© Walter de Gruyter Berlin - New York 1994

Quasi-hereditary algebras with a duality

By Changchang Xi at Beijing

In their study of representations of complex Lie-algebras and algebraic groups, Cline, Parshall and Scott introduced in [CPS1] the concept of quasi-hereditary algebras to describe the so-called highest weight categories. Of particular interest is the case when quasi-hereditary algebras have a duality on their module categories which fixes simple modules. Such a quasi-hereditary algebra is called in [I] a BGG-algebra. The name BGG-algebra is a dedication to the authors of [BGG] since Bernstein, Gelfand and Gelfand proved there the famous BGG reciprocity principle for the category $\mathcal O$ in the representation theory of complex semisimple Lie algebras. Motivated by this, an axiomatically defined class of algebras (or categories), the class of BGG-algebras (or BGG-categories) is studied (see [CPS2] and [I]), for which the BGG reciprocity holds. As examples of BGG-algebras one may think of the Schur algebras [Gr] or q-Schur algebras [DJ], they are important in linking the representation theory of symmetric groups and general linear groups.

In the present paper we are going to develop some properties of BGG-algebras, especially the shape of their quivers and the relationship between the duality functor and the Auslander-Reiten translation. The main result, Theorem 3.1, is the description of the quivers of representation-finite BGG-algebras, namely, the basic graph of a connected BGG-algebra is the Dynkin diagram A_n .

The paper is detailed as follows. In section one we recall some definitions and basic facts, including a construction of a class of BGG-algebras which will be discussed in detail in a further paper. In section two we give some properties of BGG-algebras needed later and in section three we prove the main result of the paper.

In this paper algebra always means a finite dimensional algebra and module always a finitely generated left module. For the terminology we refer to [R1].

Supported in part by the Fok Ying Tung Education Foundation and the National Natural Science Foundation of China.

1. Definition of BGG-algebras and basic facts

Throughout this paper we denote by A a finite-dimensional k-algebra over an algebraically closed field k, and by A-mod the category of all A-modules. If Θ is a class of A-modules (closed under isomorphisms), $\mathscr{F}(\Theta)$ stands for the class of all A-modules M which have a Θ -filtration, i.e., a filtration $M = M_0 \supset M_1 \supset \cdots \supset M_t \supset \cdots \supset M_m = 0$ such that all factor modules M_{t-1}/M_t , $1 \le t \le m$, belong to Θ .

Let $E(1), \ldots, E(n)$ be the simple A-modules (one from each isomorphism class), note that we fix here a particular ordering of simple modules. Let P(i) be the projective cover of E(i), and Q(i) denote the injective envelop of E(i). By $\Delta(i)$ we denote the maximal factor module of P(i) with composition factors of the form E(j), where $j \leq i$; the modules $\Delta(i)$ are called the standard modules, and we set $\Delta = \{\Delta(i) | 1 \leq i \leq n\}$. Similarly, we denote by $\nabla(i)$ the maximal submodule of Q(i) with composition factors of the form E(j) with $j \leq i$; in this way, we get a set $\nabla = \{\nabla(i) | 1 \leq i \leq n\}$ of costandard modules. Now let us recall the definition of a quasi-hereditary algebra.

- **1.1. Definition.** Let A be an algebra with standard modules Δ . The algebra is called quasi-hereditary if
 - (1) End₄($\Delta(i)$) $\cong k$ for all i, and
 - (2) every projective module belongs to $\mathcal{F}(\Delta)$.

For other equivalent definitions of quasi-hereditary algebras one may consult [DR 2]. To define BGG-algebras, we need one more definition.

1.2. Definition. A duality on A-mod is a contravariant, exact, additive functor δ from A-mod to itself such that $\delta \cdot \delta$ is naturally equivalent to the identity functor on A-mod and that δ induces a k-linear map on the vector spaces $\operatorname{Hom}_A(M, N)$ for all $M, N \in A$ -mod.

Note that this definition is different from the one in [I] and [CPS 2] and more restricted than that given in [I]. Following [I], we define BGG-algebras as follows.

1.3. Definition. Let A be a quasi-hereditary algebra with standard modules Δ . If there is a duality δ on A-mod such that $\delta E(i) \cong E(i)$ for all i, then A is called a BGG-algebra.

Clearly, BGG-algebras are invariant under Morita equivalences and the opposite algebra A^{op} of a BGG-algebra A is also a BGG-algebra.

Schur algebras are examples of BGG-algebras (see [Gr], p. 32 and p. 71).

- **1.4. Remark.** Let δ be a duality on A-mod. Then the following are equivalent:
- (1) $\delta E(i) \cong E(i)$ for all i,
- (2) $\delta P(i) \cong Q(i)$ for all i,
- (3) $\delta \Delta(i) \cong \nabla(i)$ for all *i*.

To see whether a given algebra is a BGG-algebra, the following result may be useful.

1.5. Theorem. Suppose that A is a basic quasi-hereditary algebra with standard modules $\Delta(1), \ldots, \Delta(n)$ and that $P(i) = Ae_i$, $1 \le i \le n$, where all e_i form a complete system of pairwise orthogonal primitive idempotents of A. If there is an anti-automorphism $\varepsilon : A \to A$ of the algebra A such that $A\varepsilon(e_i) \cong Ae_i$ for all i, then A is a BGG-algebra.

Recall that an anti-automorphism $\varepsilon:A\to A$ of an algebra A is a k-linear map such that

- (1) $\varepsilon(a+b) = \varepsilon(a) + \varepsilon(b)$,
- (2) $\varepsilon(ab) = \varepsilon(b)\varepsilon(a)$,
- (3) $\varepsilon^2(a) = a$ for all $a, b \in A$.

For the proof of this theorem one may refer to [CPS2]. Note that the duality is induced from the anti-automorphism as follows: Let M be an A-module, we denote by M^* the finite-dimensional k-space $\operatorname{Hom}_k(M,k)$. Now we define a module structure on M^* as follows (cf. [BGG]): For any $a \in A$ and $f \in M^*$, set

$$(af)(m) = f(\varepsilon(a)m)$$
.

Then M^* becomes an A-module. For $\alpha \in \text{Hom}_A(M, N)$, we define

$$\alpha^* = \operatorname{Hom}_k(\alpha, k) : N^* \to M^*$$

by $f \mapsto \alpha f$ for all $f \in N^*$.

Now let us give an example of BGG-algebras to end this section.

1.6. Example. Suppose that a finite-dimensional algebra A is given by the quiver $Q = (Q_0, Q_1)$ with relations ϱ_i , $i \in I$. We define a new quiver Q_B whose vertex set is Q_0 , and the set of arrows is $Q_1 \cup Q_1'$, where $Q_1' = \{\alpha' : i \to j \mid \text{if there is an arrow } \alpha : j \to i \text{ in } Q_1\}$. If $\varrho = \alpha_1 \alpha_2 \cdots \alpha_m$ is a path in Q, then we denote by ϱ' the path $\alpha'_m \cdots \alpha'_2 \alpha'_1$ in Q_B . Now let B be the algebra over k given by the quiver Q_B with relations ϱ_i , ϱ_i' , $i \in I$ and $\alpha\beta' = 0$, $\alpha \in Q_1$. $\beta' \in Q_1'$.

It is clear that B is a finite-dimensional k-algebra since A is finite-dimensional, and that A is a subalgebra of B and also a factor algebra of B. Moreover, we shall prove the following:

If the quiver of A does not contain any oriented cycle, then B is a BGG-algebra.

Proof. Let $\varepsilon: B \to B$ be the k-linear map induced by $\varepsilon(e_i) = e_i$, $\varepsilon(\alpha) = \alpha'$ and $\varepsilon(\alpha') = \alpha$ for $\alpha \in Q_1$. Then, by Theorem 1.5, it suffices to prove that B is a quasi-hereditary algebra. To this purpose, we use the following equivalent definition of quasi-hereditary algebras (see for example [DR 2]).

Recall that an ideal J of an algebra A is called a heredity ideal in A if $J^2 = J$, J(rad(A))J = 0 and AJ is a projective module. The algebra A is quasi-hereditary if and only if there is a chain

$$0 = J_0 \subset J_1 \subset \cdots \subset J_m = A$$

of ideals in A such that J_{i+1}/J_i is a heredity ideal of A/J_i for each i.

Since the quiver of A has no oriented cycle, we may have an ordering of simple A-modules E(i) such that $\operatorname{Hom}_A(P_A(j), P_A(i)) = 0$ for j > i. Let us consider the ideal $Be_n B$. We shall prove that $Be_n B$ is a heredity ideal. (1) It is clear that $Be_n = Ae_n$ and $e_n Be_n = e_n Ae_n \cong k$. (2) Note that $e_n \operatorname{rad}(A) = 0$ and $\omega(\operatorname{rad}(A)) = 0$ for each ω which is a linear combination of monomials in $(Q')^* := \{(\alpha')^* | \alpha' \in Q'\} \subset B$. Let M be the set of all ω which are linear combinations of monomials in $(Q')^*$. Then $\dim_k M = \dim_k \operatorname{rad}(A)$. According to the definition of B, we have that

$$e_n B = k e_n + e_n \operatorname{rad}(B) = k e_n + e_n \operatorname{rad}(A) + e_n M + e_n \operatorname{rad}(A) M = k e_n + e_n M$$
.

Thus $\dim_k e_n B = \dim_k A e_n$ and $\dim_k B e_n \bigotimes_k e_n B = (\dim_k A e_n)^2$. (3) By the definition of a heredity ideal, it remains to prove that $B e_n B$ is a projective *B*-module. To do this, it is equivalent to showing by [DR1] that the multiplication map

$$\mu: Be_n \otimes_k e_n B \rightarrow Be_n B$$

is bijective. Let us calculate the dimension of $Be_n B$. Since $Be_n B = Ae_n B = Ae_n + Ae_n M$, and by the definition of B there holds

$$\dim_k(\operatorname{rad}(A))e_nM = \dim_k(\operatorname{rad}(A))e_n\otimes_k e_nM = (\dim_k Ae_n - 1)^2$$

we have

$$\begin{split} \dim_k Be_n B &= \dim_k Ae_n + \dim_k e_n M + \dim_k \big(\mathrm{rad}(A) \big) e_n M \\ &= \dim_k Ae_n + \dim_k \big(\mathrm{rad}(A) \big) e_n + (\dim_k Ae_n - 1)^2 \\ &= \dim_k Ae_n + \dim_k Ae_n - 1 + (\dim_k Ae_n)^2 - 2\dim_k Ae_n + 1 \\ &= (\dim_k Ae_n)^2 \\ &= \dim_k (Be_n \otimes_k e_n B) \; . \end{split}$$

Hence the surjective map μ is bijective and therefore Be_nB is a heredity ideal of B.

Since B/Be_nB can be obtained from A/Ae_nA by the construction, we know by induction on the number of simple modules over A that B/Be_nB is quasi-hereditary. Thus B is quasi-hereditary and thus a BGG-algebra.

Note that the BGG-algebra obtained in this way has exact Borel subalgebra in the sense of [K] and other nice properties. In a subsequent paper we will investigate this kind of BGG-algebras B in details, especially the finiteness of the category $\mathcal{F}(\Delta_B)$.

2. Some properties of BGG-algebras

In this section we study some properties of BGG-algebras. We begin with the following lemma.

2.1. Lemma ([I]). Let $A = P(1) \oplus \cdots \oplus P(n)$ be a BGG-algebra and

$$c_{ij} := \dim_k \operatorname{Hom}_A(P(i), P(j))$$
.

Put $C_A = (c_{ij})$, the Cartan matrix of A. Let d_{ij} be equal to $\dim_k \operatorname{Hom}_A(P(j), \Delta(i))$, and $D = (d_{ij})$. Then:

- (1) $C_A = D^t D$ is a symmetric matrix.
- (2) $\dim M = \dim \delta M$.
- (3) $[P(i):\Delta(j)] = [\Delta(j):E(i)]$, where $[P(i):\Delta(j)]$ stands for the number of quotients in a Δ -filtration of P(i) which are isomorphic with $\Delta(j)$.

From 2.1 we have the following

2.2. Lemma. (1)
$$\dim_k A = \sum_{j=1}^n (\dim_k \Delta(j))^2$$
.

(2) Let χ_A be the Euler characteristic form of A introduced by Ringel in [R1], namely,

$$\chi_A(\underline{\dim} M) = \sum_{t \ge 0} (-1)^t \dim_k \operatorname{Ext}_A^1(M, M).$$

Then χ_A is positive-definite.

Proof. (1) follows from Lemma 2.1 (1).

(2) Since C_A is positive-definite by [G], the matrix C_A^{-t} is also positive-definite. So it follows that

$$\chi_A(x) = \langle x, x \rangle = x C_A^{-t} x^t$$

is positive-definite.

From the above lemma, we have

- **2.3. Corollary.** If X is an A-module with $\operatorname{End}_A(X) \cong k$ and proj. dim. $X \leq 1$, then $\operatorname{Ext}_A^1(X,X) = 0$.
- **2.4. Lemma.** Suppose A is a quasi-hereditary algebra with standard modules $\Delta(1), \ldots, \Delta(n)$ and costandard modules $\nabla(1), \ldots, \nabla(n)$. Then $\langle \underline{\dim} \Delta(i), \underline{\dim} \nabla(j) \rangle = \delta_{ij}$. In particular, if A is a BGG-algebra, then $\langle \underline{\dim} \Delta(i), \underline{\dim} \Delta(j) \rangle = \delta_{ij}$, and the number of the positive roots of χ_A is n, where δ_{ij} is the Kronecker symbol.

Recall that a vector $0 \neq x = (x_1, ..., x_n) \in \mathbb{Z}^n$ with $x_i \geq 0$ for all i is called a positive root of χ_A if $\chi_A(x) = 1$.

2.5. Theorem. Let A be a BGG-algebra with a duality δ . Then

$$\dim_{\mathbf{L}} \operatorname{Ext}_{\mathbf{L}}^{i}(M, N) = \dim_{\mathbf{L}} \operatorname{Ext}_{\mathbf{L}}^{i}(\delta(N), \delta(M))$$

for all $M, N \in A$ -mod and $t \ge 0$.

Proof. We prove the theorem by induction on t. For t = 0 and t = 1 the assertion follows from the definition of δ . Let $t \ge 2$, and suppose the result is true for t - 1. Let

$$0 \to K \to P(M) \to M \to 0$$

be an exact sequence such that $P(M) \to M$ is a projective cover of M. Then

$$0 \to \delta M \to \delta \big(P(M) \big) \to \delta K \to 0$$

is an exact sequence with $\delta M \to \delta(P(M))$ an injective envelop of δM . It follows from $\operatorname{Ext}^1_A(M,N) \cong \operatorname{Ext}^1_A(K,N)$ that

$$\dim_k \operatorname{Ext}_A^t(M,N) = \dim_k \operatorname{Ext}_A^{t-1}(K,N) = \dim_k \operatorname{Ext}_A^{t-1}(\delta N, \delta K) = \dim_k \operatorname{Ext}_A^t(\delta N, \delta M)$$

as desired.

As a consequence of 2.5 we have the following important corollary which describes the shape of the quiver of a BGG-algebra.

2.6. Corollary. Assume that A is a BGG-algebra. Then

$$\dim_k \operatorname{Ext}_A^1(E(i), E(j)) = \dim_k \operatorname{Ext}_A^1(E(j), E(i))$$

for all i, j.

Suppose a BGG-algebra is given by the quiver $Q = (Q_0, Q_1)$ with relations. Let $w = \alpha_1 \cdots \alpha_m$ be a non-zero path from 0 to m with $\alpha_i \in Q_1$. To each arrow α_i from i - 1 to i we have a non-zero map $P(\alpha^*): P(i) \to P(i-1)$ (see [R1], p. 46 for the details). Hence we have a non-zero map $P(w^*): P(m) \to P(0)$ which is a product of $P(\alpha_i^*)$. If we apply the duality δ to the map $P(w^*)$ then we have a non-zero map $Q(0) \to Q(m)$ which is a product of $\delta(P(\alpha_i^*))$. From the quiver point of view, this implies the following fact:

- **2.7. Lemma.** If w is a non-zero path from i to j in Q then there is a non-zero path from j to i in Q.
- **2.8.** Now let us consider the relationship of the duality δ and the Auslander-Reiten translation. Assume that the duality δ in the definition of a BGG-algebra is given by an anti-automorphism ε with $A\varepsilon(e_i) \cong Ae_i$, $1 \le i \le n$. Thus $\delta = *$ as defined in 1.5.

Recall that the Nakayama functor v is given by $D\operatorname{Hom}_A(-,_AA)$, and it is an equivalence between the projective modules and injective modules. The inverse of v is $v^-(=\operatorname{Hom}_A(D(A_A), -))$. The following result establishes a connection between these functors.

Theorem. For any module M there holds $(vM)^* \cong v^-(M^*)$.

Proof. For a module M we denote by ${}_{A}M'$ the k-space $\operatorname{Hom}_{A}(M,A)$ with the following left module structure:

$$a \cdot f : m \mapsto (mf)\varepsilon(a), \quad a \in A, f \in M', \quad m \in M.$$

To prove the theorem, we shall show below that $M' \stackrel{\varphi}{\cong} (D \operatorname{Hom}_A(M, A))^*$ and $M' \stackrel{\psi}{\cong} \operatorname{Hom}_A(DA, M^*)$ as modules.

Let us first define the map φ . For each $f: M \to_A A$ we have a map

$$\varphi_f: D \operatorname{Hom}_A({}_AM, A) \to k$$

by sending each $\alpha \in D \operatorname{Hom}_A(M, A)$ to $\alpha(f)$, the image of f under the map α . One can check that φ is an A-homomorphism and injective. Thus it follows from comparing the dimensions of two spaces that φ is an isomorphism.

Now we turn to defining the second map ψ . Given an A-homomorphism $f: M \to A$, let ψ_f be the map from DA to M^* which maps $x \in DA$ to $f \in x$. We can verify that ψ_f is an A-homomorphism. Moreover, ψ is an injective A-homomorphism. This yields that ψ is even an isomorphism and finishes the proof of 2.8.

2.9. Lemma. For any homomorphism $f: X \to Y$ the following diagram commutes:

$$\begin{array}{cccc} v^{-}(Y^{*}) & \xrightarrow{v^{-}(Df)} & v^{-}(X^{*}) \\ \psi_{Y} \uparrow & & \uparrow \psi_{X} \\ Y' & \xrightarrow{\text{Hom}_{A}(f,A)} & X' \\ \varphi_{Y} \downarrow & & \varphi_{X} \downarrow \\ (vY)^{*} & \xrightarrow{D(vf)} & (vX)^{*} \end{array}.$$

The proof of this lemma is routine, we omit it. Let us denote by τ the Auslander-Reiten translation D Tr. As a consequence of 2.8 we have

2.10. Theorem. For any module M there holds:

(1)
$$(\tau M)^* \cong \tau^{-1}(M^*)$$
,

(2)
$$(\tau^{-1}M)^* \cong \tau(M^*)$$
.

Proof. We prove only (1), the second statement follows dually. We may assume that M is indecomposable. We start with a minimal projective presentation of M, say

$$P_1 \xrightarrow{p} P_0 \longrightarrow M \longrightarrow 0$$
.

Then τM is given by the kernel of vp. Note that the Nakayama functor is right exact, thus we obtain the following exact sequence

$$0 \to \tau M \to v P_1 \to v P_0 \to v M \to 0.$$

In case M is indecomposable and not projective, τM is indecomposable, and we obtain in this way a minimal injective presentation of τM (with cokernel added to the right). Now applying * to the exact sequence, we get

$$0 \to (vM)^* \to (vP_0)^* \to (vP_1)^* \to (\tau M)^* \to 0.$$

On the other hand, we have an exact sequence from the minimal projective presentation of M by applying the duality *:

$$0 \rightarrow M^* \rightarrow P_0^* \rightarrow P_1^*.$$

By the construction of τ^{-1} we have the following exact sequence

$$0 \to v^-(M^*) \to v^-(P_0^*) \to v^-(P_1^*) \to \tau^{-1}(M^*) \to 0.$$

According to 2.8 and 2.9 we have the following commutative diagram:

$$0 \to (vM)^* \to (vP_0)^* \to (vP_1)^* \to (\tau M)^* \to 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \to v^-(M^*) \to v^-(P_0^*) \to v^-(P_1^*) \to \tau^{-1}(M^*) \to 0.$$

This implies that $(\tau M)^* \cong \tau^-(M^*)$.

2.11. Remark. By induction, we can prove that for any positive integer m and any module M,

- (1) $(\tau^m M)^* \cong \tau^{-m}(M^*)$,
- (2) $(\tau^{-m}M)^* \cong \tau^m(M^*)$,
- (3) if $M \cong M^*$, then $\tau^m M \cong (\tau^{-m} M)^*$.

2.12. For a BGG-algebra with a duality δ , we call an indecomposable module M with $\delta M \cong M$ self-dual. The important class of self-dual modules are $\mathscr{F}(\Delta) \cap \mathscr{F}(\nabla)$, as described in [R2] (see also [AR]). The following result shows that we can get new self-dual modules from a given one. This may be helpful if one wants to construct the AR-quiver of the algebra.

Lemma. Suppose A is an algebra with the duality δ , and let

$$0 \to M \to \bigoplus_{i=1}^m X^{n_i} \to \delta M \to 0$$

be an Auslander-Reiten sequence with X_i indecomposable and $X_i \not\equiv X_j$ for $i \neq j$. If $\operatorname{Hom}_A(X_i, X_j) = 0$ for all $i \neq j$, then $X_i, 1 \leq i \leq m$, are self-dual.

3. Representation-finite BGG-algebras

In this section we always assume that A is a representation-finite BGG-algebra which is also connected and basic. Suppose $A = P(1) \oplus \cdots \oplus P(n)$ with standard modules $\Delta(i)$, $1 \le i \le n$, note that the ordering of the primitive idempotents e_1, \ldots, e_n (or simple modules) is the usual order $1 < 2 < \cdots < n$. We always assume that $P(i) = Ae_i$ for all i and denote by N the Jacobson radical of A. For some basic properties on quasi-hereditary algebras we refer the reader to [R 2]. Our aim in this section is to determine the quiver of A, namely, we prove the following theorem (see 3.10 below for the definition of basic graphs).

3.1. Theorem. Let A be a representation-finite connected basic BGG-algebra. Then the basic graph G(A) of A is a Dynkin graph of type A_n .

In order to prove the theorem, we require some preparations.

- I. General facts. The following lemma is well-known in the literature.
- **3.2. Lemma.** (1) If B is a representation-finite algebra then for every idempotent e the algebra eBe is representation-finite.
- (2) A basic local algebra is representation-finite if and only if it is isomorphic to $k[X]/(X^m)$ for some positive integer m.
- **3.3. Lemma.** Let B be a basic algebra and e_1 , e_2 two idempotents. Assume that Be_1 and Be_2 are non-isomorphic indecomposable modules and $e_iBe_j \neq 0$ for all $i, j \in \{1, 2\}$. If $\operatorname{End}_B(Be_2) \cong k$ and $\dim_k e_1Be_1 \geqq 5$, then $\operatorname{End}_B(B(e_1 + e_2))$ is representation-infinite.
- *Proof.* Put $\mathscr{C} = \operatorname{add}(Be_1 \oplus Be_2)$. We compute the quiver of the algebra $R := \operatorname{End}_B(Be_1 \oplus Be_2)$. Clearly, it has two vertices. Now let us denote by $\operatorname{Irr}_{\mathscr{C}}(Be_i, Be_j)$ the irreducible maps in \mathscr{C} . Thus, if $\dim_k \operatorname{Irr}_{\mathscr{C}}(Be_i, Be_j) \geq 2$ then R is representation-infinite. Hence we may assume that $\dim_k \operatorname{Irr}_{\mathscr{C}}(Be_i, Be_j) \leq 1$ for all $i, j \in \{1, 2\}$. Note that $\dim_k \operatorname{Irr}_{\mathscr{C}}(Be_2, Be_2) = 0$ and $e_2 Be_1 Be_2 = 0$ since $\operatorname{End}_B(Be_2) \cong k$, and that $\dim_k \operatorname{Irr}_{\mathscr{C}}(Be_i, Be_j) \neq 0$ for $i, j \in \{1, 2\}$ with $i \neq j$ since $\operatorname{Hom}_B(Be_i, Be_j) \neq 0$.
- (1) Suppose $Irr_{\mathscr{C}}(Be_1, Be_1) = 0$. In this case the opposite quiver of the quiver of R has the following form

$$1 \circ \stackrel{\beta}{\rightleftharpoons} \circ 2$$
.

Clearly, there is the relation $\alpha\beta = 0$. So the dimension of $e_1 B e_1$ which is the same as that of the endomorphism algebra of the projective R-module corresponding to the vertex 1 of the above quiver is smaller than 5, a contradiction. Hence we have

(2) $Irr_{\mathscr{C}}(Be_1, Be_1) \neq 0$. In this case the opposite quiver of the quiver of R is of the following form

$$\gamma \left(1\right) \stackrel{\beta}{\rightleftharpoons} z2.$$

By [F], p. 97, the algebra with our dimension condition given by the above quiver is representation-infinite.

The proof of the following lemma is straightforward.

3.4. Lemma. If B is the algebra given by the quiver

$$1 \stackrel{x}{\rightleftharpoons} 3 \stackrel{\delta}{\rightleftharpoons} 2$$

with relations $\alpha\beta = \gamma\delta = 0$, then the algebra B is representation-infinite, in fact, the modules M_m given by the following Loewy diagram

where the number 3 occurs 2m + 1 times, are a family of non-isomorphic indecomposable modules.

II. Serality of standard modules.

3.5. Lemma. Let $c_{ij} = \dim_k \operatorname{Hom}_A(P(i), P(j))$ be the (i, j)-th entry of the Cartan matrix C_A of A. Then $c_{in} = c_{ni} \le 1$ for all i.

Proof. Since Ae_nA is a heredity ideal of A, the module $\bigoplus_{i=1}^{c_{ni}} P(n)$ can be embedded in P(i). (Note that this fact is often used in [X] and will be used without reference in what follows.) If $c_{ni} \ge 2$, then, by 2.1 (1) and 3.3, one can see that $(e_i + e_n)A(e_i + e_n)$ is representation-infinite. A contradiction to 3.2 (1).

3.6. Proposition. There is an indecomposable projective module P which is a serial module, i.e. it has a unique composition series.

Proof. Let P be the projective module $\Delta(n)$, we shall show it is a serial module. Suppose that P is not serial. Then we consider the following filtration

$$P = Ae_n \supset Ne_n \supset \cdots \supset N^l e_n \supset \cdots \supset 0$$

of P. Let l be the minimal number such that $N^l e_n / N^{l+1} e_n$ is not simple, say $N^l e_n / N^{l+1} e_n \cong E(i) \oplus E(j) \oplus U$, where U is a semisimple A-module. If

$$N^{l-1}e_n/N^le_n\cong E(n'),$$

then $\operatorname{Ext}_A^1\big(E(n'), E(i)\big) \neq 0 \neq \operatorname{Ext}_A^1\big(E(n'), E(j)\big)$. Since the Cartan matrix C_A is symmetric by 2.1, $\operatorname{Hom}_A\big(P(n), P(i)\big) \neq 0 \neq \operatorname{Hom}_A\big(P(n), P(j)\big)$. Thus $c_{ni} = c_{nj} = 1$. From the heredity of the ideal of Ae_nA it follows that P can be embedded in P(i) and P(j), respectively. Note that $i \neq j$ by 3.5. In this case, we consider the factor algebra $\overline{A} := A/N^{l+1}e_nA$. By identifying n' with 3 and i,j with 1, 2 in 3.4, respectively, and using the family of indecomposable modules in 3.4, we can construct infinitely many indecomposable \overline{A} -modules (or using the list of [F], 2.6, 2.7, 2.1 (1) and the heredity of Ae_nA to prove that the algebra $(e_{n'} + e_i + e_j) A(e_{n'} + e_i + e_j)$ is representation-infinite). This is a contradiction and shows that P must be a serial module.

Since A/Ae_nA is again a representation-finite BGG-algebra, we have as a consequence of 3.6 the following result.

3.7. Corollary. Every standard module $\Delta(i)$ of a representation-finite BGG-algebra is serial.

If we suppose $c_{ij} \leq 1$ for all $i \neq j$, then we can say something more on the standard modules.

3.8. Lemma. If $c_{ij} \leq 1$ for all $i \neq j$, then each standard module of A is serial with Loewy length at most 2.

Proof. To prove the lemma, it is sufficient to demonstrate that the projective module Ae_n has the Loewy length $LL(Ae_n)$ smaller than 3. Since A is connected and C_A is symmetric, we see that if $LL(Ae_n) = 1$, then A is a simple algebra. Thus the lemma is trivial. Now we suppose $LL(Ae_n) > 2$. In this case, consider the series

$$Ae_n \supset Ne_n \supset N^2e_n \supset N^3e_n \supset \cdots$$

with $Ne_n/N^2e_n = E(i)$ and $N^2e_n/N^3e_n = E(j)$, where i, j, n are pairwise distinct. This means that $c_{ni} \neq 0 \neq c_{ij}$ and E(i) appears in the top of Ne_j and $\operatorname{Ext}_A^1(E(i), E(j)) \neq 0$. Thus $\operatorname{Ext}_A^1(E(j), E(i)) \neq 0$ by 2.6. Since $c_{nj} \neq 0$ and Ae_nA is a heredity ideal in A, the projective module Ae_n can be regarded as a submodule of Ne_j . Hence E(i) occurs at least two times as composition factors in a composition series of P(j) and then $c_{ij} \geq 2$. This yields a contradiction to our assumption.

3.9. Proposition. Suppose $c_{ij} \le 1$ for all $i \ne j$. If $n \ge 3$, then the indecomposable projective module P(i) is of the form

for $2 \le i \le n-1$.

Proof. If n = 3 then $B = A/Ae_nA$ is a representation-finite BGG-algebra and one can see immediately that B is isomorphic to the following algebra given by the quiver

$$1 \circ \stackrel{\beta}{\rightleftharpoons} \circ 2$$

with relation $\alpha\beta = 0$. If $\operatorname{Hom}_{A}(P(1), P(3)) \neq 0$ then P(1) must be of the form

since $e_1 A e_1$ is a serial algebra and P(3) is of Loewy length 2 by 3.8. This would imply that A is not a quasi-hereditary algebra. Thus we have $c_{13} = 0$ and $c_{23} \neq 0$. In this case, we have the wished form for P(2).

Now suppose we have proved the proposition for n-1 with $n \ge 4$. Then $B = A/Ae_nA$ is again a BGG-algebra with $c'_{ij} \le 1$, where $C_B = (c'_{ij})$ is the $(n-1) \times (n-1)$ Cartan matrix of B. Since there is only one i such that $\operatorname{Hom}_A(P(i), P(n)) \ne 0$ by 3.8, we know that the indecomposable A-module P(j) for $j \ne i$ coincides with the projective B-module $P_B(j)$ corresponding to the vertex j in the quiver of B, in particular, the projective module P(j). $2 \le j \le n-1$ and $j \ne i$, have the form in 3.9. Now let us consider the case $2 \le j = i$. If i = n-1 then the argument in case n = 3 shows that P(i) is of the desired form. Now we may suppose that $i \le n-2$. Note that $P_B(i)$ is of the form

Since $e_i A e_i$ is a serial local algebra, we have that P(i) must be of the form

In both cases we have $P_B(i) \not\cong P(i)/(Ae_nA)P(i)$. This is impossible. Hence the proof is completed.

- **3.10. Definition.** Let B be a BGG-algebra with n non-isomorphic simple modules $E(1), \ldots, E(n)$. We define a graph G(B) whose vertex set is $\{1, \ldots, n\}$, and there are d edges between i and j with $i \neq j$ if $d = \dim_k \operatorname{Ext}_B^1(E(i), E(j))$. We call this graph the basic graph of B. (Note that the quiver of B can be recovered from G(B).)
- **3.11. Corollary.** If the Cartan matrix $C_A = (c_{ij})$ has the property that $c_{ij} \leq 1$ for all $i \neq j$, then the basic graph G(A) of A is a Dynkin graph A_n .

- III. Small BGG-algebras. First we have the following lemma.
- **3.12. Lemma.** If A has three non-isomorphic simple modules, then A is isomorphic to one of the algebras given by the following quiver with different relations:

$$\begin{array}{cccc}
\stackrel{\mathbf{z}}{\longleftrightarrow} & \circ & \stackrel{\boldsymbol{\beta}}{\longleftrightarrow} & \circ & \mathbf{3}
\end{array}$$

(I)
$$\alpha \beta = \beta' \alpha' = \beta' \beta = 0, \beta \beta' = \alpha' \alpha,$$

(II)
$$\beta'\beta = \alpha'\alpha = \beta'\alpha' = \alpha\beta = 0$$
,

(III)
$$\beta'\beta = 0$$
, $\beta\beta' = \alpha'\alpha$.

Proof. By 3.6 the projective module Ae_3 is a serial module. Since $c_{i3} \le 1$ for all i by 3.5, the Loewy length of Ae_3 is at most 3. Of course, $LL(Ae_3) \ne 1$ since A is assumed to be connected with more than one simple modules.

- 1) $LL(Ae_3) = 2$. In this case we may use the argument in the proof of Proposition 3.9 to get the first two groups of relations described in (I) and (III).
- 2) LL $(Ae_3) = 3$. In this case one should consider the following two situations: a) $\alpha'\alpha \neq 0$ and b) $\alpha'\alpha = 0$. In case b) we have the following regular representation of ${}_AA$:

(Note that we should keep always in mind the fact that $e_i A e_i$ is a local serial algebra.) This would show clearly that A is not quasi-hereditary. Thus b) is impossible. Now assume a). In this case we must have the relation $\alpha' \alpha = \beta \beta'$ since $e_2 A e_2$ is a representation-finite local algebra. Thus we arrive at the case (III) in 3.12 as desired.

3.13. Lemma. If a representation-finite BGG-algebra B with 4 simple modules, then its quiver is not of the form

$$\begin{array}{c}
j \\
\beta' \downarrow \uparrow \beta \\
k \stackrel{2}{\rightleftharpoons} i \stackrel{7}{\rightleftharpoons} 4.
\end{array}$$

Proof. Suppose the quiver of B is of the form. We shall show this yields a contradiction.

Note that $LL(Be_4) \le 3$. Put $C = B/Be_4B$, then C is again a representation-finite BGG-algebra with 3 simple modules.

1. case:
$$LL(Be_4) = 2$$
.

1.a) C is given by (I) in 3.12, and we may assume that $P_C(i)$ is of the shape

Since $e_i B e_i$ is a local serial algebra, the shape of $B e_i \operatorname{rad}(B)^3 B e_i$ is of the form

$$E(i)$$

$$E(k) \quad E(j) \quad E(4).$$

$$E(i)$$

but this would imply that $P_C(i) \not\cong Be_i/Be_{\perp}Be_i$, a contradiction.

- 1.b) C is given by (II) in 3.12. In this case, a similar argument to 1.a) shows that there is a contradiction.
- 1.c) C is given by (III) in 3.12. Since $e_i B e_i$ is a serial local algebra, we must have $\alpha' \alpha = \beta \beta' = \gamma' \gamma$. This leads to the relation $\beta \beta' \alpha' = \gamma' \gamma \alpha' = \gamma' \cdot 0 = 0$ because LL($B e_4$) = 2. On the other hand, we have that $\beta \beta' \alpha'$ is not equal to zero in C by the definition in (III) of 3.12 and thus a contradiction.

2. case:
$$LL(Be_4) = 3$$
.

If C is given by (I) or (II) in 3.12, one can argument as in 1.a) to obtain a contradiction that B is not quasi-hereditary.

If C is given by (III) of 3.12 then there are two possibilities for C to be considered. One possibility is that $P_C(k)$ is a projective standard module for C, and the other one is that $P_C(j)$ is a projective standard module for C. But if it was one of the both cases, one can show that C would not be a quasi-hereditary algebra. Hence the proof is finished.

IV. Proof of Theorem 3.1. (a) If A is representation-finite BGG-algebra, then G(A) is one of the Dynkin graphs A_n , D_n , E_6 , E_7 and E_8 .

Indeed, if a factor algebra of A is representation-infinite, then the algebra itself is representation-infinite. Let us consider the algebra A/N^2 . Thus we can use Gabriel's theorem to determine the representation types. If the graph G(A) contains a cycle, then the separated quiver associated to A/N^2 contains a full subquiver of type \tilde{A}_n , and this implies that A is representation-infinite. Hence G(A) is a tree. With a similar argument one sees that G(A) must be a Dynkin graph.

(b) Suppose G(A) is a graph in $\{\mathbb{D}_n, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8\}$ and c the centre of the graph G(A) (the vertex of degree 3). Since $\Delta(i)$ is a serial module for all i, we get, after finitely many steps, a factor algebra B of A which is a representation-finite BGG-algebra with basic graph G(B) whose quiver is of the following form

$$\begin{array}{ccc}
j \\
\beta' \downarrow \uparrow \beta \\
k & \stackrel{\alpha}{\rightleftharpoons} i & \stackrel{\gamma}{\rightleftharpoons} 4.
\end{array}$$

By Lemma 3.13, this is impossible. Hence we have the Theorem 3.1.

Acknowledgement

The author would like to thank Dr. Bangming Deng for some helpful discussions and Prof. Shaoxue Liu for help and encouragement.

After the paper was submitted, I learned that an explicit result is obtained by S. Donkin and I. Reiten independently, but proofs are different.

References

- [AR] M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), 111-152.
- [BGG] I.N. Bernstein, I.M. Gelfand and S.I. Gelfand, A category of G-modules, Funct. Anal. Appl. 10 (1976), 87-92.
- [CPS1] E. Cline, B. Parshall and L. Scott, Algebraic stratification in representation categories, J. Algebra 117 (1988), 504-521.
- [CPS2] E. Cline, B. Parshall and L. Scott, Duality in highest weight categories, Contemp. Math. 82 (1989), 7-22.
- [DJ] R. Dipper and G.D. James, The q-Schur algebras, Proc. London Math. Soc. (3) 59 (1989), 23-50.
- [DR1] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Ill. J. Math., 33 (1989), 280-291.
- [DR2] V. Dlab and C. M. Ringel, The module theoretic approach to quasi-hereditary algebras, London Math. Soc. Lect. Note Ser. 168 (1992), 200-224.
- [F] U. Fischbacher, The representation-finite algebra with at most 3 simple modules, Springer LNM 1177 (1986).
- [G] A. Graham, Nonnegative matrices and applicable topics in linear algebra, Math. Appl., 1987.
- [Gr] J.A. Green, Polynomial representations of GL_{π} , Springer LNM 830 (1980).
- [I] R.S. Irving, BGG-algebras and the BGG reciprocity principle, J. Algebra 135 (1990), 363-380.
- [K] S. König, Borel subalgebras of quasi-hereditary algebras, Preprint 91-113, Universität Bielefeld, 1991.
- [R1] C.M. Ringel, Tame algebras and integral quadratic forms, Springer LNM 1099 (1984).
- [R2] C. M. Ringel, The category of modules with good filtrations over quasi-hereditary algebras has almost split sequences, Math. Z. 208 (1991), 209–223.
- [X] C. C. Xi, The structure of Schur algebras $S_k(n, p)$ for $n \ge p$, Can. J. Math. (3) 44 (1992), 665-675.

Department of Mathematics, Beijing Normal University, 100875 Beijing, P.R. China