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Quasi-hereditary algebras with a duality
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In their study of representations of complex Lie-algebras and algebraic groups, Cline,
Parshall and Scott introduced in [CPS1] the concept of quasi-hereditary algebras to
describe the so-called highest weight categories. Of particular interest is the case when quasi-
hereditary algebras have a duality on their module categories which fixes simple modules.
Such a quasi-hereditary algebra is called in [ 1] a BGG-algebra. The name BGG-algebraisa
dedication to the authors of [BGG] since Bernstein, Gelfand and Gelfand proved there
the famous BGG reciprocity principle for the category ¢ in the representation theory of
complex semisimple Lie algebras. Motivated by this, an axiomatically defined class of
algebras (or categories), the class of BGG-algebras (or BGG-categories) is studied (see
[€CPS2] and [17]), for which the BGG reciprocity holds. As examples of BGG-algebras one
may think of the Schur algebras [Gr] or g-Schur algebras [DJ], they are important in linking
the representation theory of symmetric groups and general linear groups.

In the present paper we are going to develop some properties of BGG-algebras,
especially the shape of their quivers and the relationship between the duality functor and the
Auslander-Reiten translation. The main result, Theorem 3.1, is the description of the quivers
of representation-finite BGG-algebras, namely, the basic graph of a connected BGG-algebra
is the Dynkin diagram A,.

The paper is detailed as follows. In section one we recall some definitions and basic
facts, including a construction of a ¢lass of BGG-algebras which will be discussed in detail in
a further paper. In section two we give some properties of BGG-algebras needed later and in
section three we prove the main result of the paper.

In this paper algebra always means a finite dimensional algebra and module always a
finitely generated left module. For the terminology we refer to [R1].
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1. Definition of BGG-algebras and basic facts

Throughout this paper we denote by 4 a finite-dimensional k-algebra over an
algebraically closed field k, and by A4-mod the category of all .4-modules. If @ is a class of
A-modules {(closed under isomorphisms), # (@) stands for the class of all 4-modules M
which have a @-filtration, i.¢., a filtration M = Mo M, >--- 5 M,>--- 5 M_ =0 such
that all factor modules M,_,/M,, 1 £ 1 < m, belong to @.

Let E(1), ..., E(n) be the simple 4-modules (one from each isomorphism class), note
that we fix here a particular ordering of simple modules. Let P({i) be the projective cover of
E(i), and @ (i) denote the injective envelop of E{i). By A(i) we denote the maximal factor
module of P (i) with composition factors of the form E( /), where j < i; the modules A (i) are
called the standard modules, and we set A = {A(i)|1 < i < n}. Similarly, we denote by V(i)
the maximal submodule of (i) with composition factors of the form E(;) with j < J; in
this way, we get a set V = {V(i)|1 = i < n} of costandard modules. Now let us recall the
definition of a quasi-hereditary algebra.

1.1. Definition. Let 4 be an algebra with standard modules A. The algebra is called
quasi-hereditary if

(1) End,(A(i)) = & for all i, and
(2) every projective module belongs to #(A).

For other equivalent definitions of quasi-hereditary algebras one may consult [DR 2].
To define BGG-algebras, we need one more definition.

1.2. Definition. A duality on 4-mod is a contravariant, exact, additive functor § from
A-mod to itself such that é - 4 is naturally equivalent to the identity functor on 4-mod and

that  induces a &-linear map on the vector spaces Hom (M, N) for all M, N e A-mod.

Note that this definition is different from the one in [1] and [CPS 2] and more restricted
than that given in [I]. Following [1], we define BGG-algebras as follows.

1.3, Definition. Let A4 be a quasi-hereditary algebra with standard modules A. If there
is a duality & on 4-mod such that dE(i) = E(i) for all i, then A is called a BGG-algebra.

Clearly, BGG-algebras are invariant under Morita equivalences and the opposite
algebra A°° of a BGG-algebra 4 is also a BGG-algebra.

Schur algebras are examples of BGG-algebras (see [Gr], p. 32 and p. 71).

1.4. Remark. Let d be 2 duality on 4-mod. Then the following are equivalent:
(1) E() = E(i) for all i,

(2) Py = Q) for all 4,

(3) 0A(i) = V(i) for all &.
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To see whether a given algebra is a BGG-algebra, the following result may be useful.

1.5. Theorem. Suppose that A is a basic quasi-hereditary algebra with standard
modules A1), ..., A and that P{i) = Ae,, 1 =i = n, where all e; form a complete system
of pairwise orthogonal primitive idempotents of A. If there is an anti-automorphisme: A — A
of the algebra A such that Ac(e)) = Ae, for all i, then A is a BGG-algebra.

Recall that an anti-automorphism ¢ : A — A of an algebra A is a k-linear map such
that

(1) e(a+b) =e{a)+ (b},
(2) e(ab) =e(b)e(a),
(3) e?(a) =aforall a, be A.

For the proof of this theorem one may refer to {CPS 2]. Note that the duality is induced
from the anti-automorphism as follows: Let M be an A-module, we denote by M* the
finite-dimensional k-space Hom, (M, k). Now we define a module structure on M* as
follows (cf. [BGG]): For any ae 4 and fe M*, set

(af)(m) = f(e(aym).
Then M* becomes an A-module. For xe Hom (M, N), we define
x* = Hom,(a, k) : N* —» M*
by f+— af for all fe N*.
Now let us give an example of BGG-algebras to end this section.

1.6. Example, Suppose that a finite-dimensional algebra A is given by the quiver
0 = (Q,. @,) with relations g;, i € /. We define a new quiver ¢, whose vertex set is (), and
the set of arrows is @, Q}, where Q) = {a': i — j| if there is an arrow x:j — i in @, }.
If o = %%, - %, is a path in Q, then we denote by ¢’ the path «, -~ x5 %) in 05 Now let
B be the algebra over & given by the quiver Q, with relations ¢;, ¢;, i€ fand 2’ = 0. 2 Q.

B'e Q.

It is clear that B is a finite-dimensional k-algebra since A is finite-dimensional, and
that 4 is a subalgebra of B and also a factor algebra of B. Moreover, we shall prove the
following:

If the quiver of A does not contain any oriented cycle, then B is a BGG-algebra.

Proof. Llet ¢: B — B be the k-linear map induced by e(e;) = ¢;, €(x) =" and
g(2') = 2 for a € Q,. Then, by Theorem 1.5, it suffices to prove that B is a quasi-hereditary
algebra. To this purpose, we use the following equivalent definition of quasi-hereditary
algebras (see for example [DR2]).
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Recall that an ideal J of an algebra A is called a heredity ideal in 4 if J? = J,
J(rad(4))J = 0and ,J is a projective module. The algebra A is quasi-hereditary if and only
if there is a chain

O=Jycdc cJ = A

of ideals in A such that J;,,/J; is a heredity ideal of A4/J, for each i.

Since the quiver of 4 has no oriented cycle, we may have an ordering of simpie
A-modules E(i) such that Hom ,(P,(j), P,(i)) = 0 for j > i. Let us consider the ideal Be B.
We shall prove that Be,B is a heredity ideal. (1) It is clear that Be, = Ae, and
e,Be, = e, Ae, = k. (2) Note that ¢,rad(4) = 0 and w{rad (4)) = 0 for each @ which is a
linear combination of monomials in (Q')*:= {(x)*|«'e Q'} = B. Let M be the set of all @
which are linear combinations of monomials in (Q")*. Then dim, M = dim, rad(A).
According to the definition of B, we have that

e,B=ke, +e,rad(B) = ke, + e rad(A) + e, M + e,rad(A)M = ke, + e, M .

Thus dim, e, B = dim, 4e, and dim, Be, ®, e, B = (dim, 4e,)?. (3) By the definition of a
heredity ideal, it remains to prove that Be, B is a projective B-module. To do this, it is
equivalent to showing by [DR 1] that the multiplication map

p:Be, ®,e,B — Be B

is bijective. Let us calculate the dimension of Be, B. Since Be, B = de, B = Ae, + Ae, M, and
by the definition of B there holds

dim, (rad(4))e, M = dim, (rad(4))e, ®, e, M = (dim, Ae, — 1)? ,
we have
dim, Be, B = dim, Ae, + dim, e, M + dim, (rad (4))e, M
= dim, Ae, + dim, (rad (4)}e, + (dim, Ae, — 1)?
= dimy Ae, + dim, Ae, — 1 + (dim, Ae,)? — 2dim, Ade, + 1
= (dim, Ae,)?
= dim,(Be,®, ¢, B) .

Hence the surjective map u is bijective and therefore Be, B is a heredity ideal of B.

Since B/Be,B can be obtained from A/Ae,4 by the construction, we know by
induction on the number of simple modules over A that B/Be, B is quasi-hereditary. Thus
B is quasi-hereditary and thus a BGG-algebra.

Note that the BGG-algebra obtained in this way has exact Borel subalgebra in the
sense of [K'] and other nice properties. In a subsequent paper we will investigate this kind of
BGG-algebras B in details, especially the finiteness of the category # (Ag).
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2. Some properties of BGG-algebras

In this section we study some properties of BGG-algebras. We begin with the foltowing
lemma.

2.1. Lemma ({I]). Let 4 =P(1)D -- D P(n) be a BGG-algebra and
¢;;r=dim, Hom, (P(i), P(})).

Put C, = (¢}, the Cartan matrix of A. Let dy; be equal to dim,Hom ,(P(j), A(i)). and
D = (d,;). Then:

(1) C, = D'D is a symmetric matrix.
(2) dimM =dimoM.

3y [P A(S)] =[A()): E(i)], where [P(i): A(J)] stands for the number of quo-
tients in a A-filtration of P(i) which are isomorphic with A(j).

From 2.1 we have the following
2.2. Lemma. (1) dim4 = ) (dim,A(;})*
i=1

(2) Let y, be the Euler characteristic form of A introduced by Ringel in [R1], namely.

raldimM) = 3 (—1)"dim, Ext} (M, M).

t= 0

Then y , is positive-definite.
Proof. (1) follows from Lemma 2.1 (1).

(2) Since C, is positive-definite by [G], the matrix C, ' is also positive-definite. So it
follows that

7)) ={x, x> =xC X!

is positive-definite.
From the above lemma, we have

2.3. Corollary. If X is an A-module with End ((X) = k and proj. dim. X <1, then
Ext! (X, X)=0.

2.4. Lemma. Suppose A is a quasi-hereditary algebra with standard modules
A(1), ..., A(n) and costandard modules V(1),...,V(n). Then {dimA(i), dimV(;j)> =0,
In particular, if A is a BGG-algebra, then {dim A (i), dim A(j))> = 6,;, and the number of the
positive roots of y , is n, where &,; is the Kronecker symbol.

14 Journal fir Mathematik. Band 449
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Recall that a vector 0 + x = (x,...., x,) € Z" with x; = 0 for all / 1s called a positive
root of y, if ¥, (x) =1.

2.5. Theorem. Let A be a BGG-algebra with a duality 8. Then
dim, Ext' (M, N) = dim, Ext',(§(N), 3(M))
forall M, Ne A-mod and 1t = 0.

Proof. 'We prove the theorem by induction on 7. For ¢t = 0 and r =1 the assertion
follows from the definition of 8. Let ¢ = 2, and suppose the result is true for r — 1. Let

0 - K-> PM) - M -0
be an exact sequence such that P(M) — M is a projective cover of M. Then
0 - M — 3(P(M)) = 6K - 0

is an exact sequence with M — 6(P(M)) an injective envelop of éM. It follows from
Extl (M, N) = Ext! (K. N) that

dim, Ext',(M. N) = dim, Ext}, (K, N) = dim, Ext’,” '(6 N. 5 K) = dim, Ext/, (3N, 6 M)
as desired.

As aconsequence of 2.5 we have the following important corollary which describes the
shape of the quiver of a BGG-algebra.

2.6. Corollary. Assume that A is a BGG-algebra. Then

dim, Ext}(E(i). E(j)) = dim, Ext} (E(/). E£()

for all 1, ;.

Suppose a BGG-algebra is given by the quiver Q = (Q,. Q) with relations. Let
w =, %, be a non-zero path from 0 to m with x,€ ¢.. To each arrow z, from i -1 to
{ we have a non-zero map P(x*): P(i}) - P(i — 1)(see [R1]. p. 46 for the details). Hence we
have a non-zero map P(w*): P(m) — P(0) which is a product of P(x¥). If we apply the
duality é to the map P (w*) then we have a non-zero map Q (0} — (@ (m}whichis a product of
3(P(x¥)). From the quiver point of view, this implies the following fact:

2.7. Lemma. [f w is a non-zero path from i to j in Q then there is a non-zero path
Jrom jtoiin Q.

2.8. Now let us consider the relationship of the duality ¢ and the Auslander-Reiten
translation. Assume that the duality § in the definition of a BGG-algebra is given by an
anti-automorphism & with Ae(e;,) = de;, 1 =i < n. Thus § = # as defined in 1.5
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Recall that the Nakayama functor v is given by DHom (—,,4), and it is an
equivalence between the projective modules and injective modules. The inverse of v is
v~ (= Hom {D(4,), —)). The following result establishes a connection between these
functors.

Theorem. For any module M there holds (WM)* = v~ (M *).

Proof. For a module M we denote by M’ the k-space Hom (M, 4) with the
following left module structure:

a-f:mi— (mfle(a), acA . feM', meM.

To prove the theorem, we shall show below that M’é(DHomA(AM,A))* and
M2 Hom ,{DA4, M*) as modules.

Let us first define the map ¢. For each f: M —, A we have a map
@y DHom (M, 4) — k

by sending each xe DHom (M, 4) to 2(f), the image of / under the map . One can
check that ¢ is an A-homomorphism and injective. Thus it follows from comparing the
dimensions of two spaces that ¢ is an isomorphism,

Now we turn to defining the second map . Given an 4-homomorphism f: M — A.
let y, be the map from DA to M* which maps xe D4 to fex. We can verify that yy is
an A-homomorphism. Moreover, y is an injective A-homomorphism. This yields that
is even an isomorphism and finishes the proof of 2.8.

2.9. Lemma. For any homomorphism f: X — Y the following diagram commutes:

v DS

v (Y#) ¥ (X*)
‘PYT T‘#'x
Y e ——— X’

Hom ,{f, 4)
Py l ‘le

(V Y)* T" (VX)* .

The proof of this lemma is routine, we omit it. Let us denote by 7 the Auslander-Reiten
translation D Tr. As a consequence of 2.8 we have

2.10. Theorem. For any module M there holds:
(1) My =" (M*),

(2) (tTIM)* = t(M*).
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Proof. We prove only (1). the second statement follows dually. We may assume that
M is indecomposable. We start with a minima! projective presentation of M. say

p-"sp — M-——0.

Then tf is given by the kernel of vp. Note that the Nakayama functor is right exacl, thus we
obtain the following exact sequence

0 » M - vP - vB - vM — 0.
In case M is indecomposable and not projective, 1M is indecomposable, and we obtain in
this way a minimal injective presentation of tM (with cokernel added to the right), Now
applying = to the exact sequence, we get

0 - (¢M)* = (VB)* - (vB)Y - (M) - 0.

On the other hand, we have an exact sequence from the minimal projective presentation of M
by applying the duality *:

0 > M* — P¥ - PF.
By the construction of ! we have the following exact sequence

0 - v (M*) = v (Bf) = v (B*) » 1 (M*) > 0.
According to 2.8 and 2.9 we have the following commutative diagram:

0 - (M — (R - (A - M) -0

l ! ! l

0 - v (M*) = v (P - v (P*) >t '(M*) - 0.
This implies that (tM)y* = ¢~ (M*).

2.11. Remark. By induction. we can prove that for any positive integer m and any
module M,

() "My =1 "(M?*),

2y " M)* =M,

(3) if M = M*, then T"M = (1" "M)*

2.12. For a BGG-algebra with a duality 8, we call an indecomposable module A
with §M =~ M self-dual. The important class of self-dual modules are # (A) F(V), as
described in [R 2] (see also [AR]). The following result shows that we can get new self-dual

modules from a given one. This may be helpful if one wants to construct the AR-quiver of the
algebra.
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Lemma. Suppose A is an algebra with the duality 6, and let

0 » M- X" > M -0

i=1

be an Auslander-Reiten sequence with X, indecomposable and X, F X; for i %] If

Hom,(X;, X;) = 0 for all i  j, then X;, 1 = i = m, are self-dual.

3. Representation-finite BGG-algebras

In this section we always assume that A is a representation-finite BGG-algebra which is
also connected and basic. Suppose 4 = P(1)@ - @ P(n} with standard modules A{i).
1 < i < n, note that the ordering of the primitive idempotentse,, ..., ¢, (0T simple modules)
is the usual order 1 < 2 < --- < 1. We always assume that P(i) = Ae, for all i and denote by
N the Jacobson radical of 4. For some basic properties on quasi-hereditary algebras we refer
the reader to [R 2]. Our aim in this section is to determine the quiver of 4, namely, we prove
the following theorem (see 3.10 below for the definition of basic graphs).

3.1. Theorem. Let A be a representation-finite connected basic BGG-algebra. Then the
basic graph G(A) of A is a Dynkin graph of type A,

In order to prove the theorem. we require some preparations.
1. General facts. The following lemma is well-known in the literature.

3.2. Lemma. (1) If B is a representation-finite algebra then for every idempotent e the
algebra e Be is representation-finite.

(2} A basic local algebra is representation-finite if and only if it is isomorphic to
k[X]/(X™) for some positive integer m.

3.3. Lemma. Let B be a basic algebra and e, e, two idempotents. Assume that Be,
and Be, are non-isomorphic indecomposable modules and e;Be; + 0 for all i, je 1.2} If
End,(Be,) = k and dim,e, Be, 2 S, then Endg(B(e, + e,)) is representation-infinite.

Proof. Put ¥ =add(Be, ® Be,). We compute the quiver of the algebra
R:=End,(Be, @ Be,). Clearly, it has two vertices. Now let us denote by Irr, (Be,, Be;)
the irreducible maps in %. Thus, if dimIrr,(Be;, Be) = 2 then R is representation-
infinite. Hence we may assume that dim,Irr (Be,. Be;) <1 for all i, je{1.2}. Note
that dim, [rr (Be,, Be,) =0 and e,Be;Be, =0 since Endg(Be,)=k. and that
dim, Irr, (Be,, Be;) + 0 for i, je {1.2} with i % j since Homg(Be;, Be;) + 0.

(1) Suppose Irr4(Be,, Be,) = 0. In this case the opposite quiver of the quiver of R has
the following form
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Clearly, there is the relation «ff = 0. So the dimension of ¢, Be, which is the same as that of
the endomorphism algebra of the projective R-module corresponding to the vertex 1 of the
above quiver is smaller than 5. a contradiction. Hence we have

(2) Irr (Be,. Be,} = 0. In this case the opposite quiver of the quiver of R is of the

following form

By [F], p.97. the algebra with our dimension condition given by the above quiver is
representation-infinite.

The proof of the following lemma is straightforward.

34. Lemma. I[f B is the algebra given by the guiver

with relations 2 = & = 0. then the algebra B is representarion-infinite. in fact. the modules
M, given by the following Loewy diagram

21
gl sl 8l L8
3303 3

A A A
1 2 1 21 2

where the number 3 occurs 2m + 1 times. are a fumily of non-isomorphic indecomposable
maodules.

II. Serality of standard modules.

35. Lemma. Let ¢, = dimyHom ((P(i). P(j)) be the (i.j)-th entry of the Cartan
matrix C, of A. Then ¢, = c,; =1 for all i.

Crt

Proof. Since Ae, A is a heredity ideal of 4. the module ) P(n) can be embedded
i=1
in P(i). (Note that this fact is often used in [X7] and will be used without reference in what
follows.) If ¢, = 2, then, by 2.1 (1) and 3.3, one can see that (¢, +e,)A(e, +¢,) is
representation-infinite. A contradiction to 3.2 (1}.

3.6. Proposition. There is an indecomposable projective module P which is a serial
module, i.e. it has a unique composition series.

Proof. Let P be the projective module A(x). we shall show it is a serial moduie.
Suppose that P is not serial. Then we consider the following filtration

P=Ae,oNe, > - >Ne o0
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of P. Let ! be the minimal number such that N'e,/N''le, is not simple, say
Nle (N'"le = E(i) ® E(j) @ U, where U is a semisimple 4-module. If

N'7te iNe = E(n),

then ExtL (E(n"), E(i)) #+ 0 #+ Ext} (E(#"), E(j)). Since the Cartan matrix C, is symmetric
by 2.1, Hom ,(P(n), P(i)) + 0 + Hom ,(P(n), P(;))}. Thus c,, = ¢,; = 1. From the heredity
of the ideal of A¢, 4 it follows that P can be embedded in P(i) and P(j). respectively. Note
that/ # j by 3.5. In this case, we consider the factor algebra 4:= A/N'*'¢, A. By identifying
n' with 3 and 7, j with 1,2 in 3.4, respectively, and using the family of indecomposable
modules in 3.4, we can construct infinitely many indecomposable A-modules (or using the
list of [F], 2.6, 2.7, 2.1 (1) and the heredity of Ae, 4 to prove that the algebra
(e, +e,+e)Ale, + e + ) is representation-infinite). This 1s a contradiction and shows
that P must be a serial module.

Since A/Ae, A is again a representation-finite BGG-algebra, we have as a consequence
of 3.6 the following result.

3.7. Corollary. Every standard module A(i) of a representation-finite BGG-algebra is
serial.

If we suppose ¢;; <1 for all { & j, then we can say something more on the standard
modules.

3.8. Lemma. Ifc;; <1 foralli=+ j, theneach standard module of A is serial with Loewy
length at most 2.

Proof. To prove the lemma, it is sufficient to demonstrate that the projective module
Ae, has the Loewy length LL (A4e,) smaller than 3. Since 4 is connected and C, is symmetric.
we see that if LL(A4e,) = 1, then A is a simple algebra. Thus the lemma is trivial. Now we
suppose L1.(4e,} > 2. In this case, consider the series

r2 3
Ae, > Ne, o N°e, o N7e >

with Ne, (N?e, = E(i) and NZ%e,/N3e, = E(J), where i, j, n are pairwise distinct. This
means that ¢, + 0 + ¢;; and E(i) appears in the top of Ne; and Ext}{E(i), E(j)) = 0. Thus
Exty(£(/), E(i)) = 0 by 2.6. Since c,; + 0 and Ae, A is a heredity ideal in A. the projective
module Ae, can be regarded as a submodule of Ne,. Hence E(/) occurs at least two times as
composition factors in a composition series of P(j) and then ¢; = 2. This yields a
contradiction to our assumption.

3.9. Proposition. Suppose ¢;; 1 for all i+ . If n2 3, then the indecomposable

1] =
projective module P{i) is of the form

E(i) E(i)

/N

E(i—1) E(i+1) or E(G-1) E(i+1)
y N,
E() E()

for2<is=n-1.
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Proof. Ifn=3then B = A/Ae, Ais arepresentation-finite BGG-algebra and one can
see immediately that B is isomorphic to the following algebra given by the quiver

10 -2
with relation 2 = 0. If Hom ,{P(1), P(3)) % 0 then P(1) must be of the form
E(1)
EQ2) E(3),
E(1

since e, Ae, is a serial algebra and P(3) is of Loewy length 2 by 3.8. This would imply that
A is not a quasi-hereditary algebra. Thus we have ¢, = 0and ¢, ; + 0. In this case. we have
the wished form for P(2).

Now suppose we have proved the proposition for n — 1 withn =2 4. Then B = 4/A4e, A
is again a BGG-algebra with ¢;; £ 1, where C = (c;;) is the (n — 1) x (n — 1) Cartan matrix
of B. Since there is only one / such that Hom ,(P({), P(n)) #+ 0 by 3.8, we know that the
indecomposable A-module P(j) for j 3= i coincides with the projective B-module F;(/)
corresponding to the vertex j in the quiver of B, in particular, the projective module P( /).
2<j<n—-1andj+i have the form in 3.9. Now let us consider the case 2 <j =i If
i = n— 1 thenthe argumentincase n = 3 shows that P(i)is of the desired form. Now we may
suppose that i £ #n — 2. Note that P, (i) 15 of the form

E() E(i)

E(i—1) EG+1)  or E(i—1) E(i+1).

E) E()

Since e, Ae; is a serial local algebra, we have that P(i/} must be of the form

E(i) E(i)
| |
EG—1Y EG+1) Em or  E@li—1) E(r'|+1) En) .

E()) E(i)

In both cases we have FPy(i) & P(i)/(Ae,A)P(i). This is impossible. Hence the proof is
completed.

3.10. Definition. Let B be a BGG-algebra with »# non-isomorphic simple modules
E(1), ..., E(n). We define a graph G (B) whose vertex setis {1, ..., n}. and there are d edges

between i and j with i % j if d = dim, Exty(E(i), E(j)). We call this graph the basic graph
of B. (Note that the quiver of B can be recovered from G(B).)

3.11. Corollary. If the Cartan matrix C, = (c;;) has the property that ¢;; £ 1 for all
i = J, then the basic graph G(A) of A is @ Dynkin graph A,.
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III. Small BGG-algebras. First we have the following lemma.

3.12. Lemma. If A has three non-isomorphic simple modules, then A is isomorphic to
one of the algebras given by the following quiver with different relations:

wtm
e

-3
(D af=Fx=f=05 =2,

() pp=xa—=fr=2f=0,

(HD) pp=0.pp = a'x.

Proof. By 3.6 the projective module Ae, is a serial module. Since ¢;3 £ 1 for all {
by 3.5, the Loewy length of Ae, isat most 3. Of course, LL (A¢,) 4 1 since 4 is assumed to be
connected with more than one simple modules.

1) LL(Ae,) = 2. In this case we may use the argument in the proof of Proposition 3.9
to get the first two groups of relations described in (I) and (IID).

2) LL(Ae,) = 3. In this case one should consider the following two situations: a)
a'x + 0 and b) 2’2 = 0. In case b) we have the following regular representation of ,A:

3 VA
| 1/ \3 v
> @ " @ 3,
I:t’ 2 /B'
1 ¥ 2
1 [
1

{Note that we should keep always in mind the fact that e, Ae; 1s a local serial algebra.} This
would show clearly that A is not quasi-hereditary. Thus b) is impossible. Now assume a).
In this case we must have the relation x'z = i’ since e,Ae, is a representation-
finite local algebra. Thus we arrive at the case (1II) in 3.12 as desired.

3.13. Lemma, If arepresentation-finite BGG-algebra B with 4 simple modules. then its
guiver is not of the form
J
glTe

T .
ki 4.
I t'l

Proof. Suppose the quiver of B is of the form. We shall show this yields a
contradiction.
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Note that LL{Be,)<3. Put C=B/Be, B, then C is again a representation-
finite BGG-algebra with 3 simple modules.

1. case: LL(Be,) = 2.
1.a) C is given by (1} in 3.12, and we may assume that B-(/) is of the shape
E(N

E(k) E().

NS
E(]

Since ¢, Be; is a local serial algebra, the shape of Be;:rad(B)*Be; is of the form

E(i)

E(k) E() E@).

NS

E{i}
but this would imply that F.(i) & Be,/ Be, Be;. a contradiction.

1.b} Cisgivenby(II)in 3.12. In thiscase, a similar argument to 1.a)shows that there is
a contradiction.

l.c) C is given by (I1I} in 3.12. Since ¢, Be; is a serial local algebra. we must have
'y = ' ="y, This leads to the relation 'z = 'v2' =70 =0 because LL(Be,) = 2.
On the other hand. we have that '« is not equal to zero in C by the definition in (II)
of 3.12 and thus a contradiction.

2. case: LL(Be,) = 3.

If Cisgiven by (IJor (IT)in 3.12, one can argument asin 1.4) to obtain a contradiction
that B is not quasi-hereditary.

If C is given by (II1) of 3.12 then there are two possibilities for C to be considered. One
possibility is that B-{k) is a projective standard module for C. and the other one is that B.( j)
is a projective standard module for C. Butif it was one of the both cases. one ¢can show that ¢
would not be a quasi-hereditary algebra. Hence the proof is finished.

" 1V. Proof of Theorem 3.1. (a) If A4 is representation-finite BGG-algebra. then G(A)
1s one of the Dynkin graphs 4, . 2 . ., £, and £,.

Indeed, if a factor algebra of 4 is representation-infinite, then the algebra itself is
representation-infinite. Let us consider the algebra 4:N?. Thus we can use Gabriel's
theorem to determine the representation types. If the graph G{A) contains a cycle. then the
separated quiver associated to 4/ N? contains a full subquiver of type 4. and this implies
that 4 is representation-infinite. Hence G (4) is a tree. With a similar argument one sees that
G(A) must be a Dynkin graph.
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(b) Suppose G(A) is a graph in {12, £, £,, E5} and ¢ the centre of the graph G(A)
(the vertex of degree 3). Since A{i)1s a serial module for all i, we get, after finitely many steps,
a factor algebra B of 4 which is a representation-finite BGG-algebra with basic graph G(8)
whose quiver is of the following form
J
FlTe

X o, 7
kaig 4.
f

By Lemma 3.13, this is impossible. Hence we have the Theorem 3.1.
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