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COMMUNICATIONS IN ALGEBRA, 27(8), 3719-3725 (1999) 

Q U A D R A T I C  FORMS F O R  A-GOOD MODULE 

C A T E G O R I E S  OF QUASI -HEREDITARY  A L G E B R A S  

Department of Mathematics, Beijing n'ormal University. 
100875 Beijing, China 

Let A be a finite-dimensional algebra over an algebraically closed field 
k .  We consider in this note only finite-dimensional left A-modules. Given 
a class O of .4-modules, we denote by F ( 0 )  the class of all A-modules A/l 
which have a filtration M = Mu 2 MI > . . . 3 - M, = 0 with M,-, ,'M, E O 
for all i = 1:. . . : n .  The modules in 3(0)  are called O-good modules. 

Let E ( 1 ) .  . . . , Etn )  be a complete list of non-isomorphic simple A-modules, 
note that  here we fix a particular ordering for labelling the simple A-modules. 
For any 2, let P ( i j  be the projective cover of E ( i )  and A(i j  the maximal fac- 
tor module of P ( i )  in F ( E ( l ) ,  . . . , E ( i ) )  which is called a standard module. 
Dually, we have the costandard module V( i )  which is the maximal submod- 
ule of the injective hull Q(i )  of E ( i )  and lies in 3 ( E ( 1 ) ,  . . . , E(i)j. We denote 
by A  t,he class of all standard modules A(i ) ,  1  5 i  5 n .  

Recall that an algebra A with an order E of the simple modules is called 
quasi-hereditary if End(A( i ) )  Z k for any 1 < i  5 n and the module A A  t 
3 ( A ) .  Quasi-hereditary algebras are introduced by Cline, Parshall and Scott, 
in their investigation of representations of complex L,ie algebras and algebraic 
groups. 

It is proved by Dlab and Ringel in [DR] that an algebra is hereditary if 
and only if it is quasi-hereditary algebra for any order of the simple modules. 
In this note we are going t o  consider hereditary algebras as quasi-hereditary 
algebras and mainly interested in the subcategory F( A ) :  especially, when i t  

1991 Mathematzcs Subject Classificatzon. Primary 16E10, 16G10. Secondary 15A63, 
15A48. 
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3720 LIU AND XI 

is finite (i.e. there are only finitely many indecomposable modules'in F ( 1 ) ) .  
We introduce a quadratic form for arbitrary quasi-hereditary algebras a n d  
prove t h a t  for a hereditary algebra the subcategory 3 ( A )  is finite if a n d  
only if t h e  quadratic form is weakly positive. This  result on F ( 1 )  has the  
similarity to that  for t h e  whole module category (see IBGP], for esample) .  

Throughout the  note, we assume t h a t  k  denotes a n  algebraically closed 
field and  tha t  an algebra means always a finite dimensional k-algebra. For 
a module .II over a k-algebra A ,  we denote by &,Id the usual dirnens~on 
verctor of I1.1. All notion and  n o t a t ~ o n  appeared In the  note are  s tandard.  

Z.THE QUADRATIC  F O R M S  A N D  MAIN RESULTS 

Let -4 be  a quasi-hereditary algebra with s tandard modules A = { 1 ( 1 ) ,  . . . . 
A ( n ) } .  In  this section we shall define a quadratic form associated with the 
s tandard modules and  use the  quadratic form to investigate the  subcategory 
F ( A ) .  

Yote tha t  for a quasi-hereditary algebra, we always have 

(1) H o m A ( A ( z ) ,  l ( j ) )  = 0 for z > j, 
( 2 )  Ext14(1( i ) :Ai j ) )  = 0 for i 2 j and  t >_ 1, 

(33 F i l )  is closed under direct summands. 

Definition 1. For a q u a s l - h e r e d ~ t a r ~  aigebra A n l t h  s tandard module> 
1 we define a n  integral bllinear form b ,  4 3 ,  ZTL k 2" - Z by 

for all z = ( x l ,  .... ZTL) ,?J  = (y1, .... y r L )  5 zr l .  
We define a n  intesral quadratic form y 1 ~ , 3 , ( s )  by 

for all x 6 2" 

Recall tha t  an integral quadratic form q Z" - -i A 1s called posltlre 
provlded q ( x )  > 0 for all 0 = 7: E Zn, and weakly p o s ~ t ~ v e  if q j x )  , 0 for all 
x > 0(z e . ,  x 7 0 and x, 2 0 for z = 1, . . . n) .  Finally, a n  element x g 2'' 
satisfying q ( x )  = 1 is called a root of q. 

For a module M in  3 j A )  let us denote by [M : I] the  vector ([ll : 
A ( 1 ) ] ,  . . .  ,[?/I : A(n)] )  E Zn, where [!If : L(i)j is the  number of l ( i j  occur- 
ring as composition factors of a &filtration. 

T h e  main results of this note  are two theorems. 

T h e o r e m  A.  L e t  -4 be  a  h e r e d z t a r y  a lgebra  w z t h  s t a n d a r d  m o d u l e s  1 If 
q, A A ,  zs w e a k l y  posz t zve ,  t h e n  F i A )  1s j i n z t e ,  a n d  m o r e o v e r ,  t h e  n u m b e r  U F  

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
L
I
S
 
T
s
i
n
g
h
u
a
]
 
A
t
:
 
0
9
:
3
6
 
2
0
 
N
o
v
e
m
b
e
r
 
2
0
0
8



A-GOOD MODULE CATEGORIES 3721 

i s o m o r p h i c  c l a s s e s  o f  i n d e c o m p o s a b l e  m o d u l e s  i n  / ( A )  i s  j u s t  t h e  n u m b e r  o j  
p o s i t i v e  r o o t s  o f  q ( ' 4 , ~ ) .  

To prove t h e  above theorem, we need some preparations. 

Lemma 2.  If -4 z s  g u a s z - h e r e d z t a r y  a lgebra .  t h e n  qi Al( , -U A j = 
4(&,\I) f o r  a l l  -11 E / ( A ) ,  & h e r e  y~ i s  t h e  E u l e r  f o r m  of A z n t r o d u c e d  

b y  R a n g e 1  zn [Rll. 

Proof.  Since &.U = C~zl[A\l A ( z j ] & A \ ~ j ,  tve obtain 

Here we use the  property that  E x t t ( A l 1 ) .  Ail))  = 0 for 3 > z and t 2 I . )  

The  following lemma is taken from D R ] .  

Lemma 3.  L e t  A be a  q u a s i - h e r e d i t a r y  a lgebra  f o r  w h i c h  t h e  i n j e c t z c e  
d i m e n s i o n  of  e a c h  c o s t a n d a r d  m o d u l e  i s  a t  m o s t  1 .  T h e n  F ( A )  1s c l o s e d  
u n d e r  s u b m o d u l e s  . 

Lernina 4 .  L e t  =I be a  h e r e d z t a r y  a lgebra  I f  q (x  is  w e a k l y  p o b l t l z e  
t h e n  End(- \[ )  2 k f o r  e v e r y  ~ n d e c o m p o s a b l e  m o d u l e  ALI /I E ( A i  

Proof.  The  method  of the  proof 1s analog to H, p 164 1 Le t  41 F ( A )  
be  a counterexample of m n i m a l  d~mension and f a non-zero nilpotent en- 
d o m o r p h ~ s m  of A1 whose image 1 has rmnlmal dimension Thus I is mde- 
composable and  E n d ( I )  2 k slnce I 6  ?(A) by Lemma 3 Thls  lrnplies t h a t  
f 2  = 0 Let K=ker ( f )=$rLIK,  wlth K ,  ~ndecomposable,  then I Ii Let 

T,  K - K, be the  canonical projection, we consider the  pushout dlagram 

Since 121 1s ~ndecomposable.  we know that  the lower exact sequence 1s not 
s p l ~ t  a n d  therefore E x t l ( I ,  K j )  7 0 for every 1 .  

Take a non-zero projection p j  1 - K,. Smce I has m n ~ m a l  dimension. 
pl 1s lnjectlve. Let O=Cok(p, j ,  the cokernel of p : .  If we apply H o m i  -. Ii?) 

1'1 
to  0 - I - li, - Q 0, t h e n  we get E r ~ t l j K ~ , K ~ )  = 0 slnce 
E x t 2 ( - ,  K j )  = 0. Note that  dim K ,  < &m 1M and I<, 5 / ( A ) .  Hence 
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LIU AND XI 

dim E n d ( K , )  = 1 ,  and  by Lemma 2, 

This is a contradiction. 

Proof of Theorem A. We use t h e  well-known Ti t s  argument .  Let 
d be given by the quiver Q = (Qo,Ol) and  9 , F ( h )  he indecompos- 
able with &S = s.  Choosing a basis for 9 we may identify S x i t h  

(-Y'a,))ust?l E n, 2 : : ~ , , , G Q l  k'. " ' v .  This product is denoted by VI 2 I .  It  

is a n  affine variety. The affine group G(;) := nZeQo CL,. j ki acts on \-I Z )  

in  the followinq Kay: If _Y = i-Y(a)), ,Ec.?l r V(=) and  y = (gl . ) , .E(i , ,  5 C:iz 1 .  

then Sg = (g.,,.TL'[cr)g;') s x  - 
l l ; - ' / ; r (> l '  

Two modules S. I' are isomorphic :I m d  

only if they lie in tlle same G(z)-orbit in  1 ' (3) .  Moreover, tlle stahiiizer ( 3 '  

S is X U ~ . ~ ( . Y ~ .  Denote by G ( = ) S  := {S" g 5 G(z)) the orbit of S i l i  1.1 r : .  

Then ,  as in  [KR:, one has 

Since 1 = q, , l  A , ( [ S  : Ij) = y . ~ ( b S ) ,  one gets dimV(;  I = d ? r n G ( = j S  
because d,im E n d i S )  = 1 by Lemma 4. It follows t h a t  the  G i ~ i -  orbit of 
S in V ( z )  is Zariski-open and dense. Therefore, it coincides with the orbit 
of any other indecomposable module in  V ( i j ,  a n d  the  map  V - [V : ij 
provides a n  inject.ive map into the set of positive roots of q , ~ . i .  Since a 
weakly positive quadratic form has only finitely many  positive roots. the  
first par t  of Theorem X is proved. 

To prove t h e  second part of Theorem A ,  it suffices to  show tha t  i o ~  an! 
pos i t~ve  root x of q(.A there 1s an ~ndecomposable module 1' in  F( l I such 
tha t  [V -1 = z T h ~ s   follow^ from the followng observntlon 

Lemma 5. L e t  A be a  h e r e d ~ t a r y  a lgebra ,  a n d  a s s u m e  t h a t  q i  23 

w e a k l y  p o s i t i t ~ e .  L e t  x be a  p o s i t i v e  r o o t  o f  q ( , a , ~ ) .  If w e  t a k e  a  m o d u l e  V cn 

3(-1\1 with [V : 3.1 = x s u c h  t h a t  t h e  d i m e n s i o n  o f  EndjV)  i s  m i n i m a l ,  t h e n  
thi.9 m o d u l e  i s  i n d e c o m p o s a b l e .  

For the  proof of this lemma we need the following result due t o  Ringel 
[Rl]. 

Lemma 6. L e t  B be a n  a lgebra  a n d  0 - _Y1 - 9 - S" - 0 a  
n o n - a p l z t  e r a c t  s e q u e n c e  zn B - m o d  T h e n  d ~ m  E n d i S )  < c l i rn  End[-Y' 3 
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A-GOOD MODULE CATEGORIES 3723 

Now we prove Lemma 5 Suppose we have a decomposition V = 1; 
of V into lndecomposable modules wlth s 2 2. Then  V, 5 F ( A )  a n d  
End(V,) Z k by Lemma 4. Note tha t  we also have Ez t l (VL ,  'C:) = 0 In  
the  following we show t h a t  Ezt l (V , ,  x) = 0 for all 2 . 1  

Y 
Suppose we have Estl('C;, V?) = 0. Let 0 - V? -5 TIT/ -+ V1 - 0 be 

a non-split exact sequence. Then  with V, 5 J(S)  also ! I r  belongs t o  FI l) 
It  is very easy to  verify t h a t  the  short exact sequence 

is not split. P u t  V'  = W $ $ 3 > 2  V J l  then l[V1 : A] = [V? : 1 : - [ V 1 3 @ 3  >? Vv J . ' 
A] = $.;=lVj  : A! = [V : 3.1. O n  the other hand: according t o  Lemma 6 .  
we have dim End(V1)  < dim End(V) .  This cont,radicts the  choice of' 1- and  
shows that  Ez t l (V l ,  V?) = 0 .  

Since s ) 2, one has dim End(V)  = d i m H o m ~ + ~ z , ~ , ~ ; , l ~ ~ , )  2 2 .  
However. from 

one obtains a contradiction. Thus  V must be indecomposable. This finishes 
the proof of the lemma and  also the  proof of Theorem -1. 

In the following we shall discuss the converse of Theorem A .  

Lemma 7 [Rl]. Let B b e  an algebra and S (1 module ~ntz~fyzng E n d ( S )  2 

k ,  E z t l ( S . - Y )  r 0 and E z t 2 ( X . X )  = 0 Then F(S) 1s znfinzte 

Lemma 8. Suppose that A 1s a hereditary algebra If F(L)  I S  f i -  
nzte, then for every ~ndecomposable module E F ( A ) ,  there holds End(,LI) S 

k. 

Proof. Let V E 3 ( A )  be  a counterexample of mimmal dimension a n d  
f a non-zero endomorphism of V IVe set I = I m ( f ) ,  the  image of J ,  an11 
K = K e r ( f )  = $ K , ,  where K ,  are indecomposable. As In the proof ot 
Lemma 4 we get a n  ~ndecomposable module K ,  E 3 i A )  with E n d ( K , )  2 k 
and E s t l ( K l ,  h',) 0 Smce proj dim K l  5 1 by assumpt;on, we know i rom 
Lemma 7 tha t  3 ( A )  is infinite X contradiction 

Now we show the  converse of Theorem A .  

Theorem B. Let A be a hereditary algebra. If ? ( A )  is finzte, then qiA, l l  
is w e a k l y  positive. 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
A
L
I
S
 
T
s
i
n
g
h
u
a
]
 
A
t
:
 
0
9
:
3
6
 
2
0
 
N
o
v
e
m
b
e
r
 
2
0
0
8



3724 LIU AND XI 

Proof. Suppose tha t  there 1s an element 0 < x 5 Y r L  buch t h a t  q ! ~  1, (x  i i 
0 Let V be  a module In F ( A )  w t h  L V  A ]  = x such tha t  dnm End(L7)  is 
nunimal. Then  we can prove that  V is indecomposable. By Lemma 8 one 
has 

Thus Extl('C': V )  = 0. By Lemma 7 we see that  F ( V )  is infinite and  therefore 
?(A) is infinite. This contradicts our assumption and shows t h a t  q , . ~ , l ,  is 
weakly positive. Thus the proof is finished. 

In the  following we give several examples to  explain our  results 

Example . (1) Let d be  a hereditary algebra given by the follovan; qunver 

with A = { l ( i )  I i = 1.. . . . 7 ) .  Then =I is representation wild a n d  y.4 is not 
7 . 7 1 7 7  

weakly positive. Since q(y)  = y; -yl t y g  - y; - y f  - Y ? Y ~  - 21.y.; - YAY; 
is positive and  q ! ~ , ~ , j x j  = I)\ x?  + z j x ?  - x6z ;  - x l z ?  - L C ~ S A  - ~ 3 x 1  - ,z1.i7: 

7 7 = 4 ( z )  - x; - x; - xsx: - x,;x;, we see that  q , .A,A,(z)  is weakly positive ( b u t  
not positive). Hence ? (A)  is finite by Theorem A .  

(2) Let 1 be the  rluslander algebra of k[T]j < T">. Then  A ix given by 
the following quiver 

with relations B c a :  = 0 and O,ai- l  = C Y , , ~ , , ~ ,  i = 2 ,  .... 5,  (Here we write 
a3 to  mean tha t  a comes first and then 3 follows). One can check tha t  
d i m H o r n ( l ( i ) , A ( j ) )  = d i m E ~ t ~ ( A ( i ) , i ( ~ ) )  = 1 for i -: j. Thus  q , - ~ , 3 ,  is 
positive. For this aigebra there hold proj.dim.A(i) 5 1 and  inj .dirn.C(i)  5 1: 
1 5 i < 6. However, as shown in [DR], the subcategory 3 ( A )  is infinite'. Th is  
shows that  the  converse of the above theorem may be  false. ( N o t e  tha t  this 
algebra is not hereditary, so the dimension caculation of E x t i i S .  S )  i n  the  
Ti ts  argument does not work). For other examples one may see the dual 
extensions of hereditary algebras defined in iX. 1.61; for this class of quasi- 
hereditary algebras, the  quadratic form ql.4,Ai is always positive. 

( 3 )  Consider the  duslander  algebra d of b [ S ] I ' ( X 2 ) .  Then  A is represen- 
tation finite and  hence 3 ( A )  is finite. On  can also see tha t  the projective 
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dimension of s t a n d a r d  modules  a n d  t h e  injective dimension of cos tandard  
modules  are  a t  most one. Moreover: t h e  quadrat ic  fo rm q i A , A l ( x )  is positive.  

But the re  is a n  indecomposable module  3f f F ( A )  wi th  E n d a ( l I i  2 k'. 
t h i s  implies t h a t  for non-hereditary algebra t h e  l emma 4 a n d  l e m m a  3 a r e  
not t r u e  in general.  
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