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p-RADICAL IN BCI-ALGEBRAS

Lei , TIANDE* and Xi, CHANGCHANG*

(Received August 10, 1983)

Abstract. We introduce the notion of a radical of BCI-algebras, and obtain some properties
of the radical.

Introduction. In 1966, Y. Imai and K. Iséki introduced the concept of a BCK-
algebras in [1]. In the same year, K. Iséki introduced the concept of a BCl-algebra
in [2] as follows.

Definition 1. Let ( X, %, 0) be an algebra of type (2,0). Ifit satisfies the
following properties :

(1) ((x*y)*(x*z))x(z%y)=0,

(2) (x*(x=y)=y=0,

(3) x*x=0,

(4) x*y=y=*x=0 implies x =y,
then X is said to be a BCI-algebra.

In [3-6], aseries of interesting notions concerning BClI-algebras were intro-
duced and studied. Let us recall some basic definitions and results which we shall use
in this paper.

On defines an order relation < on a BCI-algebra by setting

x<y2xxy=0.
Then we have

(6) x<y implies z*xy <z *x,

(7) x*x0=x,

(8) (x*y)xz=(xxz)*y.
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A subset S of a BCl-algebra X is a subalgebra of X, if it is closed by the
operation *. A subset A4 of X is an ideal, if it satisfies (1) 0€ 4, (2) x*y,
y €A implies x € 4.

Let A be an ideal of X. Forevery x,y € X, define as follows:

x~yZx*xy,yxx€A4

then ~ is an equivalence relation on X. By C, we denote the equivalence class
containing x, and X/A the set of all equivalence classes. A binary * on X/A4 is
defined by

Cx * Cy = Cx:ky

then ( X/A, , C) isalso a BCK-algebra which is called the quotient algebra of X
by A.

Definition 2. The set B= {x: 0<x} ina BCl-algebra X is called the 'BCK-
part of X. Obviously B is a subalgebra of X, and it is also an ideal of X. In the
quotient algebra X/B, Cy =B.

Let X,Y be BCl-algebras. An operation * on the cartesian product X X Y of
XY is defined as follows:

(x1,71) *(x2,2) = (X1 £ X2, ¥1 *)2),
0=(0,0).
Then (XX Y, % ,0) is a BCl-algebra, and it is called the product of X and Y.

I. Radicals of BCI-algebras.
Let (X, *,0) bea BCl-algebra.

Definition 3. If A isanideal of X, and forevery x in 4, 0 <x, then 4 is
called a positive ideal of X, or beriefly a p-ideal of X. Clearly, BCK-part B of X
contains all p-ideal of X, so it is a maximal p-ideal of X.

Definition 4. The BCK-part of X is called the positive radical of X, i.e., p-
radical of X. If the p-radical of X is trivial,i.e., B= {0}, then X is called to be

a p-semisimple BCI—algebra, or beriefly p-semisimple algebra.
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Example 1. Let Z be the set of integers and — the minus operation, then (Z,
—,0) isa BCl-algebra. Since 0 —x =0 implies x = 0, its BCK-part must be trivi-

al,i.e., the p-radical is trivial. Hence it is a p-semisimple algebra.

Remark 1. K. Iseki posed a problemin [6]. Let X be any proper BCl-algebra,
B the BCK-part of X. Does 0 #*a =a forevery a of X — B hold? This example
gave a negative answer to the problem, for 1 isin X — B, but 0 — 1 #1.

Example 2. Let X ={0,a,b}. Define a binary operation * by the following
table :

Then X is a BCl-algebra, but not a p-semisimple algebra, because the BCK-part is
{0,a}.

Theorem 1. Let X be a BCl-algebra. The following properties of X are equiva-
lent:

1) X is p-semisimple,

2) O#x=0 implies x =0,

3) 0x(0%x)=x forevery x in X,

4) x*(0*xy)=y=*(0=*x) forany x,y in X.

Proof. 1) implies 2). Assume that X is p-semisimple, and O * x=0. Then we
have 0<x. Therefore by the p-semisimplicity x = 0.

2) implies 3). Suppose that 2) holdsin X. By (3) we have (0 *x) (0 *Xx)
=0. By (8) '

(10) (0*(0*x))*x =0,
which means 0 * (0 *x)< x, and by (6) we have

O=x*x<x*(0x(0%*x)),

therefore O * (x * (0 * (0 * x))) = 0. By 2) x = (0 * (0 * x)) =0. From this
equality together with (10) and (4), it follows that
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O0%(0*xx)=x.

3) implies 4). Suppose that x has the property 3). By (8)
x*(O*y)=(0*(0*X))*(0*y)=(0*(0*y))*(0*x)=y*(O*x).

Hence 4) holdsin X.

4) implies 1). Assume that 4) holdsin X. Let x be an element of the BCK-
part B of X, then 0 xx = O, Using (3) and (7), we obtain x = *(0x0)=
0*(0*x)=0%0=0. This implies B = {0} which means X is p-semisimple.

Therefore we complete the proof of Theorem 1.

As a special case a BCl-algebra may coincides with its radical. Then the algebra
isa BCK-algebra. Such an algebra is considered as a p-radical algebra.

Theorem 2. If X is not D-semisimple | then

1) X isa BCK-algebra

or

2) X/Bis p-semisimple,, where B is the BCK-part of X.

Proof.  Suppose X # B. We shall show that the p-radical of X/B is trivial.
If Co*Cy=0y,i.e., Coex =Co. Then 0 *x=(0*x)*0€EB, whence 0=
0+ (0*x). By (2), (0x(0 = x)) *x =0. Therefore 0 % x = 0, which implies
x € B. Hence C, =C,. This implies that X /B is p-semisimple.

From Theorem 2 we can classify BCI-algebras as follows :

p-semisimple

BCT-algebras BCK -algebras, i. e., p-radical algebras

non p-semisimple non-BCK-algebras whose quotient
algebras by B are p-semisimple

II. p-semisimple algebras and Abelian groups.

In this section, we will deal with the relations between p-semisimple algebras and
Abelian groups.
Theorem 3. Let X bea p-semisimple algebra. If we define
Xty=x*(0%y).

then (X ,+  0) is an Abelian group.
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Proof. By using 4) of Theorem 1 and (8), we obtain

xt(y+z)=x+x(0*(y+(0+2))=(y*(0*z))*(0*x)

=(y*(0*x))*x(0*+2)=(x*(0xy))*(0xz)=(x+y)+z,
and
x+y=x+(0*y)=y=(0xx)=y+x.

Hence the operation + is associative and commutative. Moreover,
x+0=0+x=0x(0*x)=x

and
x+(0*x)=(0*x)+x=(0xx)*(0%x)=0.

Therefore 0 * x is the inverse of x. Thus X is an Abelian group with respect to +.
Conversely, we have the following
Theorem 4. Any Abelian group is a p-semisimple algebra under the operation — .
We omit the proof , as we can easily check the axioms of a BCl-algebra.
The Abelian group induced by a p-semisimple algebrain Theorem 3 is called to

be its adjoint group.

Theorem 5. Let (X,+ ,0) be the adjoint group of a p-semisimple algebra
(X, *,0). The p-semisimple algebra induced by {X,+ ,0) coincides with (X + |
0>.

By Theorems 3 and 4,

x=y=x+t(~y)=x+(0xy)=xx(0%(0*y))=x*y,
which implies Theorem 5.

III. Some Properties of p-semisimple algebras,

In this section, we will give some results on a p-semisimple algebra. We may make

use of Abelian group theory to study p-semisimple algebras.
Theorem 6. Any subalgebra of a p-semisimple algebra is an ideal.

Proof. Let S be asubalgebra of a p-semisimple algebra X. By Theorem 5 and
the fact that § is a subalgebra, we obtain that x, y € S implies x — y € §. This
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means that (S, + ,0) isasubgroup of (X, #*,0). Consequently,if x*y,y €S,
i.e, x—y,yES, then x =(x-y)+y €S. Hence (§,*,0) is anideal of X.

By Theorem 6, we know that any subalgebra of a p-semisimple algebra is also
p-semisimple. The order of a subalgebra of a finite BCl-algebra X need not do a
divisor of the order of X, but for a p-semisimple algebra, we have the following

Theorem 7. If n is the order of a finite p-semisimple algebra X, then the order

of its subalgebra is a divisor of n.

This result is easily obtained from the order relation of adjoint groups.
The notion of a quasi-commutative BCK-algebra was introduced by H. Yutani
[7]. This notion is also defined in a BCI-algebra by a similar way.

Theorem 8. p-semisimple algebra is’ a quasi-commutative algebra of type (0, 1;
0,0).

Proof. By Theorem S, we have

Qo1 (x,y)=(x*(x*yN*(y*x)=(x—(x-p)-(y-x)=x,
Qoo(y,x)=y*x(y*x)=y—(y—x)=x.

Therefore, Qg,1(x,») = Qo,0( ¥, x), thatis, the algebra is a quasi-commutative
algebra of type (0, 1;0,0).

Remark 2. 1t is easy to verify that any p-semisimple algebra is also of type (0, 2;
1, 0), but it may not of type (1,0;0,0). For instance, in Example 1, consider 1
and 2, then

(1-(1=-2)p-(1-2)=3,1-(2-1)=1.

Consequently, this implies Q4 0(1,2)# Qo,0(2, 1). This remark partly solve the
question which K. Iseki posed in [5] that whether exist quasi-commutative algebras
of higher type or not.

The fundamental theorem of Abelian groups implies the following

Theorem 9. Let n = p’f tees p,kr be the order of a finite p-semisimple algebra
X, then X is isomorphic to a product of finite number of p-semisimple algebras of
orders pik" .
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