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Abstract

Let A be a finite dimensional algebra over a field k, and let C be the Cartan matrix of A.
Usually, the eigenvalues of C being integers do not imply the semisimplicity of A. However,
we prove that a cellular algebra A is semisimple if and only if det(C) = 1 and all eigenvalues
of C are integers. Moreover, we use Cartan matrices to classify the cellular algebras with the
property that the determinant of the Cartan matrix equals a given prime p and all eigenvalues
are integers. We also give a classification of cellular Nakayama algebras with integral eigen-
values of their Cartan matrices. Finally, we show that if A is a cellular algebra then its trivial
extension T (A) is also a cellular algebra. In particular, if a non-simple connected cellular
algebra A is quasi-hereditary, then the Cartan matrix of T (A) has at least one non-integral
eigenvalue. The main tool used in this paper is the well-known Perron–Frobenius theory on
non-negative matrices.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Semisimple algebras play an important role in many branches of mathematics
and physics: the tower construction of semisimple algebras by Jones was used to
study the index of subfactors and the polynomial invariant for knots (see [5,8]), ge-
nerically semisimple Birman–Wenzl algebras were applied in the construction of
quantum invariant, modular categories and topological quantum field theory [18,19],
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and semisimple Temperley–Lieb algebras had a significant application in the statistic
mechanics [16,17]. Recently, a new class of algebras which are called cellular alge-
bras was introduced in [9]. It includes lots of well-known algebras such as Hecke
algebras of types A and B, Brauer algebras [9], Birman–Wenzl algebras of type A

[21], partition algebras [22] and Temperley–Lieb algebras [20]. In general, cellu-
lar algebras are not always semisimple. So a natural question is: when is a cellular
algebra semisimple? In [9] there is a local answer by verification of bilinear forms
defined on standard modules. In this paper we provide a global criterion for a cellular
algebra to be semisimple. Our result is the following theorem:

Theorem 1.1. Let k be a field and A a cellular k-algebra (with respect to an involu-
tion i). Then the algebra A is semisimple if and only if all eigenvalues of the Cartan
matrix of A are rational numbers and the Cartan determinant is 1.

One should note that outside the class of cellular algebras this criterion may be
false, even for the quasi-hereditary algebra of two-by-two triangular matrices over a
field, the criterion cannot be used.

For cellular algebras, the Cartan determinant of value 1 implies the quasi-heredity
[12]. From this point of view, the Cartan determinant measures how far a cellular alge-
bra is from being quasi-hereditary. The above result suggests the following problems:

Problem 1. Given a prime p, classify cellular algebras with the properties that the
Cartan determinant equals p and that all eigenvalues of the Cartan matrix are inte-
gers.

More generally, we have the following question:

Problem 2. Classify all cellular algebras with the property that all eigenvalues of
the Cartan matrix are positive integers.

Of course, we cannot completely answer Problem 2. But for Problem 1, we reduce
it to an inverse eigenvalue problem and a problem in elementary number theory. Our
result is the following theorem.

Theorem 1.2. Let S(n) denote the set of partitions λ of n such that the product
of any two parts of λ is a square. Let M(n) be the set of all symmetric matrices
C (modulo congruence) over the natural numbers such that the spectrum of C is
{µ1 = n+ 1, µ2 = · · · = µm = 1}. Then the cardinalities of S(n) and M(n) are the
same. In particular, if s1(n) stands for the number of partitions in S(n) whose parts
are coprime, then the number of the Cartan matrices (up to congruence) of indecom-
posable cellular algebras with the properties in Problem 1 is

∑
d|p−1 s1((p − 1)/d).

To the Problem 2, first we have the following result.
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Theorem 1.3. Let A be an indecomposable basic Nakayama algebra. Then A is a
cellular algebra such that all eigenvalues of its Cartan matrix are integers if and
only if it is self-injective with at most two simple modules.

The next result provides a more general way to construct cellular algebras with
integral eigenvalues of Cartan matrices.

Theorem 1.4. Let A be a indecomposable cellular algebra over a field k (with re-
spect to an involution i). Then there is an involution on the trivial extension T (A) :=
A⊕DA, which is an extension of i, such that T (A) is a cellular algebra with respect
to this involution. In particular, if A is a cellular algebra with integral eigenvalues
of its Cartan matrix, then so is T (A). Conversely, if all eigenvalues of the Cartan
matrix of T (A) are integers, then A is either a simple algebra or has infinite global
dimension.

The paper is organized as follows: after we recall some elementary facts on cel-
lular algebras in Section 2, we prove Theorem 1.1 in Section 3. In Section 4 we give
a full answer to Problem 1. In Section 5 we list all cellular algebras for the cases
2 � p � 7, namely, we have a full list of cellular algebras with desired property.
Of course, one could expect that the algebras in the list should not far away from
semisimple algebras, however, all of them must be of infinite global dimension. In
Section 6, we give a class of cellular algebras with properties in Problem 2, namely,
we classify cellular Nakayama algebras and show that a large class of them has
the properties mentioned in Problem 2. The last section is devoted to the proof of
Theorem 1.4.

The method in the paper is a combination of the use of the theory of cellular
algebras and the Perron–Frobenius theory on non-negative matrices.

2. Background

First we recall the two equivalent definitions of cellular algebras and the defini-
tion of quasi-hereditary algebras. Then we collect several facts on linear algebra and
prove the criterion.

For simplicity we stick to the ground ring being an (arbitrary) field k. By algebra
we always mean a finite dimensional associative algebra with unit.

Definition 2.1 [9]. An associative k-algebra A is called a cellular algebra with cell
datum (I,M,C, i) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a
finite set M(λ). The algebra A has a k-basis Cλ

S,T , where (S, T ) runs through
all elements of M(λ)×M(λ) for all λ ∈ I.
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(C2) The map i is a k-linear anti-automorphism of A with i2 = id which sends
Cλ

S,T to Cλ
T,S.

(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A the product aCλ
S,T can be

written as (
∑

U∈M(λ) ra(U, S)Cλ
U,T )+ r ′ where r ′ is a linear combination of

basis elements with upper index µ strictly smaller than λ, and where the co-
efficients ra(U, S) ∈ k do not depend on T .

In the following we shall call a k-linear anti-automorphism i of A with i2 = id

an involution of A. In [11] it has been shown that this definition is equivalent to the
following one.

Definition 2.2. Let A be a k-algebra. Assume there is an antiautomorphism i on A

with i2 = id. A two-sided ideal J in A is called a cell ideal if and only if i(J ) = J

and there exists a left ideal � ⊂ J such that � has finite k-dimension and that there is
an isomorphism of A-bimodules α : J � �⊗k i(�) (where i(�) ⊂ J is the i-image
of �) making the following diagram commutative:

The algebra A (with the involution i) is called cellular if and only if there is a
vector space decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i(J ′j ) = J ′j
for each j and such that setting Jj =⊕j

l=1 J
′
l gives a chain of two sided ideals of

A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A (each of them fixed by i) and for each j (j =
1, . . . , n) the quotient J ′j = Jj/Jj−1 is a cell ideal (with respect to the involution
induced by i on the quotient) of A/Jj−1.

The modules �(j), 1 � j � n, are called standard modules of the cellular algebra
A, and the above chain in A is called a cell chain. (Standard modules are called cell
modules in [9].)

Let us also recall the definition of quasi-hereditary algebras introduced in [7].

Definition 2.3 [7]. Let A be a k-algebra. An ideal J in A is called a heredity ideal if
J is idempotent, J (rad(A))J = 0 and J is a projective left (or, right) A-module. The
algebra A is called quasi-hereditary provided there is a finite chain 0 = J0 ⊂ J1 ⊂
J2 ⊂ · · · ⊂ Jn = A of ideals in A such that Jj/Jj−1 is a heredity ideal in A/Jj−1 for
all j. Such a chain is then called a heredity chain of the quasi-hereditary algebra A.

We also need the notion of a Cartan matrix in the following abstract sense (which
coincides with the one used in group theory if A is the group algebra of a finite
group over a splitting field). Denote the simple A-modules by L(1), . . . , L(m) and
their projective covers by P(1), . . . , P (m). The entries cj,h of the Cartan matrix
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C(A) are the composition multiplicities [P(j) : L(h)]. The determinant of C(A) is
called the Cartan determinant. In general this can be any integer.

Now we collect a number of auxiliary statements for later use.

Lemma 2.4. Let A be a cellular algebra with involution i and cell chain 0 = J0 ⊂
J1 ⊂ · · · ⊂ Jn = A. Then:

(1) There is a natural bijection between isomorphism classes of simple A-modules
and indices l ∈ {1, . . . , n} such that J 2

l �⊂ Jl−1. The inverse of this bijection is
given by sending such an l to �(l)/rad(�(l)) (which in this case is simple).
In the following we index the simple modules in this way by a subset of the set
{1, . . . , n}.

(2) If l is the index of a simple module L(l) as in (1), then the composition factors
L(j) of the standard module �(l) satisfy j � l and j = l occurs with multiplicity
one (and this factor is the unique simple quotient �(l)/rad(�(l)).

(3) Let dij denote the multiplicity of the simple module Lj in the standard mod-
ule �(i) and let D = (dij ). Then the Cartan matrix C of A is DtrD, where
Dtr stands for the transpose matrix of D. If the Cartan determinant is 1, then
D is an n× n square matrix, where n is the number of isomorphism classes
of simple modules. Moreover, the Cartan matrix C of A is a positive definite
matrix.

Proof. (1) is implicit in [9, Theorem 3.4] and another proof is given in [11, Propos-
ition 4.1]. (2) is the Proposition 3.6 in [9] and it also follows from Proposition 4.1 of
[11]. (3) If det(C) = 1, then D is an invertible square matrix by (2) and [12]. Hence
C is a positive definite matrix. �

We also need the following elementary facts on symmetric matrices with real
entries. The identity matrix is denoted by I .

Proposition 2.5. Let C be an n× n positive definite real matrix. Then

(1) Any principal submatrix is positive definite.
(2) All eigenvalues of C are positive real numbers.
(3) Let λ1 � λ2 � · · · � λn be the eigenvalues of a positive definite matrix C and let

µ1 � µ2 � · · · � µk be the eigenvalues of a principle submatrix of C of order
k. Then λm � µm � λn+m−k for m = 1, 2, . . . , k.

(4) If C is a symmetric matrix with non-negative integral entries such that all eigen-
values of C are a, 1, . . . , 1, where a is a positive integer, then the eigenvalues
of any principal submatrix of C are integers.

Proof. (1) and (2) are well known from linear algebra. As to (3), one may see the
book [15, Theorem 8.4.1, p. 294].

(4) follows from (3). �
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3. The criterion

In this section we prove the criterion for a cellular algebra to be semisimple.

Theorem 3.1. Let k be a field and A a cellular k-algebra (with respect to an invo-
lution i). Let C denote the Cartan matrix of A. Then the following are equivalent:

(1) The algebra A is semisimple.
(2) All eigenvalues of C are integers and det(C) = 1.
(3) The Cartan matrix C is the identity matrix.
(4) All standard modules are simple and pairwise non-isomorphic.

Before we start with the proof of Theorem 3.1, let us first prove the following
lemma in the linear algebra.

Lemma 3.2. Let C be a positive definite (symmetric) matrix with non-negative in-
tegers as its entries. If det(C) = 1 and all eigenvalues of C are integers, then C is
in fact the identity matrix.

Proof. Since C is a positive definite matrix with non-negative entries and det(C) =
1, we know that all eigenvalues of C are positive integers and their product is 1.
This means that all eigenvalues λi of C are equal to 1. Let C = (cij ) be of order
n. Then

∑n
i cii =

∑
i λi = n. Hence cii = 1 for all i. Since C is positive definite,

every principal submatrix is positive definite, too. In particular, for any pair i and j ,
the principal submatrix(

1 cij
cji 1

)

is positive definite. This yields that 1− c2
ij > 0 and cij = 0. Thus the Cartan matrix

C of A is an identity matrix. �

Proof of Theorem 3.1. It is obvious that (1) implies (2). The equivalence of (1) and
(4) is proved in [9]. Clearly, (1) and (3) are equivalent. The implication from (2) to
(1) follows now from Lemma 3.2 immediately. �

As a consequence, we have the following corollary.

Corollary 3.3. Let A be a quasi-hereditary algebra with a duality which fixes all
simple modules. Then A is semisimple if and only if all eigenvalues of the Cartan
matrix C of A are integers.

Proof. Under the assumption the Cartan matrix C of A is positive definite. By [6],
det(C) = 1. Thus the corollary follows immediately from Lemma 3.2. �
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Usually, the tensor product of two semisimple algebras may not be semisimple,
but for cellular algebras we have the following corollary.

Corollary 3.4. Let A and B be two cellular algebras over a perfect field k. Then
A⊗k B is semisimple if and only if A and B are semisimple.

Proof. Suppose A and B are two algebras over k. Let us denote by CA the Cartan
matrix of A. Then CA⊗B = CA ⊗ CB and det(CA⊗B) = det(CA)

ndet(CB)
m. Note

that the eigenvalues of CA⊗B are of the form λµ, where λ and µ are eigenvalues of
CA and CB respectively. Now the corollary follows from Theorem 3.1 immediately
since A⊗k B is a cellular algebra. �

As another consequence, we have the following corollary which tells us how to
know whether a cellular algebra is simple.

Corollary 3.5. Let A be an indecomposable cellular algebra over a field k. Suppose
all eigenvalues of its Cartan matrix are integers. If 1 appears in the main diagonal
of C, then A is a simple algebra.

Proof. Since A is indecomposable as an algebra, the Cartan matrix is irreduc-
ible. By the theory of non-negative matrices (see, for example [4]), there is a pos-
itive real vector x such that Cx = ρ(C)x, where ρ(C) is the spectral radius of C.
If λ1 � λ2 � · · · � λm > 0 are the eigenvalues of C, then there is a unitary
matrix U = (uij ) over the real numbers such that C = Im + U · diag(λ1 − 1, . . . ,
λm − 1) · U tr. Since the first column u of U is the eigenvector corresponding
to λ1 = ρ(C), we know that u is a scalar multiple of x, thus each component of
u is not zero. Now it follows from cii = 1+∑

j (λj − 1)u2
ij = 1 that

∑
j (λj − 1)

u2
ij = 0. This implies that λj = 1 for all j . Then, by Theorem 3.1, A is semisimple.

But we know that A is indecomposable, thus A must be a simple algebra. �

Finally, let us remark that the two conditions in (2) of Theorem 3.1 are necessary.
First, there is a cellular algebra whose Cartan matrix has all integral eigenvalues, but
it is not semisimple. For example, we consider the following algebra given by the
quiver

with relations αβα = βαβ = 0. Clearly, the Cartan matrix is(
2 1
1 2

)

and has 1 and 3 as its eigenvalues, but the algebra is not semisimple. Note that the
Cartan determinant is 3.
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There is also a cellular algebra with det(C) = 1, which is not semisimple. For
example, let A be the algebra given by the quiver

with the relation αβ = 0. Clearly, the Cartan matrix of this algebra is(
2 1
1 1

)

and has non-integral eigenvalues. The algebra is a non-semisimple quasi-hereditary
cellular algebra. This example shows also that the conditions on the eigenvalues of
the Cartan matrix in Corollary 3.5 is necessary.

Recently, Kiyota, Murai and Wada consider in [14] the rationality of eigenvalues
of Cartan matrices in finite groups, where they established some connections between
the eigenvalues of the Cartan matrix and the order of a defect group.

4. Cellular algebras with prime Cartan determinant

Having known that for a cellular algebra, the determinant and the eigenvalues of
its Cartan matrix play an important role in the study of cellular algebras, we investi-
gate in this section the following problem proposed in Section 1.

Problem. Given a prime p, classify cellular algebras A such that all eigenvalues of
the Cartan matrix C are integers and det(C) = p or p2.

Throughout this section we assume that A is an indecomposable cellular algebra
with the Cartan matrix C = (cij ) such that all eigenvalues of C are integers and

det(C) = s, where s = p, or p2. (Note that the assumption on the determinant is
needed only to ensure that C has the spectrum of the form {a, 1, . . . , 1} with a a
positive integer.)

We denote by N the natural numbers, and by N0 the non-negative integers.
Recall that a matrix M is called irreducible if there is no permutation matrix P

such that PCP tr is of the form(
X Y

0 Z

)
,

where X and Z are square matrices.
The following lemma gives some informations on the Cartan matrix.

Lemma 4.1
(1) C is an irreducible matrix. Moreover, C is positive, that is, cij > 0 for all i, j.
(2) cii � 2 for all i, and cij < cii if cii � cjj and i /= j.
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(3) cij � s for all i, j. Moreover, if there is an entry cij = s, then C is the 1× 1
matrix (s).

(4) If C is an m-by-m matrix, then m � s − 1, that is, the number of non-isomorphic
simple A-modules is bounded by s − 1.

Proof. Since A is an indecomposable cellular algebra, we know that C is irre-
ducible by [15, Theorem 1, p. 529]. Now we apply Theorem 8.4.4 in [10] to C: s
is the spectral radius of C, and there is a positive vector x such that Cx = sx. If
we require that

∑
i xi = 1, then x is the unique Perron-vector, and any eigenvector

of C corresponding to the eigenvalue s is a scalar multiple of x. By assumption,
the eigenvalues of C are s, 1, . . . , 1, where 1 appears m− 1 times. It follows from
linear algebra that there is a unitary matrix U with real entries such that C = Im +
Udiag(s − 1, 0, . . . , 0)U tr. Since UU tr = U trU = I, the first column of U is an
eigenvector of C corresponding to the eigenvalue s. It follows from Perron–Frobe-
nius theory that we may assume that the first column u of U is a scalar multiple of
the Perron-vector x, say u = λx with λ in R. This implies that cii = 1+ (s − 1)u2

i

and cij = (s − 1)uiuj . Since u is not 0 and x is positive, we see that cij is not
0 for all i, j. This shows that C is in fact a positive matrix, and therefore it is
irreducible.

(2) is clear from the above proof. As to (3), we note that a principal submatrix
of a positive definite matrix is positive definite and that the spectral radium of a
principal submatrix of C is less than or equal to that of C. Hence cii � s. It follows
from ciicjj − c2

ij > 0 that s occurs only in the diagonal of C. We may assume that
c11 = s. It follows from

∑m
i=1 cii = m+ s − 1 that

∑m
i=2 cii = m− 1 and cii = 1

for all i � 2. Since C is irreducible, we have C = (s).

We now prove (4). The irreducible matrix C has the spectral radium s and is posi-
tive. Thus, by the Perron–Frobenius theory (see, for example, Exercise 7, p. 537 in
[10]), the spectral radius s satisfies either s =∑m

j=1 cij for all i, or there is an index
i such that

∑m
j=1 cij < s. In the former case we have m+ 1 �

∑
j cij = s. In the

latter case we have m+ 1 < s. Here we have used the fact that cii � 2. �

From the proof of Lemma 4.1 we can get some information on projective modules
from the Cartan matrix.

Corollary 4.2. Let A be an indecomposable cellular algebra whose Cartan matrix
has eigenvalues n, 1, . . . , 1. (Here n is an arbitrary natural number.) Then each
indecomposable projective module P of A is sincere, that is, P has each simple
module as composition factor, thus the dimension of P is at least m+ 1, where m is
the number of non-isomorphic simple modules.

Lemma 4.3. The Cartam matrix C has no principal submatrix of the form(
m+ 1 cij
cij m

)
or

(
m+ 2 cij
cij m

)
.
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Proof. Suppose such a principal submatrix(
m+ 1 cij

cij m

)

exists. Then, by Lemma 2.5(4), the eigenvalues of the principal submatrix of C are
integers. Thus 4c2

ij + 1 is the square of a natural number, which is impossible: If

4c2
ij + 1 = m2 for some m, then m = 2b + 1 for some natural number b. Thus c2

ij =
b(b + 1), a contradiction.

For the other case, the proof is similar to the above one. We need to note that
there is no integer x such that 1+ c2

ij is the product of two natural numbers x + 1
and x − 1. �

In the following we shall give a general description of which matrix C could have
the properties mentioned at the beginning of this section.

We need the definition of partitions of n. Recall that a partition λ of n is a se-
quence of integers n1 � n2 � · · · � nm > 0 such that

∑
j nj = n. In this case we

write λ := (n1, n2, . . . , nm) � n.
We denote by S(n) the set of all partitions λ of n with the property that for all i, j

the product ninj is a square of a natural number.

Proposition 4.4. There is a one-to-one correspondence between the set S(n) and
the set of all symmetric matrices C over N with det(C) = n+ 1 and cii � ci+1,i+1
such that each eigenvalue of C is either n+ 1 or 1.

Proof. As in the proof of (1) in Lemma 4.1, we can write C = Im + nutru, where
utr = (u1, . . . , um) ∈ Rm can be chosen to be a positive vector such that

∑
j u

2
j = 1.

So the matrix C is uniquely determined by u. Since C has natural numbers as its
entries, the condition for u can be interpreted as follows:

1. nuiuj ∈ N for all i, j ; and

2.
∑

j u
2
j = 1.

Put ni = nu2
i for all i. Then ni ∈ N and nuiuj = √ninj ∈ N. The second condition

says that
∑

j nj = n. Now it is clear that if we send u to λ := (n1, n2, . . . , nm), then
we have a desired correspondence. �

Proof of Theorem 1.2. The first statement of Theorem 1.2 follows from the above
proposition. For the second statement, note that under the assumption of Theorem
1.2, the eigenvalues of Cartan matrix are p, 1, . . . , 1 since the spectral radius of an
irreducible non-negative matrix is a simple root of its characteristic polynomial. Thus
the desired statement follows now from the above proposition and Proposition 4.5
below. �
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For the later use, we write down the correspondence in Proposition 4.4 explicitly:
If (λ1, λ2, . . . , λm) ∈ S(n), then the corresponding matrix C is


λ1 + 1

√
λ1λ2 · · · √

λ1λm√
λ1λ2 λ2 + 1 · · · √

λ2λm

...
...

. . .
...√

λmλ1
√
λmλ2 · · · λm + 1


 ,

and C has m eigenvalues n+ 1, 1, . . . , 1. (Hence det(C) = n+ 1.)
Now we consider the set S(n). We define S0(n) to be the subset of S(n) consisting

of partitions whose parts are squares of natural numbers. For each divisor d of n, we
define

Sd(n) := {λ=(λ1, λ2, . . . , λm) ∈ S(n) |
the greatest common divisor of the λj ’s is d}.

Then we have the following proposition.

Proposition 4.5
(1) S(n) = ⋃̇

d|nSd(n).

(2) If d, c ∈ N such that cd is a divisor of n, then cSd(n/c) = dSc(n/d), where
cSd(n) := {(cµ1, cµ2, . . . , cµm) | (µ1, µ2, . . . , µm) ∈ Sd(n)}. In particular,
Sd(n) = dS1(n/d).

(3) S1(n) ⊆ S0(n) for any number n. In particular, S(p) = S0(p) ∪ {(p)} for any
prime p.

Proof. (1) is clear. For (2), we note that if (λ1, λ2, . . . , λm) is in Sd(n/c), then
(λ′1, λ′2, . . . , λ′m) is in Sc(n/d), where λ′j = cλj /d. Conversely, if (λ′1, λ′2, . . . , λ′m)

is in Sc(n/d), then (dλ′1/c, dλ′2/c, . . . , dλ′m/c) is in Sd(n/c). (3) follows from the
following observation. �

Lemma 4.6. Let λ1, λ2, . . . , λm be natural numbers such that λiλj is a square for
all i, j. If λ1, λ2, . . . , λm are coprime, then each λi itself is a square.

Proof. First we note the following two facts: (1) If two integers are coprime and
their product is a square, then each of them is a square. (2) If a and b are two natural
numbers such that ab2 is a square, then a itself is a square.

We prove the lemma by induction on m. For m = 2, it is clear by the fact (1).
Suppose the lemma is true for m− 1. Let λiλj = x2

ij for some xij ∈ N. If d denotes
the greatest common divisor of λ1, λ2, . . . , λm−1, then λ′j := λj/d, 1 � j � m− 1,

are coprime. Since λiλj = d2λ′iλ′j is a square, we know, by the fact (2), that λ′iλ′j is
a square. Now it follows by induction that λ′j is a square for j = 1, 2, . . . , m− 1.
Since λm−1λm = dλ′m−1λm is a square, we know by the above two facts that d and
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λm are squares since d and λm are coprime. Thus we finish the proof of the lemma
and also the proof of the above proposition. �

Proposition 4.5 reduces the calculation of S(n) to that of S1(n). The following
result tells us how to compute S1(n) and S0(n) recursively.

Recall that an integer is called square-free if it cannot be divided by p2 for any
prime p.

Lemma 4.7. S0(n) = ⋃̇
d2|nd2S1(n/d

2). In particular, the equality S1(n) = S0(n)

holds if and only if n is square-free.

Proof. If (λ1, . . . , λm) ∈ S0(n), then (λ1/d, . . . , λm/d) ∈ S1(n/d), where d is the
greatest common divisor of λ1, . . . , λm. By Lemma 4.5, S1(n/d) ⊆ S0(n/d), and
hence λj/d is a square. This yields that d is a square. Thus we have S0(n) ∩ Sd2(n) =
d2S1(n/d

2). This implies the lemma. �

For the calculation of the cardinality of S0(n), we may use the following results
in [1,2].

Proposition 4.8. Let H denote the set {1, 22, 32, 42, . . . , } and let s0(n) be the num-
ber of partitions in S0(n). Then,

(1) For all |q| < 1,

∑
n�0

s0(n)q
n =

∏
n∈H

(1− qn)−1.

(2) Let σ2(n) =∑
d2|n d2. Then

ns0(n) =
n∑

j=1

σ2(j)s0(n− j).

As we have seen, Problem 1 mentioned in Section 1 was reduced to a problem in
the elementary number theory.

5. Cellular algebras with small Cartan determinant

Inside the class of cellular algebras the Cartan determinant of value 1 is a char-
acterization of quasi-hereditary algebras. From this point of view, cellular algebras
with smaller Cartan determinant are nearer to quasi-hereditary algebras than those
with bigger Cartan determinant. In this section we classify cellular algebras such that
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2 � det(C) � 7 and all eigenvalues of C are integers. Of course, all of these algebras
are of infinite global dimension and not quasi-hereditary. First we have a complete
classification list of cellular alberas with det(C) = 2 or 3.

Proposition 5.1. Let k be an algebraically closed field and A a cellular k-algebra.
Denote by C the Cartan matrix of A. Suppose that all eigenvalues of C are integers.

(1) If det(C) = 2, then A is Morita equivalent to k[x]/(x2)⊕ k ⊕ · · · ⊕ k.

(2) If det(C) = 3, then A is Morita equivalent to one of the following algebras:
1) B ⊕ k ⊕ · · · ⊕ k, where B is a 3-dimensional local cellular k-algebra.

2)

3)

4)

In fact, Proposition 5.1 follows directly from the results in the previous section,
here we omit its proof.

Proposition 5.2. Let k be an algebraically closed field and A an indecomposable
cellular k-algebra. Suppose all eigenvalues of the Cartan matrix C of A are integers.

(1) If det(C) = 4, then A is Morita equivalent to either a 4-dimensional local cel-
lular algebra, or a cellular algebra with 3 simple modules such that its Cartan
matrix equals

2 1 1
1 2 1
1 1 2


 .

(2) If det(C) = 5, then A is Morita equivalent to either a 5-dimensional local cel-
lular algebra, or a cellular algebra with 2 simple modules such that its Cartan
matrix equals(

3 2
2 3

)
,

or a cellular algebra with 4 simple modules such that its Cartan matrix has 2 as
the diagonal entries and 1 for all off-diagonal entries.



382 C.C. Xi, D. Xiang / Linear Algebra and its Applications 365 (2003) 369–388

(3) If det(C) = 6, then A is Morita equivalent to either a 6-dimensional local cel-
lular algebra, or a cellular algebra with 2 simple modules such that its Cartan
matrix equals

(
5 2
2 2

)
,

or a cellular algebra with 5 simple modules such that its Cartan matrix has 2 as
the diagonal entries and 1 for all off-diagonal entries.

(4) If det(C) = 7, then A is Morita equivalent to either a 7-dimensional local cel-
lular algebra, or a cellular algebra with 2 simple modules such that its Cartan
matrix equals

(
4 3
3 4

)
,

or a cellular algebra with 3 simple modules such that its Cartan matrix equals
either

5 2 2
2 2 1
2 1 2


 or


3 2 2

2 3 2
2 2 3




or a cellular algebra with 6 simple modules such that its Cartan matrix has
diagonal entries all equal to 2 and off diagonal entries all equal to 1.

Proof. We prove the case (3). The other cases can be done by applying the gen-
eral theory of the previous section. Here we exploit a different method to deduce
the result in (3). The spectrum of C has two cases: All eigenvalues of C are (1)
{6, 1, . . . , 1}, or (2) {3, 2, 1, . . . , 1}. In the first case we can use 4.4. As to the sec-
ond case, we have to develop another method. The following fact will be useful
(for a proof, one may use the results 2.1.5 and 2.1.10 in [4] and basic property of
irreducuble matrices):

Lemma 5.3. If A is an arbitrary indecomposable cellular algebra with n non-iso-
morphic simple modules, then (1) its Cartan matrix C is irredeucible and positive
definite. (2) 1 � cii � ρ(C) for all i, where ρ(C) is the spectral radius of C. More-
over, if ρ(C) appears as an entry in C, then C = (ρ(C)).

Note that cii � 2 for all i by the proof of 3.5. Since the main diagonal of C

corresponds to the partitions of n− 2+ 3+ 2 = n+ 3, we have to consider a few
cases indeed:

(a) The diagonal of C is (3, 2) (and n = 2). Then, by the above lemma, this is im-
possible.
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(b) The diagonal of C is (2, 2, 2) (and n = 3). Then for i /= j the entries cij take
values 0 or 1. An easy verification shows that we cannot get a desired matrix in
this case. Thus (3) is proved. �

Note that all matrices displayed in the proposition can be realized as a Cartan
matrix of an indecomposable cellular algebras.

Let us end this section by the following question which is suggested by the above
propositions:

Question. Given a prime p, which numbers could occur as the numbers of
non-isomorphic simple modules over indecomposable cellular algebras such
that their Cartan matrices have determinant equal to p and all eigenvalues are
integers?

The above propositions suggest that all divisors of p − 1 would be some of the
desired numbers.

6. Cellular Nakayama algebras

Recall that an artin algebra is said to be a Nakayama algebra if both the inde-
composable projective and indecomposable injective modules are uniserial. The rep-
resentation theory of this class of algebras was investigated in the book [3]. In this
section we will discuss which Nakayama algebras are cellular and determine which
cellular Nakayama algebras have the property that all eigenvalues of their Cartan
matrices are integers. To this end, we first give a classification of cellular Nakayama
algebras. The following are the main result in this section.

Theorem 6.1. Let A be a connected finite dimensional algebra given by a quiver
with relations. Then

(1) A is a cellular Nakayama algebra if and only if A is isomorphic with one of the
following algebras:
1) k[X]/(Xn) for n ∈ {1, 2, 3, . . .};
2) A Nakayama algebra with the Cartan matrix(

m+ 1 m

m m+ 1

)
, where m � 1;

3) A Nakayama algebra with the Cartan matrix of the form(
m+ 1 m

m m

)
or

(
m m

m m+ 1

)
, where m � 1.

(2) The cellular algebras in 1) and 2) have the property that all eigenvalues of their
Cartan matrices are integers, but the cellular algebras in 3) do not have this
property.
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Proof. Let A be a connected cellular Nakayama algebra. Since a cellular algebra
has an involution, one has a duality on the whole module category which fixes all
simple modules. Thus it is transparent that a Nakayama algebra being cellular has at
most two simple modules. If it has only one simple module, then 1) follows. Now
assume that it has two simple modules, then the Cartan matrix determines the algebra
uniquely. Suppose the Cartan matrix is

C =
(
a b

b c

)
.

Clearly, a � b and c � b. By [12], det(C) � 1. If we rewrite a = b + x and c =
b + y, then det(C) = b(x + y)− xy � 1. Since A is a Nakayama algebra, we de-
duce that x, y ∈ {0, 1}. This yields that C is of the form displayed in 2) and 3).

To finish the proof of (1), we have to show that a Nakayama algebra with the
Cartan matrix of the above form is cellular. For this we exploit a result in [13] to
check whether a given basis is a cellular basis or not. Let us explain this by an
example for b = 2. Then the algebra A is given by the quiver

with relations either αβαβ = 0, or αβαβα = 0 = βαβαβ. In the latter, if we factor
out a simple socle from A, we come to the former case. Let us now display a cellular
basis for this case:

αβ, αβα, e2, α,

βαβ, βαβα, β, βα,
e1.

As to (2), one notes that there is no natural number n such that n(n+ 1) is a square
of another natural number. Note also that the eigenvalues of the Cartan matrix in 3)
being integers depend on whether (2m+ 1)2 − 4m is a square of a natural number.
If 4m2 + 1 = n2 for some n, then n = 2d + 1 for some natural number d . Thus
m2 = d(d + 1), a contradiction. This completes the proof. �

We say that a cellular algebra has the integral property if all eigenvalues of its
Cartan matrix are integers. We may construct a large family of cellular algebras with
the integral property.

Proposition 6.2. The tensor product of two basic cellular algebras with the integral
property over an algebraically closed field is again a cellular algebra with the inte-
gral property. In particular, the tensor product of two cellular Nakayama algebras
in 1) and 2) has the integral property.

In the following section we shall provide another method to get cellular algebras
with integral property.
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7. Trivial extensions of cellular algebras

In this section we shall give a general construction of cellular algebras with the
integral property. Here the notion of trivial extensions plays a central role.

Let A be a finite dimensional algebra over a field k. We denote by T (A) the
trivial extension of A, which has the underlying vector space A⊕DA, where DA =
Homk(A, k) is viewed as an A-A-bimodule, and T (A) has multiplication given by

(a + f )(b + g) = ab + f b + ag, a, b ∈ A, f, g ∈ DA.

It is a symmetric algebra with non-degenerate bilinear form 〈a + f, b + g〉 =
f (b)+ g(a).

If there is an involution i on A, then we may define an involution ε on the trivial
extension T (A) by a + f �→ i(a)+ i ◦ f , where i ◦ f stands for the composition
of the linear map i with the function f .

We have the following result.

Theorem 7.1. Let A be a cellular algebra with respect to an involution i. Then
T (A) is a cellular algebra with respect to the involution ε defined above.

Proof. If N is a subset of A, we denote by N⊥ the set {f ∈ DA | f (N) = 0}.
Since A is a cellular algebra with respect to i, there is an i-invariant decomposition:
A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′m such that if we define Jj =⊕j

l=1 J
′
l for all j then the chain

0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = A is a cell chain for A. Thus we have a decomposition
of T (A):

T (A) = D(J ′m)⊕D(J ′m−1)⊕ · · · ⊕D(J ′1)⊕ J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′m.

Let Ij := J ′j+1 ⊕ J ′j+2 ⊕ · · · ⊕ J ′m. Then A = Jj ⊕ Ij and J⊥j � D(Ij ). Note that

J⊥j and D(Ij ) are in fact isomorphic as A− A-bimodules. So the decomposition
of T (A) gives rise a chain of ideals of T (A):

J⊥m = 0 ⊂ J⊥m−1 = D(Im−1) ⊂ J⊥m−2

= D(Im−2) ⊂ · · · ⊂ J⊥1 = D(I1) ⊂ DA.

The subquotient J⊥j−1/J
⊥
j is isomorphic to D(J ′j ) as A-A-bimodules. Thus it is a

cell ideal in T (A)/J⊥j . This implies that the decomposition of T (A) satisfies all
conditions in the definition of cellular algebras. Thus T (A) is a cellular algebra with
respect to the involution ε. �

As a consequence, we have the following result which reduces the study of the
module categories of arbitrary cellular algebras to that of full subcategories of the
module categories of symmetric cellular algebras.

Corollary 7.2. Any cellular algebra is a homomorphic image of a symmetric cellu-
lar algebra.
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The following result tells us we can get cellular algebras with integral property
by trivial extensions.

Proposition 7.3. If A is a cellular algebra with integral property, then so is T (A).

Proof. Let CA denote the Cartan matrix of A. Then it is easy to see that for any
finite dimensional algebra A the Cartan matrix of T (A) is CA + Ctr

A. Since A is a
cellular algebra, the matrix CA is symmetric. Thus CT (A) = 2CA, and the statement
follows obviously. �

We note that the standard modules for the cellular algebra T (A) with respect to the
involution ε are the union of all standard A-modules and all costandard A-modules.
Thus, for T (A), the set of standard modules is the same as the set of costandard
modules. A quasi-hereditary cellular algebra A has this property if and only if A is
semisimple.

We remark that one may use T (A) to study the original algebra A. For example, a
cellular algebra A with n non-isomorphic simple modules is quasi-hereditary if and
only if the determinant of CT (A) = 2n. This is a consequence of the above proposi-
tion and a result in [12]. On the other hand, the A-module category can be embedded
in the stable category of T (A).

Proposition 7.4. Let A be a non-simple indecomposable cellular algebra with n

non-isomorphic simple modules. If the trivial extension T (A) of A has the integral
property, then the global dimension of A is infinite.

Proof. Suppose that the global dimension of A is finite. Then we know that A

is a quasi-hereditary algebra by [12] and that the determinant det(C) of the Cartan
matrix C of A is 1. Since T (A) has the integral property, all eigenvalues
of 2C are integers. Thus the spectrum of 2C must be of the form {2n1 , . . . , 2nt ,

1, . . . , 1}, where 1 appears s = n− t times, and the ni are natural numbers. This
means also that the spectrum of C is of the form {2m1 , . . . , 2mr , 1, . . . , 1, 1/2, . . . ,
1/2}, where 1/2 occurs s times, and the mi are natural numbers. By Theorem 3.1,
we have 0 < s < n. Moreover, since det(C) = 1 and the trace of C is a positive
integer, we know that s is even and equal to

∑r
j=1 mj . Now let us calculate the

coefficients of the characteristic polynomial f (x) of C. Clearly, all coefficients are
integers. In particular, the coefficient c of x in f (x) is an integer. In the
following we shall prove that this is impossible. If r = 1, then the spectrum of
C is {2s , 1, . . . , 1, 1/2, . . . , 1/2}, and we have c = 1/2s + 1+ · · · + 1+ 2s, which
is not an integer, a contradiction. So we can assume that r � 2. Note that the
coefficient is

c = 1/2m1 + 1/2m2 + · · · + 1/2mr + 1+ · · · + 1+ 2s.
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We now consider the sum a := 1/2m1 + 1/2m2 + · · · + 1/2mr . Since A is an inde-
composable cellular algebra, the matrix C is irreducible and its spectral radium is a
simple root of f (x). This implies that we may assume that m1 > m2 � m3 � · · · �
mr � 1. In this case, we have 2m1a = 1+ 2m1−m2 + · · · + 2m1−mr . If a is a natural
number, then 0 ≡ 1 (mod 2). This is a contradiction. Thus the global dimension of
A is infinite. �
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