
MINIMAL ELEMENTS OF THE POSET OF A HAMMOCK
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1. Introduction

Let k be an algebraically closed field and A a finite-dimensional fc-algebra. As
usual we assume that A is basic and connected. Thus A is a factor-algebra of the path
algebra of a quiver A = (Ao, Ax) by an admissible ideal /. By ,4-mod we denote the
category of all finitely generated left y4-modules and by A-ind a full subcategory of
,4-mod consisting of the representatives of isomorphism classes of all indecomposable
modules. Let xe Ao; we denote by P(x), Q(x) and E(x) the indecomposable projective
v4-module, the indecomposable injective module and the simple module at the vertex
x, respectively. Now we consider the set

S£ = {MeA-ind\M £ P(x),Horn(P(x),M) * 0 and Horn(P(x),xM) = 0},

where x stands for the Auslander-Reiten translation, and we define on Sx the relation
X ^ Y if and only if there is a homomorphism/: 7-> X such that Horn (P(x),f) # 0.
Let TA denote the Auslander-Reiten quiver of A. Thus the vertices of FA are
isomorphism classes [X] of ̂ -modules Zin y4-ind. One defines a function hx: (TA)0 -> N
by hx([X]) = dim Horn (P(x), X) which is the number of times E(x) occurs as a
composition factor of the y4-module X. Let A be representation-directed. Then we call
the function hx a hammock function and its support H(x), as a full subquiver of TA,
a hammock which starts from [P(x)] and ends at [(?(*))• It was shown in [7] that
(Sx, ^ ) is a poset and every hammock H(x) is an Auslander-Reiten quiver of a
poset which is isomorphic to (Sx, ^ ) .

In the present paper we try to describe the minimal elements in Sx without using
any knowledge of FA. We approach this by two separate routes. One is a theoretical
characterization in terms of minimal add S^-approximation (see Definition 2.3). The
other route shows how to construct the modules considered as minimal elements in
Sx ; there we use only the sink map ending at the indecomposable injective module
Q(x) corresponding to x.

The main result is the following.

THEOREM. Suppose that A is a representation-directed algebra. Let

m n \Ji)i

®Xt >Q(x) and ® Rt >Q{x)

be a minimal right add Sx-approximation ofQ(x) and a sink map for Q(x) respectively,
where X{ and R} are indecomposable. Then
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(1) m = «;
(2) EndA(® Xt) is a semisimple finite-dimensional algebra;
(3) {Xt\i= 1, ...,m) is the set of all minimal elements of(S£, ^ ) ;
(4) for each /e{l,2, ...,m} there is a number je{l,...,m} such that Xt is isomorphic

to r~Ker(/J) if fj is surjective, or to the projective cover of Cok(f}) if f} is
injective.

F o r further details abou t h a m m o c k s we refer to [4, 7].

2. The minimal S*-approximation of Q(x)

Let A be an algebra and x e Ao. Put !f$ := (add S£, Horn (P(x), -)). Let °U(Sf*) be
the subspace category of the vector space category y / , whose objects are of the form

V=(V0> V^-.Pix)®, Vw > Vo),

where Vm is a finite-dimensional vector space over k and P^eaddS^. A morphism/
from V to W is defined as a pair (fo,fw), where fw: Va-+ Wm is a fc-linear map and
/0eHom/)(l^, Wo), such that the diagram

P(x) 6?) K * V

is commutative. We recall the functor

defined in [8] (see also [5]). Let V= (Vo, Vm,yv)€$(&£). Put ZK:=Cok(yK), the
cokernel of yv. F o r / = (/0,/J define £ / t o be the induced map

Vo

/oj 2/}

from 2 F to Y.W. W e assume tha t there is an object Q = (Qo, Qw,yQ) in 6U{S/'^) such
that 2(2 = COO, namely, the following exact sequence exists:

yQ m nQ

P(x)®kQm • g o - 0 * ; >QLx) >0,
< - l

where XteS£ is indecomposable for / = \,...,m. This assumption is always satisfied
if the algebra A is of finite representation type (see [5]). We may suppose that Q has
no direct summand Q' with 2(2' = 0. Now we fix such a choice of Q in %(^) and
put K = Ker(y<3) and B := Im(yc). We want to determine the endomorphism ring of
Qo.

The set 5^ is said to be scalar provided dim Horn (P(x), M) = 1 for all MeS*.
Note that if S£ is scalar then (5^, <) is a poset.

2.1 LEMMA. (1) Q is an indecomposable object in
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(2) If N is a quotient of P{xf for some I, and Me add S£, then Ext* (M, N) = 0.
(3) Ext\(Q0,Q0) = 0.

Proof.
(1) If Q = Q' 0 Q", then 1Q = ZQ' 0 10".
(2) See [1, 5.8].
(3) If we apply Horn,, (QQ, - ) to the exact sequence

then we get (3), because Ext* (Qo, Q{x)) = 0 and Ext* (Qo, B) = 0by (2).

2.2 LEMMA. Let A be an algebra. The following are equivalent:
(1) Q(x)eS?.
(2) Qo is indecomposable and Qo £ Q(x).
(3) If 0 " , ! Rt -> Q(x) is a sink map ending at Q{x) with indecomposables Rt, then

n = 1 and dim Horn (RvQ(x)) = dimEnd(g(jt)).

The proof is obvious.

2.3 DEFINITION [1]. (1) A morphism / : M -> N in A-mod is said to be right
minimal if an endomorphism g:M-+ M is an automorphism whenever gf=f.

(2) Let 9C be a full subcategory of ,4-mod which is closed under isomorphisms and
summands. A morphism/:X-> C in ,4-mod is said to be a ng/if <X-approximation of
C if A'e #* and the sequence

Horn,, (M, X) > Hom^ (M, C) > 0

induced by/ is exact for every MeSC. If/is, in addition, right minimal, then/is said
to be a minimal right ^-approximation.

2.4 LEMMA. Let SC = add 5^. 7/iew nQ is a minimal %-approximation for Q(x).

Proof. Let g:Q0->Q0 with gnQ = 7rQ, then we can get the following diagram.

P(x) ® Qw • Qo —^-> Q(x) • 0

P(x) (g) Qw • Qo — ^ g(x) > 0

Since the endomorphism ring of g is a local ring, we deduce that g is an
automorphism. Since Ext* (M, B) = 0 for all M in Ŝ 1 by Lemma 2.1(2), it is clear by
definition that nQ is a right ^-approximation.

2.5 DEFINITION [6]. An indecomposable ^4-module M is called directing if there
is no finite sequence (Mo = M,Mlt ...,Mt = M) of indecomposable modules M<5

0 ^ / ̂  /, with rad (Mt_l5 Mt) # 0 for all 1 < i ̂  /. An algebra is called representation-
directed provided every indecomposable module is directing.

LEMMA. Suppose that Q(x) is directing. Then the functor Horn (P(x), —) is faithful
on the additive full subcategory add(?0.
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Proof. By 2.2 we may suppose that Q(x) $ S*. Let/: Xx -> X2 be a homomorphism
with Hom(P(x),f) = 0. Then we consider the following diagram.

Since yQf = 0, there is a morphism/":Q(x) -* X2 with/' = nQf". But

Hom(Q(x),X2) = 0

since Q(x) is directing. Therefore/= 0.

2.6 LEMMA. Let A be an algebra and S* scalar. Then there is no homomorphism
gi}:Xt -> X} with i ̂ j such that Hom(P(jc),^y) # 0.

Proof. We suppose that for i = 1 and j = 2 there are g12: Xx -*• X2 and
g2:X2->Q(x) such that g12g2 # 0. Note that we have dimE.omA(X1,Q(x)) = \.
Now we consider the diagram

\ 0 X, 0 0 Xt Q(x)

g*
1
0

0"
0
1

X. 2

which is commutative. It is easy to see that a is a right ^-approximation. But this
contradicts that nQ is a minimal ^-approximation of Q(x).

2.7 THEOREM. Let A be an algebra and S* scalar. Put SC = add S£. Let Qo -> Q(x)
be a minimal right &-approximation. IfQ(x) is directing, then the endomorphism ring
End/1(20) of Qo is a semisimple finite-dimensional algebra.

Proof This theorem follows immediately from 2.5 and 2.6.

2.8 COROLLARY. If the algebra A is representation-directed, then
(1) {Xt\i = 1, ...,m} is the set of all minimal elements in of(S£, <),
(2) m ̂  3.

Proof. (1) This is obvious.
(2) By [7, 10, Theorem], the category of S^-spaces of the poset S£ is

representation-finite, thus it follows from (1) and Kleiner's theorem [6,2.6, Theorem 1]
that m ̂  3.

To complete this section we point out the following fact.
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2.9 THEOREM. Let P(x) be directing and P(x) -> N a source map starting from
P(x). Set

M = {Me A — ind | M is a direct summand of N}
and assume that every module in M is directing. If(S£, ^ ) is scalar, then M is just the
set of all maximal elements of(S£, ^ ) .

The proof of this theorem is dual to that of Theorem 2.7. Since every module in
M is directing, one can easily see that the functor Horn (P(x), —) is faithful on the full
subcategory add N. Note that the source map P(x) -> N is a minimal left
^"-approximation for P(x) since N belongs to SC := add S£. Since S£ is scalar, one can
show as in 2.6 that if Mx and M2 are indecomposable summands of N with Mx $ M2,
then Horn (M15 M2) = 0. Thus the theorem follows.

3. The minimal elements in S£

Let

be a sink map for Q(x) with indecomposable modules R{ and let Rt $ Rt if / ^j.
In this section we assume that Q{x) and all the Rt are directing and that

dt = dim Hom^ (Rt, Q{x)).
Let

where the upper index t stands for transpose, and

/, = (#):*< >Q(x)\
Put Kx = Ker(/;) and C, = CokerC/J.

3.1 LEMMA. Iff is a surjective map, then K{ is indecomposable and r'K^S^.

Proof Note that / , is an irreducible map. Thus Kt is indecomposable. The rest
of the statement 3.1 follows from the following diagram,

0 >Kt >EV > T-Kt >0

I I I
0 >K{ >R{ >Q(x)d< >0

where the upper row is an Auslander-Reiten sequence. It is clear that

3.2 LEMMA. Iff is injective, then Ct is simple. In this case we denote by P{y^ the
projective cover of Ci and have

Proof Suppose that Ct is not simple. Then we can take a simple module S which
is a factor module of Ci and consider the following diagram.

f e,
0 >Rt >Q(x)d< >Ct >0

Q(x)d
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It is clear that g2 is not split epimorphism. From the equalities

dim Hom^ (Q(x)\ Q(x)) = dim Horn,, (Rt, Q(x)) = dim HomA(Y, Q(x)) = dt

it follows that g\ is not split monomorphism. Thus the irreducible m a p / t has a non-
trivial decomposition. This is a contradiction.

It is obvious that

3.3 LEMMA. Let A be representation-directed; then
(1) ifft is surjective, Horn A(z~Ki,Ri) = 0,
(2) iff, is injective, HomA(P(yJ,RJ = 0.

Proof. (1) We apply Hornet"A^, —) to the exact sequence

0 >K, >Rt >Q(x) >0

and obtain the following long exact sequence

8
0 > (T-Kt, Rt) > ix-K,, Q(x)) • V * * , JQ •...

(we abbreviate (X, Y) for Hom^ (X, Y) and \X, Y) for Ext^(J!r, Y) for i ̂  1). Since
dim Hom^, (z~Kt, Q{x)) = 1 and the map 6 is non-zero, we get (1).

(2) Applying HomA (P(yi), —) to the exact sequence

0 >R, >Q(x) >Ct .0 ,

we have the following exact sequence:

0 — > {P{yd, Rd — • Wyd, Q(x)) — > (P(yi), C() — > 0.

Since dim Horn,, (P(yt), Q{x)) = 1 = dim Horn,, {P{yt), C(), one has (2).

3.4 LEMMA. Suppose that K{ # Ofor i = 1,2. Then Kx £ K2 if and only ifRx ^ R2.

Proof We have the following exact sequences:

0 >KX >Rx-^Q{x)^ >0,

0 >K2 >R2 >Q{x)d* .0 .

Applying Homi4(JR2, —) to the first of these sequences, we obtain the exact sequence

0 > (R2, K,) , (*„ Rx) , (R2, Q{xf>) , \R2, KJ >....

Suppose that Kx £ K2. Then Hom^ (R2, Kx) = 0, since R2 is directing. From the
Auslander-Reiten formula Ext\ (R^K^ ^ DHomA(T~K1,R2), together with 3.3(2),
we obtain Ext^ (R2, KJ = 0. Hence Hom^ (R2, RJ # 0. Similarly, Hom^ (Rlt R2) # 0.
Since R1 is directing, it follows that Rx s R2.

Now suppose that ^ ^ R2. Then we have

0 — > (Q(X)\ Q(xy>) — , (Rlt Q(xy>) — , (Kl, Q(xy>) — > . . . .
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Since dimHomA(RltQ(x)) = dv the first non-zero map of the above sequence is
surjective. So we have the following diagram:

0 >KX >Rx-L>QHxY* >0

/ ,
0 >tf2 >R2 >Q(Xy> >0,

which shows that the right vertical map Q(x)di -* Q(x)d* s Q(x)di has to be split
epimorphism since/2 is not a split monomorphism and/x is irreducible. Hence Kx = K2.

3.5 LEMMA. Suppose that C( ^ Ofor i = 1,2. Then C1 £ C2 if and only ifRx s R2.

The proof is similar to the proof of 3.4.

3.6 LEMMA. Suppose that Cx # 0 and K2 ^ 0. Then Piy^ is not isomorphic to
x~K2.

From 3.4 to 3.6 we know that all non-zero modules x'Kt and P(y}) are distinct
elements of S£.

3.7 LEMMA. Let K be the kernel of an irreducible surjective map f:R->Q(x)
between directing indecomposable modules. Suppose that K is directing and
dimHom,, (j~K, Q(x)) = \.IfMeS* satisfies M ^ x~K, then M s x~K.

Proof. Suppose, to the contrary, that M ^ x~K. Then we consider the following
pull-back diagram with f ' g # 0:

0 >K >E >T~K >0

II i V

0 >K >R >Q(x) >0.
Since / ' ^ # 0 and dim Horn,, (x~K, Q(x)) = 1, the first-row exact sequence is an
Auslander-Reiten sequence, thus the second row is not split and so M is not
projective. Let 0 -> xM -*E' -* M -• 0 be an Auslander-Reiten sequence. Then we
have the following diagram:

g' P
0 * K >E >M • ( )

I I II
0 >TM >E' >M •()

which shows that Horn,, (K, xM) # 0. Since M ^ x~K, there is a non-invertible
map 0 ifc h\K—* xM.

Now we consider the following push-out diagram:

0 *K * R >Q(x) >0

0 * TM > R' —*-> Q(x) > 0.
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We claim that gx is not a split monomorphism. Otherwise, we could have
Horn,, (xM, R) 7̂  0 but, on the other hand, we know from

0 > (xM, K) > (xM, R) > (xM, Q(x))

and VLomA(zM,K) = 0 that HomA(xM,R) = 0, because MsS£. This is a con-
tradiction. Suppose now that g2 is a split epimorphism. Then Hom^ (R, zM) ^ 0 and
so, since R is directing, ExtA(R, zM) = 0. Since Hom^ (zM, R) = 0 and h is not a split
monomorphism, it follows from [2, 2.11] that the sequence

0 • Ext* (Q(x), xM) • Ext} (R, xM)

is exact. Thus we get E\tA(Q(x),xM) = 0. Applying HomA(—,zM) to the diagram
(*) we obtain the following commutative diagram:

... >(K,TM) >\Q(X),TM) = 0 >...

. . . >(K,TM)-$-* \M,TM) >...

which implies that 6 = 0. But the diagram (**) tells us that S # 0. This contradiction
shows that g2 is not a split epimorphism, which is a contradiction to / being
irreducible, and so M = z~K.

In order to carry out a further discussion we now introduce some notation.
Let M be an indecomposable module. We denote by Supp(Af) the set of all

vertices y of Ao such that Hom^ (P(y), M) ^ 0. If ye Ao, we denote by ey the primitive
idempotent element corresponding to y. Put

yeSupp(P(x))

e=l—e and A = eAe. We assume that there is an irreducible injective map
f'.R-* Q(x), where R is indecomposable. Let E{y) be the cokernel of/(see the proof
of 3.2).

3.8 LEMMA. Suppose that Q(x) is a directing module. Then z~R is an
indecomposable projective A-module.

Proof. We can regard ^4-mod as a full subcategory of y4-mod which is closed
under factor modules and extensions. That Q(x) is directing implies that x'R is an
yf-module. Since with Q(x) also R has no submodule which is isomorphic to a module
in ^-mod, it follows from [3, 3.7] that x'R is ^-projective, and is indecomposable
since it is indecomposable as an A -module.

3.9 LEMMA. Suppose that Q(x) is directing. Then P(y) ^ Ae®Ax~R and
(P()P())0

Proof. Since x'R is an indecomposable projective A-moduk, it is of the form
Aett where zeSupp(P(x)) and so eez — ez. Hence Ae®Ax~R ^ Aez = P(z). Now the
exact sequence

0 >R >Q(x) >E{y) >0

induces an epimorphism

Horn, (x-R, E(y)) > Ext» (x~R, R).
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Hence Hom^ (T~R, E(y)) ^ 0 and, since Top (x~R) = E(y), it follows that z-y.
Since Q(x) is injective, any irreducible map Q(x) -> x~R is an epimorphism.

Hence E(y) is a composition factor of Q(x). Therefore Horn,, (P(x), P(y)) s
HomA(P(y),Q(x))*0.

3.10 LEMMA. Suppose that S£ is scalar and that Q(x) and P(y) are directing. If
Xe S* with X ^ P(y), then X * P(y).

Proof. We know that Hom(P(.y), R) = 0. Thus Hom^, R) = 0, because S* is
scalar. Let K be the kernel of an irreducible map g: Q{x) -> x~R, and a: x~R -* E(y) =
Top(z~R) be the canonical projection. Then, since Q(x) is directing, <xg factors
through the cokernel of the irreducible map R -> Q(x) and we get an exact
commutative diagram:

0 >K >Q(x)-^ r~R > 0

1* I'
0 >R >Q(x) >E(y) >0

Hence y is a monomorphism and so we must have Horn,, (X, K) = 0.
Now we apply Horn (X, - ) to the first exact sequence above and get the following

exact sequence:

0 > (X, Q(x)) > (X, T-R) • \X, K) > 0

which shows that Horn (X, x~R) ^ 0.
Since Top(x~R) = E(y) and x~R = e(x~R), there is an epimorphism h:P(y) -• x~R =

eP(y) taking m to em. Now there is a short exact sequence of abelian groups

h
0 —> eAev —> Aev = P(y) —> eAey = rR —• 0 (•)

and since h is in ,4-mod, this is in fact a short exact sequence in j4-mod, with B' :=
eAey an ,4-module with support contained in Supp(P(x)). It follows from (*) that
Top{B') = Soc(R) = E(x). Hence, by Lemma 2.1(2), HomA(X,B') = 0 and so,
applying Horn,, (X, —) to (*) we obtain

(X, P(y)) * Hom^ (X, z~R) # 0.

Since P(y) is directing, it follows that P(y) ^ X

Now we apply the above considerations to the particular case when A is
representation-directed and get the main result mentioned in the introduction.

3.11 LEMMA. Suppose that A is a representation-directed algebra. Then m = n.

Proof Now we consider the opposite algebra Aop of A and the set SfP. By 2.9
the set S °̂P has n maximal elements, and therefore the set

S* := {Xe A-ind \ X ^ Q(x), Hom^ (X, Q(x)) * 0 and Hom^ (T~X, Q(X)) = 0}

has n minimal elements. It was shown in [7] that S£ = S£ as poset. This implies that
m = n.
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3.12 THEOREM. Let Abe a basic connected representation-directed algebra and x
a vertex. Let

be a sink map ending at Q(x), where R{ are indecomposables. Put

_ jz~ Ker (/,), iff is surjective,

Then {Mt\i - 1,..., m) is the set of all minimal elements in S£.

3.13 COROLLARY (Baustista and Brenner). Let A be a representation-directed
algebra and 0 ? . ! ^ -> Q(x) a sink map. Then d ^ 3.

Proof. This follows from 3.12 [7, 10, theorem] and Kleiner's theorem.

4. Conclusion

We keep the notation introduced before. We point out the following fact which
suggests that the construction in 3.12 might be true for some classes of non-
representation-directed algebras.

4.1 PROPOSITION. Let A be a tame concealed algebra (see [6] for the definition).
Suppose that S£ is scalar and dt = 1. Then

(1) n^m;
(2) the set of all Mt constructed in 3.12 is a subset of the set of all minimal elements

The proof of 4.1 follows from 3.10 and the following.

4.2 LEMMA. Let A be as in 4.1. If S£ is scalar, then 3.7 holds without the
assumption that K is directing.

Proof Note that for two non-isomorphic regular modules M and TV in S£ we
never have Hom(M, N) ^ 0 and Horn (TV, M) # 0 by [9, 4.2]. Thus we can copy the
proof of 3.7 to prove 4.2.
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