi)P ≃ ΩVi(B(Ni)P), then Ai and Bi are almost ν-stable derived equivalent by
Lemma 2.7. Hence, in any case, Ai and Bi are always almost ν-stable derived equivalent, and therefore
Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent.

Conversely, suppose that Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent. Thanks to
Lemma 2.8, the almost ν-stable derived equivalence Fi induces a stable equivalence, say Fi, between Ui
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and Vi, such that Fi(B(Mi)P) ≃ B(Ni)P and mi = ni for i ∈ [lc]. By identifying the algebra Vi with the
algebra Ui via φi, we see that Fi is a stable equivalence from Ui to itself. Now, according to Lemma 2.10,
we deduce either B(Mi)P ≃ B(Ni)P or B(Mi)P ≃ ΩVi

(
B(Ni)P

)
as Ui-modules, where Ni is viewed

as a Ui-module via ϕi. For i ∈ [lc], it follows from (†) that B(Mi)P ≃ B(Ni)P is equivalent to the
condition Pc( fi(x)ni) = Pd(gi(x)mi). Similarly, for i ∈ [lc], B(Mi)P ≃ ΩVi(B(Ni)P is equivalent to the
condition Pc( fi(x)ni) = JPd(gi(x)mi ). Now we define a map π : Mc → Md by fi(x)ni 7→ gi(x)mi for i ∈ [lc]. By
Definition 3.1(3), π defines an AD-equivalence between c and d. □

As a corollary of Theorem 1.1, we consider nilpotent matrices. For a nilpotent matrix c ∈ Mn(R),
the Jordan canonical form c0 of c is unique up to the ordering of its Jordan blocks. Further, c0 has
a Jordan block of size t if and only if rank(ct+1) + rank(ct−1)− 2rank(ct) > 0. We set Ic := {t ≥ 1 |
c0 has a Jordan block of size t}. Note that Mc consists of only one polynomial of the form xr with r
being the maximal number in Ic. Thus Ic = Pc(xr).

Corollary 4.3. Let c ∈ Mn(R) be a nilpotent matrix and d ∈ Mm(R). Then Sn(c,R) and Sm(d,R) are
derived equivalent if and only if d = λIm+b with λ∈ R and b being a nilpotent matrix such that HIb =HIc .

Proof. Sufficiency. Suppose that b ∈ Mm(R) is a nilpotent matrix and d = λIm +b with λ ∈ R. Then
Sm(d,R) = Sm(b,R). Let xs be the unique polynomial in Mb. Furthermore, the condition HIb =HIc implies
HPc(xr) = HPb(xs). It then follows from Theorem 1.1 that Sn(c,R) and Sm(b,R) are derived equivalent.

Necessity. Suppose that Sn(c,R) and Sm(d,R) are derived equivalent with c being nilpotent. Then
Mc = {xr}. It follows from Theorem 1.1 that Md = {h(x)s} and R[x]/(xr) ≃ R[x]/(h(x)s) as algebras,
where h(x) is an irreducible monic polynomial in R[x] and s ∈ N. Thus r = s and h(x) = x−λ for some
λ ∈ R. Set b := λIm − d. Then mb(x) = xs, that is, b is a nilpotent matrix. Clearly, Pd(h(x)s) = Pb(xs).
Therefore HPc(xr) = HPd(h(x)s) = HPb(xs), that is, HIc = HIb . □

Instead of R being a field, we can prove the following for noetherian domains.

Remark 4.4. Suppose that R is a noetherian domain, c ∈ Mn(R) and d ∈ Mm(R). If Sn(c,R) and Sm(d,R)
are derived equivalent, then c D∼ d as matrices over the fraction field of R.

Proof. Assume that R is a noetherian domain with the fraction field K. Then it follows from
Sn(c,R) ⊆ Mn(R) that Sn(c,R) is a finitely generated R-algebra. Thus Sn(c,R) is a noetherian algebra
and Sn(c,R)-mod is an abelian category, and therefore Db(Sn(c,R)) is well defined by our convention.

Regarding K as an R-algebra, we have the isomorphism of K-algebras

ϕ : K ⊗R Mn(R)−→ Mn(K),
s

∑
i=1

ai ⊗bi 7→
s

∑
i=1

(aiIn)bi

where In is the identity matrix in Mn(K). Further, K is a flat R-module and there is the commutative
diagram of K-algebras

K ⊗R Sn(c,R)
µ //

� _

��

Sn(c,K)� _

��
K ⊗R Mn(R) ∼

ϕ // Mn(K)

where µ is the restriction of ϕ. Remark that Im(µ) belongs to Sn(c,K). Since K is the fraction field of R,
we can find an element 0 ̸= r ∈ R for each matrix a ∈ Mn(K) such that ra ∈ Mn(R). This implies that µ is
surjective, and therefore an isomorphism. Thus K ⊗R Sn(c,R)≃ Sn(c,K) as K-algebras.

Suppose that the R-algebras Sn(c,R) and Sm(d,R) are derived equivalent. Then there is a tilting
complex T over Sn(c,R) such that EndDb(Sn(c,R))(T )≃ Sm(d,R) as R-algebras. Since K is a flat R-module,
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TorR
i (Sn(c,R),K) = 0 and TorR

i (Sm(d,R),K) = 0 for all i ≥ 1. It then follows from [38, Theorem 2.1]
that K ⊗R T is a tilting complex over K ⊗R Sn(c,R) with EndDb(K⊗RSn(c,R))(K ⊗R T ) ≃ K ⊗R Sm(d,R) as
K-algebras. Thus the K-algebras Sn(c,K) and Sm(d,K) are derived equivalent. By Theorem 1.1, the
equivalence c D∼ d holds as matrices over K. □

It is not known whether the converse of Remark 4.4 is true.

4.2 Homological conjectures: Proof of Theorem 1.2

In this subsection, we prove that the Nakayama and finitistic dimension conjectures are true for centralizer
matrix algebras.

Let Λ be an Artin algebra, and let 0→ ΛΛ→ I0 → I1 →···→ It →··· be a minimal injective resolution
of ΛΛ.

Definition 4.5. (1) The dominant dimension of Λ, denoted dom.dim(Λ), is the maximal t ∈N (or ∞) such
that all the terms I0, I1, · · · , It−1 in the minimal injective resolution of ΛΛ are projective.

(2) The finitistic dimension of Λ, denoted fin.dim(Λ), is the supremum of projective dimensions of all
Λ-modules M ∈ Λ-mod with finite projective dimension.

Related to the two homological dimensions, there are two not yet solved major conjectures, called the
Nakayama conjecture (see [34]) and the finitistic dimension conjecture (see [2]).

Nakayama Conjecture (NC) : An Artin algebra of infinite dominant dimension is self-injective.
Finitistic Dimension Conjecture (FDC): For any Artin algebra Λ, fin.dim(Λ)< ∞.

As is known, the validity of (FDC) for Λ implies the validity of (NC) for Λ. Both conjectures are open
to date (see [1, Conjectures, p.409]). Only a few cases are verified. In the following, we will show that
(FDC) holds true for all centralizer matrix algebras over fields.

Lemma 4.6. [25] If an Artin algebra Λ has global dimension at most 3, then fin.dim(eΛe) < ∞ for any
idempotent e ∈ Λ.

For a representation-finite Artin algebra Λ, let {X1, · · · ,Xs} be a complete set of representatives of
isomorphism classes of indecomposable Λ-modules, the Auslander algebra of Λ is defined to be the en-
domorphism algebra of the Λ-module

⊕s
i=1 Xi. It is known that Auslander algebras have global dimension

at most 2.

Corollary 4.7. Let Λ be a representation-finite Artin algebra and A the Auslander algebra of Λ. Then
fin.dim(eAe) < ∞ for every idempotent e ∈ A. In particular, if X ∈ Λ-mod, then fin.dim(EndΛ(X))< ∞.

Proof. The first statement follows from Lemma 4.6 since gl.dim(A) ≤ 2. For the second statement,
we may assume that X = X s1

1 ⊕ ·· · ⊕X st
t with t ≤ s and integers s j ≥ 1. Let ei ∈ A be the canonical

projection from
⊕s

i=1 Xi onto Xi for 1 ≤ i ≤ s. Then {e1, · · · ,es} is a complete set of pairwise orthogonal
primitive idempotent elements of A. Clearly, EndΛ(X) is Morita equivalent to EndΛ(X1 ⊕·· ·⊕Xt) which
is isomorphic to the algebra (e1 + · · ·+ et)A(e1 + · · ·+ et). Again by Lemma 4.6, we get the second
statement. □

Let M be a generator-cogenerator for Λ-mod. The rigidity dimension rd(M) of M is defined by

rd(M) := sup{n ∈ N | ExtiΛ(M,M) = 0,∀ 1 ≤ i ≤ n}.

If no such n exists, we define rd(M) = 0. By [33, Lemma 3], dom.dim(EndΛ(M)) = rd(M)+2.
The following lemma describes the dominant dimensions of centralizer matrix algebras and shows

that the Nakayama conjecture holds true for centralizer matrix algebras.
Recall that, for c ∈ Mn(R), we have a block decomposition of Sn(c,R): Sn(c,R) = ∏

lc
i=1 Ai with Ai :=

EndUi(Mi) (see the beginning of Section 4).
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Lemma 4.8. (1) dom.dim(Ai) ∈ {2,∞}. Particularly, dom.dim(Sn(c,R)) ∈ {2,∞}.
(2) dom.dim(Ai) = ∞ if and only if Ai is a symmetric, Nakayama algebra if and only if Pc( fi(x)ni) is

a singleton set. Thus dom.dim(Sn(c,R)) = ∞ if and only if Sn(c,R) is a symmetric, Nakayama algebra if
and only if Pc( fi(x)ni) is a singleton set for all i ∈ [lc].

Proof. If Λ is an Artin algebra and L ∈ Λ-mod, then it follows from the Auslander-Reiten formula
DExt1

Λ
(L,L)≃HomΛ(L,τL) that Ext1

Λ
(L,L) ̸= 0 if τL≃ L, where D is the usual duality of an Artin algebra,

τ := DTr denotes the Auslander–Reiten translation, and HomΛ(X ,Y ) denotes the quotient of HomΛ(X ,Y )
modulo all homomorphisms from X to Y that factorize through injective Λ-modules.

Let i ∈ [lc]. For the Ui-module Mi, we have (τMi)P ≃ (Mi)P , and therefore rd(Mi) = ∞ if Mi is
projective, and 0, otherwise. Since dom.dim(Ai) = dom.dim(EndUi(Mi)) = rd(Mi)+ 2, we deduce that
dom.dim(Ai) ∈ {2,∞} and that dom.dim(Ai) = ∞ if and only if Mi is projective. By (†), Mi is projective
if and only if Pc( fi(x)ni) is a singleton set. Note that Ai = EndUi(Mi) is Morita equivalent to Ui if UiMi

is projective. Thus Ai is a symmetric, Nakayama algebra if UiMi is projective. Clearly, any symmetric
algebra has infinite dominant dimension. Since dom.dim(Λ⊕Γ) = min{dom.dim(Λ),dom.dim(Γ)} for
Artin algebras Λ and Γ, we have

dom.dim(Sn(c,R)) = min{dom.dim(Ai) | i ∈ [lc]} ∈ {2,∞}.

Thus, dom.dim(Sn(c,R)) = ∞ if and only if dom.dim(Ai) = ∞ for all i ∈ [lc] if and only if Pc( fi(x)ni) is a
singleton set for all i ∈ [lc] if and only if Sn(c,R) is a symmetric, Nakayama algebra. □

Proof of Theorem 1.2. (1) Let R be a field and c∈Mn(R). Since Nakayama algebras are representation-
finite [1, Lemma 2.1, p.197], their Auslander algebras have global dimension at most 2. All blocks of
Sn(c,R) are of the form Ai = EndUi(Mi), i ∈ [lc], where Ui is a symmetric Nakayama algebra and Mi is
a generator for Ui-mod. By Lemma 4.7, fin.dim(Ai) = fin.dim(EndUi(Mi)) < ∞ for all i ∈ [lc]. Since
fin.dim(Sn(c,R)) = max{fin.dim(Ai) | i ∈ [lc]}, we see fin.dim(Sn(c,R))< ∞. Since the validity of (FDC)
for an Artin algebra Λ implies the validity of (NC) for the same Artin algebra Λ. Hence (NC) holds true
for Sn(c,R). This also follows from Lemma 4.8(2).

(2) Let c ∈ Mn(R) and d ∈ Mm(R). Suppose that Sn(c,R) and Sm(d,R) are derived equivalent. By
Lemma 4.8(1), dom.dim(Sn(c,R))∈{2,∞}. Thus, to prove that Sn(c,R) and Sm(d,R) have the same domi-
nant dimension, we only need to show that dom.dim(Sn(c,R)) = ∞ if and only if dom.dim(Sm(d,R)) = ∞.
However, this follows from Theorem 1.1 about derived equivalences and Lemma 4.8(2) immediately.
Thus Sn(c,R) and Sm(d,R) have the same dominant dimension. □

4.3 Derived equivalences imply Morita equivalences: Proof of Corollary 1.3

To prove Corollary 1.3 , we recall a result on stable equivalences of Morita type.
Following [23, Section 2], we say that a stable equivalence Φ : A-mod → B-mod of Morita type lifts to

a Morita equivalence if there is a Morita equivalence F : A-mod → B-mod such that the following diagram
of functors is commutative (up to natural isomorphism)

A-mod B-mod

A-mod B-mod

can.

OO

can.

OO
Φ //

F //

Given an idempotent e in an algebra A, the functor Ae⊗eAe − : eAe-mod → A-mod is called a Schur
functor that is fully faithful. Clearly, this Schur functor induces a functor on the stable module categories:
eAe-mod → A-mod. For simplicity, the induced functor is still called a Schur functor.
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The following lemma, taken essentially from [23], provides a way to get Morita equivalences from
stable equivalences of Morita type (see Section 2.1 for Definition).

Lemma 4.9. Let A and B be algebras without nonzero semisimple direct summands such that A/rad(A)
and B/rad(B) are separable, and let e ∈ A and f ∈ B be ν-stable idempotents such that eAe and f A f are
the Frobenius parts of A and B, respectively. Suppose there is a stable equivalence Φ : A-mod → B-mod
of Morita type. Then the following hold.

(1) If Φ(S) is isomorphic in B-mod to a simple B-module for each simple A-module S, then Φ lifts to
a Morita equivalence.

(2) The functor Φ restricts to a stable equivalence Φ1 : eAe-mod → f B f -mod of Morita type such
that the following diagram is commutative (up to natural isomorphism)

A-mod B-mod

eAe-mod f B f -mod

λ

OO

λ

OO
Φ //

Φ1 //

where λ stands for the Schur functor. Moreover, if Φ1 lifts to a Morita equivalence, then so does Φ.

Proof. (1) is just [23, Proposition 3.3]. (2) The first statement follows from [15, Theorem 4.2], see
also [23, Section 3]. The last statement follows from [23, Proposition 3.5]. □

Proof of Corollary 1.3. Let c ∈ Mn(R) and d ∈ Mm(R).
(2) Assume that c and d are permutation matrices and that Sn(c,R) and Sm(d,R) are derived equivalent.

Then Sn(c,R) and Sm(d,R) have the same number of blocks, that is, lc = ld . So we may assume that Ai

and Bi are derived equivalent for i ∈ [lc]. By Lemma 4.1, Ui ≃Vi and ni = mi for i ∈ [lc]. By Theorem 1.1
on Morita equivalences, it suffices to show that Pc( fi(x)ni) = Pd(gi(x)mi) for i ∈ [lc].

Actually, by Lemma 2.17, the integers in Pc( fi(x)ni) and in Pc(gi(x)mi) are p-powers for i ∈ [lc]. We
have seen in the proof of Theorem 1.1 about derived equivalences that Pc( fi(x)ni) and Pd(gi(x)ni) have the
same cardinality. Let ti := |Pc( fi(x)ni)|= |Pd(gi(x)ni)| for i∈ [lc]. If ti = 1 (this may happen for p= 0), then
Pc( fi(x)ni) = {ni} = {mi} = Pd(gi(x)mi). Now, we may assume that ti ≥ 2 and p > 0. Let Pc( fi(x)ni) :=
{pu1 , · · · , puti} with u1 > · · ·> uti and Pd(gi(x)mi) := {pv1 , · · · , pvti} with v1 > · · ·> vti . By Theorem 1.1 on
derived equivalences, we get {pu1 − pu2 , · · · , puti−1 − puti , puti}= {pv1 − pv2 , · · · , pvti−1 − pvti , pvti}. Notice
the following basic facts:

(i) For integers a > b > 0, the number pa − pb is a p-power if and only if p = 2 and a = b+1;
(ii) For integers a > b > 0 and s > t > 0, the equality pa − pb = ps − pt holds if and only if a = s and

b = t.
By considering the cases p = 2 and p ≥ 3 separately, we get uk = vk for all k ∈ [ti]. Thus Pc( fi(x)ni) =

Pd(gi(x)mi) for i ∈ [lc]. This implies that A and B are Morita equivalent by Theorem 1.1.
(3) Suppose that the field R is perfect. Then all irreducible factors of mc(x) are separable polynomials

over R. Let Ai := EndUi(Mi) be a block in Sn(c,R) and P an arbitrary indecomposable projective Ai-
module. Then P ≃ HomUi(Mi,X) for some indecomposable direct summand X of the Ui-module Mi.
Thus EndAi(P)≃ EndUi(X), and therefore

EndAi(top(P)) = EndAi(P)/rad(EndAi(P))≃ EndUi(X)/rad(EndUi(X)),

where top(P) denotes the quotient P/rad(P) of a module P by its radical. For the indecomposable
Ui-module X , we have EndUi(X) ≃ R[x]/( fi(x)t) for some positive integer t. Thus EndAi(top(P)) ≃
EndUi(X)/rad(EndUi(X)) ≃ R[x]/( fi(x)) is separable. Hence all the semisimple quotients of blocks of
Sn(c,R) are separable. Similarly, all the semisimple quotients of blocks of Sm(d,R) are separable.
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(a) ⇒ (b) Suppose that Sn(c,R) and Sm(d,R) are almost ν-stable derived equivalent. Then, by [22,
Theorem 1.1], there is a stable equivalence F of Morita type between Sn(c,R) and Sm(d,R). Further, by
Theorem 1.1, we have c AD∼ d, that is, there is a bijection π between Mc and Md such that R[x]/( f (x)) ≃
R[x]/(( f (x))π) as algebras and either Pc( f (x)) = Pd(( f (x))π) or Pc( f (x)) = JPd(( f (x))π) for all f (x) ∈ Mc.
Clearly, π maps only irreducible polynomials to irreducible polynomials. Thus π induces a bijection
between Mc \Rc and Md \Rd such that R[x]/( f (x))≃ R[x]/(( f (x))π) as algebras for f (x) ∈ Mc \Rc.

(b) ⇒ (a) Suppose that Sn(c,R) and Sm(d,R) are stably equivalent of Morita type and there is a
bijection π : Mc \Rc → Md \Rd , such that R[x]/( f (x))≃ R[x]/(( f (x))π) as algebras for f (x) ∈ Mc \Rc.
By Theorem 1.1, it suffices to show c AD∼ d. Note that an irreducible elementary divisor f (x) in Mc \Rc

corresponds to a semisimple block of Sn(c,R), which is Morita equivalent to R[x]/( f (x)). Similarly, an
irreducible elementary divisor g(x) in Md \Rd corresponds to a semisimple block of Sm(d,R), which is
Morita equivalent to R[x]/(g(x)). Thus the assumption on π implies that the product of semisimple blocks
of Sn(c,R) and the product of semisimple blocks of Sm(d,R) are Morita equivalent. Let A1, · · · ,As be the
non-semisimple blocks of Sn(c,R) with Ai := EndUi(Mi), and let B1, · · · ,Bt be the non-semisimple blocks
of Sm(d,R) with B j := EndVj(N j). Suppose that F is a stable equivalence of Morita type between Sn(c,R)
and Sm(d,R). Then F induces a stable equivalence of Morita type between

⊕s
i=1 Ai and

⊕t
j=1 B j. Thus

s = t by [30, Theorem 2.2], and we may assume that F induces a stable equivalence Fi of Morita type
between Ai and Bi for i ∈ [s].

To show c AD∼ d, we consider the generator Mi for Ui-mod. It follows from νAiHomUi(Mi,Ui) ≃
HomUi(Mi,νUiUi) (see [23, Remark 2.9 (2)]) that the Frobenius parts of Ai and Bi are Morita equivalent
to Ui and Vi, respectively. Since Ai/rad(Ai) and Bi/rad(Bi) are separable, we deduce from Lemma 4.9(2)
that Fi restricts to a stable equivalence Gi of Morita type between Ui and Vi. As fi(x) is separable and both
Ai and Bi are non-semisimple, Corollary 2.15 implies Ui ≃Vi, that is, R[x]/( fi(x)ni)≃ R[x]/(gi(x)mi), and
ni = mi.

Now we regard Vi-modules as Ui-modules via this isomorphism. Let Ai := EndUi(Ui ⊕B(Mi)P),
Bi := EndVi(Vi ⊕B(Ni)P) and Ci := EndVi(Vi ⊕ΩVi(B(Ni)P)), and let e, f and g be the ν-stable idem-
potents of Ai,Bi and Ci, defining their Frobenius parts, respectively. Then any two algebras from the list
{Ai,Ai,Bi,Bi,Ci} are stably equivalent of Morita type (see Lemmas 2.2 and 2.7), and there is the following
commutative (up to natural isomorphism) diagram by Lemma 4.9(2):

Ai-mod Bi-mod Ci-mod

eAie-mod f Bi f -mod gCig-mod

λ

OO

λ

OO

λ

OO
Φ //

Φ1 //

Ψ //

Ψ1 //

where λ is the full embedding of stable module categories induced by the corresponding Schur functor
and where Φ and Ψ define stable equivalences of Morita type between Ai and Bi, and between Bi and
Ci, respectively, while Φ1 and Ψ1 are the restrictions of Φ and Ψ, respectively. They are again of Morita
type (see Lemma 4.9(2)). Note that eAie ≃Ui ≃ Vi ≃ f Bi f ≃ gCig, and all of them are local symmetric,
Nakayama algebras. Identifying f Bi f with gCig, we can choose Ψ so that Ψ1 is the syzygy functor on
f Bi f -mod (see the arguments in [31, Proposition 3.3 and Corollary 3.4]). Let S be the unique simple
eAie-module (up to isomorphism). If we identify eĀie with f B̄i f , then it follows from Lemma 2.10 that
either Φ1(S) ≃ S or Φ1(S) ≃ ΩeAie(S). Thus either Φ1(S) or Ψ1 ◦Φ1(S) is simple. By Lemma 4.9(1),
either Φ1 or Ψ1 ◦Φ1 can be lifted to a Morita equivalence, and therefore either Φ or Ψ◦Φ can be lifted to
a Morita equivalence by Lemma 4.9(2). It then follows from Lemma 2.2 that either B(Mi)P ≃ B(Ni)P
or B(Mi)P ≃ ΩVi(B(Ni)P). By (†), we have Pc( fi(x)ni) = Pd(gi(x)mi) or Pc( fi(x)ni) = JPd(gi(x)mi ). Now
we define a map π′ : Mc −→ Md , fi(x)ni 7→ gi(x)mi for fi(x)ni ∈ Rc, f (x) 7→ ( f (x))π for f (x) ∈ Mc \Rc.

Then π′ defines an AD-equivalence of matrices c and d, that is, c AD∼ d. □
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Since Morita equivalences preserve dominant, finitistic and global dimensions, we have the following.

Corollary 4.10. If permutation matrices c ∈ Mn(R) and d ∈ Mm(R) are D-equivalent, then

dom.dim((Sn(c,R)) = dom.dim((Sm(d,R)),fin.dim(Sn(c,R)) = fin.dim(Sm(d,R)) and

gl.dim(Sn(c,R)) = gl.dim(Sm(d,R)), where gl.dim(A) denotes the global dimension of an algebra A.

4.4 Derived equivalences for permutation matrices: Proof of Corollary 1.4

In this subsection we discuss relations between derived equivalences of centralizer matrix algebras of per-
mutation matrices on the one hand and derived equivalences of centralizer matrix algebras of permutation
matrices of p-regular and p-singular parts on the other hand. This provides a proof of Corollary 1.4.

Given a prime number p > 0 and a permutation σ = σ1 · · ·σk ∈ Σn, which is the product of disjoint
cycle-permutations σi of cycle type λ = (λ1, · · · ,λk) with λi ≥ 1 for i ∈ [k], we say that σi is p-regular if
p ∤ λi, and p-singular if p | λi. The p-regular part r(σ) of σ is the product of p-regular cycles of σ, and
the p-singular part s(σ)) of σ is the product of p-singular cycles of σ. Both r(σ) and s(σ) are considered
as elements in Σn, that is, r(σ) fixes the elements involved in the p-singular cycles, and s(σ) fixes the ones
in p-regular cycles of σ. Let cσ := ∑

n
i=1 ei,(i)σ ∈ Mn(R) be the permutation matrix of σ, where ei j is the

matrix with 1 in (i, j)-entry and 0 in all other entries.
We start with the following corollary.

Corollary 4.11. Let R be a noetherian domain of characteristic p > 0 and σ ∈ Σn be of cycle type λ :=
(λ1, · · · ,λk), and let σ+ be a permutation in Σn+1 of cycle type λ+ := (λ1, · · · ,λk,1). Then the following
are equivalent

(a) Sn(cσ,R) and Sn+1(cσ+ ,R) are derived equivalent.
(b) Sn(cσ,R) and Sn+1(cσ+ ,R) are Morita equivalent.
(c) There exists a natural number i ∈ [k] such that p ∤ λi.

Proof. Let K be the fraction field of R and Fp be the prime field of K. Since cσ+ is just the diagonal
block matrix diag(cσ,1), we have Ec

σ+
= Ecσ

∪{x− 1} when cσ and cσ+ are viewed as matrices over
either K or Fp. Note that all λi are exactly the orbit lengths of the cyclic group ⟨σ⟩ acting on [n].

(a)⇒ (c) Suppose that Sn(cσ,R) and Sn+1(cσ+ ,R) are derived equivalent. Then it follows from Re-
mark 4.4 that Sn(cσ,K) and Sn+1(cσ+ ,K) are derived equivalent, and hence Morita equivalent by Corollary
1.3. It then follows from Theorem 1.1 that cσ

M∼ cσ+ as matrices over K. Since |Ed |= ∑ f (x)∈Md
|Pd( f (x))|

for any matrix d, the M-equivalence between cσ and cσ+ implies that |Ecσ
|= |Ec

σ+
|. Now, it follows from

Ec
σ+

= Ecσ
∪{x−1} that x−1 ∈ Ecσ

. But, by Lemma 2.17, x−1 ∈ Ecσ
if and only if there is some i ∈ [k]

such that p ∤ λi.
(c)⇒ (b) Assume (c). Then there is some i such that p ∤ λi. It follows from νp(λi) = 0 and Lemma

2.17 that x−1 ∈ Ecσ
. Thus Ecσ

= Ec
σ+

. By Theorem 1.1, Sn(cσ,Fp) and Sn+1(cσ+ ,Fp) are Morita equiva-
lent. Therefore R⊗Fp Sn(cσ,Fp) and R⊗Fp Sn+1(cσ+ ,Fp) are Morita equivalent. With an argument similar
to the one in Remark 4.4, we obtain the isomorphisms of R-algebras

R⊗Fp Sn(cσ,Fp)≃ Sn(cσ,R) and R⊗Fp Sn+1(cσ+ ,Fp)≃ Sn+1(cσ+ ,R).

Hence Sn(cσ,R) and Sn+1(cσ+ ,R) are Morita equivalent.
(b)⇒ (a) This is obvious. □

Proposition 4.12. Let R be a field of characteristic p ≥ 0, σ ∈ Σn and τ ∈ Σm. If Sn(cσ,R) and Sm(cτ,R)
are derived equivalent, then

(1) Sn(cr(σ),R) and Sm(cr(τ),R) are derived equivalent, and
(2) Sn(cs(σ),R) and Sm(cs(τ),R) are derived equivalent.
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Proof. Let λ = (λ1, · · · ,λk) be the cycle type of σ. We have shown in Lemma 2.17 that mcσ
(x) =

lcm(xλ1 − 1, · · · ,xλk − 1), the least common multiple of xλi − 1, i ∈ [k]. Recall that νp(n) denotes the
largest non-negative integer such that pνp(n) divides n, and for an irreducible factor f (x) of mcσ

(x), we
define

q f (x) := max{νp(λ j) | j ∈ [k] such that f (x) divides xλ j −1}.

According to Lemma 2.17, we have

(α) Ecσ
= { f (x)pνp(λi) | i ∈ [k], f (x) is an irreducible factor of xλi −1}, and

(β) Mcσ
= { f (x)pq f (x) | f (x) is an irreducible factor of mcσ

(x)}.

In particular,

(γ) Mcσ
always contains an elementary divisor (x−1)pa

for some integer a ≥ 0.

Note that x− 1 /∈ Ecσ
if and only if νp(λi) > 0 for all i ∈ [k] if and only if σ = s(σ) if and only if

r(σ) = id, the identity permutation in Σn.
If p = 0, then the statements (1) and (2) are trivially true. In the following, we assume p > 0.
Let {λ j1 , · · · ,λ jl} be the set of parts λi of λ such that p ∤ λi, and let {λi1 , · · · ,λit} be the set of parts λ j

of λ such that νp(λ j)> 0. We define ℓr(λ) := ∑
l
i=1 λ ji and ℓs(λ) := ∑

t
j=1 λi j . Then n = ∑

k
i=1 λi = ℓr(λ)+

ℓs(λ). The cycle type of r(σ) is (λ j1 , · · · ,λ jl ,1, · · · ,1︸ ︷︷ ︸
n−ℓr(λ)

), and the cycle type of s(σ) is (λi1 , · · · ,λit ,1, · · · ,1︸ ︷︷ ︸
n−ℓs(λ)

).

It follows from (α) and (β) that

Ecr(σ) = Mcr(σ) = { f (x) ∈ R[x] | ∃ a ∈ [l], f (x) is an irreducible factor of xλ ja −1}
∪{x−1}
= { f (x) ∈ Ecσ

| f (x) is irreducible }∪{x−1},

Ecs(σ) =

{
{u(x) ∈ Ecσ

| u(x) is reducible in R[x]} if s(σ) = σ,

{u(x) ∈ Ecσ
| u(x) is reducible in R[x]}∪{x−1} if s(σ) ̸= σ.

and

Mcs(σ) =

{
{g(x) ∈ Mcσ

| g(x) is reducible } if s(σ) ̸= id,
{x−1} if s(σ) = id.

Thus, we have the following for the power index sets.

(δ) If s(σ) ̸= id, then Pcs(σ)(h(x)) = Pcσ
(h(x)) \ {1} for h(x) ∈ Mcs(σ) \ {(x− 1)pa} and Pcσ

((x−
1)pa

) = Pcs(σ)((x−1)pa
). Similar conclusions hold for τ ∈ Σm.

Suppose cσ

D∼ cτ, that is, cσ

M∼ cτ by Corollary 1.3(2). Then there is a bijection π : Mcσ
→ Mcτ

such
that R[x]/(h(x))≃ R[x]/((h(x)π) as algebras and Pcσ

(h(x)) = Pcτ
((h(x))π) for h(x) ∈ Mcσ

. We show that
(i) r(σ) = id if and only if r(τ) = id.
(ii) s(σ) = id if and only if s(τ) = id.
In fact, for nonnegative integers a,b, if R[x]/(w(x)a) ≃ R[x]/(z(x)b) as algebras for two irreducible

polynomials w(x),z(x) ∈ R[x], then a = b and R[x]/(w(x)i) ≃ R[x]/(z(x)i) as algebras for all i ≤ a. Thus
we may extend π to a bijection between Ecσ

and Ecτ
such that R[x]/(h(x)) ≃ R[x]/((h(x)π) as algebras

for h(x) ∈ Ecσ
. Note that x− 1 /∈ Ecσ

if and only if νp(λi) > 0 for i ∈ [k] if and only if σ = s(σ) if and
only if 1 /∈ Pcσ

(h(x)) for h(x) ∈ Mcσ
. Similarly, the above observation holds for τ. Thus we deduce from

Pcσ
(h(x)) = Pcτ

((h(x))π) for all h(x) ∈ Mcσ
that x−1 /∈ Ecσ

if and only if x−1 /∈ Ecτ
. This implies that

r(σ) = id if and only if r(τ) = id. Note that s(σ) = id if and only if r(σ) = σ if and only if Pcσ
(h(x)) = {1}
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for h(x) ∈ Mcσ
. Thus we deduce from Pcσ

(h(x)) = Pcτ
((h(x))π) for h(x) ∈ Mcσ

that s(σ) = id if and only
if s(τ) = id. Hence (i) and (ii) hold.

Now, it follows from (i) and (ii) that (1) and (2) are obviously true for the case r(σ) = id or s(σ) = id.
From now on, we further assume both r(σ) ̸= id and s(σ) ̸= id, and therefore r(τ) ̸= id and s(τ) ̸= id

by (i) and (ii).
By the descriptions of Mcr(σ) and Mcr(τ) , the restriction of π to Mcr(σ) is mapped surjectively to Mcr(τ) .

For v(x) ∈ Mcr(σ) , there holds Pcr(σ)(v(x)) = {1} = Pcr(τ)((v(x))π). Thus cr(σ) and cr(τ) are M-equivalent,
and therefore D-equivalent by Corollary 1.3(2).

In the sequel, we show that cs(σ) and cs(τ) are D-equivalent, or equivalently, M-equivalent.
Actually, due to s(σ) ̸= id, Mcs(σ) consists of all reducible polynomials in Mcσ

. By (ii), Mcs(τ) consists
of all reducible polynomials in Mcτ

. By the first condition of Definition 3.1(1), the map π sends irreducible
polynomials to irreducible polynomials. Thus the restriction of π to Mcs(σ) gives rise to a bijection between
Mcs(σ) and Mcs(τ) .

By (γ), there are positive integers a,b such that (x−1)pa ∈ Mcs(σ) and (x−1)pb ∈ Mcs(τ) . We consider
the two possible cases.

Case 1. ((x−1)pa
)π = (x−1)pb

. Then, by (δ), we have

Pcs(σ)((x−1)pa
) = Pcσ

((x−1)pa
) = Pcτ

((x−1)pb
) = Pcs(τ)((x−1)pb

),

Pcs(σ)(h(x)) = Pcσ
(h(x)) \ {1} for all h(x) ∈ Mcs(σ) \ {(x− 1)pa} and Pcs(τ)(g(x)) = Pcτ

(g(x)) \ {1} for all

g(x) ∈ Mcs(τ) \{(x−1)pb}. Thus, for h(x) ∈ Mcs(σ) \{(x−1)pa}, the equality holds

Pcs(σ)(h(x)) = Pcσ
(h(x))\{1}= Pcτ

(h(x)π)\{1}= Pcs(τ)(h(x)π).

This implies that the restriction of π to Mcs(σ) gives rise to an M-equivalence between cs(σ) and cs(τ).

Case 2. ((x−1)pa
)π ̸= (x−1)pb

. By the definition of π, we have an algebra isomorphism R[x]/((x−
1)pa

)≃ R[x]/(((x−1)pa
)π). This implies that ((x−1)pa

)π = (x+u)pa
for some u ∈ R. Similarly, we may

suppose ((x−1)pb
)π−1 = (x+v)pb

for some v ∈ R. Due to ((x−1)pa
)π ̸= (x−1)pb

, we have u ̸=−1 and
v ̸=−1. Now we define a map

π
′ : Mcs(σ) −→ Mcs(τ) ,

(x−1)pa 7→ (x−1)pb
, (x+ v)pb 7→ (x+u)pa

, h(x) 7→ (h(x))π

for h(x) ∈ Mcs(σ) \{(x−1)pa
,(x+ v)pa}. Then it follows from the bijection of π that π′ is also a bijection.

We show that π′ defines an M-equivalence between cs(σ) and cs(τ). By definition, it only remains to
show that the corresponding power index sets are equal. In fact, by (δ), for h(x) ∈ Mcs(σ) \{(x−1)pa

,(x+
v)pa}, we have Pcs(σ)(h(x)) = Pcs(τ)(h(x)π

′). So, to complete the proof, we have to show

Pcs(σ)((x−1)pa
) = Pcs(τ)((x−1)pb

) and Pcs(σ)((x+ v)pb
) = Pcs(τ)((x+ v)pa

).

On the one hand, Pcσ
((x+ v)pb

) ⊆ Pcσ
((x− 1)pa

) by (α). Similarly, Pcτ
((x+ u)pa

) ⊆ Pcτ
((x− 1)pb

). On
the other hand, by the definition of M-equivalences, we have Pcσ

((x+v)pb
) = Pcτ

((x−1)pb
) and Pcσ

((x−
1)pa

) = Pcτ
((x+u)pa

). Thus a = b and

Pcσ
((x+ v)pb

) = Pcτ
((x−1)pb

) = Pcσ
((x−1)pa

) = Pcτ
((x+u)pa

).

Therefore it follows from (δ) that Pcs(σ)((x+v)pb
)=Pcσ

((x+v)pb
)\{1}=Pcτ

((x+u)pa
)\{1}=Pcs(τ)((x+

u)pa
) and Pcs(σ)((x−1)pa

) = Pcσ
((x−1)pa

) = Pcτ
((x−1)pb

) = Pcs(τ)((x−1)pb
). Thus cs(σ) and cs(τ) are M-

equivalent. □

Generally, the converse of Proposition 4.12 may be false, see Example 5.1 in the next section.
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5 Examples and further questions

In this subsection, we provide examples to illustrate results mentioned in the previous sections, and pro-
pose a few open questions for further considerations.

Example 5.1. Let R be an algebraically closed field of characteristic 5. We take σ ∈ Σ19 with the cycle
type (15,4), and τ ∈ Σ20 with the cycle type (15,3,2). In this case, r(σ) is a permutation of the cycle
type (4,115) and s(σ) is a permutation of cycle type (15,14), while r(τ) has the cycle type (3,2,115) and
s(τ) has the cycle type (15,15). Clearly, S19(cs(σ),R) and S20(cs(τ),R) are derived equivalent by Corollary
4.11. Since Mcr(σ) = {x− 1,x+ 1,x−η,x+η} and Mcr(τ) = {x− 1,x+ 1,x+ ε,x− ε2}, where η and ε

are 4-th and 3-th primitive roots of unity, respectively, it follows from Theorem 1.1 that S19(cr(σ),R) and
S20(cr(τ),R) are derived equivalent.

By Lemma 2.17, Mcσ
= {(x− 1)5,(x− ε)5,(x− ε2)5,x+ 1,x−η,x+η} and Mcτ

= {(x− 1)5,(x−
ε)5,(x− ε2)5,x+ 1}. Clearly, |Mcσ

| = 6 ̸= 4 = |Mcτ
|. Hence there are no bijections between Mcσ

and
Mcτ

, and therefore S19(cσ,R) and S20(cτ,R) cannot be derived equivalent by Theorem 1.1.
This shows that, in general, derived equivalences for both p-regular parts and p-singular parts of

permutations do not have to guarantee a derived equivalence for the permutations themselves.

The following example shows that the existence of a Morita equivalence between centralizer matrix
algebras depends on the ground field.

Example 5.2. Let σ := (1 2 3 4 5)(6 7 8 · · · 17 18),τ := (1 2 3 4 5 6 7)(8 9 · · · 17 18) ∈ Σ18. The
minimal polynomials of cσ and cτ over Q are (x− 1)(x4 + x3 + x2 + x+ 1)(x12 + x11 + · · ·+ x+ 1) and
(x−1)(x10+x9+ · · ·+x+1)(x6+x5+ · · ·+x+1), respectively. Moreover, Mcσ

= {x−1,x4+x3+x2+x+
1,x12+x11+ · · ·+x+1} and Mcτ

= {x−1,x10+x9+ · · ·+x+1,x6+x5+ · · ·+x+1}. Clearly, there is no
bijection between Mcσ

and Mcτ
such that all quotient algebras in Definition 3.1 (1) are isomorphic. Hence,

by Theorem 1.1, S18(cσ,Q) and S18(cτ,Q) are not Morita equivalent, while S18(cσ,C) and S18(cτ,C) are
Morita equivalent (see also [48, Theorem 1.2(2)]). By Corollary 1.3(2), this example also shows that
derived equivalences of centralizer matrix algebras over R depend upon the ground field R.

We point out that even in the class of centralizer matrix algebras, derived equivalences do not have to
preserve representation-finiteness, while almost ν-stable derived equivalences always preserve representation-
finiteness for arbitrary algebras.

Example 5.3. Let R be an algebraically closed field, c := J5(0)⊕J4(0)⊕J1(0)∈M10(R) and d := J5(0)⊕
J2(0)⊕J1(0)∈M8(R). Then S10(c,R) and S8(d,R) are derived equivalent by Theorem 1.1, while S10(c,R)
is representation-finite, but S8(d,R) is not by Lemma 3.3.

Having described derived equivalences of centralizer matrix algebras, we propose the following ques-
tions for further study.

Question 1. Let R be a field. Under which conditions on permutations σ ∈ Sn and τ ∈ Sm does the
converse of Proposition 4.12 hold true?

Question 2. Let R be a field and c ∈ Mn(R). Is there any canonical form of the matrix c under the
equivalence relations in Definition 3.1?

Related to generalization of Theorem 1.1 (see also Remark 4.4), we mention the following.
Question 3. Can one extend Theorem 1.1 to the case that R is a principal ideal domain?
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45-63.
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