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QUASI-HEREDITARY algebras were introduced by Cline et a l .  ['I in order to study the highest 
weight categories in representation theory of semisimple Lie algebras and algebraic groups. 
Many important algebras such as hereditary algebras, Schur algebras and algebras to blocks of 
the category d in ref. [2],  are typical examples of quasi-hereditary algebras. 

For a given quasi-hereditary algebra A , there is a partial order ( A ,  <) on the set of simple 
modules, and one studies the standard modules A = 1 A ( A  ) I h E A 1 . Of particular interest is the 
study of A-good module category F ( A )  of all modules which have a A-filtration. ~ i n ~ e l ' ~ ]  proved 
that 9( A ) has almost split sequences. One of the interesting questions on the study of A ) is when 
? ? A )  is finite ( i .  e. there are only finitely many painvise non-isomorphic indecomposable modules in 
f l  A ) ) . In such a case, xiL4' proved that the endomorphism ring of the dlrect sum of non-isomorphic 
indecomposable objects in cfl A ) is again quasi- hereditary. 

In this note we consider certain class of quasi-hereditary algebras and present a necessary 
condition for the finiteness of A-good module categories over these algebras. Our method is the 
use of factor-space categories. Note that this class of quasi-hereditary algebras covers the dual 
extension algebras of hereditary algebraJ5], the Auslander algebras of representation-finite lo- 
cal algebrasL6], the quadratic duals of representation-finite q-Schur algebras['] and Temperley- 
Lieb algebrasr8"), and certain class of directed algebras. 

The terminology used throughout is taken from refs. [9, lo]. We now recall some defi- 
nitions and fix notation. 

Let A be a finite-dimensional algebra over an algebraically closed field k . All modules in 
this note are finitely generated left A- modules (unless obviously not), and the composition of 
maps f : M I  + M z  and g : M 2  + M3 will be denoted by fg . The category of all finitely gener- 
ated A-modules is denoted by A-mod. 

Let 2 be a Krull-Schmidt k- category and I I : X+k-mod an additive functor. The pair 

(.X, I 1 ) is called a vector-space category. The factor-space category ; (3, 1 I ) of (A', I I ) 
is the category of all triples W = ( W,, Wo ,  yw : ( Wo ( -+ W,) , where W o  E X ,  W, E k- 
mod and yw is a k-linear map. A morphism from W -+ W' by definition is a pair (f,, fo), 

Chinese Science Bulletin Vol .42 No. 17 September 1997 



where fo :  Wo -+ Wfo and f,: W, + W', such that Ywf, = I f o  I Yw, . 
If A. is an algebra over k and R is an A"-module, one may form one-point coextension 

[ R I A o  which is defined to be the following matrix algebra: 

where D = Hom, ( - , k ) . The C-modules can be written as triples W = ( W, , Wo, aw) ,  
where W, is a k-vector-space, Wo an Ao-module and aw: DR @ Wo+ W, is a k-linear map. 

A morphism from W to U by definition is given by a pair ( f,, fo)  with f o  an Ao-module ho- 
momorphism and f, a k-linear map such that awf, = ( 1 0 f o  ) a v .  By the natural 
isomorphisms DR @ Wo 3 DHom( Wo, R )  and Horn,( DR q W o ,  W,) Z Hom, 

A" 

(DHomA(Wo,  R ) ,  W,) we know that [RIAo-mod and ; ( ~ ~ - r n o d ,  DHomAo(-, R ) )  are 

equivalent. In the following we will simply identify [ R ] Ao-modules with the objects in 
;(Ao-mod, DHomA (-, R ) )  . 

1 A necessary condition for the finiteness of f l  A ) 

Let A be an algebra and C a factor algebra of A such that C = [ R I A. . Hence A. is also 
a factor algebra of A . Thus A. - modules and C- modules can be considered as A- modules in a 
natural way. We denote by w the coextension vertex of C . 

In the following we take a full subcategory (& of Ao-mod such that for every Ao-module 
M in '& there holds EX& ( M, radP ( w ) ) = 0 (for example, this condition is satisfied if proj . 
dim. M < 1 for all M E % ) , where P ( w ) is the indecomposable projective A- module corre- 
sponding to the vertex w , and we suppose EndA ( P ( w ) ) 2 k . Recall that .F( C& V P ( w ) ) de- 
notes the full subcategory of A-mod consisting of all A-module M which have a filtration with 
factors in CeV P ( w ) . 

Lemma 1.  Let A be a n  algebra with the above assumptions. 1f; (%, DHomAo( - , R ) ) 

is infinite, then :F(%V P ( w ) )  is infinite. 
Proof. Let S be a set of the chosen representatives of the isoclasses of all objects in u (%', 

DHomAD ( - , R ) ) . We shall construct a correspondence from S to the set of the isoclasses of 

objects in .F(%'V P (  w ) ) . For an element W = ( W,, Wo, cYw) in S, one has the following 
exact sequence : 

0- (W, ,  0, 0) -- (W,, Wo, 6w) -- (0, Wo, 0)  -+ 0. 
We then obtain an exact sequence in A-mod: 

E W  O + E ( W ) ~ - +  W +  Wo+O, 
where E ( w ) denotes the simple A- module corresponding to the vertex w and m = dimkW,. 

On the other hand, in A-mod one has the following exact sequence: 

0 -- Rf; + P ( w ) "  -IE(~)" -0 ,  

where ~r denotes the projective cover of E ( w ) " and R the radical of P ( o ) . 
Apply HomA ( Wo, - ) to the above sequence, we have a long exact sequence 

0- HomA(Wo, Rf;) +HomA(Wo,  P ( W ) " ) - + H O I I I ~ ( W ~ ,  E ( w ) " )  
@ 

- E X ~ ~ ( W ~ ,  R T ) - + E x t a ( w o ,  P ( w ) " ) - + ~ x t a ( ~ ~ ,  E(w)" )  

-- EX&( wO, Rf;) .  
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By assumption EX& ( Wo, RT)  = 0, we have that @ is surjective. Now we take a fixed ele- 

ment qw E Ext i  ( Wo, P (  w " ) ) such that @ ( qw) = E W  (note that the choice of qw is not 
unique). Therefore, we get a diagram with commutative squares: 

EW 0 - E ( L ) " -  W- w"-0 
Obviously, Xw Efl'gV P ( w ) ) . Thus one gets a correspondence W I-+ c ( Xw) from S to the 
set of the isoclasses of objects in 3(%V P (  w)) ,  where c ( X w )  denotes the isoclass of Xw . 

Further, we give two properties of this correspondence. 
( 1 ) For W, W' E S , the isomorphism Xw 2 Xw, implies that W = W' . Indeed, let 

f be a morphism from Xw to Xw . The constructions of Xw and Xw, yield the following dia- 
gram with exact rows and exact columns. 

i i ,  n I /  8, 
0- E ( w ) " '  - W' - W ' ,  ----a 0 

From Hom, ( P  ( w ) , W'" ) = 0 it follows that there exists a morphism g : P ( w )" + 

P (  w)"' such that pf = gu' ,  then f induces a morphism h : Wo+W'o with fv' = uh . Since 

R I ,= rad ( P ( w ) 1, the morphism g induces morphisms gl : R; + R;' and g2 : E ( w 1" -+ 

E (  w) "' with ig = gl i' and 7rg2 = gx ' .  Thus gl 7' = gl i',u' = igp' = i,uf = y f .  This implies 

that there is a morphism f: w+ W' with fa' = 8 7. Finally, from na f = p8 f = tCfs' = 

gp'6' = gx'a' A a' it follows that & f = g2 a' since x is surjective, and from 8ph = vh = fv' 

= f8',Br = 8 7 ~ '  it follows that ,Bh =f,B' since 6 is surjective. In fact, we have proved that all 
squares in the above diagram are commutative. 

Moreover, if f is an isomorphism, then g is injective and m = dimkHomA ( P ( w 1, Xw ) 
dim, Hom, ( P ( w ) , X w  ) = m ' , thus g is an isomorphism. This implies that both gz and h 

are isomorphisms. Therefore, f is an isomorphism from W to W'. Since W, W' are in S, 
we have W = W' , as required. 
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(2) If W E S is indecomposable, so is Xw . Indeed, let f E EndA ( Xw ) . For intuitive 
thinking, we still use the diagram in ( 1 ) but identify all the symbols x' with x . By ( 1 ) , f 
induces a morphism f E Endc ( W) . Since W is indecomposable, f is invertible or nilpotent. 

If 7 is invertible, then the morphisms g 2  and h are isomorphisms. Since EndA ( P ( o ) ) E k , 
one gets that g is an isomorphism. Hence f is invertible. I f f  is nilpotent, then there is an n 

- 
E N such that -+ f" = 0 .  This implies gi = 0 and hn = 0 .  Then f"v = uhn = 0 ; that is, there is 

an f 1 : Xw4 P ( w ) " such that f" = f p . Again, by the assumption EndA ( P ( w ) ) 2 k , it 
follows from g p  0 that gn = 0. Hence f2" = f 1 p y  = f 1 gnp = 0 and f is nilpotent. There- 
fore, Xw is indecomposable if W is indecomposable. 

As a result of (1 )  and ( 2 ) ,  the correspondnece W 1-c ( X w )  induces an injection from 
the set of the isoclasses of indecomposable objects in 0 ('&, DHomA ( - , R ) )  to that of the 

isoclasses of indecomposable objects in 3(Ce V ( P ( w ) ) . Therefore, the infiniteness of 3 ( (e, 

DHomAo ( - , R ) ) implie that of 3( CeV ( P ( w ) ) . This finishes the proof. 

As an application of the lemma to quasi-hereditary algebras, we obtain a necessary condi- 
tion for the finiteness of A-good module categories. 

Theorem 1. Let A be a quasi-hereditary algebra with the weight poset A = { 1 < 2 < 3 < 
... < n / and A" = A/Ae,A such that  EX^: ( M ,  radPA ( n ) )  = 0 for al l  M E F( AAo).  If 

; (.q AA0), DHomA ( - , R ) ) is infinite, then .F( AA ) is in finite, where R is the factor 

module of the indecomposable injective A-module Q ( n ) corresponding to the weight n by its 
socle . 

Proof. By Lemma 1, it is enough to prove that the coextension C : = [ R 1 A. is a factor 
algebra of A .  We consider the two-sided ideal I = ( radP ( n ) ) A  = ( radA ) e,J of A and set 
A = A / I . Then PA ( n ) = Ae, / Ie, = Ae, ( radA ) e,Aen = Ae, / ( radA ) en is simple. There- 

fore 

where D = H o m k (  - ,  k), R 1 = Q l ( n ) / s o c Q l ( n )  isanAo-module, and Q l ( n ) = D ( e J l )  
is the injective A 1 -module. Since EndA ( Ae, ) E k , we have en ( radA ) en = 0. Then enA 1 = 
enA/I=e, ,A/e,(radA)enA= e,A. Thus Q l ( n ) =  D(enAl )  and Q ( n ) =  D ( e n A )  coincide 

as A -modules. 
Therefore, [ R ] A" = [ R ] A" S A = A /  I is a factor algebra of A . This finishes the 

proof. 
Remark 1. The converse of the theorem may not be true. For example, consider the al- 

gebra A given by the quiver 

with relations aa ' = pp' = YY = 0. According to Proposition 3.4 in ref. [ 11 1, the category 
% dA ) is infinite. But u (f l  AA, ) , DHomA ( - , R ) ) is finite, where A. = A/Ae4A,  R = 

D ( e d ) / s o c (  D ( ~ ~ A ) ) .  
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