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1 Introduction

Cellular algebras have been introduced by Graham and Lehrer in [2} in order
to discuss the structure of group algebras of symmetric groups and related
algebras like certain Hecke algebras (for instance, of type 4 or B), Braucr
algebras, Temperley-Lieb algebras and many others. The definition of a
cellular algebra is by the existence of a socalled cell chain of certain ideals
(see [3] and section 2 below). Suppose 0 = Jy € J; € ... € J, = A s such
a cell chain of ideals of a cellular algebra A. We consider the following two
questions:
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(1) Ts this cell chain a maximal chain, or can it be refined to a longer cell
chain?

(2) Is the length n of a maximal cell chain an invariant of the given cellular
algebra?

The class of quasi-hereditary algebras (as defined in [1}) has a large in-
{ersection with the class of cellular algebras. Thus we recall first that in this
case, each heredity chain can be refined to a maximal heredity chain and the
length of any maximal heredity chain is an invariant of the algebra, since it
is equal to the number of isomorphism classes of simple A-modules. For cel-
lular algebras, a directly analogous statement is the following: The number
of J; occuring in the cell chain with J? € J;_; is an invariant (see [3]). since
again it equals the number of isomorphism classes of simple A-modules.

The purpose of this note is to answer the above questions and in doing so
to provide some further information on cell ideals. More precisely, we show:
First, each cell chain is maximal (that is, it cannot be refined any more).
However, secondly, the length of a cell chain is not an invariant of a cellular
algebra, (we provide a counterexample).

2 Cellular algebras

Let us first recall the original definition of cellular algebras in [2] and the
equivalent one given in [3].

Definition 2.1 (Graham and Lehrer [2]) Let R be a commutative Nocthe-
rian integral domain. An associative R-algebra A is called a cellular alge-
bra with cell datum (I, M,C,1) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each ) € I
there is a finite set M(X). The algebra A has an R-basis CQ’T where (5, T)
runs through all elements of M(X) x M(A) for all X € 1.

(C2) The map i is an R-linear anti-automorphism of A with i* = id
which sends C§ 7 to Chg.

(C3) For cach A € I and S,T € M(}) and each a € A the product aC'}
can be written as (L yepr(n) a(U, SYCh ) +r" where v’ is a linear combination
of basis elements with upper index u strictly smaller than A, and where the
coefficients r,(U,S) € R do not depend on T.

In the following, an R-linear anti~automorphism ¢ of A4 with i = id will
be called an involution,

Definition 2.2 (see [3]) Let A be an R-algebra where R is a commutative
Noetherian integral domain. Assume there is an involution 1 on A. A two-
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sided ideal J in A is called o cell ideal if and only if i(J) = J and there
exists a left ideal A C J such that A is finitely generated and free over R
and that there is an isomorphism of A-bimodules o : J ~ A Q@r (D) (where
HA) C J is the i-image of A) making the following diagram commutative:

J A @ri(A)
L T @y i(y) @ilx)
J—2 A @ri(A)

The algebra A (with the involution i) is called cellular if and only if
there is an R-module decomposition A = J{ ® J} @ ... & J) (for some n)
with i(J}) = J} for each j and such that setting J; = ®]_,J| gives a chain of
two-sided ideals of A: 0=Jy CJy CJ2 C ... C Ju = A (each of them fized
by 1) and for each j (j = 1,...,n) the quotient J; = J;/J,_1 is a cell ideal
(with respect to the involution induced by @ on the quotient) of A/J,_,.

We call the above chain of ideals defining a cellular algebra a cell chain.
If a chain of ideals in A cannot be refined to a longer one, we say that such
a cell chain is maximal.

3 Cell chains

From now on, we always will assume that the ring R = k is an (arbitrary)

field.
To check whether an ideal J is a cell ideal, the following necessary con-
dition is sometimes useful.
Lemma 3.1 (a) If J is an n’-dimensional cell ideal in A, then the k
dimension of Fiz(J) :={z € J |i(z) = z} satisfies
dimy(Fiz,(J)) = n{n +1)/2.

(b)If0C Jy CJy C...C Jm = A isa cell chain with the corrcspond-
ing cell ideals having k~dimensions ni,n2, ..., n%, then the k~dimension of

Fiz,(A) satisfies

dimp(Fiz;(A)) = ni(ng +1)/2 + na(ny + 1)/2 4 ...+ np(ng, + 1)/2.
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The proof of (a) is straightforward from linear algebra since the symmetric
n x n-matrices form a vector space of dimension n(n + 1)/2.

In order to also prove (b) we use the following observation: If a vector
space V can be decomposed as U & W in such a way that a given involution
i acting on V sends both U and W into itself, then the k-dimension of the
space of fixed points is additive, since in fact the spaces of fixed points add
up: Fiz;(V) = Fiz;(U) @ Fiz;(W). Thus (b) follows by noting that A has
a cell basis C3 7, hence can be written as a direct sum of spaces Vi, each
of them generated by the one or two basis elements C3 ; and C3 ¢ and each
Vg'r being fixed under i, a

This result implies that for a cellular algebra A of k~dimension smaller
than or equal to eleven, the length of the cell chain is an invariant. In fact, in
this case, only cell ideals J of k-dimension one or four or nine can occur, and
then the subspaces Fiiz;(J) have k-dimension one or three or six, respectively.
Adding up these numbers in various ways, one arrives at the uniqueness
assertion. For instance, if dim(A) equals eleven, then a cell chain can contain
one subquotient of dimension nine (plus two subquotients of dimension one)
or two subquotients of dimension four (plus three subquotients of dimension
one) or one of dimension four (plus seven subquotients of dimension one)
or eleven subquotients of dimension one. Then the dimensions of the fixed
points add up to eight or nine or ten or eleven, respectively. Hence the
dimension of Fiz;(A) determines in which of these cases we are. The other
cases are dealt with in a similar manner.

Proposition 3.2 Fach cell chain of a cellulor algebra is mazimal.

Proof. The Proposition follows by induction on the minimal number of
ideals in a cell chain from the definition of cellular algebras and the following
lemma. =

Lemma 3.3 Let J be a cell ideal in a cellular algebra A with respect to an
involution 1. Suppose J| is another cell ideal such that there is an inclusion
0 C J;y CJ and that J/Jy is filtered by a chain of ideals with subgquotients
being cell ideals. Then Jy = J.

Proof. Denote the k~dimension of J by n?. Denote the chain of ideals

filtering J by J; C Jy... C J, = J for some n > 2 and the corresponding k-
dimensions of cell ideals by n?,n,... nZ. We have (by the argument which

proved lemma 3.1) the following equalities of dimensions:

dimg(J) =n? =n} +nl+ ... +nk,
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dimg(Fiz(J)) = n(n+1)/2 = n1(ni+1)/24ny(na+1) /24 . A, (n,,+1)/2.

This implies another equation
n=ny+Ny+ ...+ n,,,

which together with the first equation implies the desired equality m = 1.
This finishes the proof. m

At this point, it might be tempting to conjecture that each cell chain of
a given cellular algebra has the same length. Unfortunately, this is not the
case as our example will show.

Example. Let k be any field (or even any commutative ring) and let
A be the monomial quotient algebra of the free algebra k < z,y > mod-
ulo the ideal generated by z?,y® zyzy, yryz,2y?ry and yzy?z. Then A is
a l4—dimensional algebra and admits an involution i which fixes r and y.
(See the diagrams below for a visualization of the structure of A.)

Now let us exhibit two different cell chains of A by giving a basis in square
form in each case (according to Proposition 3.4 below).

The first cell chain J; C Jo C J3 C Jy C Js C Js = A is defined by

Jy eyt Jof Syt zyz;
z,  yr, g,

JsfJa: xy, yry, ylry,
xy?, yryt, ylayd

Ja/J3 1 y% Js/Js Js/Js : 1
The second cell chain J; C J, C J; C Js € J5 = A looks as follows.

vy, yiay, Ja) s T T
Doyt viayd vz, zy’z;

A 2
PR e

JafJa : x; Js/Jdy i1

We visualize the two cell chains in the following picture. Basis elements
appear in boxes which are connected by lines if the corresponding basis el-
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ements are related by (left or right) multiplication (which goes from top to
bottom of the picture). Moreover, each basis element gets a label indicating
in which subquotient in the cell chain it occurs.

Notice that in the first chain the sequence of dimensions of A’s is
(1,1,3,1,1,1) and in the second one it is (2,2,2,1,1). Thus in one cell chain
there occur A’s of a k-dimension not occuring in the other cell chain, hence
even the k-dimensions of the modules A are not invariants of the cellular
algebra. Finally, we remark that we may use the results in [4] to construct
(using the above example) many more algebras having two cell chains of
different lengths.

To check that the above displayed chains are cell chains, the following
proposition may be a useful tool. In fact, with the help of this proposition,
we cau readily verily that our two chains are cell chains,

Proposition 3.4 Let A be a k-algebra with an involution i. Suppose A is
generated as algebra by ay,...,a,. Let J be a subspace of A with a basis

Cll» C’12’ Ty C71nv
0215 C227 T C2n7

Cnl, Cn27 MY Cnn
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such that :(Ci) = Cu for k, L. Define ¢; := (Ch5,Coy, ..., Cuy) for 1 < j < n
and ape; = (aiCyyy ooy 0iChj). If e € 307 key for all 1, g, then J is a cell
ideal in A.

Proof. It is clear that J is an ideal in A with i(J) = J. Fix an index j and
define A = kCj + kCja 4+ -+ + kCj,,. Then A is a left ideal contained in J.
We define

a: A@gi(A) — J

by sending C;; @ Cy; to Cy. Obviously, « is a k-linear bijection. We shall
show that it is also a A — A-bimodule homomorphism. Take a;, € A, consider
the image of a,Cj; ® C}; under the map . Suppose a,Cj; = 3, A, This
implies that a,¢; = 37, Miey and a,Chy = 37, A,Cy,. Thus we deduce thal « is
a bimodule homomorphism. It is clear that the diagram

J 2 A ©pilA)
; s @y~ i(y) ®i(z)
J—2 A@gpi(A)

is commutative. Hence J is a cell ideal in 4. &

Quite often, one can easily find for a given ideal a basis {';;} with #(C};) =
C);. But this does not imply that the ideal really is a cell ideal. For instance.
we consider the algebra k < z,y > /(2% y% zyx, yzy) with i fixing = and y.
Denote the radical of A by J. We check whether J is a cell ideal. Note that
J has a basis

Cn=2, Cip=uy,
Co=yz, Cn=y

which satisfies {(Cy;) = Cj;. Since yCpy = yz = ry(2,1)C and yCiy = 0 =
o (1, 1}C12 4+ 1y(2,1)Cha, we know that (('3) in Definition 2.1 is not fulfilled.
Thus J is not a cell ideal. This example also shows that the condition in
Proposition 3.4 can not be deleted. In fact, this condition is a sufficient and
necessary condition for J to be a cell ideal (the necessity of the condition
follows from Definition 2.1 of cellular algebras).

Our Example shows that the length of a cell chain is not an invariant.
However, note that for two important classes of cellular algebras (which to-
gether contain most of the known examples) the cell length is an invariant.
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Proposition 3.5 (a) If A is a quasi-hereditary and cellular algebra, then all
cell chains have the same length.

(b) If A is an R-order in a split semisimple K -algebra B (where & =
frac(R)) and A is cellular with a cell chain Jy C J; ... C J, = A such
that K&rJy CK®rJy C... C K ®rd, = B is a cell chain of B, then all
cell chains of A have the same length.

Proof. (a) If A is a quasi-hereditary cellular algebra, then the length is
equal to the number of non-isomorphic simple modules by [2], remark 3.10.

(b) The algebra B is quasi-hereditary and cellular. Thus the statement
follows from (a). m
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