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1 Introduction 

Cellular algebras have been introduced by Graham and Lehrer i n  [2] i r ~  order 
to  discuss the structure of group algebras of symmetric groups and r e l a t d  
algebras like certain Hecke algebras (for instance, of type -4 or B), Rra~lcr 
algebras, Temperley-Lieb algebras and many others. The definition of' a 
cellular algebra is by the existence of a socalled cell chain of certain itleals 
(see [3] and section 2 below). Suppose 0 = Jo C_ J1 C ... 2 .I, = .-I is sricli 

a cell chain of ideals of a cellular algebra A. IVe consider the following two  
questions: 

1991 Mathm~atics Subject C~lassilication: Primary 16DX0, 16GY0, 20C30, 'LOGOT,.  Sec- 
ondary ltjD25. 18G15. 20F36, 57R125, Y1R05. 
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5464 KONIG AND XI 

( I )  Is this cell chain a maximal chain, or call it be refined to a longn cell 
chain'? 

(2 )  Is the length n of a maximal cell chain an invariant of the given cellular 
algebra? 

The class of quasi-hereditary algebras (as defined in [I]) has a large in- 
l ersection with the class of cellular algebras. Thus we recall first that in this 
case, each heredity chain can be refined to a maximal heredity chain and the 
length of any maximal heredity chain is an invariant of the algebra, since it 
is equal to the number of isomorphism classes of simple A-modules. For cel- 
lular algebras, a directly analogous statement is the following: Thv number 
of .I, occuring in the cell chain with J; J3-1 is an invariant (see [ : 3 ] ) ,  since 
again it equals the number of isomorphism classes of simple A-modules. 

The purpose of this note is to answer the above questions and i11 doing so 
to provide some further infornmtion on cell ideals. More precisely, we sl~ow: 
First, each cell chain is maximal (that is, it cannot be refined any   no re). 
However, secondly, the length of a cell chain is not an invariant of a cellular 
algebra (we provide a counterexample). 

2 Cellular algebras 

Let 11s first recall the original definition of cellular algebras in [2] and the 
equivalent one given in [3]. 

Definition 2.1 (Graham and Lehrer [2]J Let R br  a commutatiur h'ot the- 
rial1 integral domain. An associatiue R-algc6ra A is called n cellular alge- 
bra with cell datum ( I ,  M ,  C ,  2 )  i f  the follou~ing conditions are sat is jkd:  

(Cl )  The ,finite set I is partially ordered. Associated with each X E I 
there is a finite set M(X). The algebra A has an K-basis Ci,, wh,trc (,5',7') 
runs  through all e lenzeih  of M(X) x M(X) for all X E I .  

(('2) The map  i is an R-linear anti-automorphism of A with i2 = i d  
which sends C& to  C+,s, 

((73) h o ~  each X E I and ,S, T E M(X) and each a E A the product c~l';!,~ 
can be wrilten as ra(U,S)Cb,T)+r' wl~ere r' is a l ir~car combirrtrtion 
of basis elements with upper index p strictly smaller than A,  and uhr:rt thc 
coe~fficirnts r,(U, S )  E R do not depend o n  T .  

In t h ~  following, an R-linear anti-automorphis~n i of A with i2 = id will 
he ca1lt:d an involution. 

Definition 2.2 (see [3]) Let A be an R-algebra uhere R is a cornm~utative 
Noetherian integral domain. Assume there is a n  involution i o n  A. A ttoo- 
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NUMBER OF CELLS OF CELLULAR ALGEBRA 5465 

szded zdeal J zrs A ts called a cell ideal zf and only zf i ( J )  = J mid the rr 
exrsts a left zdeal A C J such that A zs finztely generated and frtc or*rt R 
and that thcrr zs an zsomorph~sm of A-bzmodules cr : J 2. 3 3,q z(A) (uh t  r r  
z(3) c J zs  the z-znmge of A) makzng the followmg dzagram c o n ~ r n u t a t z ~ ~ f :  

The algebra A (wzth the znuolutzon z) zs called cellular zf and only ~f 
there zs an R-module decomposztzon A = Ji  $ Ji @ . . . @ JA (for somt 7%) 
tvzth ~(5;) = Ji for each j and such that settzng J ,  = @=,J{ gzues n c h a ~ n  of 
two-szded zdeals of A .  0 = Jo C J1 C J2 C . . . C J, = '4 (each of thein fired 
b y  z) and for each J (j = 1 , .  . . , 7 ~ )  the q u o t ~ t n t  Ji = J:,/cJj-l zs a c ~ l l  d ( a l  
( w t h  respect to the zizuolutzorz znduced by z on tht  quotzent) o f A / J  -, 

1% call the  above chain of ideals defining a cellular a l g e b ~ a  a cell chain. 
If a chain of ideals in A cannot be  refined to a longer one, we say tha t  5uch 
a cell chain is maximal. 

3 Cell chains 

F ~ o r n  now on, we always will assume that the ring R = k is a n  ( a r l ~ i t l ~ r l s )  
field. 

To check whether an ideal J is a cell ideal. the fol lowi~~g necessilj  (on- 
dition is sometimes useful. 

Lemma 3.1 ( a )  If ,I i s  an iz~dimensioizal  cell idcnl in A. thwl t1,r 1; 
dimension of F i x , ( J )  := {x E J I i ( x )  = x} satisfies 

(b)  If 0 C J1 C J2 C . . C J ,  = A zs n crll cham w ~ t h  the C O I T ( C J K I I ~ ~ -  
zrzg cell zdeals havzng k-dzmens~ons n:, 72:. . . . I L L ,  ihen thr k-dzmc ns7orc of 
Fz z , ( A )  satzsfies 
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5466 KONIG AND XI 

The proof of (a) is straightforward from linear algebra since the sy~rmetr ic  
n x n-n~atrices form a vector space of dimensio~i n(n  $ 1)/2. 

In order to also prove (b) we use the following observation: If a vector 
space V can be decomposed as U $ W in such a way that a given involution 
i acting on V sends both U and W into itself, then the k-dimension of the 
space of fixed points is additive, since in fact the spaces of fixed points add 
up: Ficr;(V) = Fizi( lJ)  @ Fixi (W).  Thus (b) follows by noting that .4 has 
a cell basis Ci,T, hence can be written as a direct sum of spaces ViT, each 
of them generated by the one or two basis elements Ci,T and Ci,S and each 
V$T being fixed under i .  m 

This result implies that for a cellular algebra A of k-dimension smaller 
than or equal to eleven, the length of the cell chain is an invariant. In fact. in 
this case, only cell ideals J of k-dimension one or four or nine can occur, and 
then the subspaces F ix , ( J )  have k-dimension one or three or six, respectively. 
Adding up these numbers in various ways, one arrives at the uniqueness 
assertjon. For instance, if dinlk(A) equals eleven, then a cell chain can contain 
one subquoticnt of dimension nine (plus two subquotients of dimension one) 
or two subquotients of dimension four (plus thrce subquotients of di~neiision 
one) or one of dinlension four (plus seven subquotients of dimension one) 
or eleven subquotients of dimension one. Then the dimensions of the fixed 
points a,dd up to eight or nine or ten or eleven, respectively. Hence the 
dimension of Fiz , (A)  determines in which of these cases we are. The other 
cases are dealt with in a similar manner. 

Proposition 3.2 Each cell cham of a cellular algebra is nzaszmal. 

Proof. The Proposition follows by induction on tlw rnir~imal I I I L I I I ~ K ~ I  (A" 
ideals in a cell chain from the definition of cellular algeb~as a d  the folluwirlg 
lemma. = 

Lemma 3.3 Let J be a cell ideal in  a cellular algebra A with respect to an 
inaolution i. Suppose J ,  is another cell ideal such that there is a n  i i d u s i o n  
0 C .II C_ J and that J/J1 is filtered by a chain of ideals with subquotiei~ts 
being cell ideals. T h r n  J1 = J. 

Proof. Denote the k-dimension of J by n Z .  Denote the chain of ideals 
filtering J by Jl J 2 . .  . J, = J for some n 2 2 and the corresponding k -  
ditnensions of cell ideals by n:, n& . . . , nk .  We have (by the argunleut which 
proved lemma 3.1) the following equalities of dimensions: 
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( l imn(Fz~, (J ) )  = n(lz+1)/2 = n1(1z1+1)/2+n~(rt~+1)/2+. . .+n,,(n,,,+ I ) / 2 .  

This implies another equation 

n = n l  t n 2  + . . . + n, , ,  

which together with the first equation implies the desired equality 711 = 1. 
This finishes the proof. 

At this point, it might be tempting to conjecture that each cell chain of 
a given cellular algebra has the same length. Vnfortunately, this is i ~ o t  the 
case as our example will show. 

Example. Let k be any field (or even any commutative ring) and let 
A be the mononiial quotieut algebra of the free algebra k < x ,  y > mod- 
ulo the ideal generated by r 2 ,  y 3 ,  x y x y ,  y x y x , z y 2 x y  and y x y 2 x .  Then ,-t is 
a 14-dimensional algebra and admits an involution i which fixes .r and y. 
(See the diagrams below for a visualization of the structure of A.) 

Now let us exhibit two different cell chains of A by giving a basis in square 
form in each case (according to Proposition 3.4 below). 

The first cell chain J1 C J2 C J3 2 J4 C J5 CI JG = A is defined 1)y 

The second cell chain J 1  C J 2  C J3 c J4 C J5 = A looks as follows. 

y x y ,  y 2 z y :  
J1 : 

y x y 2 ,  y 2 x y 2 ;  

We visualize the two cell chains in the following picture. Basis elcments 
appear in boxes which are connected by lines if the corresponding basis el- 
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5468 KONIG AND XI 

ernerlts are related hy (left or right) multiplication (which goes from top to 
button1 of the picture). Moreover, each hasis element gets a label indicatirlg 
in which subquotie~lt in the cell chain it occurs. 

Notice that in the first chain the sequence of dimensions of A's is 
(1,1,3,1 , I ,  1) and in the second one it is (2,2,2,1,1).  Thus in one cell chain 
there occur A's of a k-dimension not orcuring in the other cell chain, hence 
wen  t11r k-dinirnsio~~s of the modules A are not invariants of the ccllular 
algebra. Finally, we remark that we may uw the re6ults in [4] to construct 
(using the above example) many more algebras having two cell chains of 
different lengths. 

To check that the above displayed chains are cell chains, the followirlg 
p o ~ ~ o s i t i o n  may be .L useful tool. I11 fact, with the help of this propositio11, 
we call readily verify that our two chains are cell chains. 

Proposition 3.4 Lct A be a k--algebra wltk all 1n1~01utzon z Swppubt 4 1s 

generated as  algebra b y  a l ,  ..., a,. Let  J be a subspace of A wath a busts 
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such that z (C1~)  = C;cl for  k , l .  De,fine c, := (Cl,,C2,, ..., CZ3) for  1 < J < 11 

a n d  ale, := (alC1 ,,.... aiC,,). Ifaic, E Cy=, kc, for all  l , ~ ,  t h t n  J za n r t l l  
deal Z P Z  A. 

Proof. It is cleai tliat J is an ideal ill  A witli z(J) = J. Fis  an ilitlcx J a r ~ d  
define A = + k c j 2  + . . . + kc,,. Then A is a left ideal coritaiiletl in J .  
\Ye define 

a :  4 . 1 3 ~ t ( A )  + J 

by sending C',i 8 Ck, t o  Ck/. Obviously, ci is a k-linear bijection. LIT? ihall 
show that  it is also a A- A-bimodule honloinolph~sm. Take a, E A. co~iqtiei 
the  image of U , C , ~  Ck, under the map a .  Supposc~ U,C,~ = C,  A,(;, rliis 
iinplirs that  n,ci = xi Atet and asCki = Thus n e  deduce tlldt o 1s 

a b i~uodule  Iioinomorphisrn. It is cleai that  the d ~ a g ~ a m  

is colriniutative. Hence J is a cell ideal in '4. H 

Quite often. one can easily find for a given ideal a basis {Cji) witli i ( G i )  = 
Ci,. But  this does not imply that  the ideal really is a cell ideal. For instancr. 
we consider the algebra k < x ,  y > / ( x 2 ,  y2 ,xyx ,  yxy) with i fixing .r and y .  
Denote the  radical of A by J. We check whether J is a cell ideal. Note tliat 
J has a basis 

C,l = x ,  C12 = xy,  
C21 = Y 5 ,  c22 = y 

whicl~ satisfies i(C1,) = CJi. Siiice yCll = y r  = ~ ~ ( 2 ,  1)CX1 and yCi2 = C) = 
ry ( l ?  1)C:I2 + r y ( 2 ,  1)C22, we know that (C'3) in Definition 2.1 is not C ~ i I f i l l < d .  
Thus J is not a cell ideal. This example also sliotvs that  t,he conditioli in 
Propositiori 3.4 can not be deleted. In fact, this co~iditioii is a suffic-iriit ant1 
necessary condition for J to bc a cell ideal ( the  nrcrssity of the  col~clition 
follows from Definition 2.1 of cellular algebras). 

Our Example shows tha t  the length of a cell chain is not an invariant. 
However, note that for tcco important classes of cellular algebras (which to- 
gether contain most of the known examples) the cell length is an iiivariant. 
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Proposition 3 .5  ( a )  I f A  is a quasi-hereditary and cellular algebra, thc 11 all 
cell chains have the same length. 

(6) I f  A is an R-order. in a split s~rnisiinple li-algebra H (whcr5e I\- = 
f r a c ( K ) )  a i d  A is cellular with a cell chain J1 C <I2 C . . . C = ./I such 
that It' (l;R .II C It' BH JZ c . . , c It' BR Jn = B is a cell  chair^ of B ,  thcn all 
c ~ l l  chains of A have the same length. 

Proof. (a) If A is a quasi-hereditary cellular algebra, then the length is 
equal to  the number of non-isomorphic simple modules by [2], remark 3.10. 

( b )  The  algebra B is quasi-hereditary and rellular. Thus the  statrlnt>nt 
 follow^ from ( a ) .  
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