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Abstract. Suppose k is a field. Let A and B be two finite dimensional k-algebras
such that there is a stable equivalence of Morita type betweenA andB. In this paper,
we prove that (1) if A and B are representation-finite then their Auslander algebras
are stably equivalent of Morita type; (2) The n-th Hochschild homology groups of
A and B are isomorphic for all n ≥ 1.A new proof is also provided for Hochschild
cohomology groups of self-injective algebras under a stable equivalence of Morita
type.
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1. Introduction

In the representation theory of artin algebras, there are three important equivalences:
Morita equivalences, derived equivalences and stable equivalences. The classical
Morita theory says that every Morita equivalence is induced by tensoring with a
suitable bimodule, while a derived equivalence is induced by a suitable complex of
bimodules by Rickard’s Morita theory for derived categories. Stable equivalences
are equivalences between stable categories. In general, they are not induced from
bimodules. However, Rickard showed that a derived equivalence between self-
injective algebras implies a stable equivalence induced by some bimodule. This led
Broué into defining a special kind of stable equivalences, which are called stable
equivalences of Morita type. They arise naturally for blocks of finite groups, or more
generally, for self-injective algebras. For arbitrary finite dimensional algebras, this
notion is still of particular interest, it preserves the representation dimension [22],
representation type [9] and Linckelmann’s Theorem [12]. However, how to pro-
duce such a stable equivalence for general finite dimensional algebras seems to be
a difficult problem. Very recently, some advances in this direction are made in [13],
where one starts from a stable equivalence of Morita type between two algebras
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and gets another one between certain quotient algebras or certain triangular matrix
algebras. It turns out that one can produce a large class of stable equivalences of
Morita type between non-selfinjective algebras.

The present paper has two aims. First, we shall provide another natural way
to construct stable equivalences of Morita type. Here our starting point is a stable
equivalence of Morita type between representation-finite algebras.We want to know
whether there exists a stable equivalence of Morita type between their Auslander
algebras. The second purpose of the paper is to compare the Hochschild homology
or cohomology groups between two algebras which are stably equivalent of Morita
type. The answer to the first question is the following positive result.

Theorem 1.1. Suppose k is a field. Let A and B be two finite dimensional k-alge-
bras of representation-finite type. Let � and � be the corresponding Auslander
algebras of A and B, respectively. If A and B are stably equivalent of Morita type,
then � and � are stably equivalent of Morita type.

Note that a stable equivalence of Morita type between representation-finite
self-injective algebras occurs frequently and is better understood (see [2], [19] and
others). Thus, based on this fact, the above result provides us a plenty of new exam-
ples of stable equivalences of Morita type between finite dimensional algebras of
global dimension at most two.

Since Auslander algebras are quasi-hereditary, their Hochschild homology
groups Hn vanish except n = 0 by a result of Zacharia in [24]. Particularly, in
Theorem 1.1 no matter � and � are stably equivalent of Morita type or not, the
n-th Hochschild homology groups of � and � are automatically isomorphic for
n ≥ 1. An inverse question is how about the Hochschild Homology groups of A
and B.

To this question, we shall prove that the Hochschild homology groups are in
fact invariant under a stable equivalence of Morita type. More precisely, we have

Theorem 1.2. Suppose A and B are two finite dimensional k-algebras. If A and B
are stably equivalent of Morita type, then the n-th Hochschild homology group of
A is isomorphic to that of B for all n ≥ 1.

To deal with Hochschild cohomology groups, we first prove some general prop-
erties for a stable equivalence of Morita type. From this we get a new proof of the
fact that the Hochschild cohomology groups of self-injective algebras are invariant
under a stable equivalence of Morita type. This was first proved in [14], but our
proof here is more direct.

Theorem 1.3. Let A and B be two self-injective k-algebras. If A and B are stably
equivalent of Morita type, then Hn(A) � Hn(B) for all n ≥ 1.

We remark that neither the 0-th Hochschild homology group, nor the 0-th Hochs-
child cohomology group is invariant under a stable equivalence of Morita type.

The paper is broken down into sections as follows. After some elementary prep-
arations in section two we prove Theorem 1.1 in section three and Theorem 1.2
and Theorem 1.3 in section four. Some examples to illustrate the necessity of some
assumptions in the main results are displayed in section five. In the last section, we
use a property developed in this paper to extend a result in [13].
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2. Preliminaries

In this section we shall fix notations and recall definitions and facts needed in the
proofs of our main results.

Throughout this paper, k will stand for a fixed field. All our categories will be
k-categories and all functors are k-functors.All algebras will be assumed to be finite
dimensional k-algebras with the identity. Unless stated otherwise, by a module we
shall mean a finitely generated left module.

Given an algebra A, we denote by A-mod the category of finite dimensional
A-modules and by A-mod the stable module category, which is the quotient of
A-mod modulo the ideal of maps that factor through projective A-modules. The
global dimension and the dominant dimension of A will be denoted by gl.dim(A)
and dom.dim(A), respectively. Here the dominant dimension of A is defined as the
maximal number n in a minimal injective resolution of the regular A-module AA:

0 −→ AA −→ I0 −→ I1 −→ . . . −→ In−1 −→ . . . ,

such that I0, I1, ..., In−1 are projective.
In this paper, the composition of two morphisms f : X → Y and g : Y → Z

will be denoted by fg. If there is no confusion, the k-duality Homk(−, k) will be
denoted by D.

Now let us recall the definition of a stable equivalence of Morita type. This
notion is due to Broué [5] and is a combination of the notion of a Morita equiv-
alence and a stable equivalence. It was first noted to be useful for blocks in the
representation theory of finite groups, or more generally, for finite dimensional
self-injective algebras.

Definition 2.1. Let A and B be two (arbitrary) k-algebras. We say that A and B
are stably equivalent of Morita type if there exist an A-B-bimodule AMB and a
B-A-bimodule BNA such that

(1) M and N are projective as one-sided modules, and
(2) M ⊗B N � A⊕ P as A-A-bimodules for some projective A-A-bimodule P ,

andN ⊗AM � B⊕Q as B-B-bimodules for some projective B-B-bimodule
Q.

Note that if A and B are stably equivalent of Morita type, then their opposite
algebras Aop and Bop are also stably equivalent of Morita type.

Suppose that two algebras A and B are stably equivalent of Morita type. We
can define functors TN : A-mod→ B-mod by X �→ N ⊗A X and TM : B-mod
→ A-mod by Y �→ M ⊗B Y . Similarly, we have functors TP and TQ.

Lemma 2.2. (see [22])

(1) TM , TN , TP and TQ are exact functors.
(2) TM ◦ TN → idA−mod ⊕ TP and TN ◦ TM → idB−mod ⊕ TQ are natural

isomorphisms.
(3) The images of TP and TQ consist of projective modules.
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Clearly, if two algebras A and B are stably equivalent of Morita type, then
they are stably equivalent. In fact, the functor TN : A-mod → B-mod induces
an equivalence: A-mod → B-mod, whose inverse is induced by TM : B-mod
→ A-mod.

We say that an algebra is representation-finite if there are only finitely many
non-isomorphic indecomposable A-modules.

Definition 2.3. Let A be a representation-finite algebra.

(1) AnA-moduleX is said to be an additive generator forA-mod if add(X) = A-
mod, that is, every indecomposable A-module is isomorphic to a direct sum-
mand of X.

(2) Let X be an additive generator for A-mod. The endomorphism algebra � =
EndA(X) of X is called the Auslander algebra of A. (This is unique up to
Morita equivalence.)

Note that an algebraA is representation-finite if and only ifA-mod has an addi-
tive generator.As we know,Auslander algebras might be of any representation type.
However, they were characterized in [3] by the following homological properties:
their global dimensions are at most 2 and their dominant dimensions are at least 2.
More precisely, Auslander proved the following theorem.

Theorem 2.4. (see [3]) Let C be the class of Morita-equivalence classes [A] of
representation-finite algebras. Let D be the class of Morita-equivalence classes
[�] of algebras satisfying gl.dim(�) ≤ 2 and dom.dim(�) ≥ 2. Then there is a
one to one correspondence between C and D given as follows:

(1) If A is a representation-finite algebra and R is an additive generator for
A-mod, then we send A to � = EndA(R).

(2) If � is an algebra with gl.dim(�) ≤ 2 and dom.dim(�) ≥ 2 and I is a
projective-injective �-modules such that add(I ) is precisely the category of
projective-injective �-modules, then we send � to A = End�(I).

Auslander algebras are closely related to certain triangular matrix algebras. So,
for our purpose, we also need some basic facts on triangular matrix algebras and
morphism category ( see [4] for more details).

Let A be an algebra. The triangular matrix algebra of A is defined as follows:

T2(A) =
(
A A

0 A

)
= { (

a b

0 c

)
| a, b.c ∈ A}

with the usual matrix addition and multiplication. It is well known that each T2(A)-
module U can be described as a triple U = (U1, U2, f ), where U1 and U2 are
in A-mod, and f : U2 → U1 is an A-homomorphism; and each homomorphism
fromU to V = (V1, V2, g) can be interpreted as a pair (α1, α2) in HomA(U1, V1)×
HomA(U2, V2) such that f α1 = α2g.

Let A be an algebra. Suppose C is a full subcategory of A-mod. The morphism
category of C is the k-category Morph(C) defined by the following data. The objects
of Morph(C) are the morphisms f : C2 → C1 in C; and the morphisms from an
object f : C2 → C1 to another object f ′ : C′2 → C′1 are pairs (g1, g2) where
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gi : Ci → C′i is a homomorphism in C for i = 1, 2 such that fg1 = g2f
′. The

composition of two morphisms are defined in a trivial way.
The relationship of T2(A)-mod and A-mod was described in the following

way(see [3]).

Lemma 2.5. The category Morph(A-mod) is equivalent to T2(A)-mod as exact
categories.

Note that the equivalence functor in Lemma 2.5 sends each object f : M2 −→
M1 in Morph(A-mod) to the T2(A)-module (M1,M2, f ).

Let ℘(A) be the full subcategory of A-mod consisting of all projective mod-
ules. For objects f : P2 −→ P1 and f ′ : P ′2 −→ P ′1 in Morph(℘(A)), we define
�A(f, f ′) = {(g1, g2) : f → f ′ | there is an h : P1 → P ′2 such that hf ′ =
g1}. Then �A gives a relation on Morph(℘(A)). We can define the factor cate-
gory Morph(℘(A))/�A. The objects of Morph(℘(A))/�A are the same as those of
Morph(℘(A)). The morphisms from f to f ′ in Morph(℘(A))/�A are the elements
of the k-space Hom(f, f ′)/�A(f, f ′). By [4, proposition 1.2, p.102], the natural
functor CokerA: Morph(℘(A))→ A-mod defined by CokerA(f : P2 → P1) =
Coker(f ) induces an equivalence of categories: Morph(℘(A))/�A→ A-mod.

Now let A be a representation-finite algebra and let R be an additive generator
for A-mod. By � we denote the Auslander algebra of A. By [4, proposition 2.1,
p.33], HomA(R,−) : A-mod→ �-mod induces an equivalence:A-mod→ ℘(�).
It follows that HomA(R,−) induces an equivalence of categories: T2(A)-mod→
Morph(℘(�)), which is defined by (U1, U2, f ) �→ (R, f ): (R,U2) → (R,U1).
Here and in the sequel we denote HomA(R, ∗) by (R, ∗).
Lemma 2.6. LetA be a representation-finite algebra,R an additive generator and
� theAuslander algebra ofA. Then the composition functor Coker�◦HomA(R,−) :
T2(A)-mod→ �-mod induces an equivalence HA : T2(A)-mod/�′A → �-mod,
where �′A is the relation on T2(A)-mod defined by �′A(U, V ) = {(α1, α2) : U →
V | there is a homomorphism γ : U1 → V2 such that γg = α1} for modules
U = (U1, U2, f ) and V = (V1, V2, g).

Proof. It is straightforward to see that Coker�◦HomA(R,−) is full and dense. On
the other hand, one can verify that Coker�◦HomA(R,−)(α1, α2)= Coker�((R, α1),

(R, α2)) = 0 if and only if there is some h : (R,U1) → (R, V2) such that
h(R, g) = (R, α1). But this is equivalent to saying that there is a homomor-
phism γ : U1 → V2 of A-modules such that (R, γ ) = h and γg = α1, since
HomA(R,−) : A-mod→ ℘(�) is an equivalence.

In the next section we shall use the above functor as a bridge to prove our main
result Theorem 1.1.

3. Proof of Theorem 1.1

In this section, we shall show that forming Auslander algebras will provide a con-
venient way to get stable equivalences of Morita type.
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We need the following homological facts, which are easy to check. Let us
remind the reader that the modules in our paper are always assumed to be finitely
generated.

Lemma 3.1. Let C,D and E be three algebras and CXD and DYE bimodules,
whereXD is projective. Then the natural morphismφ:CX⊗DYE →HomD(DX∗C,
DYE), where X∗ = HomD(X, D) and φ(x ⊗ y)(f ) = f (x)y for x ∈ X, y ∈ Y
and f ∈ X∗ is an isomorphism of C-E-bimodules.

Lemma 3.2. Let k be a field. Let C,D and E be three algebras. For every triple of
(CXD, CY, ZE), there is anD-E-bimodule isomorphismψ: HomC(CXD, CY )⊗k
ZE →HomC(CXD, CY⊗kZE) defined byψ(f⊗z)(x) = f (x)⊗z for x ∈ X, z ∈
Z and f ∈ HomC(X, Y ).

Let us remark that the two lemmas would be false if the bimodules are not
finitely generated. We thank the referee for pointing out this fact.

From now on, we assume that A,B,M,N,P,Q are fixed as in Definition 2.1.
Furthermore, we assume thatA andB are representation-finite. We choose an addi-
tive generator R for A-mod and an additive generator S for B-mod, and denote by
� = EndA(R) and by � = EndB(S) the corresponding Auslander algebras of A
and B, respectively.

Recall from Section 2 that we have the following equivalences of catego-
ries: HA : T2(A)-mod/�′A → �-mod and HB : T2(B)-mod/�′B → �-mod.
In order to link the two categories �-mod and �-mod together, we define two
functors T̃N : T2(A)-mod/�′A → T2(B)-mod/�′B and T̃M : T2(B)-mod/�′B →
T2(A)-mod/�′A. For U = (U1, U2, f ) in T2(A)-mod/�′A, we define T̃N (U) =
(TN(U1), TN(U2), TN(f )). For a morphism (α1, α2) + �′A(U, V ) : U → V =
(V1, V2, g), we set T̃N ((α1, α2)+�′A(U, V )) = (TN(α1), TN(α2))+�′B(TN(U),
TN(V )) : T̃N (U) → T̃N (V ). Since T̃N (�′A(U, V )) ⊆ �′B(TN(U), TN(V )), it is
easy to see that T̃N is well-defined. The functor T̃M can be defined similarly.

Now we can define two new functors F and G between �-mod and �-mod.

Let F : �-mod→ �-mod be the compositions: �-mod
H−1
A→ T2(A)-mod/�′A

T̃N→
T2(B)-mod/�′B

HB→ �-mod, where H−1
A is the inverse of HA. Similarly, we define

G : �-mod→ �-mod as the compositions:�-mod
H−1
B→ T2(B)-mod/�′B

T̃M→ T2(A)-

mod/�′A
HA→ �-mod, where H−1

B is the inverse of HB . So we are in the following
situation:

�-mod � �-mod

�
H−1
A

�

T2(A)-mod /�′A � T2(B)-mod/�′B

HB

T̃N T̃M

F
�-mod G � �-mod

�
�

T2(B)-mod /�′B � T2(A)-mod/�′A

HAH−1
B

We claim that F and G take projective modules to projective modules. In-
deed, let X � HomA(R,U0) be a projective �-module with U0 an A-module.
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Then H−1
A (X) � (U0, 0, 0) in T2(A)-mod/�′A and T̃NH

−1
A (X) � (TN(U0), 0, 0)

inT2(B)-mod/�′B withTN(U0) aB-module. ThereforeF(X) �HomB(S, TN(U0))

is a projective�-module. This implies that the functorF takes projective modules to
projective modules. Similarly, the functorG takes projective modules to projective
modules. In the following we shall prove that F and G are exact functors.

Lemma 3.3. The above defined functors F and G are exact.

Proof. We only prove that F is an exact functor since the argument for G will be
similar to that for F .

Let δ : 0 → X → Y → Z → 0 be a short exact sequence in �-mod. Since
gl.dim(�) ≤ 2, by the Horseshoe Lemma (see [20, lemma 6.20, p.187]), we have
an exact commutative diagram in �-mod:

0 0 0
↓ ↓ ↓

θ : 0→ P2→ P2 ⊕Q2→ Q2→ 0
↓ ↓ ↓

ε : 0→ P1→ P1 ⊕Q1→ Q1→ 0
↓ ↓ ↓

η : 0→ P0→ P0 ⊕Q0→ Q0→ 0
↓ ↓ ↓

δ : 0→ X → Y → Z→ 0
↓ ↓ ↓
0 0 0

where Pi,Qi (i = 0, 1, 2) are projective�-modules, and the short exact sequences
θ, ε and η are canonical split exact sequences. Since HomA(R,−) : A-mod →
℘(�) is an equivalence, the exact commutative diagram in �-mod:

0 0 0
↓ ↓ ↓

θ : 0→ P2→ P2 ⊕Q2→ Q2→ 0
↓ ↓ ↓

ε : 0→ P1→ P1 ⊕Q1→ Q1→ 0
↓ ↓ ↓

η : 0→ P0→ P0 ⊕Q0→ Q0→ 0

corresponds to a commutative diagram in A-mod:

0 0 0
↓ ↓ ↓

θ ′ : 0→ U2→ U2 ⊕ V2→ V2→ 0
↓ ↓ ↓

ε′ : 0→ U1→ U1 ⊕ V1→ V1→ 0
↓ ↓ ↓

η′ : 0→ U0→ U0 ⊕ V0→ V0→ 0,

where Ui, Vi (i = 0, 1, 2) are A-modules, and the short exact sequences θ ′, ε′ and
η′ are canonical split exact sequences. Since HomA(R,−) : A-mod→ �-mod is
a faithful functor, and since a faithful functor between abelian categories reflects
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exact sequences (see [8, proposition 3, p.94]), the columns in the above diagram are
also exact. Using the functor TN , we get an exact commutative diagram in B-mod:

0 0 0
↓ ↓ ↓

θ ′′ : 0→ TN(U2)→ TN(U2)⊕ TN(V2)→ TN(V2)→ 0
↓ ↓ ↓

ε′′ : 0→ TN(U1)→ TN(U1)⊕ TN(V1)→ TN(V1)→ 0
↓ ↓ ↓

η′′ : 0→ TN(U0)→ TN(U0)⊕ TN(V0)→ TN(V0)→ 0,

where θ ′′, ε′′ and η′′ are canonical split exact sequences. Applying the left exact
functor HomB(S,−) : B-mod → �-mod to the above diagram and taking the
cokernels of the columns, we get an exact commutative diagram in �-mod:

0 0 0�
�

�
0 −−−−−→ (S, TN (U2)) −−−−−→ (S, TN (U2))⊕ (S, TN (V2)) −−−−−→ (S, TN (V2)) −−−−−→ 0� � �
0 −−−−−→ (S, TN (U1)) −−−−−→ (S, TN (U1))⊕ (S, TN (V1)) −−−−−→ (S, TN (V1)) −−−−−→ 0�f �g �h
0 −−−−−→ (S, TN (U0)) −−−−−→ (S, TN (U0))⊕ (S, TN (V0)) −−−−−→ (S, TN (V0)) −−−−−→ 0� � �
δ̃ : cok(f )

χ−−−−−→ cok(g) −−−−−→ cok(h) −−−−−→ 0� � �
0 0 0

where (S, ∗) denotes HomB(S, ∗). By the Snake Lemma, χ is an injective homo-
morphism. Thus the row δ̃ is a short exact sequence in �-mod. On the other hand,
we know by definition that δ̃ is just the image of δ under the functor F . It follows
that F is an exact functor.

Proof of Theorem 1.1. We shall prove that F and G define a stable equivalence of
Morita type between� and �. By Lemma 3.3, the functors F : �-mod→ �-mod
and G : �-mod→ �-mod are exact. By Watts Theorem (see [20, theorem 3.33,
p.77]), we know that F � �F (�)⊗� −, where the right �-module structure on
F(�) is induced by the right multiplication on�. Since F is exact, F(�) is projec-
tive as a right �-module. Since F takes projective modules to projective modules,
F(�) � F(�)⊗�� is projective as a left�-module. Similarly,G � �G(�)⊗�−,
and G(�) is projective as left and right modules.

Since the composition of exact functors is again exact, the functor G ◦ F : �-
mod→ �-mod is an exact functor. Thus �G(F(�))� = HomA(R�,M ⊗B N ⊗A
R�) is a �-�-bimodule. It is straightforward to verify that the �-�-bimodule
structure on G(F(�)) are naturally from the Hom structure. Since we have an
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A-A-bimodule isomorphism ρ = (ρ1, ρ2) : M ⊗B N � A ⊕ P , it follows that
the natural isomorphism ρ : HomA(R�,M ⊗B N ⊗A R�) � HomA(R�,R�)⊕
HomA(R�, P ⊗A R�) is an isomorphism of �-�-bimodules, where ρ(f ) =
(f (ρ1 ⊗ 1R)µ, f (ρ2 ⊗ 1R)) and µ : A ⊗A R → R is the multiplication map.
Note that HomA(AR�, AR�) = � is the regular �-�-bimodule. We claim that
HomA(R�, P ⊗A R�) is a projective �-�-bimodule.

In fact, we know that P is a projective A-A-bimodule by assumption. Thus P
is isomorphic to a direct summand of a module (A ⊗k Aop)m for some positive
number m. By Lemma 3.1 and Lemma 3.2, we have the following �-�-bimodule
isomorphisms: HomA(R�,A⊗k Aop⊗A R�) �HomA(R�,A)⊗k Aop⊗A R� �
HomA(R�,A)⊗kHomA(HomA(A

op,A), R�). Clearly, HomA(R�,A)⊗kHomA

(HomA(A
op,A), R�) is a projective�-�-bimodule since HomA(R�,A) is a pro-

jective left�-module and HomA(HomA(A
op,A), R�) is a projective right�-mod-

ule. This shows that for any free A-A-bimoduleW the�-�-bimodule HomA(R�,

W ⊗A R�) is projective, and therefore HomA(R�, P ⊗A R�) is projective for any
projective A-A-bimodule P .

Since G(F(�)) � G(�) ⊗� F (�) as �-�-bimodules, we have proved that
G(�)⊗� F (�) � �⊕ HomA(R, P ⊗A R) as �-�-bimodules, where HomA(R,

P ⊗A R) is a projective�-�-bimodule. Similarly, we have �-�-bimodule isomor-
phism: F(�) ⊗� G(�) � �⊕ HomB(S,Q ⊗B S), where HomB(S,Q ⊗B S) is
a projective �-�-bimodule sinceQ is a projective B-B-bimodule. Thus F(�) and
G(�) define a stable equivalence of Morita type between � and �.

Remark. For self-injective algebras, Rickard proved that any stable equivalence
induced from an exact functor is of Morita type. But it is not known if this state-
ment holds true for non-selfinjective algebras. If so, the proof of Theorem 1.1 could
be simplified.

As an immediate application of Theorem 1.1 together with the results in [9] and
[22], we have the following corollary.

Corollary 3.4. Suppose that two finite dimensional k-algebras A and B are repre-
sentation-finite. If they are stably equivalent of Morita type, then their Auslander
algebras have the same representation dimension and the same representation type.

For the definition of representation dimension we refer the reader to the original
paper of Auslander [3], or to [22,23]. For the detailed definition of representation
type we refer the reader to [9], for example.

As another application of Theorem 1.1, we determine, up to stable equivalence
of Morita type, the Auslander algebras of Brauer tree algebras.

The Brauer tree algebras are of particular interest in modular representation
theory of finite groups due to the fact that they describe the structure of blocks with
cyclic defect groups of finite groups (see, for example, [1]). By [17] and [15], we
know that a stable equivalence between Brauer tree algebras is in fact a derived
equivalence and that a derived equivalence implies a stable equivalence of Mori-
ta type. Hence, for Brauer tree algebras, stable equivalences of Morita type and
derived equivalences coincide. Each Brauer tree algebra is derived equivalent to a



30 Y. M. Liu, C. C. Xi

unique symmetric Nakayama algebra by a result of Rickard, and the structure of
Auslander algebras of symmetric Nakayama algebras can be described by quivers
and relations. So the following proposition follows from Theorem 1.1 immediately.

Proposition 3.5. If� is the Auslander algebra of a Brauer tree algebra, then there
is a unique symmetric Nakayama algebraC such that� and the Auslander algebra
of C are stably equivalent of Morita type.

Thus, by this proposition, we can determine the quivers and relations of the
Auslander algebras of Brauer tree algebras up to a stable equivalence of Morita
type.

We remark that Theorem 1.1 is not true for stable equivalences or derived equi-
valences in general. One may find counterexamples in the section five.

4. Proofs of Theorem 1.2 and Theorem 1.3

In the previous section we have seen that if two algebras A and B are stably equiv-
alent of Morita type, then their Auslander algebras are also stably equivalent of
Morita type. Furthermore, in this section we shall show that the Hochschild homol-
ogy groups of A and B are isomorphic.

Definition 4.1. Let � be a finite dimensional algebra over a field k. If X is a �-
�-bimodule, then the Hochschild homology of � with coefficients in X is defined
as

Hn(�,X) = T or�en (X,�)

for all n ≥ 0, where�e = �⊗k �op is the enveloping algebra of�. If X = � we
obtain the Hochschild homology of � : H∗(�) = T or�e∗ (�,�).

Dually, the Hochschild cohomology of � with coefficients in X is defined as

Hn(�,X) = Extn�e(�,X)

for all n ≥ 0. If X = � we obtain the Hochschild cohomology of � : H ∗(�) =
Ext∗�e(�,�).

The following lemma provides a way to get projective bimodules.

Lemma 4.2. Let A,B and C be three k-algebras. Suppose P is a projective A-B-
bimodule. Then:

(1) If M is a C-A-bimodule such that CM and MA are projective modules, then
M ⊗A P is a projective C-B-bimodule. Similarly, if M is a B-C-bimodule
such that BM and MC are projective modules, then P ⊗B M is a projective
A-C-bimodule.

(2) For A-modules XA and AY , we have TorAn (XA, AY ) � T orA
op

n (Y,X) for all
n.

(3) If A and B are self-injective, then A⊗k B is self-injective.
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Proof. (2) and (3) are well-known in homological algebra. Here we sketch a proof
of (1). First, if P = A⊗k Bop, then we have M ⊗A P � M ⊗k Bop. This implies
thatM⊗AP is a projectiveC-B-bimodule for any freeA⊗k Bop-moduleP . Hence
(1) follows if P is a direct summand of a free A⊗k Bop-module.

To calculate the Hochschild homology groups, the following result, taken from
[6, theorem 2.8, 2.8a, p.167], may be useful sometimes.

Lemma 4.3. (see [6, p.167])

(1) Let �,� and � be three k-algebras. In the situation (X�−�, �Y�, �−�Z)
assume that T or�n (X, Y ) = 0 = T or�n (Y, Z) for n ≥ 1. Then there is an
isomorphism

T or�⊗k�(X ⊗� Y,Z) � T or�⊗k�(X, Y ⊗� Z)

(2) Let �,� and � be three k-algebras. In the situation (X�−�, �Y�,Z�−�)
assume that T or�n (X, Y ) = 0 = Extn�(Y, Z) for n ≥ 1. Then there is an
isomorphism

Ext�⊗k�(X ⊗� Y,Z) � Ext�⊗k�(X,Hom�(Y,Z)).

The following result says that the Hochschild homology groups are invariants
of a stable equivalence of Morita type.

Theorem 4.4. Let A and B be two k-algebras. If A and B are stably equivalent of
Morita type, then Hn(A) � Hn(B) for all n ≥ 1.

Proof. Note that any bimodule AXB can be identified with the leftA⊗k Bop-mod-
uleX or with the rightB⊗k Aop-moduleX. With this convention we shall calculate
the homology groups of A and B.

In Lemma 4.3 (1) we let � = B, � = A and � = Bop, and define X =
BBB = (B)�−�, Y = N = �N� and Z = AMB = �−�M . By the definition of
stable equivalence of Morita type, BN and NA are projective, that is, �Y and Y�
are projective. Thus Tor�n (X, Y ) = 0 = Tor�n (Y, Z) for n ≥ 1. This implies that
the condition in Lemma 4.3 (1) is fulfilled. Hence there is an isomorphism

TorB⊗kB
op

i (B,N ⊗A M) � TorB
op⊗kA

i (B ⊗B N,M)
� TorB

op⊗kA
i (N,M).

Similarly, we have the following isomorphism

TorA⊗kA
op

i (A,M ⊗B N) � TorA
op⊗kB

i (M,N).

By definition, we have M ⊗B N � A ⊕ P as A-A-bimodules for some pro-
jective A-A-bimodule P , and N ⊗A M � B ⊕ Q as B-B-bimodules for some
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projective B-B-bimodule Q. By Lemma 4.2(2), we have TorA
op⊗kB

i (M,N) �
TorB

op⊗kA
i (N,M). Thus TorA

e

n (A,A⊕ P) � TorB
e

n (B,B ⊕Q). This yields that

Hn(A) = TorA
e

n (A,A) = TorA
e

n (A,A⊕ P) � TorB
e

n (B,B ⊕Q)
= TorB

e

n (B,B) = Hn(B)

for all n ≥ 1.

As a consequence of Theorem 4.4, we consider the homology groups of products
of two algebras.

Given two stable equivalences of Morita type between algebras A and B, and
between C and D, it is an open question whether there is a stable equivalence of
Morita type between the tensor products A⊗k C and B ⊗k D. However, we may
have the following result on the homology groups of A⊗k C and B ⊗k D.

Corollary 4.5. Suppose thatA andB are stably equivalent of Morita type, and that
C and D are stably equivalent of Morita type. If H0(A) � H0(B) and H0(C) �
H0(D), then for all n ≥ 0, we have Hn(A⊗k C) � Hn(B ⊗k D).

Proof. By Theorem 4.4, Hp(A) � Hp(B) and Hq(C) � Hq(D) for all p, q ≥ 1.
SinceHn(A⊗k C) �

⊕
p+q=n Hp(A)⊗k Hq(C) by [21, proposition 9.4.1, p.319],

it follows from Theorem 4.4 that

Hn(A⊗k C) �
⊕
p+q=n

Hp(A)⊗k Hq(C) �
⊕
p+q=n

Hp(B)⊗k Hq(D)

� Hn(B ⊗k D).

This implies the corollary.

Next, recall that an algebra is called quasi-hereditary if there is a finite chain
0 = J0 ⊆ J1 ⊆ ... ⊆ Jn = A of ideals in A such that Ji/Ji−1 is a projective
idempotent ideal in A/Ji−1 and EndA/Ji−1(Ji/Ji−1) is semi-simple. For a quasi-
hereditary algebraA, it was proved in [24] thatHn(A) = 0 for alln ≥ 1 ifA/rad(A)
is separable. Thus we have the following corollary.

Corollary 4.6. SupposeA andB are stably equivalent of Morita type. IfB is quasi-
hereditary such that B/rad(B) is separable, then Hn(A) = 0 for all n ≥ 1.

Remark. (1) The Hochschild homology groupH0(A) is isomorphic to the quotient
of A modulo the ideal [A,A] generated by all elements of the form xy − yx with
x, y ∈ A. In particular, if A is an algebra given by a quiver with relations, such
that there is no loop in the quiver, then [A,A] is just the radical of A and H0(A) is
isomorphic to the Grothendieck group ofA. Thus the Hochschild homology groups
are of interest when one considers the open problem whetherA andB have the same
number of non-projective simple modules if they are stably equivalent of Morita
type (see [4], p.409).
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(2) If A and B are stably equivalent of Morita type, then

H0(A)⊕H0(A, P )⊕H0(A, P )⊕ P ⊗Ae P
� H0(B)⊕H0(B,Q)⊕H0(B,Q) ⊕Q⊗Be Q,

where P and Q are as in 2.1. This follows from the proof of Theorem 4.4. In gen-
eral, we could not have H0(A) � H0(B). A counterexample is displayed in the
next section.

Now let us apply the idea in the proof of Theorem 4.4 to consider the Hochs-
child cohomology groups. We shall demonstrate the following result proved first in
[14]. Here we shall supply a different proof which seems to be simpler and more
elementary.

Theorem 4.7. Let A and B be two self-injective k-algebras. If A and B are stably
equivalent of Morita type, then Hn(A) � Hn(B) for all n ≥ 1.

Before we start the proof of Theorem 4.7, we first introduce some notations
and then reveal some properties of a stable equivalence of Morita type between
arbitrary algebras.

For anA-moduleX, we have a unique (up to isomorphism) decompositionX =
X1⊕X0, whereX1 has no nonzero projective summands andX0 is projective. We
callX1 the stable part ofX. An algebraA is said to be separable ifA is a projective
A-A-bimodule.

Lemma 4.8. Let A and B be two algebras with no separable summands. Suppose
that two bimodules AMB and BNA define a stable equivalence of Morita type
between A and B. As bimodules,M =M1⊕M0 andN =N1⊕N0, whereM1 and
N1 are the stable parts of M and N , respectively. Then we have the following.

(1) M1 and N1 define a stable equivalence of Morita type between A and B.
(2) If BYA is a bimodule such thatM and Y define a stable equivalence of Morita

type between A and B, then Y1 � N1. Similarly, if AXB is a bimodule such
that X and N define a stable equivalence of Morita type between A and B,
then X1 � M1.

(3) IfA andB are self-injective algebras, then (N1⊗A−,M1⊗B−) and (M1⊗B−,
N1 ⊗A −) are adjoint pairs of functors.

Proof. (1) By definition, we have bimodule isomorphismsM ⊗B N � A⊕P and
N⊗AM � B⊕Q, whereP andQ are projective as bimodules. ThereforeA⊕P �
(M1⊕M0)⊗B(N1⊕N0) � (M1⊗BN1)⊕(M1⊗BN0)⊕(M0⊗BN1)⊕(M0⊗BN0).
Since (M1⊗B N0)⊕(M0⊗B N1)⊕(M0⊗B N0) is a projectiveA-A-bimodule, and
since A has no projective A-A-summands by the assumption, Amust be the stable
part ofM1⊗B N1, that is,M1⊗B N1 � A⊕P ′ for some projectiveA-A-bimodule
P ′. Similarly, we have thatN1⊗AM1 � B⊕Q′ for some projectiveB-B-bimodule
Q′. This proves thatM1 andN1 define a stable equivalence of Morita type between
A and B.
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(2) By (1) we have bimodule isomorphisms:M1⊗BN1 � A⊕P ′,N1⊗AM1 �
B⊕Q′,M1⊗B Y1 � A⊕P ′′, Y1⊗AM1 � B⊕Q′′, whereP ′,Q′, P ′′,Q′′ are pro-
jective as bimodules. On the one hand, Y1⊗A M1⊗B N1 � Y1⊗A (M1⊗B N1) �
Y1 ⊗A (A ⊕ P ′) � Y1 ⊕ Y1 ⊗A P ′. On the other hand, Y1 ⊗A M1 ⊗B N1 �
(Y1 ⊗A M1) ⊗B N1 � (B ⊕ Q′′) ⊗B N1 � N1 ⊕ Q′′ ⊗B N1. Since Y1 ⊗A P ′
and Q′′ ⊗B N1 are projective as bimodules, Y1 � N1 must be the stable part of
Y1 ⊗A M1 ⊗B N1.
Similarly, we can prove the second statement of (2).

(3) Since BN1 is projective, we have aB-module isomorphismα:N1 �HomBop

(HomB(N1, B), B) defined by α(x)(f ) = f (x) for x ∈ N1 and f ∈ HomB

(N1, B). It is easy to verify that α is also a rightA-module homomorphism. There-
fore N1 � HomBop (HomB(N1, B), B) as B-A-bimodules.

We claim that HomB(N1, B) has no projective summands as A-B-bimodules.
Otherwise, suppose HomB(N1, B) has a projective direct summand U . Then there
is an A-B-bimodule V such that U ⊕ V � (A ⊗k Bop)m for some positive num-
ber m. Note that with A and B also A ⊗k Bop is self-injective by Lemma 4.2(3).
Since HomB(U ⊕ V,BB) � HomB((A ⊗k Bop)m, BB) and since HomB(A ⊗k
Bop, BB) � Homk(A,HomB(B

op, BB)) � D(A ⊗k DHomB(B
op, BB)) and the

module HomB(B
op, BB) is an injective B-module, we know that HomB(U,BB)

is a projective B-A-bimodule. (Here we use D to denote the k-duality.) This con-
tradicts to the fact that N1 � HomB(HomB(N1, B), B) has no projective direct
summands as bimodules.

Since A and B are self-injective, the bimodules HomB(N1, B) and N1 define
a stable equivalence of Morita type between A and B by [18, theorem 3.2]. By
(2), HomB(N1, B) � M1. This shows that M1 ⊗B − � HomB(N1, B) ⊗B − �
HomB(N1,−) since BN1 is projective. Thus the right adjoint of the functorN1⊗A−
is naturally isomorphic toM1⊗B−. Hence we have an adjoint pair (N1⊗A−,M1⊗B
−). Similarly, since the bimodules HomA(M1, A) and M1 define a stable equiva-
lence of Morita type between B and A. By (2), HomA(M1, A) � N1. This shows
that (M1 ⊗B −, N1 ⊗A −) � (M1 ⊗B −, HomA(M1, A) ⊗A −) � (M1 ⊗B −,
HomA(M1,−)) is an adjoint pair, too.

Lemma 4.9. Let A and B be two algebras such that B is a self-injective alge-
bra. Then the functor δ: (B ⊗k Aop)-mod→ (A⊗k Bop)-mod defined by δ(X) =
HomB(X,B) is a duality.

Proof. Clearly δ: (B ⊗k Aop)-mod→ (A ⊗k Bop)-mod is a contravariant func-
tor. Since B is a self-injective algebra, we have a B-module isomorphism αX:
X � HomBop (HomB(X,B), B) defined by αX(x)(f ) = f (x) for x ∈ X and
f ∈ HomB(X,B). It is easy to verify that αX is also a right A-module homo-
morphism. Therefore X � HomBop (HomB(X,B), B) as B-A-bimodules. Hence
we have a natural isomorphism α: 1B⊗kAop−mod → HomBop (−, B)HomB (−, B).
Similarly, since Bop is a self-injective algebra, we have a natural isomorphism β:
1A⊗kBop−mod → HomB(−, B) HomBop (−, B). It follows that δ: B ⊗k Aop-mod
→ A⊗k Bop-mod is a duality.

The following lemma is trivial (by dimension shifting).
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Lemma 4.10. Let A be an algebra with δ: A-mod→ Aop-mod a duality. Then we
have ExtiA(X, Y ) � ExtiAop (δ(Y ), δ(X)) for all i and all A-modules X and Y .

Proof of Theorem 4.7. LetA = A1×A0 such thatA1 has no separable summands
and A0 is a separable algebra. Similarly, we have a decomposition B = B1 × B0
such that B1 has no separable summands and B0 is a separable algebra. Using
the same technique as in the proof of Lemma 4.8, one can easily show that the
algebras A1 and B1 are stably equivalent of Morita type. Since A0 is a projective-
injective A-A-bimodule, we have Hn(A) � Hn(A1) for all n ≥ 1. Similarly, we
have Hn(B) � Hn(B1) for all n ≥ 1. Thus, without loss of generality, we may
assume that A and B are self-injective algebras with no separable summands, and
that (N ⊗A −, M ⊗B −) and (M ⊗B −, N ⊗A −) are adjoint pairs by 4.8.

In the left module version of Lemma 4.3(2), we let � = A, � = B and
� = Bop, and define X = AMB =�−� M, Y = BNA = �N� and Z = BBB =
�−�B. By the definition of a stable equivalence of Morita type, the modules BN
and NA are projective, that is, �Y and Y� are projective. Thus Tor�i (Y,X) = 0 =
Exti�(Y, Z) for i ≥ 1. Hence there is an isomorphism ExtiB⊗kBop (N ⊗A M,B) �
ExtiA⊗kBop (M ,HomB(N,B)). By Lemma 4.8(3), we have HomB(N,B) � M ,

and therefore ExtiB⊗kBop (N ⊗A M,B) � ExtiA⊗kBop (M,M). Similarly, we have

ExtiA⊗kAop (M ⊗B N,A) � ExtiB⊗kAop (N,N ). Note that δ is a duality between
(B ⊗k Aop)-mod and (A⊗k Bop)-mod with δ(N) = M by Lemma 4.9 . Thus, by
Lemma 4.10, ExtiB⊗kAop (N,N) � ExtiA⊗kBop (M,M).

By definition, we haveM⊗BN � A⊕P asA-A-bimodules for some projective
A-A-bimodule P , and N ⊗A M � B ⊕Q as B-B-bimodules for some projective
B-B-bimodule Q. Thus, for all n ≥ 1, we have that

Hn(A) = ExtnAe(A,A) � ExtnAe(A⊕ P,A) � ExtiAe (M ⊗B N,A)
� ExtiB⊗kAop (N,N) � ExtiA⊗kBop (M,M)
� ExtiBe (N ⊗A M,B) � ExtnBe (B ⊕Q,B)� ExtnBe (B, B) = Hn(B).

This finishes the proof of Theorem 4.7.

Remark. (1) It is known that the 0-th Hochschild cohomology of an algebra � is
characterized by the center of�. Note that even thoughA andB are symmetric and
stably equivalent of Morita type, the centers of A and B may not be isomorphic. A
trivial counterexample is that algebras have semisimple summands. For non-triv-
ial counterexample over a discrete valuation ring one may look at [7]. (We thank
the referee for pointing out this reference). However, we don’t know any non-triv-
ial counterexample over a field. Note that the Hochschild cohomology groups are
invariances of a derived equivalence.

(2) In Theorem 1.1 of [14], we find the statement “ ... then their Hochschild
cohomology algebras are isomorphic.” This statement seems to be too strong, and
we don’t know how to deduce the isomorphism for 0-th Hochschild cohomology.
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(3) A direct consequence of Lemma 4.8(3) is that the second statement of [13,
Theorem 5.7] holds true instead for self-injective algebras (see the Appendix at the
end of this paper).

5. Examples

In this section we exhibit some examples to illustrate the necessity of some assump-
tions in the previous results.

Example 1. The term “stable equivalence of Morita type" cannot be weakened to
“stable equivalence" in Theorem 1.1.

Let us consider the algebras A =
(
k k

0 k

)
and B = k[X]/(X2). They are stably

equivalent; and theirAuslander algebras� and� are given by the following quivers
and relations, respectively:

� : •←−β •←−α • , αβ = 0; � : •←−
δ

−→γ • , γ δ = 0.

Clearly, � and � are not stably equivalent since the numbers of isomorphism
classes of non-projective indecomposable modules of � and � are not the same.
This shows that two stably equivalent algebras may have non-stably equivalent
Auslander algebras.

Note also that forA andB themselves neither the Hochschild homology groups,
nor the Hochschild cohomology groups are isomorphic. Thus Theorem 4.4 is not
true for stable equivalences.

Example 2. Theorem 1.1 does not holds in general for derived equivalences. Let A

be the path algebra given by the quiver • α−→ • β−→ • and let B be the algebra
given by the same quiver with relationαβ = 0. ThenA andB are derived equivalent
since B is a tilted algebra of A. The Auslander algebra � of A and the Auslander
algebra � of B are given by the following quivers and relations, respectively :

•

•

•

• • ,•�
�

��

�
��

�
��

�
��

�� :

β

β ′

δ

α

α′

γ
αβ − α′β ′ = γα′ = β ′δ = 0.

• • • • • ,� : � � � �
η ξ ϕ ρ

ξη = ρϕ = 0.

Clearly,� and� are not derived equivalent, since the numbers of isomorphic classes
of simple modules on � and � are not the same.

Example 3. In general, the 0-th Hochschild homology groups are not preserved
under a stable equivalence of Morita type. A trivial example is that algebras have
semisimple summands. However, the following non-trivial example shows that
H0(A) �� H0(B) even though A and B are indecomposable and symmetric.

Let A be an algebra given by the following quiver
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• • •�� ��
ρ

ρ′
δ

δ′

with relations:

ρρ′ = δ′δ = 0; (ρ′ρδδ′)2 = (δδ′ρ′ρ)2.
Let B be an algebra given by the quiver

• • •�� ��
ρ

ρ′
δ

δ′ ��

��

	
c

with relations:

ρρ′ = δ′δ = δc = cδ′ = 0; c2 = δ′ρ′ρδ, δδ′ρ′ρ = ρ′ρδδ′.
These two algebras are the A2 and C2 in the notation of [11] and proved to

be derived equivalent by Linckelmann. They appear as blocks of group algebras.
Hence they are stably equivalent of Morita type. Clearly, we have H0(A) � k3, and
H0(B) � k4 because the loop c does not lie in [B,B]. Hence the 0-th Hochschild
homology groups of A and B are not isomorphic. However, since the two algebras
are derived equivalent, the centers of A and B are isomorphic.

6. Appendix (March 16, 2004)

In this appendix we shall use the property developed in this paper to show that
Theorem 5.7 in [13] can be extended to self-injective algebras. In the following we
keep all notations as in the section five of [13].

Theorem. Let A and B be self-injective k-algebras with no separable summands.
If A/rad(A) and B/rad(B) are spilt semisimple (i.e., every simple module has k
as its endomorphism algebra), then

(1) FC′ ⊆ D′, FC′′ ⊆ D′′, and GD′ ⊆ C′,GD′′ ⊆ C′′.
(2) eAe and fBf are stably equivalent of Morita type.

Proof. (1) By Lemma 4.8(3), we can assume that (F , G) and (G, F ) are ad-
joint pairs. Since the functor G is a right adjoint to F , namely, HomB(FC′,D) �
HomA(C′,GD) = HomA(C′, C) = 0. Therefore F(C′) ⊆ D′. Similarly, we have
G(D′′) ⊆ C′′. Since (G, F ) is also an adjoint pair, we have similarly that F(C′′) ⊆
D′′ and G(D′) ⊆ C′.

(2) We define M = eMf and N = fNe. Clearly, M is an eAe-fBf -
bimodule and N is a fBf -eAe-bimodule. Since F(Ae) ∈ add(Bf ) by (1),
N = fNe � HomB(Bf, F (Ae) is projective as a left fBf -module. Since
(G, F ) is an adjoint pair and G(Bf ) ∈ add(Ae), N = fNe � HomB

(Bf, F (Ae) � HomA(G(Bf ),Ae) is projective as a right eAe-module.
Similarly, it follows from the adjoint pair (F,G) that M is projective as
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a left eAe-module and as a right fBf -module. By the associativity of tensor prod-
ucts, we have the following isomorphisms of eAe-eAe-bimodules: M ⊗fBf N =
eMf ⊗fBf fNe � eA⊗A M ⊗B Bf ⊗fBf fB ⊗B N ⊗A Ae � eA⊗A M ⊗B
(Bf ⊗fBf fB ⊗B N ⊗A Ae) � eA⊗A M ⊗B (Bf ⊗fBf HomB(Bf, F (Ae))).

We claim that the natural morphism φ:Bf ⊗fBf HomB(Bf, F (Ae))→ F(Ae)

define by φ(x ⊗ g) = g(x) for x ∈ Bf, g ∈ HomB(Bf, F (Ae)) is an isomor-
phism ofB-eAe-bimodules. In fact, we have a naturalB-isomorphism φ:Bf ⊗fBf
HomB(Bf,Bf )→ Bf (by φ(x ⊗ g) = g(x)). Therefore for any B-module Y ∈
add(Bf ), there is a B-isomorphism φ: Bf ⊗fBf HomB(Bf,Bf )→ Bf (φ(x ⊗
g) = g(x)) by additivity. It follows that φ:Bf ⊗fBf HomB(Bf, F (Ae))→ F(Ae)

is aB-isomorphism. It is straightforward to verify that φ is also a right eAe-module
morphism. Thus φ: Bf ⊗fBf HomB(Bf, F (Ae))→ F(Ae) is an isomorphism of
B-eAe-bimodules.

The above B-eAe-bimodule isomorphisms lead to the following eAe-eAe-bi-
module isomorphisms: M ⊗fBf N � eA ⊗A M ⊗B N ⊗A Ae � eA ⊗A (A ⊕
P)⊗A Ae � eAe ⊕ eP e. Since P is a projective A-A-bimodule and therefore is
isomorphic to a direct sum of the modules of the form P1 ⊗k P2 where P1 is a left
projective A-module and P2 is a right projective A-module. SinceM ⊗fBf N and
eAe are projective as left eAe-modules, eP1 ⊗k P2e is a projective eAe-module.
It follows that eP1 is a projective eAe-module. Similarly P2e is a right projective
eAe-module. Thus eP e is isomorphic to a direct sum of the modules of the form
eP1⊗k P2e where eP1 is a left projective eAe-module and P2e is a right projective
eAe-module. This implies that eP e is a projective eAe-eAe-bimodule. Similarly,
we have a fBf -fBf -bimodule isomorphism: N ⊗eAe M � fBf ⊕ fQf , where
fQf is a projective fBf -fBf -bimodule. Thus, by definition, the bimodules M
and N define a stable equivalence of Morita type between eAe and fBf .
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Finally, we would like to point out that the finitistic dimension is invariant under a
stable equivalence of Morita type and that the finitistic dimension conjecture is still open.
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