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Abstract

We introduce the so-called homological systems in a module category over a pre-ordered set, which
generalize the notion of a stratifying system over a linearly ordered set, and study both the corre-
sponding modules filtrated by the systems and algebras stratified by the systems. In particular, we
recover the tilting theory for pre-standardly stratified algebras, and get a general formula for com-
puting the Cartan determinants of pre-standardly stratified algebras in terms of standard modules
and simple modules. Also, the finitistic dimension of a given algebra, and the relative homological
dimensions of full subcategories of the modules related to a homological system, are discussed.
As an application, we get a new bound for the finitistic dimension of a pre-standardly stratified
algebra.

1. Introduction

As a generalization of quasi-hereditary algebras, standardly stratified algebras were introduced in
several papers [8, 9, 20], and studied in a large variety of the literature [1–3, 8, 10, 11, 20, 22].
One of the important ingredients of a standardly stratified algebra is the set of the standard modules
parametrized by a linearly ordered set or a partially ordered set. If we extend this partially ordered set
to a pre-ordered set, we get the notion of a pre-standardly stratified algebra; and so, a prescribed set
of modules with suitable vanishing of homomorphism and extensions determines the ‘highest weight
structure’. This point of view was first taken in [10] and subsequently followed in earlier papers
[11, 13, 18]. The recent results in [19] show that the Alperin weight conjecture in the representation
theory of finite groups can be connected with investigation of some problems on pre-standardly
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stratified algebras. Thus, a general formulation and systematic study of a collection of modules with
certain homological properties, as the standard modules have, would be interesting. In this paper, we
continue with this point of view. It allows more flexibility and new applications.

Let A be anArtin R-algebra over a commutativeArtin ring R. The category of all finitely generated
left A-modules is denoted by A-mod. We first generalize the notion of a stratifying system, in A-mod,
over a linearly ordered set in [11] to a system in A-mod with certain homological properties over
an arbitrary pre-ordered set, which is the so-called homological �-system over a pre-ordered set
in the terminology of the present paper; and then, we characterize this system as a �-injective (or
�-projective) system which reflects the intrinsic structure of the category of modules associated to
the �-system. In this way, we re-obtain the tilting theory of a pre-standardly stratified algebra for
the �-system under weak assumptions (comparing with [18, 19]). Our main results can be stated as
follows.

THEOREM 1.1 Let (�, ≤) be a pre-ordered set. If (�; �, ≤) is a finite �-system in A-mod, then there is
a finite �-injective system (�, Y ; �, ≤) in A-mod. If (�, Y ′; �, ≤) is another one, then Y (λ) � Y ′(λ)

for all λ ∈ �. Moreover, End(
⊕

AY (λ)) is a right pre-standardly stratified algebra. Conversely, if
(�, Y ; �, ≤) is a finite �-injective system in A-mod, then (�; �, ≤) is a finite �-system in A-mod.

For a pre-standardly stratified algebra A, the determinant det(CA) of the Cartan matrix CA of A is
given by the following formula in terms of the standard modules and simple modules.

THEOREM 1.2 Let (A; �, ≤) be a pre-standardly stratified R-algebra with standard modules
�(λ), λ ∈ �. Suppose (�̄, ≤) is the partially ordered set induced by the pre-ordered set (�, ≤).
Then

det(CA) =
∏

[λ]∈�̄ det(C[λ])∏
λ∈� �(End(AL(λ)))

,

where � is the R-length function of R-modules and C[λ] is the matrix with entries
�(HomA(�(γ ), �(μ))) indexed by [λ] ∈ �̄.

Finally, as an application of our discussions on homological systems, we consider the finitistic
dimension of a pre-standardly stratified algebra. Recall that the finitistic dimension conjecture says
that every finite-dimensional algebra over a field has finite finitistic dimension. This conjecture is still
open. Our main result on homological dimensions of a �-system in A-mod is Theorem 5.6, which
gives, in particular, a bound of the finitistic dimension of an algebra A in terms of the resolution
dimensions of modules related to the �-system.As a consequence of this result, we have the following
corollary on the finitistic dimension of a pre-standardly stratified algebra. It seems that the bound
here is new.

COROLLARY 1.3 Let (A; �, ≤) be a pre-standardly stratified algebra, T := ⊕
λ∈� T (λ) the charac-

teristic tilting module associated to A, and B := End(AT ). We define Bδ(λ) to be the quotient of the
B-module HomA(ATB, T (λ)) modulo the sum of images of all homomorphisms from HomA(T , T (μ))
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to HomA(T , T (λ)) with μ < λ, and B(ρ) := End(
⊕

λ∈ρ Bδ(λ)) for ρ ∈ �̄. Then

fpd(A) ≤ pd(AT ) + |�̄| − 1 +
∑
ρ∈�̄

fpd (B(ρ)op) ≤ 2 |�̄| − 2 +
∑
ρ∈�̄

fpd (B(ρ)op),

where pd and fpd stand for the projective dimension and finitistic projective dimension, respectively.

The paper is organized as follows. In section 2, we recall some basic definitions and facts on
pre-standardly stratified algebras and pre-ordered sets. In section 3, we introduce the notion of a
�-system over a pre-ordered set, discuss its properties and prove the main result, Theorem 1.1. In
section 4, we prove Theorem 1.2. In section 5, we study the homological dimensions related to a
�-system. As an application of the results in section 5, we deduce Corollary 1.3 for pre-standardly
stratified algebras in section 6.

Our main results in this paper extend some of the main ones in [11, 12, 14, 15, 18].

2. Preliminaries

In this section, we recall some definitions and facts. Also, new approaches to some well-known results
will be given.

Throughout the paper, A denotes an Artin algebra, and A-mod (respectively, mod-A) the category
of all finitely generated left (respectively, right) A-modules. By module, we mean a left module. The
usual duality of an Artin algebra is denoted by D.

Given two morphisms f : L → M and g : M → N in A-mod, we denote the composition of f

with g by fg, which is a morphism from L to N . So, we make the following convention: for a
morphism f between two (right, or left) modules, we write f on the opposite side of the scalars of
the modules.

2.1. Pre-ordered sets and partially ordered sets

In this subsection, we recall some basic facts on pre-ordered sets.
Let � be a non-empty set and ≤ be a relation on �. The pair (�, ≤) is called a pre-ordered set

provided that: (a) λ ≤ λ for all λ ∈ � and (b) if λ ≤ μ and μ ≤ γ for λ, μ, γ ∈ � then λ ≤ γ .
Let(�, ≤) be a pre-ordered set. If the relation λ ≤ μ does not hold, we write either λ �≤ μ or μ �≥ λ;

if λ ≤ μ and μ �≤ λ, we write λ < μ. If λ ≤ μ and μ ≤ λ, we say that λ and μ are equivalent, and
write λ ∼ μ. The equivalence class of λ will be denoted by [λ]. Clearly, the set �̄ of all equivalence
classes of � forms a partially ordered set, namely we define [λ] ≤ [μ] in �̄ if λ ≤ μ in �.

If �̄ is a finite set, we can write the elements in �̄ as {ρ1, ρ2, . . . , ρn}, where ρi ≤ ρj implies that
i ≤ j . A linearization (�, ≤L) of (�, ≤) is defined as follows: we choose a fixed linear order for
each ρi; and then, we set λ <L μ for each λ in ρi and each μ in ρj if i < j . Clearly, if [λ] < [μ] then
λ ≤L μ. Note that if (�, ≤L) is a linearization of (�, ≤), it induces a linearization of (�̄, ≤).

The relationship between the pre-order and its linearization is as follows.

LEMMA 2.1 Let (�, ≤) be a finite pre-ordered set and (�, ≤L) be a linearization of (�, ≤). If λ ≤L μ

for λ, μ in �, then μ �< λ.

Proof . If λ and μ belong to the same equivalence class, then μ �< λ by the definition of ≤ in �.

Suppose λ ∈ ρi and μ ∈ ρj with i < j ; so we have λ �∼ μ. If ρi < ρj then λ ≤ μ and λ < μ. If ρi

and ρj are incomparable in �̄, then λ and μ are so in �. Hence, we have μ �< λ.
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2.2. Homologically finite subcategories

In this subsection, we recall some definitions from [6].
A morphism f : M → N in A-mod is said to be right minimal if any endomorphism g : M →

M is an automorphism whenever f = gf. It is well known that f is right minimal if and only if
the restriction of f to any non-zero direct summand of M is non-zero. A subcategory X of A-
mod is called contravariantly finite if for each module C there is a right X -approximation, that is,
there is a morphism f : X → C, with X ∈ X , such that the induced sequence HomA(X′, X) →
HomA(X′, C) → 0 is exact for all X′ in X . A right X -approximation f : X → C is said to be a
minimal right X -approximation if f is right minimal. Dually, we have the notions of left minimal
morphisms, left X -approximations and covariantly finite subcategory in A-mod. A subcategory X of
A-mod is called functorially finite if it is contravariantly finite and covariantly finite in A-mod.

A subcategory X of A-mod is said to be resolving if it is (a) closed under extensions (that is, if
0 → L → M → N → 0 is an exact sequence in A-mod with L, N ∈ X , then M ∈ X ), (b) closed
under kernels of surjective morphisms (that is, if f : M → N is a morphism in X and f is surjective,
then Ker(f ) ∈ X ) and (c) contains all projective modules. Dually, a subcategory X of A-mod is said
to be coresolving if it is closed under extensions and co-kernels of injective morphisms and contains
all injective A-modules.

Given a set � of A-modules in A-mod, we denote by F(�) to the full subcategory of A-mod
whose objects are the modules M which have a �-filtration, namely there is a finite chain

0 = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mt = M

of submodules of M such that Mi/Mi−1 is isomorphic to a module in � for all i.

An A-module X is called �-injective if Ext1A(Y, X) = 0 for all Y ∈ �. We denote by I(�) the full
subcategory of all �-injective A-modules in A-mod. Dually, an A-module Y is called �-projective
if Ext1A(Y, X) = 0 for all X ∈ �. We denote by P(�) to the full subcategory of all �-projective
A-modules in A-mod. If X is in A-mod, we simply write I(X) for I({X}).

For full subcategories X and Y in A-mod, we write Ext1A(X , Y) = 0 if Ext1A(X, Y ) = 0 for all
X ∈ X and Y ∈ Y . Thus, if Y is �-injective then Ext1A(F(�), Y ) = 0, and if X is �-projective then
Ext1A(X, F(�)) = 0.

2.3. Pre-standardly stratified algebras

Let A be anArtin algebra, and let (�, ≤) be a pre-ordered set which indexes the non-isomorphic simple
A-modules L(λ), λ ∈ �. Denote by P(λ) the projective cover of L(λ). Let P �≤λ := ⊕

μ �≤λ P (μ)

and P >λ := ⊕
μ>λ P (μ). For A-modules M and X, we denote by trM(X) the trace of M in X.

That is, trM(X) is the sum of images of all homomorphisms from M to X. We also set �(λ) :=
P(λ)/trP �≤λ (P (λ)), δ(λ) := P(λ)/trP >λ(P (λ)) and δ(λ) := P(λ)/trP ≥λ (rad P(λ)).

Dually, let I (λ) be the injective envelope of L(λ), we define ∇(λ) to be the intersection of kernels
of all homomorphisms from I (λ) to I (μ) with μ �≤ λ. So, ∇(λ) will denote to the maximal submodule
of the injective envelope I (λ) of L(λ) such that [∇(λ)/soc (∇(λ)) : L(μ)] = 0 for all λ ≤ μ. For
convenience, we call �(λ) the standard module and ∇(λ) the co-standard module. Note that δ(λ)

and �(λ) are related via the following exact sequence

0 −→ trP �≤λ (P (λ))/trP >λ(P (λ)) −→ δ(λ) −→ �(λ) −→ 0.
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Hence, we may call the module δ(λ) the big standard module of A corresponding to λ. As in [9, 12],
we call δ(λ) the big proper standard module, and ∇(λ) the proper co-standard module. Note that all
these modules defined above depend upon the given pre-ordered set.

DEFINITION 2.2 An Artin algebra A, together with a pre-ordered set (�, ≤), is called a pre-standardly
stratified algebra if, for each λ ∈ �, there is an exact sequence

0 −→ Q(λ) −→ P(λ) −→ �(λ) −→ 0

in A-mod such that Q(λ) has a filtration with sections isomorphic to �(μ) with λ < μ. If (A; �, ≤)

is pre-standardly stratified and if � = �̄, then we call the algebra A standardly stratified.

REMARKS (1) In some literature (see [1–3, 22]), the notion of standardly stratified algebras means
usually those pre-standardly stratified algebras (A; �, ≤) in which the pre-order is a linear order (or
a partial order). We want to distinguish this special class of algebras from the much more general
class of pre-standardly stratified algebras (in fact, somehow the whole class of Artin algebras), and
introduce the new name ‘pre-standardly stratified algebras’ with the stress of the pre-ordered set
(�, ≤) in order to avoid confusion. We reserve the notion of standardly stratified algebras for the
case of linear (or partial) orders. In fact, the pre-standardly stratified algebras behave very differently
from the usual standardly stratified algebras.

(2) The pre-standardly stratified algebras are called ‘standardly stratified algebras’ in [8], and the
terminology was used also in [12, 19]. In [12], the definition of a standard module �(λ) is different
from the one in our paper. In fact, the standard module �(λ) in [12] is equal to δ(λ) in our notation.
However, the definition of standardly stratified algebras in [12] coincides with the one in [8, 19]; it
also coincides with the one of pre-standardly stratified algebras given in the present paper.

(3) Pre-standardly stratified algebras can also be defined either by using chains of strong idempotent
ideals or stratified ideals (see [8, 9, 20]). For further information on stratified ideals, we refer to [4].

(4) We may use the category mod-A to define the notion of right pre-standardly stratified algebras.

In the following, we write � = {�(λ) | λ ∈ �} for a given pre-standardly stratified algebra
(A; λ, ≤). The next result states some properties of standard modules. We include here a proof
of the statement (c) below, which is different from [12].

PROPOSITION 2.3 Let (A; �, ≤) be a pre-standardly stratified algebra with standard modules �(λ),
λ ∈ �. Then

(a) HomA(�(λ), �(μ)) = 0 if λ �≤ μ;
(b) Ext1A(�(λ), �(μ)) = 0 if λ �< μ;
(c) F(�) is a resolving subcategory in A-mod.

Proof . (a) is trivial since the composition factors L(λ) of �(μ) satisfy λ ≤ μ.
(b) Applying HomA(−, �(μ)) to the exact sequence 0 → Q(λ) → P(λ) → �(λ) → 0, we get

an exact sequence

· · · −→ HomA(P (λ), �(μ)) −→ HomA(Q(λ), �(μ)) −→ Ext1A(�(λ), �(μ)) −→ 0.

Since Q(λ) is filtered by �(ρ) with λ < ρ, we see that if λ �< μ then ρ �≤ μ. This implies that
HomA(�(ρ), �(μ)) = 0. Thus HomA(Q(λ), �(μ)) = 0 if λ �≤ μ. Hence Ext1A(�(λ), �(μ)) = 0 if
λ �< μ.
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(c) By (b) and Lemma 2.1, we may take a linearization (�, ≤L) of (�, ≤) such that the set � of
the standard modules �(λ) satisfies that Ext1A(�(λ), �(μ)) = 0 if μ ≤L λ. Thus, for each module
X ∈ F(�), the multiplicity [X : �(λ)] of �(λ) occurring as a section factors in a �-filtration of X is
well defined. Let X be in F(�), we define S(X) := {[λ] ∈ �̄ | [X : �(λ)] �= 0} and C(X) := {[λ] ∈
�̄ | [X : L(λ)] �= 0}, where L(λ) is the simple A-module corresponding to λ. Clearly, if X ∈ F(�),
then S(X) ⊆ C(X). If max(S(X)) denotes the maximal element of the set S(X) with respect to ≤L,
then max(S(X))= max(C(X)) since each �(λ) has composition factors L(μ) with μ ≤ λ.

To prove that F(�) is a resolving subcategory, we need only to show that F(�) is closed under
kernels of surjective morphisms. Suppose f : X → Y is a surjective morphism between two modules
X and Y in F(�). We use induction on the cardinality |S(X)| of S(X) to show that Ker(f ) lies in
F(�). If |S(X)| = 1, then X = ⊕

μ∈[λ] �(μ)nμ for some non-negative integers nμ. Since Y is in
F(�), there is a filtration 0 ⊆ Yn ⊆ Yn−1 ⊆ · · · ⊆ Y2 ⊆ Y1 = Y such that Yi/Yi−1 is a direct sum
of modules �(γ ) with γ ∈ [λi] and that λ1 ≤L λ2 ≤L · · · ≤L λn. Since we have a surjective map
X → Y → Y/Y2, this means that there must be an indecomposable direct summand �(μ) of X

which maps surjectively to an indecomposable direct summand of Y/Y2, namely there is a surjective
morphism h : �(μ) → �(ρ) with μ ∈ [λ] and ρ ∈ [λ1]. Since �(λ) is a local module, we get that
μ = ρ. This means that [λ1] = [ρ] = [μ] = [λ]. Thus [λ] = [λ1] = min(S(Y )) ≤L max(S(Y )) =
max(C(Y )) ≤L max(C(X)) = max(S(X)) = [λ], and all λi are in the same equivalence class [λ].
This implies that Y is a direct sum of modules �(μ) with μ ∈ [λ]. To see that the kernel of f is again
a direct sum of modules �(μ) with μ ∈ [λ], we note that a surjective homomorphism from �(γ ) to
�(γ ′) must be an isomorphism. Thus, we split all isomorphisms from f and deduce that Ker(f ) is
just a direct summand of X.

Suppose that the statement is true for X in F(�) with |S(X)| < n. Let X be in F(�) with
| S(X) |= n. Suppose max(S(X)) = [λ]. Then we have an exact sequence 0 → X′ → X →
X/X′ → 0 such that X′ is a direct sum of modules �(μ) with μ ∈ [λ] and that X/X′ lies in F({�(μ) |
μ ∈ S(X), [μ] �= [λ]}). Similarly, there is an exact sequence 0 → Y ′ → Y → Y/Y ′ → 0 such that Y ′
is a direct sum of modules �(μ) with μ ∈ [λ] and that Y/Y ′ lies in F({�(μ) | μ ∈ S(Y ), [μ] �= [λ]}).
Note that Y ′ may be zero. Now, we claim that HomA(�(λ′), �(ρ)) = 0 for λ′ ∈ [λ] and ρ ∈ S(Y ) with
[ρ] �= [λ]. In fact, we have [ρ] ≤L max(S(Y )) = max(C(Y )) ≤L max(C(X)) = [λ]. Thus λ �≤ ρ by
Lemma 2.1. Hence our claim follows from (a). This yields that HomA(X′, Y/Y ′) = 0. From this, we
have the following commutative diagram:

0 −−−−→ X′ −−−−→ X
π−−−−→ X/X′ −−−−→ 0

g

⏐⏐� f

⏐⏐� h

⏐⏐�
0 −−−−→ Y ′ γ−−−−→ Y −−−−→ Y/Y ′ −−−−→ 0

where g is the restriction of f .
Since f is surjective, the Snake lemma gives an exact sequence

0 −→ Ker(g) −→ Ker(f ) −→ Ker(h) −→ Coker(g) −→ 0.

Assume (for a contradiction) that g is not surjective. Then, in particular, Y ′ is non-zero; and some top
composition factor L(μ) of Y ′ occurs as a composition factor of Coker(g). Then it also occurs
in Ker(h) and hence in X/X′. So we have [μ]=[λ] but also maxC(X/X′) ≤L [λ], which is a
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contradiction. By induction, Ker(g) and Ker(h) are in F(�) and so is Ker(f ). This finishes the
proof of (c).

REMARKS (1) It follows from the proof of Proposition 2.3 that if there is a surjective homomorphism
f : X → Y for X, Y ∈ F(�), then S(Y ) ⊆ S(X).

(2) Suppose we are given a pre-standardly stratified algebra A with a pre-ordered set (�, ≤). Then
we have a set of standard modules � := {�(λ) | λ ∈ �}. If we take a linearization (�, ≤L) of (�, ≤)

and define �′(λ) with respect to this linear order, then the set �′ will be different from the given �

in general, thus F(�) may be different from F(�′). However, if we use this linear order to reorder
the modules in �, we get the same F(�) by Proposition 2.3(2).

(3) For a pre-standardly stratified algebra (A, �, ≤), the following are true: (a) If λ ∈ � with [λ]
maximal in �̄, then �(λ) is projective by Definition 2.2. (b) By induction on the poset �̄, we can see
that the projective dimension of each module X in F(�) is bounded above by | �̄ | −1.

3. Homological systems over pre-ordered sets

In this section, we shall introduce several homological systems of modules over a pre-ordered set,
which generalize the notion of a stratifying system over a linearly ordered set in [11], and develop
some of their basic properties.

DEFINITION 3.1 A �-system (�; �, ≤), in A-mod, consists of the following:

(S1) (�, ≤) is a pre-ordered set;
(S2) � = {�(λ) | λ ∈ �} is a family of pairwise non-isomorphic indecomposable A-modules;
(S3) HomA(�(λ), �(μ)) = 0 if λ �≤ μ;
(S4) Ext1

A(�(λ), �(μ)) = 0 if λ �< μ.

Note that, in Definition 3.1, we do not assume that F(�) is closed under taking direct summands,
while this is required in [18, Theorem 9.1].

A canonical example of a �-system is the standard modules � of a pre-standardly stratified algebra
(A, �, ≤) with � := �.

Clearly, if (�; �, ≤) is a �-system in A-mod and if �′ is a subset of �, then �′ defines a canonical
�′-system in A-mod.

DEFINITION 3.2 A �-injective system (�, Y ; �, ≤), in A-mod, consists of the following:

(IS1) (�, ≤) is a pre-ordered set;
(IS2) � = {�(λ) | λ ∈ �} is a family of pairwise non-isomorphic and non-zero A-modules;
(IS3) HomA(�(λ), �(μ)) = 0 if λ �≤ μ;
(IS4) Y = {Y (λ) | λ ∈ �} is a family of indecomposable A-modules Y (λ) such that Y (λ) is

�-injective and there is an exact sequence

0 −→ �(λ)
iλ−→ Y (λ) −→ Z(λ) −→ 0

in F(�) with Z(λ) ∈ F({�(μ) | μ < λ}).
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Dually, we define a �-projective system (�, X; �, ≤) as follows.

DEFINITION 3.3 A �-projective system (�, X; �, ≤), in A-mod, consists of the following:

(PS1) (�, ≤) is a pre-ordered set;
(PS2) � = {�(λ) | λ ∈ �} is a family of pairwise non-isomorphic and non-zero A-modules;
(PS3) HomA(�(λ), �(μ)) = 0 if λ �≤ μ;
(PS4) X = {X(λ) | λ ∈ �} is a family of indecomposable A-modules X(λ) such that X(λ) is

�-projective and there is an exact sequence

0 −→ U(λ) −→ X(λ) −→ �(λ) −→ 0

in F(�) with U(λ) ∈ F({�(μ) | λ < μ}).

As an example of a �-projective system, we may consider a pre-standardly stratified algebra
(A, �, ≤). Then (�, X; �, ≤) is a �-projective system, where X(λ) = P(λ) for λ ∈ �.

Clearly, in a �-injective system (�, Y ; �, ≤), if [λ] is minimal in �̄, then �(λ) = Y (λ). In a
�-projective system (�, X; �, ≤), if [λ] is maximal in �̄, then �(λ) = X(λ). Moreover, we have
the following observation.

PROPOSITION 3.4 (�, X; �, ≤) is a �-projective system in A-mod if and only if (D�, DX; �, ≤op)

is a D�-injective system in mod-A, where D is the usual duality of an Artin algebra and ≤op is the
opposite order of ≤ in �.

Thus, once a result is obtained for one system, we can transfer it to the other one. So, we may only
deal with �-injective systems.

The maps between two homological systems, in A-mod, are defined in the following manner.

DEFINITION 3.5 Let (�, Y ; �, ≤) and (�′, Y ′; �′, ≤′) be two �-injective systems. A morphism
f : (�, Y ; �, ≤) → (�′, Y ′; �′, ≤′) consists of a map ϕ : (�, ≤) → (�′, ≤′) of pre-ordered sets
and two families of morphisms fλ : �(λ) → �′(ϕ(λ)) and gλ : Y (λ) → Y (ϕ(λ)), in A-mod, such
that the following diagram commutes for each λ ∈ �.

�(λ)
iλ−−−−→ Y (λ)

fλ

⏐⏐� ⏐⏐�gλ

�′(ϕ(λ))
i ′ϕ(λ)−−−−→ Y ′(ϕ(λ))

Dually, we define the morphisms between two �-projective systems.

Now, we give some properties of a �-system over a pre-ordered set.

LEMMA 3.6 Let (�, ≤) be a pre-ordered set and � = {�(λ) | λ ∈ �} be a family of A-modules
satisfying the condition (S4) of Definition 3.1.

(a) If λ �< μ for λ, μ ∈ �, then Ext1A(�(λ′), �(μ′)) = 0 for all λ′ ∼ λ and μ′ ∼ μ.
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(b) If λ ∼ μ for λ, μ ∈ �, then Ext1A(�(λ), �(μ)) = 0 = Ext1A(�(μ), �(λ)) = 0.
(c) For λ ∈ �, �λ := {μ ∈ � | μ ≤ λ} and �λ := {�(μ) | μ ∈ �λ}, we have

Ext1A(F(� \ �λ), F(�λ)) = 0.

Proof . (a) This follows from the fact that λ′ �< μ′ if λ �< μ.
(b) By definition, λ �< μ if and only if λ �≤ μ or μ ≤ λ. If λ ∼ μ, we always have μ ≤ λ and

λ ≤ μ; and so λ �< μ and μ �< λ. Thus (b) follows.
(c) If �(μ) ∈ � \ �λ then μ �< γ for any �(γ ) ∈ �λ. Thus Ext1A(�(μ), �(γ )) = 0. This implies

that Ext1A(F(� \ �λ), F(�λ)) = 0.

The following is a property of a �-injective system.

LEMMA 3.7 Let (�, Y ; �, ≤) be a �-injective system in A-mod.

(a) If λ ∼ μ then HomA(�(λ), Z(μ)) = 0.
(b) If λ �≤ μ then HomA(�(λ), Z(μ)) = 0.
(c) Y = {Y (λ) | λ ∈ �} is a family of pairwise non-isomorphic A-modules.
(d) For each module X ∈ F(�), there is an exact sequence

0 −→ X −→ T ′ −→ Z −→ 0

such that T ′ is in add(
⊕

λ Y (λ)) and Z ∈ F(�). In particular, we have

I(�) ∩ F(�) = add

(⊕
λ∈�

Y (λ)

)
.

Proof . (b) Suppose λ �≤ μ. Note that Z(μ) has a �-filtration such that the section factors are �(ρ)

with ρ < μ. Since λ �≤ μ and ρ < μ, we have λ �≤ ρ. This implies that HomA(�(λ), Z(μ)) = 0 by
(IS3). Hence (b) follows. (a) can be proved similarly.

(c) Suppose that there is an isomorphism f : Y (λ) → Y (μ). We claim that λ ∼ μ. If λ �≤ μ, then
HomA(�(λ), Z(μ)) = 0 by (b). Thus, we may form the following exact commutative diagram.

0 −−−−→ �(λ)
α−−−−→ Y (λ)

β−−−−→ Z(λ) −−−−→ 0

g

⏐⏐� f

⏐⏐� h

⏐⏐�
0 −−−−→ �(μ)

γ−−−−→ Y (μ)
δ−−−−→ Z(μ) −−−−→ 0

By (IS3), we see that the map g must be zero. On the other hand, since f is injective, the Snake lemma
shows that g is injective. It follows that �(λ) = 0, which is a contradiction. Thus λ ≤ μ. Similarly,
we show that μ ≤ λ, proving that λ ∼ μ.

Now, by (a), we have a map g : �(λ) → �(μ) such that αf = gγ , and a map g′ : �(μ) → �(λ)

such that g′α = γf −1. So gg′α = gγf −1 = αff −1 = α; since α is injective, we have gg′ = 1.
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In the same way, we obtain g′g = 1. This implies that �(λ) and �(μ) are isomorphic. By (IS2), we
must have λ = μ.

(d) We use induction on the length of a �-filtration of a module X in F(�). If X has a �-filtration
of length 1, then X is isomorphic to some �(λ). In this case, we have the desired sequence by (IS4).
Suppose the statement is true for all modules X in F(�) with a �-filtration of length less than n.
Now, take a module X in F(�) and suppose there is a �-filtration of length n. So, there is an exact
sequence

0 −→ X′ γ−→ X −→ �(λ) −→ 0

with X′ having �-length less than n. By induction, there is an exact sequence

0 −→ X′ g−→ T1 −→ Z1 −→ 0

with T1 ∈ add(
⊕

λ∈� Y (λ)) and Z1 ∈ F(�). Since T1 is �-injective, there is a homomorphism
f : X → T1 such that γf = g. Now, we may form the following commutative diagram.

0 0 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ X′ γ−−−−→ X −−−−→ �(λ) −→ 0

g

⏐⏐� (f,γ ′α)

⏐⏐� α

⏐⏐�
0 −−−−→ T1

(1,0)−−−−→ T1 ⊕ Y (λ)
(0,1)

′
−−−−→ Y (λ) −→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−−→ Z1 −−−−→ Z −−−−→ Z(λ) −→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 0 0

Note that (f, γ ′α) is injective. Since F(�) is closed under extensions, we see that Z lies in F(�).
Thus, the exact sequence 0 −→ X −→ T1

⊕
Y (λ) −→ Z −→ 0 is a desired one; proving the result.

A �-system (�; �, ≤), in A-mod, with � a finite set will be called a finite �-system. Similarly,
we have the notions of finite �-injective system and finite �-projective system.

From now on, we are interested exclusively in finite �-systems.
From Lemma 3.6, we see that, for any finite �-system (�; �, ≤) and any N ∈ F(�), the mul-

tiplicity [N : �(λ)] of �(λ) in a �-filtration of N can be calculated by giving the modules in �

a linear order. Thus [N : �(λ)] is well defined for all λ ∈ �. So, we may introduce the following
notion of support for modules in F(�).

DEFINITION 3.8 Let (�; �, ≤) be a finite �-system. For X ∈ F(�), we define the �-support of X

with respect to �̄ as

Supp(�,�̄)(X) := {ρ ∈ �̄ | there exists λ ∈ ρ with [X : �(λ)] �= 0}.
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Let (�̄, ≤L) be a linearization of (�̄, ≤). For 0 �= X ∈ F(�), let max(�̄,≤L) (X) denote the maxi-
mum of Supp(�,�̄) (X) with respect to the linear order ≤L. Analogously, let min(�̄,≤L) (X) denote the
minimum of Supp(�,�̄) (X) with respect to the linear order ≤L. Finally, we set max(�̄,≤L) (0) := −∞
and min(�̄,≤L) (0) := +∞.

In case of a finite �-injective system, Lemma 3.7 can be strengthened as follows.

PROPOSITION 3.9 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod and (�̄, ≤L) be a lineariza-
tion of (�, ≤). Then, for any 0 �= X ∈ F(�), there exists an exact sequence 0 → X → E → Z → 0
in F(�) such that E ∈ add (

⊕
λ∈� Y (λ)) and max(�̄,≤L) (Z) <L max(�̄,≤L) (X).

Proof . Let ρ0 := max(�̄,≤L) (X). We shall prove the proposition by induction on the cardinality of
the set Supp(�,�̄) (X). If the cardinality of Supp(�,�̄) (X) is 1, then, by Lemma 3.6(b), we have
X � ⊕

μ∈ρ0
�(μ)[X:�(μ)]. Hence, by Definition 3.2, we get the following exact sequence in F(�):

0 −→ X −→
⊕
μ∈ρ0

Y (μ)[X:�(μ)] −→
⊕
μ∈ρ0

Z(μ)[X:�(μ)] −→ 0.

Since Z = ⊕
μ∈ρ0

Z(μ) ∈ F(�(λ) | λ < μ) and since λ < μ implies that [λ] <L [μ] = ρ0, we
conclude that max(�̄,≤L)(Z) <L ρ0.

Now, assume that the cardinality of the set Supp(�,�) (X) is greater than 1. Then, we have an exact
sequence in F(�)

0 −→
⊕
μ∈ρ0

�(μ)[X:�(μ)] −→ X −→ X′′ −→ 0,

where 0 �= X′′ and max(�̄,≤L)(X
′′) <L ρ0 = max(�̄,≤L)(X). By induction, the result is true for X′′;

therefore, we can construct the following exact commutative diagram in F(�):

0 0 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ ⊕

μ∈ρ0
�(μ)[X:�(μ)] −−−−→ X −−−−→ X′′ −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 −−−−→ ⊕
μ∈ρ0

Y (μ)[X:�(μ)] −−−−→ E −−−−→ T2 −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ ⊕

μ∈ρ0
Z(μ)[X:�(μ)] −−−−→ Z −−−−→ Z2 −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�

0 0 0

such that

T2 ∈ add

(⊕
λ∈�

Y (λ)

)
and max

(�̄,≤L)

(Z2) <L max
(�̄,≤L)

(X′′) <L ρ0.
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So we have max(�̄,≤L)(Z) <L ρ0 since

max
(�̄,≤L)

(⊕
μ∈ρ0

Z(μ)[X:�(μ)]
)

<L ρ0.

This finishes the proof.

The following lemma due to Ringel in [17], which was proved for the linear order, will be used in
the paper.

LEMMA 3.10 Let � = {�(1), �(2), . . . , �(n)} be a set of A-modules satisfying (S4) for the natural
linear order (that is, Ext1A(�(j), �(i)) = 0 if i ≤ j). Then

(a) for any 1 ≤ t ≤ n and any A-module N with Ext1A(�(j), N) = 0 for all j > t , there is an
exact sequence 0 → N → Y → Z → 0 with Y �-injective and Z ∈ F({�(i) | i ≤ t});

(b) F(�) is functorially finite in A-mod.

As a consequence of Lemmas 3.10 and 3.6, we have the following result.

COROLLARY 3.11 Let � be a finite set of modules �(λ), which are parametrized by a pre-ordered set
(�, ≤), satisfying (S4) in Definition 3.1. Then

(a) F(�) is functorially finite in A-mod;
(b) for any module X ∈ A-mod, there is an exact sequence 0 → X → YX → ZX → 0 such that

YX ∈ I(�) and ZX ∈ F(�).

Proof . We take an arbitrary linearization (�, ≤L) of (�, ≤). We shall check that the condition (S4)
in Lemma 3.10 is satisfied.

By Lemma 3.6, we see that Ext1A(�(λ), �(μ)) = 0 for λ, μ in ρi . So, we are allowed to choose
an arbitrary linear order for modules �(λ) with λ in the same equivalence class. Now, suppose i < j ,
λ ∈ ρj and μ ∈ ρi . Thus μ <L λ. By Lemma 2.1, we know that λ �< μ. Hence the condition (S4)
means that Ext1A(�(λ), �(μ)) = 0 if μ ≤L λ. Then, (a) follows from Lemma 3.10. The statement
(b) is a direct consequence of Lemma 3.10 for t = n.

THEOREM 3.12 If (�; �, ≤) is a finite �-system in A-mod, then there is a finite �-injective system
(�, Y ; �, ≤) in A-mod. If (�, Y ′; �, ≤) is another one, then Y (λ) � Y ′(λ) for all λ ∈ �.

Proof . To show the result, we have to prove that the condition (IS4), in Definition 3.2, is satisfied.
Namely we construct an exact sequence

0 −→ �(λ)
iλ−→ Y (λ) −→ Z(λ) −→ 0 (∗)

in A-mod such that Z(λ) ∈ F({�(μ) | μ < λ}) and Y (λ) is �-injective and indecomposable. The
idea of the construction is similar to that in [11], but more complicated.

We define Y (μ) = �(μ) for all μ ∈ � such that [μ] is a minimal element in (�̄, ≤), and
Z(μ) = 0. For any γ ∈ �, we have γ ∼ μ or γ �< μ. This implies that Ext1A(�(γ ), Y (μ)) =
Ext1A(�(γ ), �(μ)) = 0 by Lemma 3.6 and (S4). Thus Y (μ) is �-injective and indecomposable.
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Next, we take an element λ0 in � such that [λ0] is not minimal in �̄, and define �λ0 := {μ ∈ � |
μ ≤ λ0}. Then (�λ0 , ≤) is a pre-ordered subset of (�, ≤). The set �λ0 := {�(μ) | μ ∈ �λ0} satisfies
the condition (S4) in Definition 3.1. Thus, we can take a linearization of �λ0 such that λ0 is the
smallest element in [λ0] with respect to the linear order ≤L on �λ0 . Suppose �̄λ0 = {ρ1, ρ2, . . . , ρi}
and ρ1 <L ρ2 <L · · · <L ρi = [λ0]. We construct, by induction on k with 1 ≤ k < i, non-split exact
sequences

0 −→ �(λ0) −→ Uk −→ Vk −→ 0 (ξk)

in F(�) such that

(i) Uk is indecomposable,
(ii) Ext1A(�(λj ), Uk) = 0 for all λj ∈ ρj and all i − k ≤ j ≤ i − 1,

(iii) Vk ∈ F({�(λj ) | λj ∈ ρj , i − k ≤ j ≤ i − 1}),
(iv) Ext1A(�(λ0), Uk) = 0.

Suppose k = 1. We set M := ⊕
λ∈ρi−1

�(λ). In case Ext1A(M, �(λ0)) = 0, we put U1 := �(λ0)

and V1 := 0. Now, assume that Ext1A(M, �(λ0)) �= 0. Thus, we can construct the universal extension

0 −→ �(λ0) −→ U −→ Mn −→ 0 (ε)

in F(�). We recall that the connecting map HomA(M, Mn) −→ Ext1
A(M, �(λ0)), induced by (ε), is

surjective. Hence, Ext1A(M, U) = 0 since Ext1A(M, M) = 0 by Lemma 3.6(b). It follows, from (S4)
and Lemma 2.1, that Ext1A(�(λ0), �(μ)) = 0 for all μ ∈ ρi−1. This implies that Ext1A(�(λ0), U) = 0.
Note that if λ ∈ ρi−1 and λ0 ≤ λ, then λ0 <L λ. Thus HomA(�(λ0), M) = 0; and therefore, we get
a non-split exact sequence

0 −→ �(λ0) −→ U1 −→ V1 −→ 0

such that U1 and V1 are direct summands of U and Mn, respectively; and moreover, U1 is indecom-
posable. Furthermore, we know that Ext1A(M, U1) = 0 = Ext1A(�(λ0), U1), and that U1 ∈ F(�) since
both V1 and �(λ0) lie in F(�).

Suppose we have already constructed the exact sequence (ξk) for k ≥ 1 with the required properties.
Now, we construct the exact sequence (ξk+1). If Ext1A(

⊕
λ∈ρi−k−1

�(λ), Uk) = 0, we set Uk+1 := Uk

and Vk+1 := Vk; in this case, the corresponding conditions (i)–(iv) are clearly satisfied. So, we may
assume that Ext1A(

⊕
λ∈ρi−k−1

�(λ), Uk) �= 0. Then, by constructing the universal extension, we get a
non-split exact sequence in F(�)

0 −→ Uk −→ U −→
( ⊕

λ∈ρi−k−1

�(λ)

)m

−→ 0. (∗∗)

Since Ext1A(�(λ), �(μ)) = 0 for λ ∼ μ, we obtain that Ext1A(
⊕

λ∈ρi−k−1
�(λ), U) = 0. Let j ≥ i − k

and λj ∈ ρj . Applying the functor HomA(�(λj ), −) to (∗∗), we get an exact sequence

Ext1A(�(λj ), Uk) −→ Ext1A(�(λj ), U) −→ Ext1A

(
�(λj ),

( ⊕
λ∈ρi−k−1

�(λ)

)m)
.

Note that the first term vanishes by induction and the last one by (S4). Thus Ext1A(�(λj ), U) = 0 for
all λj ∈ ρj with j ≥ i − k.
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Since Uk is in F({�(λ) | λ ∈ ρt , i − k ≤ t ≤ i}), we have HomA(Uk, �(μ)) = 0 for μ ∈ ρi−k−1

by (S3). Otherwise, if λ ∈ ρt with i − k ≤ t ≤ i and λ ≤ μ with μ ∈ ρi−k−1, then t ≤ i − k − 1,
which is a contradiction. So, from (∗∗), we get a non-split exact sequence

0 −→ Uk −→ Uk+1 −→ U ′ −→ 0

such that U ′ ∈ add(
⊕

λ∈ρi−k−1
�(λ)) and Uk+1 is an indecomposable direct summand of U . In

particular, Uk+1 ∈ F(�). Now, we form the pushout diagram of the maps Vk ← Uk → Uk+1.

0 0⏐⏐� ⏐⏐�
0 −−−−→ �(λ0) −−−−→ Uk −−−−→ Vk −−−−→ 0∥∥∥ ⏐⏐� ⏐⏐�
0 −−−−→ �(λ0) −−−−→ Uk+1 −−−−→ Vk+1 −−−−→ 0⏐⏐� ⏐⏐�

U ′ U ′⏐⏐� ⏐⏐�
0 0

We define (ξk+1) to be the middle horizontal sequence in the above diagram. It remains to verify
that this sequence satisfies all conditions (i)–(iv). Since Uk+1 is a direct summand of U , we deduce
that Ext1A(

⊕
λ∈ρi−k−1

�(λ), Uk+1) = 0 =Ext1A(�(λ), Uk+1) for all λ ∈ ρj with j ≥ i − k. Applying
the functor HomA(�(λ0), −) to (∗∗), we get the following exact sequence:

Ext1A(�(λ0), Uk) −→ Ext1A(�(λ0), U) −→ Ext1A

(
�(λ0),

( ⊕
λ∈ρi−k−1

�(λ)

)m)
. (∗ ∗ ∗)

By using an argument which is similar to the one above, we show that the first and the last terms of
(∗ ∗ ∗) vanish; and so Ext1

A(�(λ0), U) = 0.
Finally, we define Y (λ0) := Ui−1. Hence, by setting k := i − 1 in (ξk), we obtain the following

exact sequence in F(�):

0 −→ �(λ0) −→ Y (λ0) −→ Vi−1 −→ 0

with Vi−1 ∈ F({�(λ) | λ ∈ ρj , 1 ≤ j ≤ i − 1}). Thus Vi−1 ∈ F({�(μ) | μ < λ0). We assert that
the preceding exact sequence is the desired one corresponding to λ = λ0. We have to check that
Y (λ0) is �-injective. In fact, since Ext1A(�(μ), Y (λ0)) = 0 for μ < λ0 and Ext1A(�(λ0), Y (λ0)) =
0 by construction, we have Ext1A(�(μ), Y (λ0)) = 0 for μ ∈ �λ0 . By Lemma 3.6, we see that
Y (λ0) ∈ I(�).

The uniqueness of the (�, Y ; �, ≤) follows easily since the map iλ : �(λ) → Y (λ) is a left
minimal I(�)-approximation. Thus we finish the proof.
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PROPOSITION 3.13 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, and let T = ⊕
λ∈� Y (λ).

Then B := End(AT ) is a right pre-standardly stratified algebra with (�, ≤op) as the index set.

Proof . We set �(λ) := HomA(�(λ), T ), PB(λ) := HomA(Y (λ), T ) and Q(λ) := HomA(Z(λ), T ).
By Definition 3.2 (IS4), we have an exact sequence

0 −→ �(λ) −→ Y (λ) −→ Z(λ) −→ 0

in F(�) with Z(λ) ∈ F({�(μ) | μ < λ}) and Y (λ) indecomposable in I(�) ∩ F(�). From this
sequence, we get an exact sequence

0 −→ Q(λ) −→ PB(λ) −→ �(λ) −→ 0

since T is �-injective and HomA(−, T ) is an exact functor on F(�). Note that Z(λ) has a �-filtration
with sections �(μ) such that μ < λ. This implies that Q(λ) has a �-filtration with sections �(μ)

such that λ <op μ.
To finish the proof, we have to show that Q(λ) is equal to U(λ) := trP �≤opλ (PB(λ)). First, we note

that Q(λ) is contained in U(λ). This is because Q(λ) has a filtration with section �(ρ) such that
ρ < λ, and each �(ρ) is covered by PB(ρ) with ρ �≤op λ. Secondly, we show that if μ �≤op λ, that
is λ �≤ μ, then every morphism f : PB(μ) −→ PB(λ) factors through Q(λ). Since add(AT ) and
add(BB) are equivalent categories via the functor HomA(−, T ), we see that there is a morphism
f ′ : Y (λ) −→ Y (μ) such that f = HomA(f ′, T ). By Lemma 3.7, HomA(�(λ), Z(μ)) = 0 since
λ �≤ μ. This yields a morphism g : �(λ) −→ �(μ) such that the following diagram is commutative.

0 −−−−→ �(λ)
α−−−−→ Y (λ)

β−−−−→ Z(λ) −−−−→ 0

g

⏐⏐� f ′
⏐⏐� h

⏐⏐�
0 −−−−→ �(μ)

γ−−−−→ Y (μ)
δ−−−−→ Z(μ) −−−−→ 0

Note that the condition (IS3) implies that g = 0. Thus f ′ factors through Z(λ), and f factors through
Q(λ). This means that U(λ) ⊆ Q(λ); and so Q(λ) = U(λ), proving the result.

REMARK In [18, Propositions 8.6 and 9.1], we find the statement ‘· · · T (λ) are precisely the inde-
composable Ext-injective objects’. This statement seems to be too strong because the modules �(λ)′
are not assumed to be indecomposable by [18, Hypothesis (8.1)].

Recall that a module T ∈ A-mod is called a tilting module if

(a) ExtiA(T , T ) = 0 for all i > 0,

(b) the projective dimension of T is finite, and
(c) there is an exact sequence

0 −→A A −→ T0 −→ T1 −→ . . . −→ Ts −→ 0

such that Ti ∈ add (T ) for all i.

As a corollary, we get the following result.
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COROLLARY 3.14 Let (A; �, ≤) be a pre-standardly stratified algebra with standard modules �(λ),
λ ∈ �. Then, there is a tilting A-module T in F(�) such that End(AT ) is a right pre-standardly
stratified algebra with (�, ≤op) as the index set. Moreover, we can take T = ⊕

λ∈� T (λ) satisfying
the following property: for each λ ∈ �, there is an exact sequence

0 −→ �(λ) −→ T (λ) −→ V (λ) −→ 0

in A-mod such that V (λ) ∈ F({�(μ) | μ < λ}) and I(�) ∩ F(�) = add(T ).

Proof . We know that the set � = {�(λ), λ ∈ �} form a �-system (�; �, ≤) by Proposition 2.2.
So, Theorem 3.12 provides us a �-injective system (�, {T (λ) | λ ∈ �}; �, ≤). Let T be the direct
sum of T (λ) with λ ∈ �. Then T is the desired module by Proposition 3.13 (see also Proposition 3.9),
Remark (3) at the end of section 2 and Lemma 3.7.

Note that the module T in Corollary 3.14 is usually called the characteristic tilting module for
the pre-standardly stratified algebra A. It plays an important role for understanding homological
properties of the category A-mod (see, for example, the last two sections).

PROPOSITION 3.15 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, T := ⊕
λ∈� Y (λ), B :=

End(
⊕

λ∈� AY (λ)) and �(λ) := HomA(�(λ), T ). Then the subcategory F(�) of A-mod and the
subcategory F(�) of mod-B are anti-equivalent via the exact functor F := HomA(−, AT ) and its
inverse G := HomB(−, TB).

Proof . We know that F is exact and that its image lies in F(�). To see that the composition of F

with G is isomorphic to the identity functor on F(�), we use the natural morphism αX : X −→
HomB(HomA(X, AT )B, TB). This map is an isomorphism if and only if there is an exact sequence

0 −→ X
f−→ T0 −→ T1, with Ti ∈ add(AT ),

and the map f is a left add(AT )-approximation of X. (This fact is due to Auslander and Solberg [7];
for a proof, we may also see [21]). Note that, by Lemma 3.7(d), we do have such an exact sequence
for each X in F(�). Thus (G ◦ F)(X) � X for all X ∈ F(�).

Now, we show that the composition of G with F is isomorphic to the identity functor on F(�).
First, we see that Ext1B(−, TB) vanishes on F(�). By (IS4), we have the following commutative
diagram:

0 −−−−→ �(λ) −−−−→ Y (λ) −−−−→ Z(λ) −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ G(�(λ)) −−−−→ G(PB(λ)) −−−−→ GF(Z(λ)) −−−−→ Ext1B(�(λ), TB) −−−−→ 0

where the vertical arrows are the canonical maps αX : X −→ HomB(HomA(X, AT ), TB), x �→ (x)f

for AX ∈ A-mod. Since all vertical maps are bijective, we get Ext1B(−, TB) = 0 on F(�). This implies
that HomB(−, TB) is exact on F(�). Thus, the image of G on F(�) is contained in F(�).

We know that FG(�(λ)) = FG(F(�(λ))) � F(GF(�(λ))) � F(�(λ)) = �(λ). By induc-
tion on the length of a �-filtration of modules in F(�), we prove that the natural map M →
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HomA(AHomB(M, TB), AT ) is an isomorphism for each module M in F(�). To do so, we choose a
module M with a �-filtration of length n. Then, there is an exact sequence 0 → M ′ → M → �(λ) →
0 in which M ′ has �-length less than n. By induction, we have the following commutative diagram:

0 −−−−→ M ′ −−−−→ M −−−−→ �(λ) −→ 0

f

⏐⏐� ⏐⏐� g

⏐⏐�
0 −−−−→ FG(M ′) −−−−→ FG(M) −−−−→ FG(�(λ)) −−−−→ 0

such that f is an isomorphism. Note that g is also an isomorphism. Hence M � FG(M). The proof
is completed.

COROLLARY 3.16 If (�; �, ≤) is a finite �-system in A-mod, then F(�) is closed under direct
summands.

Proof . By Theorem 3.12, a finite �-system (�; �, ≤) gives rise to a finite �-injective system
(�, Y ; �, ≤). By Proposition 3.15, we know that F(�) is equivalent to the category F(�) of a right
pre-standardly stratified algebra B with standard modules �(λ), λ ∈ �. By [12, Theorem 3], the
category F(�) is closed under direct summands; and so, F(�) is closed under direct summands.
This proves the corollary.

COROLLARY 3.17 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod and f : M −→ N be an
injective morphism in F(�). Then, Coker(f ) ∈ F(�) if and only if Ext1

A(Coker(f ), Y (λ)) = 0 for
all λ ∈ �. Dually, let (�, X; �, ≤) be a finite �-projective system in A-mod and f : M −→ N be a
surjective morphism in F(�). Then, Ker(f ) ∈ F(�) if and only if Ext1A(X(λ), Ker(f )) = 0 for all
λ ∈ �.

Proof . We keep the notation used in the proof of Proposition 3.15. We know that Ext1B(−, TB)

vanishes on F(�). Suppose that Ext1A(Coker(f ), AY (λ)) = 0 for all λ. Since F is exact and F(�)

is closed under kernels of surjective homomorphisms, the kernel of F(f ), which is isomorphic to
F(Coker(f )), belongs to F(�) since Ext1A(Coker(f ), AY (λ)) = 0. Then, we have the following
exact commutative diagram

0 −−−−→ M −−−−→ N −−−−→ Coker(f ) −→ 0

�
⏐⏐� �

⏐⏐� ⏐⏐�
0 −−−−→ GF(M) −−−−→ GF(N) −−−−→ G(Ker(F (f ))) −−−−→ Ext1B(F (M), TB) = 0

It follows, from the above diagram, that Coker(f ) lies in F(�). The converse is trivial.

The following result is more general than the corresponding one in [13, Theorem 2.6].

COROLLARY 3.18 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, T = ⊕
λ∈� Y (λ),

B = End(AT ) and s(A) the number of non-isomorphic simple A-modules. If AA ∈ F(�), then

(a) s(A) ≤ |�|; and if the equality holds, then TB is a tilting right B-module;
(b) A � End(TB).
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Proof . Since A ∈ F(�), we know, from Lemma 3.7(d), that there is an exact sequence

0 −→ A
f−→ T ′ −→ T ′′

such that T ′, T ′′ ∈ add(AT ) and f is an add(AT )-approximation. This means that A � End(TB).
Since A ∈ F(�), we see that F(�) contains F(A) = TB , which is in I(�) ∩ F(�) = add(KB),
where K is the tilting right B-module determined by (the right version of) Proposition 3.14. Note
that the number of non-isomorphic indecomposable direct summands of TB is equal to the one of
AA by using the functor G in Proposition 3.15. Thus, we have s(A) ≤ |�|. If s(A) = |�|, then
add(TB) = add(KB) and therefore TB is a tilting module.

The following is a way to construct �-projective systems, in A-mod, from �-injective systems.

COROLLARY 3.19 If (�, Y ; �, ≤) is a finite �-injective system in A-mod, then there is a finite �-
projective system (�, X; �, ≤) in A-mod. Moreover, F(�) ∩ P(�) = add(

⊕
λ∈� X(λ)).

Proof . Since B = End(
⊕

λ∈� Y (λ)) is a right pre-standardly stratified algebra, we use the right
version of Proposition 3.14 to get the characteristic tilting right B-module K = ⊕

λ∈� K(λ). Then,
we have a �-injective system (�, {K(λ) λ ∈ �}, ≤op) in mod-B. Now, we apply the equivalence
(contravariant) functor G in Proposition 3.15 to this system; and so, we get a �-projective system
(�, X; �, ≤) with X(λ) = G(K(λ)) for λ ∈ �. The equality of the two categories is just the dual
statement of Lemma 3.7(4).

THEOREM 3.20 If (�, Y ; �, ≤) is a finite �-injective system in A-mod, then (�; �, ≤) is a �-system
in A-mod.

Proof . In accord with Definition 3.1, we have to check all the conditions from (S1) to (S4). However,
(S1) and (S3) are trivial by Definition 3.2. So, we have to show that (S2) and (S4) hold. We first show
that (S4) holds true.

Suppose λ �< μ. Applying the functor HomA(�(λ), −) to the exact sequence 0 −→ �(μ) −→
Y (μ) −→ Z(μ) −→ 0, we get the exact sequence

0 −→ HomA(�(λ), �(μ)) −→ HomA(�(λ), Y (μ)) −→ HomA(�(λ), Z(μ))

−→ Ext1A(�(λ), �(μ)) −→ Ext1A(�(λ), Y (μ)).

Since Y (μ) is �-injective, the last term in the above exact sequence vanishes. On the other hand, by
Lemma 3.7, HomA(�(λ), Z(μ)) = 0. Hence, we have Ext1A(�(λ), �(μ)) = 0 if λ �< μ.

Now we prove (S2). To see that �(λ) is indecomposable, we show that the endomorphism algebra
End(�(λ)) is a local one. Let f be in End(�(λ)). Since Y (λ) is �-injective, there is a homomorphism
g : Y (λ) −→ Y (λ) such that the following diagram is commutative.

0 −−−−→ �(λ)
α−−−−→ Y (λ)

β−−−−→ Z(λ) −−−−→ 0

f

⏐⏐� g

⏐⏐� h

⏐⏐�
0 −−−−→ �(λ)

γ−−−−→ Y (λ)
δ−−−−→ Z(λ) −−−−→ 0

Since Y (λ) is indecomposable, we know that g is either nilpotent or an automorphism. In the former
case, we may say that gm = 0. It follows from f mγ = αgm that f m = 0 since γ is injective. Now,
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suppose that g is an automorphism. Then f γ = αg is injective. This shows that f is injective. Thus, f
is also surjective since �(λ) is a module of finite length. Hence f is an automorphism. This completes
the proof of (S2).

REMARK It is clear, by the dual results of Corollary 3.19, Theorems 3.20 and 3.12, that a �-system
determines, in a unique way (up to isomorphisms), both a �-injective system and a �-projective
system; and conversely, a �-injective (or �-projective) system determines a �-system uniquely (up
to isomorphisms). Hence, given a �-system, we may speak of the �-injective (or �-projective)
system associated to it.

Finally, we point out that one can construct many standardly stratified algebras from a given
�-injective system.

PROPOSITION 3.21 Let (�; �, ≤) be a finite �-system in A-mod, and let �̄ = {[λ1], [λ2], . . . , [λn]}.
Then, for each �′ = {�(λi) | i = 1, 2, . . . , n}, there is a standardly stratified algebra (A(�′); �′, ≤)

with standard modules �′(λj ), 1 ≤ j ≤ n, such that F(�′) is equivalent to F(�′), where �′ =
{λ1, λ2, . . . , λn} is a poset with the partial order induced from the pre-ordered set (�, ≤).

Proof . By Theorem 3.12 and Proposition 3.13, it is sufficient to prove that (�′; �′, ≤) is a �′-system.
However, this is clear by Definition 3.1.

4. Cartan determinants of pre-standardly stratified algebras

In this section, we give a formula to calculate the Cartan determinants of pre-standardly stratified
algebras (A; �, ≤) by using only the information of standard modules and simple modules. If A

is a standardly stratified algebra, namely the pre-order ≤ is a linear order, a formula for the Cartan
determinant of A was known in [11]. In that case, it is the product of dimensions of the endomorphism
algebras of the standard modules. But this formula is no longer true when we come to pre-orders. For
example, let A be the k-algebra over a field k given by the following regular representation.

AA =
1 2
2 ⊕ 1
1 2

Then this algebra is not standardly stratified over any linearly ordered set. However, it is pre-standardly
stratified algebra over the pre-order: 1 ≤ 2 ≤ 1. In this case, we have �(i) = P(i), which is an inde-
composable projective module. Clearly, the product of the dimension of the endomorphism algebras
of two standard modules is 4 and the Cartan determinant of the algebra is 3 if End(L(i)) = k. This
shows that the Cartan determinant of a pre-standardly stratified algebra in general may have a different
formula.Also, we should note that the Cartan determinants of standardly stratified algebras are always
non-zero; but for pre-standardly stratified algebras, their Cartan determinants could be any integers.

For convenience of the reader, we recall the definition of the Cartan matrix of an Artin algebra.
Let A be an Artin R-algebra with R a commutative Artin ring. Let {L(1), L(2), . . . , L(n)} be

a complete set of non-isomorphic simple A-modules, and let P(i) be the projective cover of L(i).
Denote by ci,j the multiplicity [P(j) : L(i)] of the simple module L(i) in the projective module P(j).
Then, the matrix CA := (cij ) is the Cartan matrix of A, and det(CA) is the Cartan determinant of A.
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For a module M over an Artin R-algebra A, we denote by �(M) the length of M as an R-module.
Let (A; �, ≤) be a pre-standardly stratified algebra with standard modules �(λ), λ ∈ �. We denote
by C[λ] the matrix indexed by [λ], in which the (γ, μ)-entry is �(HomA(�(γ ), �(μ))). Our result
concerning Cartan determinants is the following theorem, which generalizes a result in [11].

THEOREM 4.1 Let (A; �, ≤) be a pre-standardly stratified algebra with standard modules �(λ), λ ∈
�; and let �̄ be the partially ordered set induced by �. Then

det(CA) =
∏

[λ]∈�̄ det(C[λ])∏
λ∈� �(End(AL(λ)))

.

Proof . First, we recall the following well-known fact: �(HomA(P (λ), M)) = �(End(AL(λ)))[M :
L(λ)] for any A-module M. In particular, �(End(AL(λ)))[�(λ) : L(μ)] = �(HomA(P (λ), �(μ))).
Second, we assert that HomA(P (λ), �(μ)) � HomA(�(λ), �(μ)) if λ �< μ. Indeed, applying the
functor HomA(−, �(μ)) to the exact sequence in Definition 2.2, we get the following exact sequence:

0 −→ HomA(�(λ), �(μ)) −→ HomA(P (λ), �(μ)) −→ HomA(Q(λ), �(μ))

−→ Ext1A(�(λ), �(μ)).

Note that the last term, in the above exact sequence, vanishes by Lemma 2.2(b) because λ �< μ.
Since Q(λ) is filtered by �(ρ) with λ < ρ, we see that if λ �< μ then HomA(�(ρ), �(μ)) =
0 by Lemma 2.2(a). Thus HomA(Q(λ), �(μ)) = 0; and therefore, HomA(P (λ), �(μ)) �
HomA(�(λ), �(μ)) if λ �< μ.

Let � be the matrix with entries gμλ = [P(λ) : �(μ)], where [P(λ) : �(μ)] is the multiplicity
of �(μ) in a �-filtration of P(λ). Note that this multiplicity is well defined. Let D be the matrix
with (μ, λ)-entry dμ,λ := [�(λ) : L(μ)], which is the multiplicity of L(μ) as a composition factor
in �(λ). Thus

cμ,λ = [P(λ) : L(μ)] =
∑
γ∈�

[P(λ) : �(γ )][�(γ ) : L(μ)] =
∑
γ∈�

gγ,λdμ,γ .

Then we get the equality CA = D�.
It follows, from the exact sequence in Definition 2.2, that gλ,λ = 1 and gγ,λ = 0 if [γ ] �> [λ].

As we know, the composition factors of �(γ ) are of the form L(ρ) with ρ ≤ γ . This implies that
dμ,γ = 0 if μ �≤ γ . Let �̄ = {ρ1, ρ2, . . . , ρs} such that ρi ≤ ρj implies i ≤ j. We partition all matrices
involved here by the equivalence classes in such a way that the blocks, in the main diagonal, are
indexed by ρ1, ρ2, . . . , ρs , respectively. Let lμ = �(End(AL(μ))) and lμ,γ = �(HomA(�(μ), �(γ ))).
If ρi = {λ1, . . . , λn}, then the ith block Di, in the main diagonal of D, is of the form⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

lλ1,λ1

lλ1

lλ1,λ2

lλ1

· · · lλ1,λn

lλ1

lλ2,λ1

λ2

lλ2,λ2

λ2
· · · lλ2,λn

λ2
· · · · · · · · · · · ·

lλn,λ1

λn

lλn,λ2

λn

· · · lλn,λn

λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

since λi ∼ λj implies λi �< λj .
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The matrix D is then an upper triangular block matrix with D1, . . . , Ds in the main diagonal. It
is not difficult to see that the matrix � is a lower triangular matrix such that the diagonal blocks are
identity matrices. Hence the determinant of � is 1. Clearly, the determinant of D is

det(D) =
∏s

i=1 det(C[ρi])∏
λ∈� lλ

.

This is just the conclusion of Theorem 4.1.

We obtain the following corollaries as a direct consequence of Theorem 4.1.

COROLLARY 4.2 Let (A; �, ≤) be a pre-standardly stratified algebra. If � = �̄ then

det(CA) =
∏
λ∈�

�(End(A�(λ)))

�(End(AL(λ)))
.

In particular, det(CA) > 0.

Proof . Assume that � = �̄. In this case, each equivalence class in � has exactly one element. Thus
det(C[λ]) is just the length of the R-module End(A�(λ)); and therefore det(CA) > 0.

COROLLARY 4.3 Let A be a finite-dimensional algebra over an algebraically closed field k. If
(�, Y ; �, ≤) is a finite �-injective system in A-mod and B = End(

⊕
λ∈� Y (λ)), then

det(CB) =
∏
[t]∈�̄

det
(

dimkHomA

(
�(λ), �(μ)

)
λ,μ∈[t]

)
.

Proof . This follows easily from Theorem 4.1, Proposition 3.15 and the fact that End(BL(λ)) � k

for all simple B-modules L(λ) if k is algebraically closed.

5. Homological dimensions related to finite �-systems

In this section, we shall investigate some homological dimensions of finite �-systems over a pre-
ordered set. In particular, we are interested in the finitistic dimensions of algebras or categories
arising from finite �-systems over pre-ordered sets. The results in this section generalize some of the
corresponding results in [15].

Before we start our discussion, we recall some definitions and introduce some notation.
Let X be a class of objects in A-mod. We denote by X ∧ the full subcategory of A-mod whose

objects are those A-modules X for which there exists a finite X -resolution; that is, there is a long
exact sequence 0 → Xn → · · · → X1 → X0 → X → 0 with Xi ∈ X for all 0 ≤ i ≤ n. Dually, X ∨
is the full subcategory of A-modules whose objects have a finite X -coresolution.

The projective dimension of the class X is defined to be pd(X ) := sup {pd(AX) | X ∈ X }, where
pd (AX) is the projective dimension of AX. Dually, the injective dimension of X is define to be
id(X ) := sup {id(AX) | X ∈ X }, where id (AX) is the injective dimension of AX. Furthermore,
we denote by resdimX (M) the X -resolution dimension of an A-module M. It is defined sim-
ilarly by resdimX (M) := min {r ≥ 0 | there is an exact sequence 0 → Xr → · · · → X0 → M →
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0 with Xi ∈ X } if M ∈ X ∧, and resdimX (M) := ∞ in case M �∈ X ∧. Dually, we have the notion
of X -coresolution dimension of M , which will be denoted by coresdimX (M). For a class C of
A-modules, we set resdimX (C) := sup {resdimX (M) | M ∈ C}. Dually, we define coresdimX (C).

The following result generalizes [15, Theorem 6.4].

LEMMA 5.1 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, and let (�, X; �, ≤) be
the �-projective system associated to the �-injective one, T := ⊕

λ∈� Y (λ) and C := ⊕
λ∈� X(λ).

Then

(a) F(�) is functorially finite in A-mod and closed under extensions and direct summands;
(b) F(�) ∩ I(�) = add(T ) and F(�) ∩ P(�) = add(C);
(c) resdimadd(C) (F(�)) ≤| �̄ | −1 and coresdimadd(T ) (F(�)) ≤| �̄ | −1;
(d) pd(AT ) = pd(F(�)) ≤ pd(AC) + |�̄| − 1 and id(AC) = id(F(�)) ≤ id(AT ) + |�̄| − 1.

Proof . (a) follows from Corollaries 3.11 and 3.16. (b) follows from Lemma 3.7(d) and Corollary 3.19.
(c) follows from Proposition 3.9 and its dual. To prove (d), we shall prove that pd(AM) ≤ pd(AT ) ≤
pd(AC) + |�̄| − 1 for any M ∈ F(�). Note that the other inequality in (d) follows by duality.

First, we prove that pd(AM) ≤ pd(AT ). To do so, we proceed by induction on min(�̄,≤L)(M).

Thus, let 0 �= M ∈ F(�) be not projective (otherwise we have nothing to prove).
If max(�̄,≤L)(M) = min(�̄, ≤L), then Supp(�,�)(M) consists of a single element, say

Supp(�,�)(M) = {ρ1}. By Lemma 3.6(b), we get that M � ⊕
λ∈ρ1

�(λ)[M:�(λ)]. Furthermore, ρ1

is also minimal in (�̄, ≤). By Definition 3.2, we conclude that M � ⊕
λ∈ρ1

Y (λ)[M:�(λ)]. This shows
that pd(AM) ≤ pd(AT ).

Now, assume that max(�̄,≤L) (M) >L min (�̄, ≤L) = ρ1. Then, by Proposition 3.9, we get an exact
sequence in F(�)

0 −→ M −→ Y0 −→ M ′ −→ 0

such that max(�̄,≤L) (M ′) <L max(�̄,≤L) (M) and Y0 ∈ add(T ). Hence pd(AM ′) ≤ pd(AT ) by induc-
tion. It follows from the preceding exact sequence that

pd(AM) ≤ max{pd(AY0), pd(AM ′) − 1} ≤ pd(AT ).

Next, we prove that pd(AT ) ≤ pd(AC) + |�̄| − 1. Since T ∈ F(�), we have, by the dual of
Proposition 3.9, an exact sequence in F(�)

0 −→ M1 −→ Q1 −→ T −→ 0

such that Q1 ∈ add(C) and min(�̄,≤L) (T ) <L min(�̄,≤L) (M1). Therefore,

pd(AT ) ≤ max{pd(AC), pd(AM1) + 1}.
If M1 = 0, then Q1 � T and pd(AT ) ≤ pd(AC). If M1 �= 0 then, by the dual of Proposition 3.9,

we have an exact sequence
0 −→ M2 −→ Q2 −→ M1 −→ 0

in F(�) such that Q2 ∈ add(C) and min(�̄,≤L) (M1) <L min(�̄,≤L) (M2). As a consequence, we
obtain that

pd(AT ) ≤ max{pd(AC), pd(AM1) + 1} ≤ max{pd(AC), pd(AM2) + 2}.



HOMOLOGICAL SYSTEMS IN MODULE CATEGORIES 97

If M2 = 0, then M1 � Q2 and pd(AT ) ≤ pd(AC) + 1 ≤ pd(AC) + |�̄| − 1. In case M2 �= 0, we
proceed as we did for M1 �= 0. This process will end in a finite number m of steps with m ≤ | �̄ | −1;
and finally, we infer that

pd(AT ) ≤ max{pd(AC), pd(AMm) + m} and Mm � Qm+1 ∈ add(C).

Thus pd(AT ) ≤ pd(AC)+ | �̄ | −1, as desired.

Similar to the case of a linearly ordered set in [14], we have the following general result for �-
injective systems over a pre-ordered set. Recall that, for an A-module M , we define M⊥ := {X ∈
A-mod | ExtiA(M, X) = 0 for all i ≥ 1} and X ⊥ := ⋂

X∈X X⊥.

PROPOSITION 5.2 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, and let T :=⊕
λ∈� Y (λ).

(a) If there is a tilting A-module T such that I(�) = T
⊥

, then T is a direct summand of T .

(b) There exists a tilting A-module T such that I(�) = T
⊥

if and only if pd(AT ) < ∞ and
Ext2

A(F(�), I(�)) = 0.

Proof . (a) Let T be a tilting A-module such that I(�) = T
⊥
. By Lemma 5.1(a), we know that T ∈

I(�) = T
⊥
. Therefore, by [14, Lemma 3.1(a)], we get an exact sequence 0 → K → T 0 → T → 0

with T 0 ∈ add(T ) and K ∈ T
⊥ = I(�). Since T ∈ F(�), this exact sequence splits by Lemma

5.1(b). Hence T ∈ add(T ). On the other hand, by Lemma 3.7(c), T is a basic A-module. Hence T

has to be a direct summand of T .

(b) Suppose I(�) = T
⊥

for some tilting A-module T . Then pd(AT ) ≤ pd(AT ) < ∞ by (a). On
the other hand, by the dual result of [5, Theorem 5.5(a)], we conclude that I(�) is a coresolving
subcategory of A-mod. Hence, Ext2

A (F(�), I(�)) = 0 by [15, Lemma 2.5].
Now, assume that pd(AT ) < ∞ and that Ext2

A (F(�), I(�)) = 0. In particular, I(�) is a core-
solving subcategory of A-mod (see [15, Lemma 2.5]). Moreover, from Corollary 3.11 (b), we see that

I(�) is also a covariantly finite subcategory of A-mod. In order to prove that I(�) = T
⊥

for some
tilting A-module T , it is enough to prove that I(�)∨ = A-mod (see the dual result of [5, Theorem
5.5]). Let M be an A-module. Since I(�) is coresolving, we have, for each d > 0, a long exact
sequence in A-mod

0 −→ M −→ I0 −→ I1 −→ . . . −→ Id−1 −→ �−d(M) −→ 0

with Ii injective for all i = 0, 1, . . . , d − 1, where �−n(M) denotes the nth co-syzygy of M . If
pd(T ) = 0, we set d := 1; otherwise, we put d := pd(T ). We claim that �−d(M) ∈ I(�). Indeed,
by Lemma 5.1(d), we have pd(F(�)) = pd(T ). Hence Ext1

A (N, �−d(M)) � Extd+1
A (N, M) = 0

for any N ∈ F(�); proving that �−d(M) ∈ I(�), and so M ∈ I(�)∨.

Let X and C be two classes of A-modules. For an A-module M , we denote by pdX (M) the relative
projective dimension of M with respect to X , that is,

pdX (M) := min {n | ExtjA(M, −)|X = 0 for any j > n ≥ 0}.
Furthermore, we define pdX (C) := sup {pdX (M) | M ∈ C}. Dually, we denote by idX (M) the relative
injective dimension of M with respect to X , and define idX (C) := sup {idX (M) | M ∈ C}.
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Of particular interest are the following two subcategories: P<∞(C) := {X ∈ C | pd(AX) < ∞}
and I<∞(C) := {X ∈ C | id(AX) < ∞}. The finitistic projective dimension of the category C is
defined by pd(P<∞(C)), and is denoted by fpd(C). Dually, fid(C) denotes the finitistic injective
dimension id(I<∞(C)) of C. By abuse of notation, we write fid(A) and fpd(A) for fid (A-mod) and
fpd (A-mod), respectively. Also, for simplicity, we denote the class P<∞(A-mod) by P<∞(A), and
I<∞(A-mod) by I<∞(A).

With this notation, we have the following extension of [15, Proposition 6.6].

PROPOSITION 5.3 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, and let (�, X; �, ≤)

be the �-projective system associated to the �-injective one. Put T := ⊕
λ∈� Y (λ) and C :=⊕

λ∈� X(λ). Then

(a) pd(F(�)) ≤ idF(�)(I(�)) + |�̄| and id(F(�)) ≤ pdF(�)(P(�)) + |�̄|;
(b) fid(A) ≤ max{fid(I(�)), id(AC) + 1} and fpd(A) ≤ max{fpd(P(�)), pd(AT ) + 1};
(c) gl.dim(A) = pd(I(�)) = id(P(�));
(d) pd(AT ) finite implies that fpd(A) = fpd(I(�)). Dually, if id(AC) is finite, then fid(A) =

fid(P(�)).

Proof . By Lemma 5.1(a), F(�) is a functorially finite subcategory of A-mod, which is closed under
extensions and direct summands. So, the result follows from Lemma 5.1(b), (c) and (d), together with
[15, Theorem 2.15] and its dual.

PROPOSITION 5.4 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, T := ⊕
λ∈� Y (λ) and

s(A) the number of isomorphism classes of simple A-modules. If I(�) is coresolving, then

(a) pd(F(�)) ≤ |�̄| ≤ s(A) and id(F(�)) ≤ id(I(�)) + |�̄|;
(b) if AA ∈ (add(T ))∨, T is a tilting R-module and I(�) = T ⊥.

Proof . (a) By Lemma 5.1 (d), we get pd(AT ) = pd(F(�)). On the other hand, the fact that I(�) is
coresolving and also using that the injective modules belong to I(�), imply that idF(�)(I(�)) = 0.
So, from Proposition 5.3 (a), it follows that pd(F(�)) ≤ |�̄|. Moreover, by Proposition 5.2, we see
that T is a direct summand of a tilting A-module; and so |�̄| ≤ s(A).

(b) By (a) and Lemma 5.1 (d), we conclude that pd(AT ) is finite. Then the statement (b) follows
from Proposition 5.2.

LEMMA 5.5 Let (�, Y ; �, ≤) be a finite �-injective system in A-mod, (�, X; �, ≤) the �-projective
system associated to the �-injective one, T := ⊕

λ∈� Y (λ) and C := ⊕
λ∈� X(λ). Then

idadd(T ) (F(�)) = idadd(T ) (C) = pdadd(C) (T ) = pdadd(C) (F(�)).

Proof . It is clear that idadd(T ) (C) = pdadd(C) (T ). We shall prove that idadd(T ) (F(�)) = idadd(T ) (C).

To do this, it is enough to show that idadd(T ) (M) ≤ d for any M ∈ F(�), where d := idadd(T ) (C).

We proceed by reverse induction on min(�̄,≤L) (M).

Let ρn := max (�̄, ≤L). If min(�̄,≤L) (M) = ρn then, by Lemma 3.6(b) and Definition 3.3, we get
that M � ⊕

λ∈ρn
X(λ)[M:�(λ)] ∈ add(C); and so, idadd(T ) (M) ≤ d.



HOMOLOGICAL SYSTEMS IN MODULE CATEGORIES 99

Suppose that min(�̄,≤L)(M) <L ρn. Then, by the dual result of Proposition 3.9, we have an exact
sequence 0 → M ′ → C0 → M → 0 in F(�) such that min(�̄,≤L) (M) <L min(�̄,≤L) (M ′) and C0 ∈
add(C). Applying the functor HomA(T , −) to this sequence, we get an exact sequence

ExtjA(T , C0) −→ ExtjA(T , M) −→ Extj+1
A (T , M ′).

Since d = idadd(T ) (C) and idadd(T ) (M ′) ≤ d (by induction), we conclude that idadd(T ) (M) ≤ d,

proving that idadd(T ) (F(�)) = idadd(T ) (C).

The equality pdadd(C) (F(�)) = pdadd(C) (T ) can be proved in a similar way.

Now, we have the following result which was proved in [15] for the special case of � being a
linear ordered set.

THEOREM 5.6 Let (�, Y ; �, ≤) a finite �-injective system in A-mod, (�, X; �, ≤) the �-projective
system associated to the �-injective one, T := ⊕

λ∈� Y (λ), C := ⊕
λ∈� X(λ) and s(A) the number

of iso-classes of simple A-modules. If I(�) is coresolving, then

(a) idF(�) (M) = coresdimadd(T ) (M) = idadd(T ) (M) for any M ∈ (add(T ))∨;
(b) idF(�)(M) = coresdimI(�) (M) ≤ pd(AC) + |�̄| − 1 for all M ∈ A-mod;
(c) coresdimI(�)(P(I(�))) = pd(P(I(�))) = coresdimI(�) (A-mod) = pd(F(�)) = pd(AT )

= pdP(�)(F(�)) = coresdimI(�)(P(�)) ≤ |�̄| ≤ s(A);
(d) coresdimadd(T )(C) = idadd(T )(C) = pdadd(C)(T ) = pdadd(C)(F(�)) = idadd(T ) (F(�))

= coresdimadd(T ) (F(�)) = pdF(�) (F(�)) = coresdimI(�) (F(�)) ≤ |�̄| − 1;
(e) pdI(�) (M) = resdimP(I(�)) (M) for any M ∈ P(I(�))∧;
(f) P(I(�))∧ = {M ∈ A-mod | pdI(�) (M) < ∞} = P<∞(A);
(g) fpd(A) = fpd(I(�)) ≤ pd(AT ) + resdimP(I(�)) (P<∞(I(�))) ≤ pd(AT )

+ resdimP(I(�)) (P(I(�))∧), where P(I(�)) is the full subcategory of A-mod consisting
of all I(�)-projective A-modules.

Proof . By Lemma 5.1,F(�) is a functorially finite subcategory ofA-mod, and pd(AT ) = pd(F(�)).

Moreover, pd(F(�)) is finite by Proposition 5.4 (a). Hence, by [15, Lemma 3.2], we have F(�) is a
partial tilting subcategory of A-mod. Moreover, it follows from [15, Lemma 2.5] that idF(�) (I(�)) =
0 since I(�) is a coresolving subcategory in A-mod.

The statements (a), (b) and (c) follow from [15, Theorem 3.7] since F(�) is a partial tilting,
contravariantly finite subcategory of A-mod and since idF(�) (I(�)) = 0.

By Lemma 5.1(c), we have coresdimadd T (F(�)) ≤ |�̄| − 1. Hence, (d) follows from the
equalities given in Lemma 5.5 and [15, Theorem 3.7(c)].

The statements (e) and (f) follow from [15, Theorem 3.10]. The statement (g) is a consequence of
[15, Theorem 3.10(f)] since F(�) ∩ I(�) = add(AT ) by Lemma 5.1.

6. Applications to pre-standardly stratified algebras

In this section, we use the results of section 5 to describe a bound for the finitistic projective dimension
of pre-standardly stratified algebras.

Let A be an Artin algebra, and let (�, ≤) be a pre-ordered set which indexes the non-isomorphic
simple A-modules L(λ). Then, with respect to this pre-ordered set, we have the set � of standard
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A-modules �(λ), the set δ of big standard A-modules δ(λ) and the set δ of proper standard modules
δ(λ), with λ ∈ �. Similarly, we have the set ∇ of co-standard modules ∇(λ) and the set ∇ of
proper co-standard modules ∇(λ). Moreover, if (A; �, ≤) is a pre-standardly stratified algebra, then
δ(λ) = �(λ) for any λ ∈ �, as mentioned in Remark (2) to Definition 2.2 in subsection 2.3.

Since several algebras will be involved in our discussions below, we shall write a lower index
to indicate with which algebra we work. For example, we write Aδ for the set {Aδ(λ) | λ ∈ �} and
A∇ for {A∇(λ) | λ ∈ �}. Note that the given pre-ordered set (�, ≤), for the algebra A, induces an
indexing of simple modules for the opposite algebra Aop of A, namely the set of non-isomorphic
simple Aop-modules {DL(λ) | λ ∈ �} can be indexed by (�, ≤), where D is the usual duality of an
Artin algebra. Thus, we may define Aopδ, Aopδ and Aop∇, with respect to (�, ≤). Note that D(Aδ(λ)) =
Aop∇(λ) for any λ ∈ �.

Recall that, for a pre-standardly stratified algebra (A; �, ≤), we have the so called ‘characteristic
tilting module’ T which belongs to F(A�) ∩ I(A�) and has the property that (Bop; �, ≤op) is a
pre-standardly stratified algebra, where B := End(AT ) (see Corollary 3.14). Therefore, we may use
the pre-ordered set (�, ≤op) to index the simple B-modules. Thus, with respect to this pre-order, we
can define Bδ(λ) and Bδ(λ) for the algebra B. Note that B may not be pre-standardly stratified with
respect to (�, ≤op).

LEMMA 6.1 [12] Let (A; �, ≤) be a pre-standardly stratified algebra with standard modules
A�(λ), λ ∈ �, and let T be the characteristic tilting A-module associated to A and B = End(AT ).
Then

(a) the functor F := HomA(ATB, −) : A-mod −→ B-mod restricts to an exact equivalence from
F(A∇) to F(Bδ);

(b) fpd (F(Aopδ)) ≤ ∑
ρ∈�̄ fpd (Endop(

⊕
λ∈ρ Aopδ(λ))) + |�̄| − 1.

Proof . (a) and (b) are taken from [12, Theorem 5(ii), p. 20; Lemma 11, p. 23].

LEMMA 6.2 Let (A; �, ≤) be a pre-standardly stratified algebra, and let T be the characteristic
tilting module and B := End(AT ) with the index set (�, ≤op). Then

(a) I(A�) is coresolving and I(A�) = T ⊥;
(b) resdimadd(T ) ((add(T ))∧) ≤ ∑

ρ∈�̄ fpd(Endop(
⊕

λ∈ρ Bδ(λ))) + |�̄| − 1.

Proof . (a) By Proposition 2.3, we know that F(A�) is a resolving subcategory in A-mod. Hence, by
[5], we get that I(A�) is coresolving in A-mod; and therefore, from Proposition 5.4 (b), we conclude
that I(A�) = T ⊥.

(b) Consider the functor F := HomA(ATB, −) : A-mod → B-mod. We claim that Im(F |T ⊥) �
F(Bδ). Indeed, by [12, Lemma 7, p. 15], we have F(A∇) = I(A�); and so, F(A∇) = T ⊥ by
Lemma 6.2(a). Now the claim follows from Lemma 6.1(a). By [14, Proposition 3.2(e)], we have
resdimadd(T ) (add(T ))∧ ≤ fpd (Im(F |T ⊥)). This means that resdimadd(T ) (add(T ))∧ ≤ fpd(F(Bδ)).

Hence Lemma 6.2(b) follows from Lemma 6.1(b) since (Bop; �, ≤op) is a pre-standardly stratified
algebra.

COROLLARY 6.3 Let (A; �, ≤) be a pre-standardly stratified algebra and T be the corresponding
characteristic tilting module. Then

(a) idF(A�) (M) = coresdimadd(T ) (M) = idadd(T ) (M) for any M ∈ (add(T ))∨;
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(b) idF(A�)(M) = coresdimI(A�) (M) ≤ |�̄| − 1 for all M ∈ A-mod;
(c) coresdimI(A�) (F(A�)) = pd(F(A�)) = coresdimI(A�) (A-mod) = pd(AT ) =

pdP(A�)(F(A�)) = coresdimI(A�)(P(A�)) = coresdimadd(T )(AA) = idadd(T )(AA) =
idadd(T )(F(A�)) = coresdimadd(T ) (F(A�)) = pdF(A�) (F(A�)) = coresdimI(A�) (F(A�))

≤ |�̄| − 1;
(d) pdI(A�) (M) = resdimF(A�) (M) for any M ∈ F(A�)∧;
(e) F(A�)∧ = {M ∈ A-mod | pdI(A�) (M) < ∞} = P<∞(A);
(f) fpd(A) = fpd(I(A�)) ≤ pd(AT ) + resdimF(A�)(P<∞(I(A�))) ≤ pd(AT )

+ resdimF(A�) (F(A�)∧).

Proof . Since (A; �, ≤) is a pre-standardly stratified algebra, we get, on one hand, that (A�, X; �, ≤)

is a A�-projective system with X(λ) := P(λ) for λ ∈ �, and on the other hand, that (A�, Y ; �, ≤)

is a A�-injective system with Y (λ) := T (λ) for λ ∈ �. Consider C := ⊕
λ∈� X(λ) and T :=⊕

λ∈� Y (λ). Note that add(C) = add(AA). By [5, Proposition 1.10], we have P(I(A�)) = F(A�)

since AA ∈ F(A�) and F(A�) is contravariantly finite in A-mod. Hence, we can apply Theorem 5.6
since I(A�) is coresolving in A-mod. This finishes the proof.

COROLLARY 6.4 Let (A; �, ≤) be a pre-standardly stratified algebra and T be the characteristic
tilting module associated to A. We set B := End(AT ) with simple modules indexed by (�, ≤op), and
B(ρ) := End(

⊕
λ∈ρ Bδ(λ)) for ρ ∈ �̄. Then

fpd(A) ≤ pd(AT ) + resdimF(A�) ((add(T ))∧) ≤ pd(AT ) + |�̄| − 1 +
∑
ρ∈�̄

fpd (B(ρ)op)

≤ 2 |�̄| − 2 +
∑
ρ∈�̄

fpd (B(ρ)op).

Proof . Since resdimF(A�) ((add(T ))∧) ≤ resdimadd(T )((add(T ))∧), Corollary 6.4 will be deduced
from Corollary 6.3 and Lemma 6.2(b) if we can prove that P<∞(I(A�)) ⊆ (add(T ))∧. Let X ∈
P<∞(I(A�)). Then, by Corollary 6.3(e), we know that t := resdimF(A�) (X) is finite. On the other
hand, by Wakamatsu’s lemma (see, for example, [5]) together with Lemma 5.1 (a) and the fact that
AA ∈ F(A�), we conclude, for any M ∈ A-mod, that there is an exact sequence

0 −→ K0 −→ M0
f−→ M −→ 0 with K0 ∈ I(A�)

and f a right-minimal F(A�)-approximation of M. In particular, since resdimF(A�) (X) = t, we get
the following long exact sequence for X:

0 −→ Xt

ft−→ Xt−1 −→ · · · −→ X1
f1−→ X0

f0−→ X −→ 0,

where Xi ∈ F(A�) and Ki := Ker (fi) ∈ I(A�) for 0 ≤ i ≤ t. Note that all Xi , 0 ≤ i ≤ t , are in
F(A�) ∩ I(A�) which is add(T ) by Corollary 3.14. Thus X ∈ (add(T ))∧.

COROLLARY 6.5 Let (A; �, ≤) be a pre-standardly stratified algebra and s(A) be the number of
isomorphism classes of simple A-modules. If (�, ≤) is a partially ordered set, then

fpd(A) ≤ 2 s(A) − 2.
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Proof . If (�, ≤) is a partially ordered set, then each ρ in �̄ consists of exactly one element. Thus
B(ρ) is a local algebra. The corollary follows immediately from Corollary 6.4 since the finitistic
projective dimension of a local algebra is equal to zero.

REMARKS (1) Corollary 6.2 says that, for the class of standardly stratified algebras, the finitistic
dimension conjecture holds true. Moreover, we have obtained the same bound, for this class of
algebras, as for the class of standardly stratified algebras in [2], where the pre-order is a linear order.

(2) In [12, Theorem 7, p. 25], the following bound was shown for a pre-standardly stratified
algebra A:

fpd(A) ≤ |�| + |�̄| − 1 +
∑
ρ∈�̄

fpd (B(ρ)op).

It seems that the bound in Corollary 6.4 is better than this one. Indeed, consider the example at the
beginning of section 4. For this algebra, the bound given by Corollary 6.4 is 2 − 2 + 0 = 0, while
the bound given by [12, Theorem 7, p. 25] is 2 + 1 − 1 + 0 = 2. It is easy to see that the finitistic
dimension of the algebra is 0.

(3) In [12, Theorem 8, p. 29], it was proved that

fpd(A) ≤ coresdimI(A�) (A-mod) + resdimF(A�) (F(A�)∧)

for a very special subclass of pre-standardly stratified algebras, namely the so-called ‘weakly properly
stratified algebras’. Corollary 6.3(c) and (f) extend this result to the whole class of pre-standardly
stratified algebras.

(4) For a properly standardly stratified algebra A, there is a relation between the finitistic dimension
and filtration dimension in [16]. In particular, the finitistic dimension of A can be bounded above
by the projective dimension of the characteristic tilting module plus the injective dimension of the
cotilting module associated to A. For details we refer the reader to [16].

For further results and new information on finitistic dimension, we refer to [23] and the references
therein.
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