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We study Auslander’s representation dimension of Artin algebras, which is by
definition the minimal projective dimension of coherent functors on modules which
are both generators and cogenerators. We show the following statements: (1) if an
Artin algebra A is stably hereditary, then the representation dimension of A is at
most 3. (2) If two Artin algebras are stably equivalent of Morita type, then they
have the same representation dimension. Particularly, if two self-injective algebras
are derived equivalent, then they have the same representation dimension. (3) Any
incidence algebra of a finite partially ordered set over a field has finite representa-
tion dimension. Moreover, we use results on quasi-hereditary algebras to show that
(4) the Auslander algebra of a Nakayama algebra has finite representation dimen-
sion. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Among Artin algebras the class of representation finite Artin algebras
are much better understood in the representation theory. To investigate the
connection of arbitrary Artin algebras with representation finite Artin
algebras, the representation dimension is introduced by Auslander in [1].
‘‘It is hoped that this notion gives a reasonable way of measuring how far
an Artin algebra is from being representation finite type’’ [1, p. 134].

The key ingredients in the notion of the representation dimension are the
coherent functors and their homological dimensions. Recently, Hartshorne



in [11] reveals an important application of coherent functors to the study
of Rao modules in algebraic space curves. This implies that coherent func-
tors are very useful and worthy to be investigated further.

Unfortunately, in the last three decades there is not much progress on
the representation dimension. It is still a mysterious subject in the repre-
sentation theory. One does not even know whether the representation
dimension of a finite dimensional algebra over a field is finite. To enrich
our knowledge on representation dimension, we study in this paper the
question of the following type: Suppose two Artin algebras A and B have
certain good connection (for example, they are stably equivalent, or B is a
quotient of A), how is the relationship of their representation dimensions?
Second, we want to relate the investigation of the representation dimension
to that of quasi-hereditary algebras. As one of the main results in this
paper, we shall prove in Section 3 that if an Artin algebra is stably heredi-
tary, then its representation dimension is at most 3. Note that ‘‘stably
hereditary’’ is a generalization of ‘‘stably equivalent to hereditary.’’ In par-
ticular, we reobtain a result of Auslander and Reiten in [4] which says that
if an Artin algebra is stably equivalent to a hereditary algebra, then its
representation dimension is bounded by 3. Along this direction we shall
consider in Section 4 the stable equivalence of Morita type between two
Artin algebras. In this case we will demonstrate that if there is a stable
equivalence of Morita type between two Artin algebras A and B, then A
and B have the same representation dimension. In particular, if two alge-
bras are derived equivalent, then their trivial extensions have the same
representation dimensions. Section 5 is devoted to the consideration of
representation dimensions of a self-injective algebra and its factor algebras

Since quasi-hereditary algebras have finite global dimension, we can use
results on quasi-hereditary algebras to get some upper bounds for the repre-
sentation dimension. In Section 6 we shall prove that the Auslander algebra
of a Nakayama algebra has finite representation dimension and that the
algebra of the form End(AÀX) with A a self-injective algebra and X a semi-
colocal A-module has finite representation dimension. Finally, we shall show
in Section 7 that the incidence algebra of an arbitrary finite partially ordered
set over a field always has a finite representation dimension.

Throughout this paper we work with Artin algebras. Sometimes we
assume a strong condition that the algebra considered is a finite dimen-
sional k-algebra over a fixed field k. We always assume that our algebras
have identity element. By a module we mean a finitely generated left
module. The global dimension of an algebra A is denoted by gl.dim(A). By
D we denote the usual duality and by A-mod the category of all ( finitely
generated left) A-modules. Given two homomorphisms f: L0M and
g: M0N, the composition of f and g is a homomorphism from L to N
and is denoted in the paper by fg.
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2. PRELIMINARIES

Given an Artin algebra A, that is, A is a ring whose center is an Artin
ring and over the center A is a finitely generated module, we say that A has
dominant dimension greater than or equal to n, denoted by
dom.dim(A) \ n, if there is an exact sequence

00 AA0X1 0X2 0 ...

of A-modules such that Xi is projective and injective for i=1, ..., n. We
denote by I0(A) the module X1.

For a representation finite Artin algebra, Auslander proved that the
endomorphism algebra of the direct sum of all nonisomorphic indecom-
posable modules has global dimension at most two and dominant dimen-
sion at least two. More precisely, Auslander proved the following theorem,
which motivated him to introduce the notion of representation dimension,
as a way of measuring how far an Artin algebra is from being representa-
tion finite type.

Theorem 2.1. Suppose A is an Artin algebra with gl.dim(A) [ 2. If P is
a projective and injective A-module, then EndA(P) has representation finite
type. Further, up to Morita equivalence, all Artin algebras of representation
finite type are obtained in this way.

The representation dimension is defined as follows.

Definition 2.2. Let A be an Artin algebra. Consider an Artin algebra
L of dominant dimension at least two such that EndL(I0(L)) is Morita
equivalent to A. Then the representation dimension of A is defined to be
the minimum of the global dimension of all possible L and denoted by
rep.dim(A).

In fact, Auslander also proved in [1] that the above definition is equiva-
lent to the following definition:

rep.dim(A)=inf{gl.dim(EndA(M)) | M is a generator–cogenerator}.

Note that an A-module M is called a generator–cogenerator if every inde-
composable projective module and also every indecomposable injective
module is isomorphic to a summand ofM.

Note that for a semisimple algebra its representation dimension is zero
by definition. It is easy to see that there is no algebra whose representation
dimension is 1.

The following lemma collects some known results on the representation
dimension which we shall need in the remainder of the paper.
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Lemma 2.3. Let A be a non-semisimple k-algebra. Then

(1) rep.dim(A)=2 if and only if A is representation finite.
(2) If A is self-injective algebra, then rep.dim(A) [ LL(A), where

LL(A) stands for the Loewy length of A.
(3) If gl.dim(A) [ 1, then rep.dim(A) [ 3.
(4) If the radical square of A is zero, then rep.dim(A) [ 3.
(5) Let T2(A) denote the 2×2 triangular matrix algebra over A, then

rep.dim(T2(A)) [ rep.dim(A)+2.
(6) IfA andB are two algebras over a perfect field k, then rep.dim(Aé kB)

[ rep.dim(A)+rep.dim(B).

The statements (1)–(4) were proved in [1], and the statement (5) was
shown in [10, p. 115]. (6) was proved in [19].

Finally, let us recall a result of Auslander which is useful for computing
the global dimension of the endomorphism algebra of a given module.

Let M be an A-module. We denote by add(M) the full subcategory of
A-mod whose objects are isomorphic to direct summands of direct sums of
finite copies ofM.

Let C be a skeletally small category. We denote by Cop the opposite
category of C and by Funct(Cop, Ab) the abelian category of all functors
from Cop to the category Ab of abelian groups. Let C1 be the full sub-
category of Funct(Cop, Ab) consisting of all coherent functors G, that is,
those functors G for which there is a morphism C1 0 C2 in C such that the
sequence

(, C1)0 (, C2)0 G0 0

is exact. Here and in the following we denote by (, C) the Hom functor
HomC(, C): Cop0 Ab for C ¥ C.

The following lemma is proved in [1].

Lemma 2.4. Let M be in A-mod. Then the category5add(M) and
End(M)-mod are equivalent. In particular, gl.dim(EndA(M))=gl.dim

(5add(M)).

Finally, let us remark that representation dimension is invariant under
Morita equivalences and that rep.dim(A)=rep.dim(Aop) for all Artin
algebras, where Aop stands for the opposite algebra of A.

3. STABLY HEREDITARY ALGEBRAS

We know from 2.3 that for a hereditary algebra A one has
rep.dim(A) [ 3. Moreover, it is shown in [4] that if an algebra is stably
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equivalent to a hereditary algebra then its representation dimension is also
bounded by 3. In fact, we prove that this is true for stably hereditary alge-
bras, a class of algebras which are more general than that of algebras stably
equivalent to hereditary algebras.

Let us first recall some definitions and notation.
Given an Artin algebra A. We define the stable category A-mod of the

algebra A as follows: the objects are the same as those of the module
category A-mod, and the morphisms between two objects M and N are
given by HomA(M, N)=HomA(M, N)/R(M, N), where R(M, N) is the
subgroup of HomA(M, N) consisting of the homomorphisms fromM to N
which factor through a projective A-module.

Definition 3.1. Let A and B be two Artin algebras over a field k. We
say that A and B are stably equivalent if A-mod and B-mod are equivalent.

In [5], algebras which are stably equivalent to hereditary algebras are
investigated in details. The following is a characterization of these algebras:

Lemma 3.2 [3, 4]. Let A be an Artin algebra. Then A is stably equiva-
lent to a hereditary algebra if and only if the following two conditions hold:

(1) Each indecomposable submodule of an indecomposable projective
module is projective or simple;

(2) For each non-projective simple submodule L of a projective module
there is an injective module Q with L ı Q/rad(Q).

Note that if an algebra A is stably equivalent to a hereditary algebra, then
the opposite algebra Aop of A is also stably equivalent to a hereditary
algebra. From this observation and the above lemma, we have the follow-
ing obvious fact which is a part of the dual statement of Lemma 3.2.

Lemma 3.3. If A is stably equivalent to a hereditary algebra, then each
indecomposable factor module of an indecomposable injective module is
injective or simple.

Motivated by these characterizitions of algebras being stably equivalent
to hereditary algebras, we introduce the following notion.

Definition 3.4. Let A be an Artin algebra. We say that A is stably
hereditary if: (1) Each indecomposable submodule of an indecomposable
projective module is either projective or simple; (2) Each indecomposable
factor module of an indecomposable injective module is either injective or
simple.

Here we require that an indecomposable projective-injective module
satisfies either (1) or (2), but not necessarily the both conditions.
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Clearly, algebras which are stably equivalent to hereditary algebras are
stably hereditary, but the converse is not true, we shall see an example at
the end of this section.

Now let us prove the following main result of this section.

Theorem 3.5. If an Artin algebra A is stably hereditary, then
rep.dim(A) [ 3.

Proof. We define V :=A À D(AA) À A/rad(A). Then V is clearly a
generator–cogenerator for A-mod. We shall prove that for each A-module
M there is an exact sequence

00 V2 0 V1 0M0 0

with Vi ¥ add(V) such that for any module X ¥ add(V) the following
sequence

00 (X, V2)0 (X, V1)0 (X, M)0 0

is exact, where we denote by (X, M) the A-homomorphism set from X
toM.

For the given module M, we denote by MŒ the sum of the maximal
injective submodule ofM and the socle ofM. The canonical inclusion from
MŒ to M and the canonical surjection from M to M/MŒ are denoted by m
and p, respectively. Let h: P0M/MŒ be a projective cover of M/MŒ.
Then there is a lifting g: P0M such that h=gp. Let W be the kernel of h.
Then we have the following diagram:

0 0

‡ ‡

W ===== W

‡ ‡

00MŒ0MŒ À P ||0 P ||0 0

|| ‡f ‡h

00MŒ|0
m
M ||0p M/MŒ 0 0

‡ ‡

0 0

We define f: MŒ À P0M by (mŒ, p)- mŒ+(p) g, where mŒ ¥MŒ, p ¥ P,
and the image of p under g is denoted by (p) g. It is clear that f is a
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surjective map and that MŒ is a direct sum of an injective module and a
semisimple module. Thus MŒ belongs to add(V). If X is projective or
simple, then the morphism (X, MŒ À P)0 (X, M) induced from f is
surjective by the definition of MŒ. Now let X be an indecomposable injec-
tive A-module and let j: X0M be a non-zero homomorphism . By the
definition of stably hereditary algebras, the image of j is either injective, or
simple and thus lies in MŒ. This means that j factors through f. Thus for
any X in add(V) the morphism from (X, MŒ À P)0 (X, M) induced by f
is surjective.

To show that the sequence

00 W0MŒ À P|0
f
M0 0

is a desired one, we need only to show that W lies in add(V). Let
W=W1 À W2, where each indecomposable direct summand of W1 is
projective or injective, and each indecomposable direct summand X of W2
is neither projective nor injective. If we decompose P into a direct sum of
indecomposable projective modules, say P1 À P2 À · · · À Pm, then the image
of X in Pj must be simple by the definition of stably hereditary algebras.
Thus the image of W2 under the canonical inclusion W2 + P is contained in
the socle of P. This implies that W2 itself is semisimple and thus lies in
add(V).

To finish the proof of Theorem 3.5, we take a coherent functor F in
5add(V). Then there is a morphism g: X1 0X0 with Xi ¥ add(V) such that
the functor sequence

(−, X1)0 (−, X0)0 F0 0

is exact on add(V). Let M be the kernel of g. Then, by what we have
proved, there exists an exact sequence

00X3 0X2 0M0 0

with X2, X3 ¥ add(V) such that for any module X ¥ add(V) the following
sequence

00 (X, X3)0 (X, X2)0 (X, M)0 0

is exact. This shows that the exact sequence

00 (, X3)0 (, X2)0 (, X1)0 (, X0)0 F0 0

of functors is exact on add(V). By 2.4, we have gl.dim(EndA(V)) [ 3. Thus
rep.dim(A) [ 3. This finishes the proof.
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As a corollary of the above theorem, we have the following result due to
Auslander and Reiten [4, Proposition 4.7 ].

Corollary 3.6. If an Artin algebra A is stably equivalent to a heredi-
tary algebra, then rep.dim(A) [ 3.

We know that representation-finite type is invariant under stable equiv-
alences. This means that if A is stably equivalent to a hereditary algebra B,
then rep.dim(A)=rep.dim(B).

We point out that a stably hereditary algebra may not be stably equiva-
lent to a hereditary algebra. As is shown in [4], if A is the algebra

Rk k k
0 k k
0 0 k
S with k a field and if S is the unique simple module which is

neither projective nor injective, then the endomorphism algebra of A À S is
not stably equivalent to a hereditary algebra, but it is stably hereditary. In
fact, we have the following general construction:

Proposition 3.7. Let A be a stably hereditary algebra over an algebrai-
cally closed field k and S a simple injective A-module. Then the one-point
extension

A[S]=R
A S

0 k
S

of A by S is again stably hereditary. In particular, if S is a simple A-module
which is not a submodule of a projective module, then the endomorphism
algebra E :=EndA(A À S) of A À S is stably hereditary. In particular,
rep.dim(E) [ 3.

Proof. Let E denote the one-point extension of A by S. We denote by
L(w) the simple E-module which is not an A-module. Thus every inde-
composable submodule of indecomposable projective modules is projective
or simple. Now let Q be an indecomposable injective E-module which is
not simple. Then either Q has no composition factor L(w) or Q is the
E-injective envelope of S. In the former case every indecomposable factor
module of Q is injective since A is stably hereditary. In the latter case,
Q/Soc(Q) is a direct sum of L(w) and an injective A-module; this implies
that each indecomposable factor module of Q is either the simple module
L(w), or injective. Thus E is stably hereditary.

4. STABLE EQUIVALENCES OF MORITA TYPE

There are evidences which suggest the following conjecture: If A and B
are stably equivalent, then rep.dim(A)=rep.dim(B). In this section we
show that this conjecture is true for stable equivalences of Morita type.
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First recall from [7] that given two Artin algebras A and B, a stable
equivalence f: A−mod 0 B−mod is said to be of Morita type if there are
bimodules AMB and BNA such that

(a) AM, BN,MB, and NA are projective modules; and Mé BN4AÀP
as A-bimodules for a projective A-bimodule P, and N é AM 4 B À Q as
B-bimodules for a projective B-bimodule Q; and

(b) The following diagram

A-mod||0
N éA − B-mod

pA‡ ‡pB

A-mod||0
f
B-mod

is commutative, that is, (N é A) p pB 4 pA p f, where pA denotes the
canonical functor for A-mod to its stable category A-mod.

Note that the above f is lifted to a Morita equivalence if and only if it is
of Morita type with P=0=Q.

We shall prove that under the condition (a) the representation dimen-
sions of A and B are equal to each other. For convenience, we say that
two Artin algebras A and B are Morita-type equivalent if there are two
bimodules AMB and BNA such that the condition (a) is fulfilled. The main
result in this section is the following theorem.

Theorem 4.1. Let A and B be two Artin algebras. If they are Morita-
type equivalent, then rep.dim(A)=rep.dim(B).

Proof. We define functors TM: B-mod 0 A-mod by X-M é BX and
TN: A-mod 0 B-mod by Y-N é AY. Similarly, we have the functors TP
and TQ. It is clear from (a) that TM p TN 4 idA-mod À TP and TN p TM 4

idB-mod À TQ. Note also that the images of TP and TQ consist of projective
modules (see [6, Corollary 3.3]) and that all tensor functors involved are
exact.

(1) If I is an injective A-module, then so is the B-module TN(I). In
fact, given a monomorphism f: Y1 0 Y2 of B-modules and a homo-
morphism g: Y1 0 TN(I), we show that there is a morphism gŒ: Y2 0 TN(I)
such that g=fgŒ. Since I is injective, there is a morphism g1: TM(Y2)0 I
such that TM(f) g1=TM(g)(

idI
0 ). Note that TMTN(I)=I À TP(I). By

applying the functor TN, we have

Rf 0

0 TQ(f)
S TN(g1)=R

g 0

0 TQ(g)
S1 idTN(I)

0
2 .
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If we rewrite TN(g1) as (gŒ, h) tr, then g=fgŒ. This shows that TN(I) is
injective.

(2) If V is a generator-cogenrator for A-mod, then TN(V) is a
generator–cogenerator for B-mod. Indeed, we have a surjective morphism
Vm0M, from this we get a surjective morphism TN(Vm)0 TN(M)=
B À Q which implies that B is a direct summand of TN(V)m. Thus TN(V) is
a generator for B-mod. To prove that TN(V) is a cogenerator for B-mod,
we take an injective B-module Y and consider the A-module TM(Y).
According to (1), TM(Y) is an injective A-module, and therefore it lies in
add(V). This implies that TN(TM(Y)) belongs to add(TN(V)), that is,
Y À Q é Y lies in add(TN(V)).

(3) If f: V0 0X is a right add(V)-approximation of X, then
TN(f): TN(V0)0 TN(X) is a right add(TN(V))-approximation of TN(X).
Recall that given a full subcategory C of A-mod and a A-module M, a
morphism g: X0M with X ¥ C is called a right C-approximation of M if
for any XŒ ¥ C and morphism gŒ: XŒ0M there is a morphism h: XŒ0X
such that gŒ=hg. To prove our statement, we take a morphism
g: Y0 TN(X) with Y ¥ add(TN(V)). We write TM(g) :=(g1, g2): TM(Y)0
X À TP(X). Then

Rg 0

0 TQ(g)
S=TNTM(g)=(TN(g1), TN(g2))

and TN(g1))=(g, 0) tr. Since TM(Y) ¥ add(V), there exists a morphism
h: TM(Y)0 V0 such that g1=hf. Thus TN(g1)=TN(h) TN(f) and
g=h1TN(f), where TN(h)=(h1, h2) tr: Y À TQ(Y)0 TN(V0). This is what
we want to show.

(4) Suppose V is a generator–cogenerator for A-mod such that
rep.dim(A)=m. Then TN(V) is a generator–cogenerator for B-mod. If F is
a coherent functor in5add(TN(V)), then there is a morphism f: Y1 0 Y0
with Y1, Y0 ¥ add(TN(V)) such that (, Y1)0 (, Y0)0 F0 0 is exact on
add(TN(V)). Let Y be the kernel of f. Clearly, TM(f) is a morphism in
add(V), and the sequence

(, TM(Y1))0 (, TM(Y0))0 G0 0

provides us a coherent functor G in5add(V). Since the global dimension of
5add(V) is m by 2.4, there is a projective resolution

00 (, Vm)0 · · · 0 (, V2)0 (, TM(Y1))0 (, TM(Y0))0 G0 0
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with Vi ¥ add(V). This provides us an exact sequence

00 Vm 0 · · · 0 V2 0 TM(Y1)||0
TM(f) TM(Y0).

Let X be the kernel of TM(f). Then we have an exact sequence 00 Vm
0 · · · 0 V2 0X0 0. Since the canonical surjection from V2 to X is in
fact a right add(V)-approximation of X, the sequence 00 (, Vm)0 · · · 0
(, V2)0 (, X)0 0 is exact on add(V). From this and (3) we have another
exact sequence

(f) 00 TN(Vm)0 · · · 0 TN(V2)0 TN(X)0 0

such that 00 (, TN(Vm))0 · · · 0 (, TN(V2))0 (, TN(X))0 0 is exact on
add(TN(V)). Note that TN(X)=Ker(TNTM(f))=Ker(f) À Ker(TQ(f)).
It follows that there is a mimimal projective resolution

00 (, Ym)0 · · · 0 (, Y2)0 (, Ker(f))0 0

of the functor (, Ker(f)) with Yi ¥ add(TN(V)). This yields the following
exact sequence

00 (, Ym)0 · · · 0 (, Y2)0 (, Y1)0 (, Y0)0 F0 0

of functors on add(TN(V)). So the global dimension of5add(TN(V)) is at
most m. By 2.4 and the definition of the representation dimension, we have
rep.dim(B) [ m; that is, rep.dim(B) [ rep.dim(A). Similarly, we have
rep.dim(A) [ rep.dim(B). Thus rep.dim(A)=rep.dim(B).

Now let us deduce some consequences of the above result.
Recall that two algebras A and B are called derived equivalent if the

bounded derived categories of A-mod and B-mod are equivalent as trian-
gular categories. By [15], there is a stable equivalence of Morita type
between self-injective algebras if they are derived equivalent. Thus we have
the following consequence of 4.1.

Corollary 4.2. Let A and B be self-injective algebras. If they are
derived equivalent, then they have the same representation dimension.

Recall that given a finite dimensional k-algebra A the trivial extension
T(A) of A is defined to be A À D(A) (as a vector space) with the multipli-
cation:

(a, f)(b, g)=(ab, ag+fb) for a, b ¥ A; f, g ¥ D(A).

It is known that T(A) is always a symmetric algebra for any algebra A;
thus it is self-injective.
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Corollary 4.3. If two algebras A and B are derived equivalent, then
rep.dim T(A)=rep.dim T(B). In particular, if B is an endomorphism algebra
of a tilting A-module, then rep.dim T(A)=rep.dim T(B).

Proof. By [16], if A and B are derived equivalent, then the trivial
extensions T(A) and T(B) are also derived equivalent. Since T(A) is self-
injective, we have that rep.dimT(A)=rep.dimT(B) by 4.2.

Remarks. (1) It is easy to find two algebras which are not Morita
equivalent, but there is a stable equivalence of Morita type between them.
For example, the trivial extension of the path algebra A of the quiver
p Qa p Qb p is not Morita equivalent to the trivial extension of the algebra
B :=A/(ab), but there is a stable equivalence of Morita type between T(A)
and T(B) since B is tilted from A.

(2) Representation dimension is not invariant under derived equiva-
lences. For instance, if we take a tame hereditary algebra A and a tilting
module T which contains both indecomposable preprojective modules and
preinjective modules as direct summands, then the endomorphism algebra
B of T is clearly derived equivalent to A, but we have rep.dimA=3 and
rep.dimB=2 by Lemma 2.3. Hence the self-injectivity in 4.2 is necessary.

(3) If an Artin algebra A is stably equivalent to a self-injective
algebra B, then the algebra A itself is a direct sum of self-injective algebras
and Nakayama algebras; this is proved in [14]. Thus, by Lemma 2.3, the
representation dimension of A is finite. However, it is not known whether
A and B have the same representation dimension.

5. REPRESENTATION DIMENSIONS OF SELF-INJECTIVE
ALGEBRAS AND THEIR FACTOR ALGEBRAS

If A is a finite dimensional algebra over a field k, then the trivial exten-
sion T(A) of A is a self-injective algebra with T(A)/I 4 A for an ideal I in
T(A), where I2=0. Thus, to know whether A has finite representation
dimension, it is useful to consider the relationship of the representation
dimensions between A and its factor algebra A/I with I2=0.

In this section we have the following result in this direction.

Theorem 5.1. Let A be a self-injective algebra, and let n be the
nilpotency index of the Jacobson radical N of A. If I is an ideal in A with
IN=0 (for example, an ideal contained in Nn−1), then rep.dim(A) [
rep.dim(A/I)+3.
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Proof. We may assume that rep.dim(A/I)=m<.. Otherwise there is
nothing to prove. Let V0 be an A/I-module such that rep.dim(A/I)=
gl.dim EndA/I(V0). Put V=V0 À A. We prove that for each A-module M
there is an exact sequence

00Mm+1 0 · · · 0M1 0M0 0M0 0

with allMi ¥ add(V) such that the induced sequence

00 (X, Mm+1)0 · · · 0 (X, M1)0 (X, M0)0 (X, M)0 0

is exact for all X ¥ add(V).
If M ¥ add(V), then we simply define M0=M and the identity map
M0 QM and we get a desired sequence.

Suppose M is not in add(V). If M is an A/I-module, then we have a
minimal projective resolution for (, M):

00 (, Mm)0 · · · 0 (, M1)0 (, M0)0 (, M)0 0

with all Mi ¥ add(V0). Since A/I ¥ add(V0), we have an exact sequence of
A/I-modules

00Mm 0 · · · 0M1 0M0 0M0 0

Clearly, this is a desired sequence since AA is a projective module. Now
suppose M is not an A/I-module. We take MŒ={m ¥M|Im=0}. Then
MŒ is an A/I-module. Suppose that l: M0 0MŒ is a right minimal
add(V0)-approximation of MŒ and g: P0M/MŒ a projective cover of
A-modules and h: P0M a lifting such that g=hp, where p is the canon-
ical homomorphism M0M/MŒ. Define f: M0 À P0M by (x, p)W
l(x)+(p) h. If (x, p) ¥ Ker(f) with x ¥M0 and p ¥ P then p ¥ Ker(g).
Since P is a projective cover, we have Ker(g) …NP. Hence Ker(f) is an
A/I-module because I(x, p) … (Ix, IKer(g)) … (0, INP)=0. Now we
show that for any X ¥ add(V) the induced map (X, M0 À P)0 (X, M) is
surjective. If X ¥ add(V0) then the image of any homomorphism from X to
M is an A/I-module and thus lies inMŒ. This implies that the induced map
is surjective. If X is a projective A-module, then there is nothing to show.
So we have proved that for all X ¥ add(V) the induced map is surjective.

Now by the previous result we have an exact sequence

00Mm+1 0 · · · 0M1 0 Ker(f)0 0

with allMi ¥ add(V0) … add(V) such that for all X ¥ add(V) the sequence

00 (X, Mm+1)0 · · · 0 (X, M1)0 (X,Ker(f))0 0
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is exact. Hence we have the exact sequence

00 (X, Mm+1)0 · · · 0 (X, M1)0 (X, M0 À P)0 (X, M)0 0

for all X ¥ add(V), where all Xi are in add(V).
Now we establish that gl.dim(5add(V)) [ m+3. Take a functor G in
5add(V). Then there is a morphism f: M1 0M0 in add(V) such that
(, M1)0 (, M0)0 G0 0 is exact. Letting M=Ker(f), we know that
there is an exact sequence

00Xm+1 0 · · · 0X0 0M0 0

with all Xi ¥ add(V) such that the induced sequence

00 (X, Xm+1)...0 (X, X0)0 (X, M)0 0

is exact for all X ¥ add(V). Thus the sequence

00 (, Xm+1)0 · · · 0 (, X1)0 (, X0)0 (, M1)0 (, M0)0 G0 0

is exact in add(V). This shows that proj.dim(G) [ m+3. By 2.4, we get
gl.dim (EndA(V)) [ m+3=rep.dim(A/I)+3. Thus the proof is completed.

6. TWO CONJECTURES

The results in the previous sections support that we may make the
following conjecture.

Conjecture 1 Let A be an Artin algebra. Then its representation
dimension is finite.

Related to this conjecture there is the following conjecture of Ringel on
quasi-hereditary algebras:

Conjecture 2 Let A be a finite dimensional algebra over a field k.
Then for every A-module M in A-mod there is a module MŒ such that the
endomorphism algebra ofM ÀMŒ is quasi-hereditary.

Recall from [8] that an ideal J in a finite dimensional algebra A is called
a heredity ideal if (1) J2=J, (2) Jrad(A) J=0, and (3) AJ is a projective
A-module. The algebra A is said to be quasi-hereditary if there is a finite
chain J0=0 ı J1 ı J2 ı ... ı Jn=A of ideals such that for each i the ideal
Ji/Ji−1 is a heredity ideal in A/Ji−1.
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Quasi-hereditary algebras have finite global dimension. Typical examples
of quasi-hereditary algebras are Schur algebras, Brauer algebras, and
Birman–Wenzl algebras for most choices of parameters (see [21]).

Let us introduce the following notion.

Definition 6.1. Given a module M. A module MŒ is called a quasi-
heredity complement to M if the endomorphism algebra of M ÀMŒ is
quasi-hereditary.

Conjecture 2 is true for a semilocal module M (see [12]). Recall that a
module is called local if it has a simple top and is called colocal if it has a
simple socle. A module is called semilocal (or semicolocal) if it is a direct
sum of local (or colocal) modules.

Lemma 6.2. (1) If M is a semilocal module, then there is a module
MŒ such that the endomorphism algebra ofM ÀMŒ is quasi-hereditary. Thus
each semilocal module has a quasi-heredity complement.

(2) If M is a semicolocal module, then there is a module NŒ such that
the endomorphism algebra of M ÀNŒ is quasi-hereditary. Thus each semi-
colocal module has a quasi-heredity complement.

The statement (1) was proved in [12]. Statement (2) is a dual statement
of (1). For the convenience of the reader we include here a proof. LetM be
a semicolocal module. Put XA=D(M). Then, by the right version of the
statement (1), we can find a module YA such that End(XA À YA) and
End(XA À YA)op are quasi-hereditary. Since D is a duality, we have that
End(AM À D(YA)) 5 End(D(XA À YA)) 5 End(XA À YA)op is quasi-here-
ditary.

Note that Conjecture 2 is also true for a D-good module over an
F(D)-finite quasi-hereditary algebra (see [20]).

The relationship of the two conjectures is the following trivial lemma.

Lemma 6.3. If Conjecture 2 is true, then so is Conjecture 1.

Proof. We take M to be the module A À D(A). Then there is a module
MŒ such that E=EndA(M ÀMŒ) is quasi-hereditary by Conjecture 2. Since
quasi-hereditary algebras have finite global dimension, the algebra E has
finite global dimension. Then by definition we have that rep.dim(A) <.
since M ÀMŒ is a generator and cogenerator for the A-module category.
Thus Conjecture 1 holds true.

In fact, in order to confirm the conjecture 1, it is sufficient to find a quasi-
heredity complement only for the moduleM=A À D(A).
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Proposition 6.4. Let A be an Artin algebra. If every indecomposable
injective module is local, then the representation dimension of A is finite.
Dually, if each indecomposable projective module is colocal, then the algebra
A has finite representation dimension.

Proof. We prove only the first statement. By assumption, D(A) is a
semilocal module, hence the module M=A À D(A) is semilocal. By (1) of
Lemma 6.2, there is a module MŒ such that the endomorphism algebra of
M is quasi-hereditary. This implies that the representation dimension of A
is finite by the proof of Lemma 6.3.

As an application of Proposition 6.4, we have the following result.

Proposition 6.5. Let A be an Artin algebra. If X is a finite family of
colocal A-modules such that it contains each indecomposable projective
module as well as each indecomposable injective module, then the endo-
morphism algebra of the direct sum of all modules in X has finite representa-
tion dimension.
In particular, if A is a self-injective Artin algebra, and if X is a semi-
colocal A-module, then the representation dimension of End(AA À AX) is
finite.

Proof. Let M denote the direct sum of all modules in X and L the
endomorphism algebra of M. To prove that L has a finite represent-
tion dimension, we show that each indecomposable projective L-module
has a simple socle. For this we take an indecomposable A-module X in
X and its injective envelope I(X). Then the L-module HomA(M, X)
is a L-submodule of HomA(M, I(X)). If HomA(M, I(X)) is a colocal
L-module, then so is the L-module HomA(M, X). But this is clearly true
since HomA(M, I(X)) is a projective-injective L-module by [2, Proposition
8.3]. Thus the representation dimension of L is finite by 6.4.

As an easy consequence we have the following fact.

Corollary 6.6. Let A be an Artin algebra. If each indecomposable
A-module is colocal, then the Auslander algebra of A has finite representation
dimension. In particular, the Auslander algebra of a Nakayama algebra has
finite representation dimension.

Recall that given a representation finite Artin algebra A, the Auslander
algebra of A is by definition the endomorphism algebra of the direct sum of
all nonisomorphic indecomposable A-modules. An Artin algebra is called a
Nakayama algebra if each indecomposable projective module as well as
injective module has a unique composition series. Note that the Auslander
algebra of a Nakayama algebra is not necessarily of representation finite
type.
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In fact, Proposition 6.4 provides a large class of algebras with finite
representation dimension. For example, we can apply it also to certain
incidence algebras. Recall that for a given finite partially ordered set S and
a field k the incidence algebra kS over k is defined as a quotient of the path
algebra kQ of the quiver Q modulo all commutative relations, where the
quiver Q has the vertex set S, and for two vertices a and b there is an arrow
from a to b if a > b and there is no element c such that a > c > b.

Corollary 6.7. Let S be a finite partially ordered set with a greatest
element. Then for any field k, the incidence algebra of S over k has finite
representation dimension. Dually, if S has a unique minimal element, then the
incidence algebra over any field has finite representation dimension.

Proof. Since rep.dim(A)=rep.dim(Aop), the second statement follows
from the first one. For the first, one only needs to know that the existence
of the greatest element in S implies that each indecomposable injective
module of the incidence algebra has a simple top; thus the corollary follows
from 6.4.

Finally, recall from [9] that given a commutative local self-injective
algebra R over a field k one may construct quasi-hereditary algebras in the
following way:

Let L be a poset of cardinality n=dim R. For each l ¥ L, assume that
there exists a local ideal Xl in R such that Xl …Xm if and only if l [ m. Put
X= À l Xl, and let A=EndR(X). Then it is shown that A is quasi-heredi-
tary if and only if rad(Xl)=; n > l Xn for all l, and R ¥ add(X).

From Proposition 6.5 the following statement follows.

Corollary 6.8. The quasi-hereditary algebra A constructed above has
finite representation dimension.

7. INCIDENCE ALGEBRAS

In this section we shall prove the following more general result on inci-
dence algebras.

Theorem 7.1. Let S be a finite partially ordered set and k an arbitrary
field. Then the incidence algebra kS has finite representation dimension.

Before we start to prove Thoerem 7.1, let us first recall the definition of
directed algebra and then prove a key lemma on incidence algebras.

Let A be an algebra and X an additive full subcategory of A-mod.
A path in X is a sequence of non-zero, non-isomorphic homomorphisms

X1 |0
f1 X2 |0

f2 · · · |0
fn−1 Xn
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between indecomposable modules Xi in X. A cycle in X is a path in X with
X1=Xn. An algebra is called directed if the additive subcategory of
projective modules is directed. For example, the incidence algebra of a
finite partially ordered set is directed. Moreover, the following property
holds true for incidence algebras.

Lemma 7.2. Let S be a finite poset and a, b ¥ S. Let Q(a) denote the
indecomposable injective module corresponding to a, and let P(b) denote the
indecomposable projective module corresponding to b. If HomkS(Q(a), P(b))
] 0, then Q(a) 5 P(b).

Proof. Note that if L(x) is a composition factor of P(b) then x [ b,
and if it is the case then [P(b): L(x)]=1. The socle of P(b) is isomorphic
to a direct sum of simple modules which are of the form L(x) with x a
minimal element in S. If f is a non-zero homomorphism from Q(a) to
P(b), then the restriction of f to the socle of Q(a) is either zero or not
zero. If it is not zero, then f is injective. Thus Q(a) 5 P(a) since Q(a) is
injective and P(a) is indecomposable. To prove the lemma, we need to
exclude the case that f restricted to the socle of Q(a) is zero. Suppose it is
the case. Then the image of f in P(b) is a submodule of P(b). If U is a
simple submodule of the socle of Im(f), then U 5 L(x) for some minimal
element x with x [ b. This means that Q(a)/Ker(f) has a composition
factor L(x) with x ] a. Thus Q(a) has a composition factor isomorphic to
L(x) with x > a. This contradicts the minimality of x in S and therefore the
restriction of f to the socle of Q(a) is not zero. This finishes the proof of
the lemma.

Proof of Theorem 7.1. Let Q be the direct sum of all nonisomorphic,
nonprojective indecomposable injective kS-modules. We consider the
module M :=kS À Q and its endomorphism algebra. By Lemma 7.2,
HomkS(Q, kS)=0. Thus the endomorphism algebra of M is of the follow-
ing form

EndkS(M) 5 R
kS Q

0 EndkS(Q)
S .

Since kS is a directed algebra, EndkS(Q) is also a directed algebra. Thus
both kS and EndkS(Q) have finite global dimension. Hence EndkS(M) has
finite global dimension by [13, p. 246]. Since M is a generator–cogenera-
tor, the representation dimension of kS is finite by definition. Thus the
proof of the theorem is completed.
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Remark. The proof of Theorem 7.1 shows also that if an algebra is
given by a quiver with only commutative relations (i.e. any two paths with
the same starting and terminal vertex are equal) and if it is also a directed
algebra, then its representation dimension is finite. Note that here we allow
multiple arrows to occur in the quiver.

ACKNOWLEDGMENTS

The author thanks Dr. Xiang-Yong Zeng for some comments on the first version of the
manuscript. The research work is supported by TCTP of the Education Ministry of China.

REFERENCES

1. M. Auslander, ‘‘Representation Dimension of Artin Algebras,’’ Queen Mary College
Mathematics Notes, Queen Mary College, London, 1971.

2. M. Auslander, Representation theory of Artin algebras I, Comm. Algebra 1 (1974),
177–268.

3. M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. in
Math. 85 (1990), 111–152.

4. M. Auslander and I. Reiten, Stable equivalence of dualizing R-varieties: V, Artin algebras
stably equivalent to hereditary algebras, Adv. in Math. 17 (1975), 167–195.

5. M. Auslander and I. Reiten, Stable equivalence of Artin algebras, in ‘‘Proceedings of the
Conference on Orders, Group Rings and Related Topics,’’ Lecture Notes in Mathematics,
Vol. 353, pp. 8–71, Springer-Verlag, Berlin/New York, 1973.

6. M. Auslander and I. Reiten, On a theorem of E.Green on the dual of the transpose, in
‘‘Representations of finite dimensional algebras, Tsukuba, 1990,’’ CMS Conf. Proc. 11,
pp. 53–65, Amer. Math. Soc., Providence, RI, 1991.

7. M. Boure, Equivalences of blocks of groups, in ‘‘Finite Dimensional Algebras and
Related Topics’’ (V. Dlab and L. L. Scott, Eds.), pp. 1–26, Kluwer Academic,
Dordrecht/Norwell, 1994.

8. E. Cline, B. Parshall, and L. Scott, Finite dimensional algebras and highest weight
categories, J. Reine Angew. Math. 391 (1988), 85–99.

9. V. Dlab, P. Heath, and F. Marko, Quasi-heredity of endomorphism algebras, C. R. Math.
Rep. Acad. Sci. Canada 16 (1994), 277–282.

10. R. M. Fossum, P. A. Griffith, and I. Reiten, ‘‘Trivial Extension of Abelian Categories,’’
Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin/New York, 1975.

11. R. Hartshorne, Coherent functors, Adv. in Math. 140 (1998), 44–94.
12. Y. N. Lin and C. C. Xi, Semilocal modules and quasi-hereditary algebras, Archiv der
Math. 60 (1992), 512–516.

13. J. C. McConnell and J. C. Robson, ‘‘Noncommutative Noetherian Rings,’’ Wiley, New
York, 1987.

14. I. Reiten, Stable equivalence of self-injective algebras, J. Algebra 40 (1976), 63–74.
15. J. Richard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991),

37–48.
16. J. Richard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989),

303–317.
17. C. M. Ringel, ‘‘Tame Algebras and Integral Quadratic Forms,’’ Lecture Notes in

Mathematics, Vol. 1099, Springer-Verlag, Berlin/New York, 1984.

REPRESENTATION DIMENSION 211



18. H. Tachikawa, ‘‘Quasi-Frobenius Rings and Generalizations,’’ Lecture Notes in Mathe-
matics, Vol. 351, Springer-Verlag, Berlin/New York, 1973.

19. C. C. Xi, On the representation dimension of finite dimensional algebras, J. Algebra 226
(2000), 332–346.

20. C. C. Xi, Endomorphism algebras of F(D) over quasi-hereditary algebras, J. Algebra 175
(1995), 966–978.

21. C. C. Xi, On the quasi-heredity of Birman–Wenzl algebras, Adv. in Math. 154 (2000),
280–298.

212 CHANGCHANG XI


	1. INTRODUCTION
	2. PRELIMINARIES
	3. STABLY HEREDITARY ALGEBRAS
	4. STABLE EQUIVALENCES OF MORITA TYPE
	5. REPRESENTATION DIMENSIONS OF SELF-INJECTIVE ALGEBRAS AND THEIR FACTOR ALGEBRAS
	6. TWO CONJECTURES
	7. INCIDENCE ALGEBRAS
	ACKNOWLEDGMENTS
	REFERENCES

