CHANGCHANG XI

1. Introduction

Let k be an algebraically closed field and A a finite-dimensional k-algebra. As usual we assume that A is basic and connected. Thus A is a factor-algebra of the path algebra of a quiver $\Delta = (\Delta_0, \Delta_1)$ by an admissible ideal I. By A-mod we denote the category of all finitely generated left A-modules and by A-ind a full subcategory of A-mod consisting of the representatives of isomorphism classes of all indecomposable modules. Let $x \in \Delta_0$; we denote by P(x), Q(x) and E(x) the indecomposable projective A-module, the indecomposable injective module and the simple module at the vertex x, respectively. Now we consider the set

 $S_x^A = \{ M \in A - \text{ind} \mid M \ncong P(x), \text{Hom}(P(x), M) \neq 0 \text{ and } \text{Hom}(P(x), \tau M) = 0 \},\$

where τ stands for the Auslander-Reiten translation, and we define on S_x^A the relation $X \leq Y$ if and only if there is a homomorphism $f: Y \to X$ such that $\operatorname{Hom}(P(x), f) \neq 0$. Let Γ_A denote the Auslander-Reiten quiver of A. Thus the vertices of Γ_A are isomorphism classes [X] of A-modules X in A-ind. One defines a function $h_x:(\Gamma_A)_0 \to \mathbb{N}$ by $h_x([X]) = \dim \operatorname{Hom}(P(x), X)$ which is the number of times E(x) occurs as a composition factor of the A-module X. Let A be representation-directed. Then we call the function h_x a hammock function and its support H(x), as a full subquiver of Γ_A , a hammock which starts from [P(x)] and ends at [Q(x)]. It was shown in [7] that (S_x^A, \leq) is a poset and every hammock H(x) is an Auslander-Reiten quiver of a poset which is isomorphic to (S_x^A, \leq) .

In the present paper we try to describe the minimal elements in S_x^A without using any knowledge of Γ_A . We approach this by two separate routes. One is a theoretical characterization in terms of minimal add S_x^A -approximation (see Definition 2.3). The other route shows how to construct the modules considered as minimal elements in S_x^A ; there we use only the sink map ending at the indecomposable injective module Q(x) corresponding to x.

The main result is the following.

THEOREM. Suppose that A is a representation-directed algebra. Let

$$\bigoplus_{i=1}^{m} X_{i} \longrightarrow Q(x) \quad and \quad \bigoplus_{i=1}^{n} R_{i} \xrightarrow{(f_{i})_{i}^{t}} Q(x)$$

be a minimal right add S_x^A -approximation of Q(x) and a sink map for Q(x) respectively, where X_i and R_j are indecomposable. Then

Received 27 March 1990, revised 6 May 1991.

¹⁹⁹¹ Mathematics Subject Classification 16G20.

J. London Math. Soc. (2) 46 (1992) 228-238

(1) m = n;

- (2) End_A ($\bigoplus X_i$) is a semisimple finite-dimensional algebra;
- (3) $\{X_i | i = 1, ..., m\}$ is the set of all minimal elements of (S_x^A, \leq) ;
- (4) for each i ∈ {1, 2, ..., m} there is a number j ∈ {1, ..., m} such that X_i is isomorphic to τ⁻Ker(f_j) if f_j is surjective, or to the projective cover of Cok(f_j) if f_j is injective.

For further details about hammocks we refer to [4, 7].

2. The minimal S_x^A -approximation of Q(x)

Let A be an algebra and $x \in \Delta_0$. Put $\mathscr{G}_x^A := (\operatorname{add} S_x^A, \operatorname{Hom}(P(x), -))$. Let $\check{\mathscr{U}}(\mathscr{G}_x^A)$ be the subspace category of the vector space category \mathscr{G}_x^A , whose objects are of the form

$$V = (V_0, V_{\omega}, \gamma_V: P(x) \otimes_k V_{\omega} \longrightarrow V_0),$$

where V_{ω} is a finite-dimensional vector space over k and $V_0 \in \text{add } S_x^A$. A morphism f from V to W is defined as a pair (f_0, f_{ω}) , where $f_{\omega}: V_{\omega} \to W_{\omega}$ is a k-linear map and $f_0 \in \text{Hom}_A(V_0, W_0)$, such that the diagram

$$\begin{array}{c} P(x) \otimes V_{\omega} \longrightarrow V_{0} \\ 1 \otimes f_{\omega} \downarrow \qquad \qquad f_{0} \downarrow \\ P(x) \otimes W_{\omega} \longrightarrow W_{0} \end{array}$$

is commutative. We recall the functor

$$\Sigma: \check{\mathscr{U}}(\mathscr{G}_x^A) \longrightarrow A \operatorname{-mod}$$

defined in [8] (see also [5]). Let $V = (V_0, V_\omega, \gamma_\nu) \in \check{\mathcal{U}}(\mathscr{S}_x^A)$. Put $\Sigma V := \operatorname{Cok}(\gamma_\nu)$, the cokernel of γ_ν . For $f = (f_0, f_\omega)$ define Σf to be the induced map

$$\begin{array}{c} P(x) \otimes_{k} V_{\omega} \longrightarrow V_{0} \longrightarrow \Sigma V \longrightarrow 0 \\ 1 \otimes f_{\omega} \downarrow \qquad f_{0} \downarrow \qquad \Sigma f \downarrow \\ P(x) \otimes_{k} W_{\omega} \longrightarrow W_{0} \longrightarrow \Sigma W \longrightarrow 0 \end{array}$$

from ΣV to ΣW . We assume that there is an object $Q = (Q_0, Q_\omega, \gamma_Q)$ in $\tilde{\mathcal{U}}(\mathscr{S}_x^A)$ such that $\Sigma Q = Q(x)$, namely, the following exact sequence exists:

$$P(x) \otimes_{k} Q_{\omega} \xrightarrow{\gamma_{Q}} Q_{0} = \bigoplus_{i=1}^{m} X_{i} \xrightarrow{\pi_{Q}} Q(x) \longrightarrow 0,$$

where $X_i \in S_x^A$ is indecomposable for i = 1, ..., m. This assumption is always satisfied if the algebra A is of finite representation type (see [5]). We may suppose that Q has no direct summand Q' with $\Sigma Q' = 0$. Now we fix such a choice of Q in $\tilde{\mathcal{U}}(\mathscr{S}_x^A)$ and put $K = \text{Ker}(\gamma_Q)$ and $B := \text{Im}(\gamma_Q)$. We want to determine the endomorphism ring of Q_0 .

The set S_x^A is said to be scalar provided dim Hom (P(x), M) = 1 for all $M \in S_x^A$. Note that if S_x^A is scalar then (S_x^A, \leq) is a poset.

2.1 LEMMA. (1) Q is an indecomposable object in $\tilde{\mathscr{U}}(\mathscr{G}_x^A)$.

- (2) If N is a quotient of $P(x)^l$ for some l, and $M \in \text{add } S_x^A$, then $\text{Ext}_A^1(M, N) = 0$.
- (3) $\operatorname{Ext}_{A}^{1}(Q_{0}, Q_{0}) = 0.$

Proof.

- (1) If $Q = Q' \oplus Q''$, then $\Sigma Q = \Sigma Q' \oplus \Sigma Q''$.
- (2) See [1, 5.8].
- (3) If we apply $\operatorname{Hom}_{A}(Q_{0}, -)$ to the exact sequence

 $0 \longrightarrow B \longrightarrow Q_0 \longrightarrow Q(x) \longrightarrow 0,$

then we get (3), because $\text{Ext}_{A}^{1}(Q_{0}, Q(x)) = 0$ and $\text{Ext}_{A}^{1}(Q_{0}, B) = 0$ by (2).

- 2.2 LEMMA. Let A be an algebra. The following are equivalent:
- (1) $Q(x) \in S_x^A$.
- (2) Q_0 is indecomposable and $Q_0 \cong Q(x)$.
- (3) If $\bigoplus_{i=1}^{n} R_i \to Q(x)$ is a sink map ending at Q(x) with indecomposables R_i , then n = 1 and dim Hom $(R_1, Q(x)) = \dim \operatorname{End} (Q(x))$.

The proof is obvious.

2.3 DEFINITION [1]. (1) A morphism $f: M \to N$ in A-mod is said to be right minimal if an endomorphism $g: M \to M$ is an automorphism whenever gf = f.

(2) Let \mathscr{X} be a full subcategory of A-mod which is closed under isomorphisms and summands. A morphism $f: X \to C$ in A-mod is said to be a right \mathscr{X} -approximation of C if $X \in \mathscr{X}$ and the sequence

 $\operatorname{Hom}_{A}(M, X) \longrightarrow \operatorname{Hom}_{A}(M, C) \longrightarrow 0$

induced by f is exact for every $M \in \mathscr{X}$. If f is, in addition, right minimal, then f is said to be a *minimal* right \mathscr{X} -approximation.

2.4 LEMMA. Let $\mathscr{X} = \operatorname{add} S_x^A$. Then π_o is a minimal \mathscr{X} -approximation for Q(x).

Proof. Let $g: Q_0 \to Q_0$ with $g\pi_o = \pi_Q$, then we can get the following diagram.

$$P(x) \otimes Q_{\omega} \longrightarrow Q_{0} \xrightarrow{\pi_{Q}} Q(x) \longrightarrow 0$$

$$\downarrow \qquad g \downarrow \qquad \parallel$$

$$P(x) \otimes Q_{\omega} \longrightarrow Q_{0} \xrightarrow{\pi_{Q}} Q(x) \longrightarrow 0$$

Since the endomorphism ring of Q is a local ring, we deduce that g is an automorphism. Since $\operatorname{Ext}_{A}^{1}(M, B) = 0$ for all M in S_{x}^{A} by Lemma 2.1(2), it is clear by definition that π_{Q} is a right \mathscr{X} -approximation.

2.5 DEFINITION [6]. An indecomposable A-module M is called *directing* if there is no finite sequence $(M_0 = M, M_1, ..., M_t = M)$ of indecomposable modules M_i , $0 \le i \le t$, with rad $(M_{i-1}, M_i) \ne 0$ for all $1 \le i \le t$. An algebra is called representation-directed provided every indecomposable module is directing.

LEMMA. Suppose that Q(x) is directing. Then the functor Hom (P(x), -) is faithful on the additive full subcategory add Q_0 .

Proof. By 2.2 we may suppose that $Q(x) \notin S_x^A$. Let $f: X_1 \to X_2$ be a homomorphism with Hom (P(x), f) = 0. Then we consider the following diagram.

Since $\gamma_Q f' = 0$, there is a morphism $f'': Q(x) \to X_2$ with $f' = \pi_Q f''$. But

 $\operatorname{Hom}\left(Q(x), X_2\right) = 0$

since Q(x) is directing. Therefore f = 0.

2.6 LEMMA. Let A be an algebra and S_x^A scalar. Then there is no homomorphism $g_{ij}: X_i \to X_j$ with $i \neq j$ such that $\operatorname{Hom}(P(x), g_{ij}) \neq 0$.

Proof. We suppose that for i = 1 and j = 2 there are $g_{12}: X_1 \to X_2$ and $g_2: X_2 \to Q(x)$ such that $g_{12}g_2 \neq 0$. Note that we have dim Hom_A $(X_1, Q(x)) = 1$. Now we consider the diagram

which is commutative. It is easy to see that α is a right \mathscr{X} -approximation. But this contradicts that π_{ϱ} is a minimal \mathscr{X} -approximation of Q(x).

2.7 THEOREM. Let A be an algebra and S_x^A scalar. Put $\mathscr{X} = \operatorname{add} S_x^A$. Let $Q_0 \to Q(x)$ be a minimal right \mathscr{X} -approximation. If Q(x) is directing, then the endomorphism ring $\operatorname{End}_A(Q_0)$ of Q_0 is a semisimple finite-dimensional algebra.

Proof. This theorem follows immediately from 2.5 and 2.6.

2.8 COROLLARY. If the algebra A is representation-directed, then

(1) $\{X_i | i = 1, ..., m\}$ is the set of all minimal elements in of (S_x^A, \leq) ,

(2) $m \leq 3$.

Proof. (1) This is obvious.

(2) By [7, 10, Theorem], the category of S_x^A -spaces of the poset S_x^A is representation-finite, thus it follows from (1) and Kleiner's theorem [6, 2.6, Theorem 1] that $m \leq 3$.

To complete this section we point out the following fact.

2.9 THEOREM. Let P(x) be directing and $P(x) \rightarrow N$ a source map starting from P(x). Set

$$\mathcal{M} = \{M \in A - \text{ind} \mid M \text{ is a direct summand of } N\}$$

and assume that every module in \mathcal{M} is directing. If (S_x^A, \leq) is scalar, then \mathcal{M} is just the set of all maximal elements of (S_x^A, \leq) .

The proof of this theorem is dual to that of Theorem 2.7. Since every module in \mathcal{M} is directing, one can easily see that the functor Hom (P(x), -) is faithful on the full subcategory add N. Note that the source map $P(x) \to N$ is a minimal left \mathscr{X} -approximation for P(x) since N belongs to $\mathscr{X} := \text{add } S_x^A$. Since S_x^A is scalar, one can show as in 2.6 that if M_1 and M_2 are indecomposable summands of N with $M_1 \ncong M_2$, then Hom $(M_1, M_2) = 0$. Thus the theorem follows.

3. The minimal elements in S_x^A

Let

$$\bigoplus_{i=1}^{n} R_{i}^{d_{i}} \xrightarrow{(g_{i})} Q(x)$$

be a sink map for Q(x) with indecomposable modules R_i and let $R_i \cong R_j$ if $i \neq j$. In this section we assume that Q(x) and all the R_i are directing and that

Let

$$d_{i} = \dim \operatorname{Hom}_{A}(R_{i}, Q(x)).$$

$$g_{i} = (g_{i}^{(i)})_{i \leq i \leq d}^{i},$$

where the upper index t stands for transpose, and

$$f_i = (g_j^{(i)}) \colon R_i \longrightarrow Q(x)^{d_i}.$$

Put $K_i = \text{Ker}(f_i)$ and $C_i = \text{Coker}(f_i)$.

3.1 LEMMA. If f_i is a surjective map, then K_i is indecomposable and $\tau^- K_i \in S_x^A$.

Proof. Note that f_i is an irreducible map. Thus K_i is indecomposable. The rest of the statement 3.1 follows from the following diagram,

where the upper row is an Auslander-Reiten sequence. It is clear that $\operatorname{Hom}_{\mathcal{A}}(K_i, Q(x)) = 0$.

3.2 LEMMA. If f_i is injective, then C_i is simple. In this case we denote by $P(y_i)$ the projective cover of C_i and have $P(y_i) \in S_x^A$.

Proof. Suppose that C_i is not simple. Then we can take a simple module S which is a factor module of C_i and consider the following diagram.

$$\begin{array}{c} 0 \longrightarrow R_{i} \xrightarrow{f_{i}} Q(x)^{d_{i}} \xrightarrow{\epsilon_{i}} C_{i} \longrightarrow 0 \\ & \downarrow g'_{1} & \parallel & \downarrow p_{i} \\ 0 \longrightarrow Y \xrightarrow{g'_{2}} Q(x)^{d_{i}} \xrightarrow{\epsilon_{i}} S \longrightarrow 0 \end{array}$$

It is clear that g'_2 is not split epimorphism. From the equalities

$$\dim \operatorname{Hom}_{A}(Q(x)^{d_{i}},Q(x)) = \dim \operatorname{Hom}_{A}(R_{i},Q(x)) = \dim \operatorname{Hom}_{A}(Y,Q(x)) = d_{i}$$

it follows that g'_1 is not split monomorphism. Thus the irreducible map f_i has a non-trivial decomposition. This is a contradiction.

It is obvious that $P(y_i) \in S_x^A$.

- 3.3 LEMMA. Let A be representation-directed; then
- (1) if f_i is surjective, $\operatorname{Hom}_A(\tau K_i, R_i) = 0$,
- (2) if f_i is injective, $\operatorname{Hom}_A(P(y_i), R_i) = 0$.

Proof. (1) We apply $\operatorname{Hom}_{A}(\tau^{-}K_{i}, -)$ to the exact sequence

$$0 \longrightarrow K_i \longrightarrow R_i \longrightarrow Q(x) \longrightarrow 0$$

and obtain the following long exact sequence

$$0 \longrightarrow (\tau^- K_i, R_i) \longrightarrow (\tau^- K_i, Q(x)) \xrightarrow{\delta} {}^1(\tau^- K_i, K_i) \longrightarrow \dots$$

(we abbreviate (X, Y) for $\text{Hom}_A(X, Y)$ and ${}^{i}(X, Y)$ for $\text{Ext}_A^{i}(X, Y)$ for $i \ge 1$). Since dim $\text{Hom}_A(\tau^-K_i, Q(x)) = 1$ and the map δ is non-zero, we get (1).

(2) Applying $\operatorname{Hom}_{A}(P(y_{i}), -)$ to the exact sequence

 $0 \longrightarrow R_i \longrightarrow Q(x) \longrightarrow C_i \longrightarrow 0,$

we have the following exact sequence:

$$0 \longrightarrow (P(y_i), R_i) \longrightarrow (P(y_i), Q(x)) \longrightarrow (P(y_i), C_i) \longrightarrow 0$$

Since dim Hom_A $(P(y_i), Q(x)) = 1 = \dim \operatorname{Hom}_A (P(y_i), C_i)$, one has (2).

3.4 LEMMA. Suppose that $K_i \neq 0$ for i = 1, 2. Then $K_1 \cong K_2$ if and only if $R_1 \cong R_2$.

Proof. We have the following exact sequences:

$$0 \longrightarrow K_1 \longrightarrow R_1 \xrightarrow{f_1} Q(x)^{d_1} \longrightarrow 0,$$

$$0 \longrightarrow K_2 \longrightarrow R_2 \xrightarrow{f_2} Q(x)^{d_2} \longrightarrow 0.$$

Applying $\operatorname{Hom}_{A}(R_{2}, -)$ to the first of these sequences, we obtain the exact sequence

$$0 \longrightarrow (R_2, K_1) \longrightarrow (R_2, R_1) \longrightarrow (R_2, Q(x)^{d_1}) \longrightarrow {}^1(R_2, K_1) \longrightarrow \dots$$

Suppose that $K_1 \cong K_2$. Then $\operatorname{Hom}_A(R_2, K_1) = 0$, since R_2 is directing. From the Auslander-Reiten formula $\operatorname{Ext}_A^1(R_2, K_1) \cong D \operatorname{Hom}_A(\tau^- K_1, R_2)$, together with 3.3(2), we obtain $\operatorname{Ext}_A^1(R_2, K_1) = 0$. Hence $\operatorname{Hom}_A(R_2, R_1) \neq 0$. Similarly, $\operatorname{Hom}_A(R_1, R_2) \neq 0$. Since R_1 is directing, it follows that $R_1 \cong R_2$.

Now suppose that $R_1 \cong R_2$. Then we have

$$0 \longrightarrow (Q(x)^{d_1}, Q(x)^{d_2}) \longrightarrow (R_1, Q(x)^{d_2}) \longrightarrow (K_1, Q(x)^{d_2}) \longrightarrow \dots$$

Since dim Hom_A $(R_1, Q(x)) = d_1$, the first non-zero map of the above sequence is surjective. So we have the following diagram:

$$0 \longrightarrow K_{1} \longrightarrow R_{1} \xrightarrow{f_{1}} Q(x)^{d_{1}} \longrightarrow 0$$

$$\downarrow \qquad \downarrow^{\wr} \qquad \downarrow \qquad \downarrow^{\circ} \qquad \downarrow \qquad 0 \longrightarrow K_{2} \longrightarrow R_{2} \xrightarrow{f_{2}} Q(x)^{d_{2}} \longrightarrow 0,$$

which shows that the right vertical map $Q(x)^{d_1} \to Q(x)^{d_2} \cong Q(x)^{d_1}$ has to be split epimorphism since f_2 is not a split monomorphism and f_1 is irreducible. Hence $K_1 \cong K_2$.

3.5 LEMMA. Suppose that $C_i \neq 0$ for i = 1, 2. Then $C_1 \cong C_2$ if and only if $R_1 \cong R_2$.

The proof is similar to the proof of 3.4.

3.6 LEMMA. Suppose that $C_1 \neq 0$ and $K_2 \neq 0$. Then $P(y_1)$ is not isomorphic to $\tau^- K_2$.

From 3.4 to 3.6 we know that all non-zero modules $\tau^- K_i$ and $P(y_j)$ are distinct elements of S_x^A .

3.7 LEMMA. Let K be the kernel of an irreducible surjective map $f: R \to Q(x)$ between directing indecomposable modules. Suppose that K is directing and dim Hom_A $(\tau^- K, Q(x)) = 1$. If $M \in S_x^A$ satisfies $M \leq \tau^- K$, then $M \cong \tau^- K$.

Proof. Suppose, to the contrary, that $M \cong \tau^- K$. Then we consider the following pull-back diagram with $f'g \neq 0$:

Since $f'g \neq 0$ and dim Hom_A $(\tau^- K, Q(x)) = 1$, the first-row exact sequence is an Auslander-Reiten sequence, thus the second row is not split and so M is not projective. Let $0 \to \tau M \to E'' \to M \to 0$ be an Auslander-Reiten sequence. Then we have the following diagram:

which shows that $\operatorname{Hom}_{A}(K, \tau M) \neq 0$. Since $M \cong \tau^{-}K$, there is a non-invertible map $0 \neq h: K \to \tau M$.

Now we consider the following push-out diagram:

$$0 \longrightarrow K \longrightarrow R \xrightarrow{f} Q(x) \longrightarrow 0$$
$$\downarrow h \neq 0 \downarrow g_1 \qquad || \\ 0 \longrightarrow \tau M \longrightarrow R' \xrightarrow{g_2} Q(x) \longrightarrow 0.$$

234

We claim that g_1 is not a split monomorphism. Otherwise, we could have $\operatorname{Hom}_A(\tau M, R) \neq 0$ but, on the other hand, we know from

$$0 \longrightarrow (\tau M, K) \longrightarrow (\tau M, R) \longrightarrow (\tau M, Q(x))$$

and $\operatorname{Hom}_{A}(\tau M, K) = 0$ that $\operatorname{Hom}_{A}(\tau M, R) = 0$, because $M \in S_{x}^{A}$. This is a contradiction. Suppose now that g_{2} is a split epimorphism. Then $\operatorname{Hom}_{A}(R, \tau M) \neq 0$ and so, since R is directing, $\operatorname{Ext}_{A}^{1}(R, \tau M) = 0$. Since $\operatorname{Hom}_{A}(\tau M, R) = 0$ and h is not a split monomorphism, it follows from [2, 2.11] that the sequence

$$0 \longrightarrow \operatorname{Ext}_{A}^{1}(Q(x), \tau M) \longrightarrow \operatorname{Ext}_{A}^{1}(R, \tau M)$$

is exact. Thus we get $\operatorname{Ext}_{A}^{1}(Q(x), \tau M) = 0$. Applying $\operatorname{Hom}_{A}(-, \tau M)$ to the diagram (*) we obtain the following commutative diagram:

which implies that $\delta = 0$. But the diagram (**) tells us that $\delta \neq 0$. This contradiction shows that g_2 is not a split epimorphism, which is a contradiction to f being irreducible, and so $M \cong \tau^- K$.

In order to carry out a further discussion we now introduce some notation.

Let *M* be an indecomposable module. We denote by Supp(M) the set of all vertices *y* of Δ_0 such that $\text{Hom}_A(P(y), M) \neq 0$. If $y \in \Delta_0$, we denote by e_y the primitive idempotent element corresponding to *y*. Put

$$e = \sum_{y \in \text{Supp}(P(x))} e_y,$$

 $\overline{e} = 1 - e$ and $\overline{A} = \overline{e}A\overline{e}$. We assume that there is an irreducible injective map $f: R \to Q(x)$, where R is indecomposable. Let E(y) be the cokernel of f (see the proof of 3.2).

3.8 LEMMA. Suppose that Q(x) is a directing module. Then $\tau^- R$ is an indecomposable projective \overline{A} -module.

Proof. We can regard A-mod as a full subcategory of A-mod which is closed under factor modules and extensions. That Q(x) is directing implies that $\tau^- R$ is an \overline{A} -module. Since with Q(x) also R has no submodule which is isomorphic to a module in \overline{A} -mod, it follows from [3, 3.7] that $\tau^- R$ is \overline{A} -projective, and is indecomposable since it is indecomposable as an A-module.

3.9 LEMMA. Suppose that Q(x) is directing. Then $P(y) \cong A\overline{e} \otimes_{\overline{A}} \tau^{-} R$ and $\operatorname{Hom} (P(x), P(y)) \neq 0$.

Proof. Since $\tau^- R$ is an indecomposable projective \overline{A} -module, it is of the form $\overline{A}e_z$, where $z \in \text{Supp}(P(x))$ and so $\overline{e}e_z = e_z$. Hence $A\overline{e} \otimes_{\overline{A}} \tau^- R \cong Ae_z = P(z)$. Now the exact sequence

$$0 \longrightarrow R \longrightarrow Q(x) \longrightarrow E(y) \longrightarrow 0$$

induces an epimorphism

$$\operatorname{Hom}_{A}(\tau^{-}R, E(y)) \longrightarrow \operatorname{Ext}_{A}^{1}(\tau^{-}R, R).$$

Hence $\operatorname{Hom}_{A}(\tau^{-}R, E(y)) \neq 0$ and, since $\operatorname{Top}(\tau^{-}R) = E(y)$, it follows that z = y.

Since Q(x) is injective, any irreducible map $Q(x) \to \tau^- R$ is an epimorphism. Hence E(y) is a composition factor of Q(x). Therefore $\operatorname{Hom}_{A}(P(x), P(y)) \cong \operatorname{Hom}_{A}(P(y), Q(x)) \neq 0$.

3.10 LEMMA. Suppose that S_x^A is scalar and that Q(x) and P(y) are directing. If $X \in S_x^A$ with $X \leq P(y)$, then $X \cong P(y)$.

Proof. We know that $\operatorname{Hom}(P(y), R) = 0$. Thus $\operatorname{Hom}(X, R) = 0$, because S_x^A is scalar. Let K be the kernel of an irreducible map $g:Q(x) \to \tau^- R$, and $\alpha: \tau^- R \to E(y) = \operatorname{Top}(\tau^- R)$ be the canonical projection. Then, since Q(x) is directing, αg factors through the cokernel of the irreducible map $R \to Q(x)$ and we get an exact commutative diagram:

$$0 \longrightarrow K \longrightarrow Q(x) \xrightarrow{g} \tau^{-}R \longrightarrow 0$$
$$\downarrow^{\gamma} \qquad \downarrow^{\lambda} \qquad \downarrow^{\alpha}$$
$$0 \longrightarrow R \longrightarrow Q(x) \longrightarrow E(y) \longrightarrow 0$$

Hence γ is a monomorphism and so we must have $\operatorname{Hom}_{A}(X, K) = 0$.

Now we apply Hom (X, -) to the first exact sequence above and get the following exact sequence:

$$0 \longrightarrow (X, Q(x)) \longrightarrow (X, \tau^{-}R) \longrightarrow {}^{1}(X, K) \longrightarrow 0$$

which shows that Hom $(X, \tau^{-}R) \neq 0$.

Since $\operatorname{Top}(\tau^- R) = E(y)$ and $\tau^- R = \overline{e}(\tau^- R)$, there is an epimorphism $h: P(y) \to \tau^- R = \overline{e}P(y)$ taking m to $\overline{e}m$. Now there is a short exact sequence of abelian groups

$$0 \longrightarrow eAe_{y} \longrightarrow Ae_{y} = P(y) \longrightarrow \overline{e}Ae_{y} = \tau^{-}R \longrightarrow 0 \qquad (*)$$

and since h is in A-mod, this is in fact a short exact sequence in A-mod, with $B' := eAe_y$ an A-module with support contained in Supp(P(x)). It follows from (*) that Top(B') = Soc(R) = E(x). Hence, by Lemma 2.1(2), $\text{Hom}_A(X, B') = 0$ and so, applying $\text{Hom}_A(X, -)$ to (*) we obtain

$$\operatorname{Hom}_{A}(X, P(y)) \cong \operatorname{Hom}_{A}(X, \tau^{-}R) \neq 0.$$

Since P(y) is directing, it follows that $P(y) \cong X$.

Now we apply the above considerations to the particular case when A is representation-directed and get the main result mentioned in the introduction.

3.11 LEMMA. Suppose that A is a representation-directed algebra. Then m = n.

Proof. Now we consider the opposite algebra A^{op} of A and the set $S_x^{A^{op}}$. By 2.9 the set $S_x^{A^{op}}$ has n maximal elements, and therefore the set

$$\overline{S}_x^A := \{X \in A \text{-ind} \mid X \cong Q(x), \operatorname{Hom}_A(X, Q(x)) \neq 0 \text{ and } \operatorname{Hom}_A(\tau^- X, Q(x)) = 0\}$$

has *n* minimal elements. It was shown in [7] that $S_x^A \cong \overline{S}_x^A$ as poset. This implies that m = n.

3.12 THEOREM. Let A be a basic connected representation-directed algebra and x a vertex. Let

$$\bigoplus_{i=1}^{m} R_i \xrightarrow{(f_i)_i^t} Q(x)$$

be a sink map ending at Q(x), where R, are indecomposables. Put

$$M_{i} = \begin{cases} \tau^{-} \operatorname{Ker}(f_{i}), & \text{if } f_{i} \text{ is surjective,} \\ P(y), & \text{if } \operatorname{Cok}(f_{i}) \cong E(y). \end{cases}$$

Then $\{M_i | i = 1, ..., m\}$ is the set of all minimal elements in S_x^A .

3.13 COROLLARY (Baustista and Brenner). Let A be a representation-directed algebra and $\bigoplus_{i=1}^{d} R_i \rightarrow Q(x)$ a sink map. Then $d \leq 3$.

Proof. This follows from 3.12 [7, 10, theorem] and Kleiner's theorem.

4. Conclusion

We keep the notation introduced before. We point out the following fact which suggests that the construction in 3.12 might be true for some classes of nonrepresentation-directed algebras.

4.1 PROPOSITION. Let A be a tame concealed algebra (see [6] for the definition). Suppose that S_x^A is scalar and $d_i = 1$. Then

- (1) $n \leq m$;
- (2) the set of all M_i constructed in 3.12 is a subset of the set of all minimal elements of (S_x^A, \leq) .

The proof of 4.1 follows from 3.10 and the following.

4.2 LEMMA. Let A be as in 4.1. If S_x^A is scalar, then 3.7 holds without the assumption that K is directing.

Proof. Note that for two non-isomorphic regular modules M and N in S_x^A we never have Hom $(M, N) \neq 0$ and Hom $(N, M) \neq 0$ by [9, 4.2]. Thus we can copy the proof of 3.7 to prove 4.2.

Acknowledgements. I am very grateful to C. M. Ringel for helpful discussions and S. Brenner for many concrete comments and suggestions on this paper. I also want to thank D. Happel for carefully reading, the Deutsche Forschungsgemeinschaft for support and Frau Köllner for typewriting the manuscript.

References

- M. AUSLANDER and I. REITEN, 'Applications of contravariantly finite subcategories', preprint.
 M. AUSLANDER and I. REITEN, 'Representation theory of artin algebras IV', Comm. Algebra 5 (1977) 443–518.
- 3. M. AUSLANDER and S. O. SMALO, 'Almost split sequences in subcategories', J. Algebra 69 (1981) 426-454.
- 4. S. BRENNER, A combinatorical characterization of a finite Auslander-Reiten quiver, Lecture Notes in Mathematics 1177 (Springer, Berlin, 1986) 13-49.

- 5. P. DRÄXLER, '2-Fasersummen in darstellungsendlichen Algebren', J. Algebra 113 (1988) 430-437.
- 6. C. M. RINGEL, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics 1099 (Springer, Berlin, 1984).
- 7. C. M. RINGEL und D. VOSSIECK, 'Hammocks', Proc. London Math. Soc. (3) 54 (1987) 216-246.
- 8. C. C. XI, 'Die Vektorraumkategorie zu einem unzerlegbaren projektiven Modul einer Algebra', J. Algebra to appear.
- 9. C. C. XI, 'Die Vektorraumkategorie zu einem unzerlegbaren projektiven Modul einer zahmen verkleideten Algebra', Dissertation, Bielefeld 1989.

Fakultät für Mathematik Universität Bielefeld Postfach 8640 W-4800 Bielefeld 1 Germany and Department of Mathematics Shaanxi Normal University Post Number 710062 Xi'an China