p-RADICAL IN BCI-ALGEBRAS

Lei ,TIANDE* and Xi ,CHANGCHANG*

(Received August 10, 1983)

Abstract. We introduce the notion of a radical of BCI-algebras, and obtain some properties of the radical.

Introduction. In 1966, Y. Imai and K. Iséki introduced the concept of a BCK-algebras in [1]. In the same year, K. Iséki introduced the concept of a BCI-algebra in [2] as follows.

Definition 1. Let $\langle X, *, 0 \rangle$ be an algebra of type $\langle 2, 0 \rangle$. If it satisfies the following properties:

- (1) ((x*y)*(x*z))*(z*y)=0,
- (2) (x*(x*y)*y=0,
- (3) x * x = 0,
- (4) x * y = y * x = 0 implies x = y,

then X is said to be a BCI-algebra.

In [3-6], a series of interesting notions concerning *BCI*-algebras were introduced and studied. Let us recall some basic definitions and results which we shall use in this paper.

On defines an *order* relation ≤ on a *BCI*-algebra by setting

$$x \le y \rightleftarrows x * y = 0$$
.

Then we have

- (6) $x \le y$ implies $z * y \le z * x$,
- (7) x * 0 = x.
- (8) (x * y) * z = (x * z) * y.

^{*} Department of Mathematics, Shaanxi Normal University, Xi'an, China.

A subset S of a BCI-algebra X is a subalgebra of X, if it is closed by the operation *. A subset A of X is an ideal, if it satisfies (1) $0 \in A$, (2) x * y, $y \in A$ implies $x \in A$.

Let A be an ideal of X. For every $x, y \in X$, define as follows:

$$x \sim y \neq x * y, y * x \in A$$

then \sim is an equivalence relation on X. By C_X we denote the equivalence class containing x, and X/A the set of all equivalence classes. A binary * on X/A is defined by

$$C_x * C_y = C_{x*y}$$

then $\langle X/A, *, C \rangle$ is also a *BCK*-algebra which is called the quotient algebra of X by A.

Definition 2. The set $B = \{x : 0 \le x\}$ in a BCI-algebra X is called the BCK-part of X. Obviously B is a subalgebra of X, and it is also an ideal of X. In the quotient algebra X/B, $C_0 = B$.

Let X, Y be BCI-algebras. An operation * on the cartesian product $X \times Y$ of X, Y is defined as follows:

$$(x_1, y_1) * (x_2, y_2) = (x_1 * x_2, y_1 * y_2),$$

 $0 = (0, 0).$

Then $\langle X \times Y, *, 0 \rangle$ is a *BCI*-algebra, and it is called the *product* of X and Y.

I. Radicals of BCI-algebras.

Let $\langle X, *, 0 \rangle$ be a *BCI*-algebra.

Definition 3. If A is an ideal of X, and for every x in A, $0 \le x$, then A is called a positive ideal of X, or beriefly a p-ideal of X. Clearly, BCK-part B of X contains all p-ideal of X, so it is a maximal p-ideal of X.

Definition 4. The BCK-part of X is called the positive radical of X, i.e., pradical of X. If the p-radical of X is trivial, i.e., $B = \{0\}$, then X is called to be a p-semisimple BCI-algebra, or beriefly p-semisimple algebra.

Example 1. Let Z be the set of integers and — the minus operation, then $\langle Z, -, 0 \rangle$ is a *BCI*-algebra. Since 0 - x = 0 implies x = 0, its *BCK*-part must be trivial, i. e., the p-radical is trivial. Hence it is a p-semisimple algebra.

Remark 1. K. Iséki posed a problem in [6]. Let X be any proper BCI-algebra, B the BCK-part of X. Does 0 * a = a for every a of X - B hold? This example gave a negative answer to the problem, for 1 is in X - B, but $0 - 1 \ne 1$.

Example 2. Let $X = \{0, a, b\}$. Define a binary operation * by the following table:

Then X is a BCI-algebra, but not a p-semisimple algebra, because the BCK-part is $\{0, a\}$.

Theorem 1. Let X be a BCI-algebra. The following properties of X are equivalent:

- 1) X is p-semisimple.
- 2) 0 * x = 0 implies x = 0,
- 3) 0*(0*x) = x for every x in X,
- 4) x * (0 * y) = y * (0 * x) for any x, y in X.

Proof. 1) implies 2). Assume that X is p-semisimple, and 0 * x = 0. Then we have $0 \le x$. Therefore by the p-semisimplicity x = 0.

2) implies 3). Suppose that 2) holds in X. By (3) we have (0*x)*(0*x)=0. By (8)

$$(10) (0*(0*x))*x = 0,$$

which means $0 * (0 * x) \le x$, and by (6) we have

$$0 = x * x \leq x * (0 * (0 * x)),$$

therefore 0 * (x * (0 * (0 * x))) = 0. By 2) x * (0 * (0 * x)) = 0. From this equality together with (10) and (4), it follows that

$$0*(0*x)=x$$

3) implies 4). Suppose that x has the property 3). By (8)

$$x * (0 * y) = (0 * (0 * x)) * (0 * y) = (0 * (0 * y)) * (0 * x) = y * (0 * x).$$

Hence 4) holds in X.

4) implies 1). Assume that 4) holds in X. Let x be an element of the BCK-part B of X, then 0 * x = 0. Using (3) and (7), we obtain x = x * (0 * 0) = 0 * (0 * x) = 0 * 0 = 0. This implies $B = \{0\}$ which means X is p-semisimple.

Therefore we complete the proof of Theorem 1.

As a special case a *BCI*-algebra may coincides with its radical. Then the algebra is a *BCK*-algebra. Such an algebra is considered as a *p*-radical algebra.

Theorem 2. If X is not p-semisimple, then

1) X is a BCK-algebra

or

2) X/B is p-semisimple, where B is the BCK-part of X.

Proof. Suppose $X \neq B$. We shall show that the *p*-radical of X/B is trivial. If $C_0 * C_x = C_0$, i. e., $C_{0*x} = C_0$. Then $0 * x = (0 * x) * 0 \in B$, whence 0 = 0 * (0 * x). By (2), (0 * (0 * x)) * x = 0. Therefore 0 * x = 0, which implies $x \in B$. Hence $C_x = C_0$. This implies that X/B is *p*-semisimple.

From Theorem 2 we can classify BCI-algebras as follows:

$$BCI-algebras \begin{cases} p\text{-semisimple} \\ \text{non } p\text{-semisimple} \end{cases} \begin{cases} p\text{-semisimple} \\ BCK-algebras, i. e., p\text{-radical algebras} \\ \text{non-}BCK-algebras whose quotient} \\ \text{algebras by } B \text{ are } p\text{-semisimple} \end{cases}$$

II. p-semisimple algebras and Abelian groups.

In this section, we will deal with the relations between p-semisimple algebras and Abelian groups.

Theorem 3. Let X be a p-semisimple algebra. If we define

$$x + y = x * (0 * y).$$

then $\langle X, +, 0 \rangle$ is an Abelian group.

Proof. By using 4) of Theorem 1 and (8), we obtain

$$x + (y + z) = x * (0 * (y * (0 * z))) = (y * (0 * z)) * (0 * x)$$
$$= (y * (0 * x)) * (0 * z) = (x * (0 * y)) * (0 * z) = (x + y) + z,$$

and

$$x + v = x * (0 * v) = v * (0 * x) = v + x$$

Hence the operation + is associative and commutative. Moreover,

$$x + 0 = 0 + x = 0 * (0 * x) = x$$

and

$$x + (0 * x) = (0 * x) + x = (0 * x) * (0 * x) = 0.$$

Therefore 0 * x is the inverse of x. Thus X is an Abelian group with respect to +. Conversely, we have the following

Theorem 4. Any Abelian group is a p-semisimple algebra under the operation -. We omit the proof, as we can easily check the axioms of a BCI-algebra.

The Abelian group induced by a *p*-semisimple algebra in Theorem 3 is called to be its *adjoint group*.

Theorem 5. Let $\langle X, +, 0 \rangle$ be the adjoint group of a p-semisimple algebra $\langle X, *, 0 \rangle$. The p-semisimple algebra induced by $\langle X, +, 0 \rangle$ coincides with $\langle X, +, 0 \rangle$.

By Theorems 3 and 4,

$$x-y=x+(-y)=x+(0*y)=x*(0*(0*y))=x*y$$

which implies Theorem 5.

III. Some Properties of p-semisimple algebras.

In this section, we will give some results on a p-semisimple algebra. We may make use of Abelian group theory to study p-semisimple algebras.

Theorem 6. Any subalgebra of a p-semisimple algebra is an ideal.

Proof. Let S be a subalgebra of a p-semisimple algebra X. By Theorem 5 and the fact that S is a subalgebra, we obtain that $x, y \in S$ implies $x - y \in S$. This

means that $\langle S, +, 0 \rangle$ is a subgroup of $\langle X, *, 0 \rangle$. Consequently, if $x * y, y \in S$, i. e., $x - y, y \in S$, then $x = (x - y) + y \in S$. Hence $\langle S, *, 0 \rangle$ is an ideal of X.

By Theorem 6, we know that any subalgebra of a p-semisimple algebra is also p-semisimple. The order of a subalgebra of a finite BCI-algebra X need not do a divisor of the order of X, but for a p-semisimple algebra, we have the following

Theorem 7. If n is the order of a finite p-semisimple algebra X, then the order of its subalgebra is a divisor of n.

This result is easily obtained from the order relation of adjoint groups.

The notion of a quasi-commutative *BCK*-algebra was introduced by H. Yutani [7]. This notion is also defined in a *BCI*-algebra by a similar way.

Theorem 8. p-semisimple algebra is a quasi-commutative algebra of type (0, 1; 0, 0).

Proof. By Theorem 5, we have

$$Q_{0,1}(x,y) = (x*(x*y))*(y*x) = (x-(x-y))-(y-x) = x,$$

$$Q_{0,0}(y,x) = y*(y*x) = y-(y-x) = x.$$

Therefore, $Q_{0,1}(x, y) = Q_{0,0}(y, x)$, that is, the algebra is a quasi-commutative algebra of type (0, 1; 0, 0).

Remark 2. It is easy to verify that any p-semisimple algebra is also of type (0, 2; 1, 0), but it may not of type (1, 0; 0, 0). For instance, in Example 1, consider 1 and 2, then

$$(1-(1-2))-(1-2)=3$$
, $1-(2-1)=1$.

Consequently, this implies $Q_{1,0}(1,2) \neq Q_{0,0}(2,1)$. This remark partly solve the question which K. Iséki posed in [5] that whether exist quasi-commutative algebras of higher type or not.

The fundamental theorem of Abelian groups implies the following

Theorem 9. Let $n = p_1^{k_1} \cdots p_r^{k_r}$ be the order of a finite *p*-semisimple algebra X, then X is isomorphic to a product of finite number of *p*-semisimple algebras of orders $p_i^{k_i}$.

References

- [1] Y. Imai and K. Iséki: On axiom system of propositional calculi XIV, Proc, Japan Acad. 42 (1966), 19 22.
- [2] K. Iseki: An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- [3] K. Iséki: On BCI-algebras, Math. Sem. Notes, 8 (1980), 125 130.
- [4] K. Iséki: On the existence of quasi-commutative BCI-algebras, Math. Sem. Notes, 8 (1980), 181-186.
- [5] K. Iséki: A variety of BCI-algebras, Math. Sem. Notes, 8 (1980), 225 226.
- [6] K. Iséki: A problem on BCI-algebras, Math. Sem. Notes, 8 (1980), 235 236.
- [7] H. Yutani: Quasi-commutative BCK-algebras and congruence relations, Math, Sem. Notes, 5 (1977), 469 480.