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Abstract
Xi, C., On representation types of g-Schur algebras, Journal of Pure and Applied Algebra 84
(1993) 73-84.

A sufficient condition for a g-Schur algebra to have finitely many finitely generated non-
isomorphic indecomposable modules is provided. Moreover, if the condition is satisfied, then
the g-Schur algebra is quadratic and its structure can be determined. It is also proved that if a
Schur algebra is representation infinite then it is wild.

1. Introduction

Let k be an algebraically closed field of arbitrary characteristic, and let n,r be
positive integers. We take an n-dimensional vector space E over k with a basis
{e,,...,e,}, and denote by E®" the r-fold tensor product EQ, E®, - ®, E.
Of course, E®” has a k-basis

{e,® Qe |l=i=nforall 1=j=r}.

The symmetric group G(r) of degree r acts on E®" by permutation in the
following way:

(e, ®- Qe )=e @ -RQe

La(1) ingry’

where 7 is an element of G(r).
This action can be extended by linearity to the group algebra kG(r) of G(r) and
we then have a left kG(r)-module E®. We recall that the endomorphism ring
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End, ., (E ®7) is said to be a Schur algebra and denoted by S, (n, r), or simply by
S(n, r) (see [10]). Recently, Dipper and James introduced the important notion of
g-Schur algebras which are generalizations of Schur algebras {[7]. For the defini-
tion we follow Jie Du quoted in [4].

Let q'"> € k be an invertible element. For the Coxeter group G(r), we will
consider the corresponding Hecke algebra H,(r) which has distinguished basis
{T, | we& G(r)} satisfying the relations

T T — ws lf I(WS) > l(w) 5
s (g -1)T, + +qT,, otherwise.

Here w,s € G(r) with s = (¢, t + 1) a simple reflection, and / is the usual length
function on G(r).

Using the left permutation action of G(r) on E®, one considers the action of
the Hecke algebra H,(r) on E ®” which is defined by setting for s = (¢, 1+ 1) and
e=e, & Qe

—q'"%se it i, <i,,,
Tsez —e if i,:i,+1 s
(g—1e—q""%se if >0, .

The g-Schur algebra S, (n, r, q) is defined as the corresponding centralizer ring:

Si(n,r, q) = Enqu(r)(E®,) .
Observe that if ¢''* =1, clearly Sy(n, r, q) is isomorphic to the Schur algebra
Si(n, r) described above.

The objective of this paper is to determine the representation type of g-Schur
algebras. Recall that a finite-dimensional k-algebra A is said to be representation
finite provided there are only finitely many isomorphism classes of finitely
generated indecomposable modules. Otherwise, we say that the algebra A is
representation infinite. The algebra is said to be representation wild (or wild)
provided there is a full and exact subcategory of the category of all finitely
generated (left) A-modules which is equivalent to the category of all finitely
generated k(x, y)-modules, where k(x, y) is the free associative k-algebra with
generators x and y. The algebra is said to be representation tame if it is neither
representation finite, nor representation wild.

If H,(r) is semisimple, then S,(n, r, q) is a semisimple algebra and it is, of
course, representation finite. Now we assume that H ,(r) is not semisimple. In [5]
it was shown that for 07 q € k, the g-Schur algebra S, (n, r, g) is not semisimple
if and only if either ¢ = 1 and the characteristic of k is not bigger than ror g # 1 is
an mth root of the unity (2=<m <r). Hence our consideration in this paper is
concentrated only on these two cases.

Our main results are the following:
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1.1. Theorem. Let k be an algebraically closed field of prime characteristic p >0
and n=r. Then the Schur algebra S,(n, r) is representation finite if and only if
r <2p. Moreover, in this case, the Schur algebra is quadratic (i.e., the relations for
the algebra are generated by elements of degree 2).

Of course, this result is also a statement on polynomial representations of the
general linear group GL, (k), it gives also information on kG(n):

Corollary. If n=p+i with 0=i<p, then kG(n) has only p(i) blocks with
non-zero radicals, where p(i) denotes the number of all partitions of i.

1.2. Theorem. If the Schur algebra S,(n, r)(r < n) is representation infinite, then it
is wild.

1.3. Theorem. Let k be an algebraically closed field of arbitrary characteristic and
q # 1 an m'th root of the unity (2 < m' < r). Suppose that m is the minimal number
such that 1+ q+ -+ q" " is equal to zero. If r <2m, then the q-Schur algebra
S, (n, r, q) with r < n is representation finite and quadratic.

Note that if the g-Schur algebra S, (n, r, g) with r < n is representation finite,
then one can easily write out the quiver of the basic algebra of S, (n, r, g) by using
a result in [17].

Throughout this article, all algebras are finite-dimensional over an algebraically
closed field and all modules are finitely generated left modules. Let A be an
algebra. We denote by A-mod the category of all A-modules. For a module M we
denote by Soc(M), Top(M) and rad(M) the socle, the top and the radical of M,
respectively.

2. Representation finite g-Schur algebras

In this section we shall determine when a given g-Schur algebra S, (n, r, g) with
n=r is representation finite, where k is an algebraically closed field. Since the
algebra S,(n, r, ¢)(n=r) is Morita equivalent to S (r,r, q), it is enough to
consider the Schur algebra S, (n,n, q) for n a positive integer.

Throughout this section we fix a positive integer n and assume that 0# g € k
and that there is a minimal number m < n such that [m] =1+qg+- -+ g" s
equal to zero.

Let us first recall some definitions and known facts.

2.1. Definition [13]. Let m =<n be positive integers and A =(A;,...,A,) be a
partition of n (i.e., \, =A,=---=1, =0 and )} A, = n, denoted by A{-n). If A
does not contain m parts which are equal, then A is called m-regular. Otherwise A
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is called m-singular. The m-core X of A is obtained by removing all m-rims in the
Young diagram [A] of A.

From the definition we have the following lemma.

2.2. Lemma. Let 1=i<m be a natural number and n=m + i. Suppose A} i.
Then:

(1) The m-singular partitions of n are of the form (A, 1™), where A is a partition
of i.

@) If A=A, A) iy then w= (A +m, A,,...,A) is an m-regular
partition of n. [

2.3. It is well known that the simple H (n)-modules are indexed by m-regular
partitions and the simple S, (n, n, g)-modules are indexed by all partitions of .
The proofs of the following results one can find in [6], [9] and [13].

Lemma (Nakayama conjecture). (1) Let A, be m-regular partitions of n. Then
two simple H (n)-modules D* and D* corresponding to A and u are in the same
block of H (n) if and only if the m-cores of A and p coincide.

(2) Let /\ sk be partitions of n. The two simple S,(n, n, q)-modules F, and F,
corresponding to A and p are in the same block of S,(n, n, q) if and only if the
m-cores of A and w coincide. O

2.4. If k has prime characteristic p, then, by the classical result that a finite group
is representation finite if and only if its p-Sylow groups are cyclic, the group
algebra kG(n) is representation finite if and only if n<2p. Since H ,(n)=
eS,(n, n, g)e for an idempotent e € S,(n, n, q) (cf. [10, 6.1d] and [7, 2. 12]) and
the functor S,(n, n, q)e®, Lo~ ,(n)-mod— S, (n, n, g)-mod is full and faith-
ful, it follows that if S, (n, n) is representation finite then n <2p. We shall show
that this condition is also sufficient for S,(n, n) being representation finite.

2.5. Lemma ([7], [9] and [12]). Let {I*| A}~ n} be a complete set of indecompos-
able Young modules. Then the basic algebra of S,(n,n, q) is isomorphic to

(D, 1. O

Note that H (r) is symmetric and S,(n,r,q) is of the form
Enqu(r)(Hq(,)Hq(r)EBM), where M is a module over H, (r) (cf. [5,7]).

2.6. We recall that an ideal J of an algebra A is said to be hereditary provided (1)
J?=1J, (2)JNJ =0, where N stands for the Jacobson radical of A, and (3) the left
A-module J is projective. The algebra A is said to be quasi-hereditary if there
exists a finite chain
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0=J,CJ,CL,C---CJ=A

!

of ideals of A such that J,/J, | is a heredity ideal of A/J,_, for i€ {1,..., t}.

Lemma. Let A be a connected basic symmetric algebra. Assume that there is an
indecomposable module M such that E:=End,(,AD M) is quasi-hereditary.
Then E is representation finite.

Proof. By [17], E is isomorphic to a factor algebra of the trivial extension T(B) of
a serial algebra B with square-zero radical and finite global dimension. Thus with
T(B) also E is representation finite. [

2.7. Theorem. Let k be an algebraically closed field and n a positive integer. Let
0+ g € k of finite multiplicative order and suppose that char(k)=p>0if g =1.
Let m be the order of q if g#1 and p otherwise. If n<2m, then the q-Schur
algebra S,(n, n, q) is representation finite.

Note that m is the minimal natural number such that 1+ g +---+¢" ' =0
and if g # 1, then g is a primitive mth root of unity.

Proof. In [7], it was shown that the Hecke algebra H ,(n) is semisimple if n < m
(m as above). Thus the g-Schur algebra S, (n, n, q), as the endomorphism algebra
of a semisimple H ,(n)-module, is representation finite. So we can always assume

that m = n <2m. Let n=m + i with 0=i<m,andlet A',... A'be alist of all
partitions of i. Then u’/ 1= (A +m, /\é, <. A)is an m- regular partition of n for
each j e {1, , 1} by Lemma 2.2. Let B be the block of H, (n) which contains

the simple module D" corresponding to the partition u’.

We want to show that the blocks B, contain besides the projective only one
more Young module and that the other blocks are all semisimple. In fact, the
Young module I* is distinguished by the property that it contains the Specht
module $* with multiplicity one and other Specht module S* only for partitions u
dominated by A’, where A’ is the con]ugate partition to A. Being indecomposable
I" has to be in the same block as S*. So the claim on B; follows by direct
inspection. Since there are precisely / m-singular partitions of n, and those are
already distributed into the / blocks B,. Consequently the other blocks can only
contain projective Young modules. Those blocks contain only one Specht module
as well (whose weight is an m-core) which is therefore the only Specht module
which is a subfactor of the Young modules in that block. Since Young modules
are in the Grothendieck group equivalent to a linear combination of Specht
modules (this is true for the modules M"* hence inductively for Young modules)
and one Specht module comes up with exact multiplicity one we conclude that in
those blocks the Specht module equals every Young module in it. Consequently
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there is only one Young module which is equal to the unique Specht module.
Hence the Specht module is in particular projective and the decomposition matrix
of that block is the 1 x 1-matrix (1). We conclude that the block must be
semisimple. Since the g-Schur algebra S, (n, n, q) is quasi-hereditary (see [4]), we
can apply Lemma 2.6 to the block B;. Thus the g-Schur algebra S, (n, n, q) is
representation finite. [

2.8. Corollary. The Hecke algebra H ,(n) has precisely as many blocks with
non-zero radicals as there are partitions of i, where n = m + i and 0= i < m. (This
holds even for char(k)=0). O

Recall that an algebra A is called quadratic if in the quiver of the basic
algebra of A all relations are of degree 2. Theorem 2.8 in [17] says that if
there is an indecomposable module M over a symmetric algebra A such that
E:=End,(,A®D M) is quasi-hereditary, then the algebra E is quadratic. The
above proof of Theorem 2.7 shows that the non-trivial blocks of S, (n, n, ¢) are of
the form End(B, ® I1"), where I" is a non-projective Young module. This shows in
particular the following theorem.

2.9. Theorem. Let k, g, m, n be as in Theorem 2.7. If n <2m, then the g-Schur
algebra S,(n, n, q) is quadratic. O

2.10. Remark. A quadratic algebra A is said to be formal if the Yoneda algebra
Ext*(A/rad(A)) is isomorphic to the Priddy dual A’ of A [1]. In general, a Schur
algebra may not be a formal algebra in the above sense of [1]. However, if a
Schur algebra S(n, n) is representation finite, then it is a formal algebra by the
description of S(n, n) in [17] and Theorem 1.1 in [1].

3. Quivers of Schur algebras S5,(4,4) and S, (5,5)

In this section we want to work out the quivers of S,(4,4) and S, (5, 5) in case
the field k has characteristic 2. Using these we can decide in the next section the
representation type of S(n, n) for n =2p. Our method in this section is based on
the determination of indecomposable Young modules.

We begin with the following useful lemma.

3.1. Lemma. Let A be an algebra and M, . .., M, be pairwise non-isomorphic
indecomposable modules. Let € =add{M,,..., M, } with m<n. Suppose
EndA(Ga:':lM,.) is quasi-hereditary and dimIrr (M, M) =1 (see [16]). If 0
fE€Ir (M, M)), then there is a module M; with j > m and two submodules U and

L e SN N i e e
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V of M; with UDYV such that the image Im(f) of f is isomorphic to U/V. In
particular, if dim M; = dim Im( f), then M, =Im( f).

Proof. Notice that if the quiver of an algebra has a loop then the algebra cannot
be quasi-hereditary. So the homomorphism f factors through a module X =

X,® X,, where X, € € and X,=D_, X, with X,,€ (M, .,.... M,):
M,—L M,
fis le\\ /[Sjr &l
X, DX,
and f,g, cannot factor through a module in add 6. Let f,=(f,,,..., f,,) and
& = (&, - - - &) Since f,g, #0, there is one j such that the composition £ 85

is a non-zero map in Irr,(M,, M,). We may assume that X, =M and f=f,g,.
Consider the following canonical diagram:

M, ! M,
l \f/ 82 “
Im( f,,) M, M,

Since Im(f)=1Im(ug,), one obtains a surjective map p&; - Im( ;) — Im( f).
Put U :=1Im(f,) and V :=Ker(ug,;). Then the lemma follows. [

From now on, we assume in this section that the field considered is of
characteristic 2.

3.2. Lemma [8]. The basic algebra of kG(4) is given by the following quiver with
relations:

B

¢ =an=nB=pa=0,
7’ = Bea , eafl = afBe . |

In the following we denote by I* the indecomposable Young module corre-
sponding to the partition A}~ n. Following [11] we denote by M* the kG(n)-
module induced from the trivial module on the Young subgroup S,.

3.3. Lemma. (1) I =D is a simple kG(4)-module.
(2) 1Y is a serial module with composition factors D, D®" and D,
reading from the top.
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(3) I®? has Top(I*?)=Soc(I*?)= DY ® D", Moreover, it holds that
rad’(1*?) = 0.

Proof. (1) and (2) follow from [11, 17.1]. By [12], M*? and 1% have the same
dimension over k and I*? is a submodule of M*?. Thus we have M*? = 12,
From dim Hom(D®, M®?) 5 0 dim Hom(D*"", M(2 ) and the self-duality of
M©? the statement (3) follows. O

3.4. Lemma. (1) IV is a string module (see [3] for a definition, note that a string
module is a module of first kind in the term of [15]).
(2) The module 1> is a string module corresponding to the string an”'B.

Proof. Let P(i) be the projective modules corresponding to the vertex i. Note
that P(1) = 1" and P(2) = I*'") are Young modules. Let M, = P(1), M, = P(2),
M, =19 M,=I1°Y, M;=1%" and €=add{M,, M,}. Then dimIrr,(M,,
M,)=1. Take O#fEIrr%(Ml, M,). Then by Lemma 3.1, f factors over some
module M, with j€ {3,4,5}. By Lemma 3.3, we must have j=4. Then M, =
Im( f), since dim M, = dim Im( f). This shows that M, = IV = Im(f) = M(aB),
where M(aB) stands for the string module corresponding to af.

(2) Note that E:=End(®_, M,) is quasi-hereditary. Let € =add{M,, M,}.
Then dim Irr,(M,, M,) = 1. Let 0# f be a map in Irr,(M,, M,). Then Im(f)=
M(n) and M(n) is a subquotient module of M, (that is, there are submodules
U DV of M, such that M(n) = U/V'). This implies together with Lemma 3.3 that
M is isomorphic to M(an™'B) or M, is a band module corresponding to an”'B
(i.e., a module of the second kind [15]). Since E is quasi-hereditary, a computa-
tion of the quiver of E shows that the latter is impossible. Thus M=
M(an~'B). O

3.5. Proposition. The basic algebra of S,(4,4) is given by the following quiver
with relations:

X/

a
3o <——<‘

Caw,=ag, =yy, =B B=0,0=¢cx,=0,
o=B&, BB =ee, oy =¢B,

aafy =g, ypaa=oe.

Proof. By Lemmas 3.3 and 3.4, we know all the structures of the modules / A
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A |- 4. Note that / @1 and 1Y are projective and their structures are well known.
Let i correspond to M, defined in the proof of Lemma 3.4. Using Lemma 2.5 and
making a computation of the quiver of End(® , ,I "), one gets the above quiver
with the relations displayed. [

Now we turn to working out the quiver of S,(5, 5).

3.6. Lemma [2]. The basic algebra of kG(5) is given by the following quiver with

relations:
£ C]: é (;2 rQ n
B

n'=Ba=¢=0,

eaBeaf = aBeafe . O

3.7. Lemma. (1) I = D" is a simple module with dim D =1.

(2) IV = DV is a simple module.

(3) I°? is a serial module with composition factors, reading from the top,
isomorphic to D, D and D

(4) 1% is isomorphic to M(aBeaf).

(5) I°? is isomorphic to M(aB).

Proof. (1) and (2) are clear from [11].

(3) Since dim Hom(D®, 1®?)#0 and I®? is self-dual, we know that
Top(I®?)=Soc(I°*)2 D®. By [11, 12.2], the Specht module S is in-
decomposable with Top(S®*)= D2, It follows from $°% C 1%? that 17
must be a serial module with composition factors DY D®? and DV, reading
from the top.

(4) Put M, =P(1), M,=PQ2), My=1%, M,=1"", M,=1"? and M, =
1**" Note that P(1)= 1 and P(2)= 1° are Young modules. Then
E:=End(®M;) is quasi-hereditary. Let € =add{M,,M,}. Then
dim Irr,(M,, M,) =1. We take a map 0+ f € lrr,(M,, M,). Then f factors over
M, and Im(f)=M,, because dim M;=dimIm(f). Thus M,=Im(f)=
M(aBeaB).

(5) Suppose M, is a module of the second kind. Then we can calculate the
quiver of E and find that in this case the algebra E is not quasi-hereditary. This
contradiction means M. must be a string module isomorphic to M(af). O

3.8. Proposition. The basic algebra of S,(5,5) is given by the following quiver
with relations:
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a B Y o n
o o o o o oe—=—=o
] B " o £

aa, = BB, =yy =oo=n=0,
aByo = oy, B,a, =0, vyoo,y, = BB,
Byoo,=aaBy , v,Baa=00yB . U

3.9. Remark. Propositions 3.5 and 3.8 show that in general a Schur algebra may
not be quadratic.

4. Representation infinite Schur algebras

In this section we shall discuss representation infinite Schur algebras and
demonstrate that they are of representation wild type. Note that it is known that
S,(n, n) is of representation infinite type if n =2p (p = char(k) = m).

4.1. Lemma. Let Q be the following quiver:

a B Y o
le] o] [e] o] o]

ay B " LAl

We consider the following two groups of relations:
(1) aa;=pB =B B=yy=00=0,
yo =0y, =aafy =y B aa=0.

() aa;,=BB =y, =o00=BB=0,
afyo = o,y B, a, = yoo,y, = Byoo, = a,afy =0,

Y Biaya=o00y,B,=0.

Let A, be the algebra given by the quiver with relations I,. Then A, is wild for
i=1,2.

Proof. One can easily construct a covering (Q, I) of (Q, I) as follows:

i A 5 A3 5 b 7 b




q-Schur algebras 83

a B Y o
@) By Q! !
a B Y a
< o} o =}
x By ! Iy
a B Y o
o
&1 B1 " 7
a B Y o

<

where the relations I~, correspond to /,. We can find a convex subquiver of the
above covering which looks like the following

with no relations. This subquiver is wild, and by [14], the algebra A, is wild. [J

4.2. Theorem. Let k be an algebraically closed field with characteristic p > 0. If
the Schur algebra S,(n, n) is representation infinite, then it is wild.

Proof. Let C, denote the cyclic group of order 2. Since C, x C, x C, C G(n) for
n =6, the algebra kG(n) is wild for n=6. By 2.4, the Schur algebra S, (n, n) is
wild for n =6. Now let n be a positive number smaller than 6. Since we assume
that S,(n, n) is representation infinite, it holds that p =2 by Theorem 2.7. This
yields that we have to consider the Schur algebras S,(4,4) and S,(5,5) in case
p =2. It is clear that the category of all finitely generated S, (4, 4)-modules has a
full subcategory which is equivalent to the module category of the algebra A,
given in Lemma 4.1 if one requires in Proposition 3.5 that e = ¢, =0. Thus
S,(4,4) is wild. In case p =2 and n =4 we observe that there exists a surjective
homomorphism from §,(5, 5) onto the algebra A, given in Lemma 4.1. Hence the
algebra S,(5,5) is wild too. O
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