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1 Introduction

One of the central problems in the representation theory of finite groups and finite
dimensional algebras is to determine the number of non-isomorphic simple modules. Re-
cently, Graham and Lehrer introduced in ref.[1] the notion of a cellular algebra, which
provides a systematic treatment of reducing the problem to that in linear algebra. Cel-
lular algebras embrace many important algebras appeared in mathematics and physics:
the Temperley-Lieb algebras, the Hecke algebras of type A, the Brauer algebras, the
partition algebras, the Birman-Wenzl algebras, and so on. Theoretically, the number of
non-isomorphic simple modules over a given cellular algebra A is determined by a sub-
set of a finite poset associated to the algebra A, but what the number precisely is seems
to be unknown. The recent results in ref.[2] and ref.[3] show that the eigenvalues and
the determinant of the Cartan matrix of A may play an important role in the study of
cellular algebras and shed light on determining which numbers could be the number of
non-isomorphic simple modules over indecomposable cellular algebras with the property
that their Cartan matrices have all rational eigenvalues. The rationality of the eigenvalues
of the Cartan matrix measures how far a cellular algebra from being semi-simple ref.[2],
and plays a role in the representation theory of finite groups ref.[4]. Our main interest of
this paper stems from ref.[2].

Let n be a natural number, and let A be an indecomposable cellular algebra such
that the spectrum of its Cartan matrix C is of the form {n, 1, . . . , 1}. In general, not
every natural number could be the number of non-isomorphic simple modules over such
a cellular algebra. For example, if n = 11, it can be verified that the number of non-
isomorphic simple modules over A is one of {1, 2, 4, 5, 7, 10}. This means that there is no
indecomposable cellular algebra which has 3 or 6 simple modules such that the spectrum
of its Cartan matrix C is of the form {11, 1, . . . , 1}. Thus, two natural questions arise:
(1) which numbers could be the number of non-isomorphic simple modules over such a
cellular algebra A ? (2) Given such a number, is there a cellular algebra such that its
Cartan matrix has the desired property ? In this paper, we shall completely answer the
first question, and give a partial answer to the second question by constructing cellular
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algebras with the pre-described Cartan matrix.

The contents of this paper are as follows. In Section 2, we briefly recall the definitions
of cellular algebras and Cartan matrices. In Section 3, we collect some results from the
number theory for the later proofs. In Section 4, we prove our main results, Theorem 1 and
Corollary 1. In the last section, we realize several classes of matrices as Cartan matrices
of cellular algebras with the required property.

2 Cellular algebras and Cartan matrices

We first recall the definition of cellular algebras from ref.[1] which is given by the
existence of a basis with certain properties, and then collect some basic facts on the Cartan
matrix of a cellular algebra in ref.[2]. Note that there is also a basis-free definition of
cellular algebras in terms of a chain of ideals (see ref.[5]), and the two definitions are
equivalent.

For simplicity we assume that we work with the ground ring being an (arbitrary) field
k. By algebra we always mean a finite dimensional associative k-algebra with unit.

Definition 1.( ref.[1]) An associative k–algebra A is called a cellular algebra with
cell datum (I,M,C, i) if the following conditions are satisfied:

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a finite
set M(λ). The algebra A has a k–basis Cλ

S,T where (S, T ) runs through all elements of
M(λ) × M(λ) for all λ ∈ I .

(C2) The map i is a k–linear anti–automorphism of A with i2 = id which sends Cλ
S,T

to Cλ
T,S .

(C3) For each λ ∈ I and S, T ∈ M(λ) and each a ∈ A the product aCλ
S,T can

be written as (
∑

U∈M(λ) ra(U, S)Cλ
U,T ) + r′ where r′ is a linear combination of basis

elements with upper index µ strictly smaller than λ, and where the coefficients ra(U, S) ∈
k do not depend on T .

Typical examples of cellular algebras include the group algebras of symmetric groups,
Brauer algebras (ref.[1]), Birman-Wenzl algebras (ref.[6]), and others.

We also need the notion of a Cartan matrix in the following abstract sense (which
coincides with the one used in group theory if A is the group algebra of a finite group
over a splitting field). Let us denote the simple A–modules by L(1), . . . , L(m) and their
projective covers by P (1), . . . , P (m). The entries cj,h of the Cartan matrix C(A) are the
composition multiplicities [P (j) : L(h)] of L(h) in P (j). The determinant of C(A) is
called the Cartan determinant. From the definition of Cartan matrix C(A), we know
that the number of non-isomorphic simple A–modules is the same as the degree of the
matrix C(A).

Let N denote the natural numbers. Now we assume that cellular algebras A are inde-

Copyright by Science in China Press 2005
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composable and their Cartan matrices C(A) have the spectrum of the form {a, 1, ..., 1}
with a ∈ N. Note that C(A) is a positive definite symmetric matrix over N proved in
ref.[2].

Let n be a natural number. Recall that a partition λ of n is a sequence of in-
tegers n1 > n2 > . . . > nk > 0 such that

∑

j nj = n. In this case, we write
λ := (n1, n2, . . . , nk) ` n and call each ni a part of λ. We define

S(n) := {λ ` n | the product of any two parts of λ is the square of a natural number},
M(n) := {C | C = (cij)is a symmetric matrix over N of degree m with cii > ci+1,i+1

and the spectrum{µ1 = n + 1, µ2 = . . . = µm = 1}, where m is an

arbitrary natural number}.

The relationship between S(n) and M(n) is described in ref.[2]. We restate this in
the following lemma.

Lemma 1. There is a one-to-one correspondence between the set S(n) and the set
M(n).

Let us write down the correspondence in Lemma 1 in details: if (λ1, λ2, . . . , λm) ∈
S(n), then the corresponding matrix C is















λ1 + 1
√

λ1λ2 . . .
√

λ1λm√
λ2λ1 λ2 + 1 . . .

√
λ2λm

...
...

. . .
...√

λmλ1

√
λmλ2 . . . λm + 1















.

Lemma 1 reduces the consideration of M(n) to that of S(n). Since the degree of a
matrix in M(n) is the number of the parts of the corresponding partition, we introduce a
new subset of N:

K(n) = {m ∈ N | there is a partition λ ∈ S(n − 1) such that λ has m parts},
where 2 6 n ∈ N. Note that if m ∈ K(n), then 1 6 m 6 n − 1 and |K(n)| 6 n − 1.

Lemma 2. (ref.[2]) Let λ1, λ2, . . . , λm be natural numbers such that λiλj is a
square for all i, j. If λ1, λ2, . . . , λm are relatively prime, then each λi itself is a square.

Let Sm := {n ∈ N | n is the sum of m squares of natural numbers}. Then we have
the following proposition.

Proposition 1. m is in K(n) if and only if there exists some divisor d of n − 1

such that d ∈ Sm.
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Proof. If m ∈ K(n), then there exists (λ1, λ2, . . . , λm) ∈ S(n − 1). Let d be
the greatest common divisor of λ1, λ2, . . . , λm. Then (λ1

d
, λ2

d
, . . . , λm

d
) ∈ S(n−1

d
). Since

λ1

d
, λ2

d
, . . . , λm

d
are relatively prime, each λi

d
is a square by Lemma 2. So n−1

d
∈ Sm.

Conversely, if d | n − 1 and d = n2
1 + n2

2 + . . . + n2
m with n1 > n2 > . . . > nm > 0,

then (n−1
d

n2
1,

n−1
d

n2
2, . . . ,

n−1
d

n2
m) ∈ S(n − 1). So m ∈ K(n).

Thus our first question in the introduction is reduced to a problem on the decomposi-
tion of a given number into sums of squares of some natural numbers.

3 Decomposition of numbers

In this section we collect some basic results, used very often in the next section, on
the decomposition of numbers into sums of squares in number theory. One can find these
facts in ref.[7] (from p.378 to p.409).

The following lemma can be used to see whether a number belongs to S3.

Lemma 3. (1) A natural number n is the sum of two squares of integers if and only
if the factorization of n into prime factors does not contain any prime divisor of the form
4k + 3 that has an odd exponent.

(2) A natural number n is the sum of three squares of integers if and only if it is not
of the form 4l(8k + 7), where k, l are non-negative integers.

In particular, for the numbers of the form 8k + 1, we have the following result.

Lemma 4. The numbers of the form 8k + 1 except 1 and 25 are in S3.

We also need the following result of which the last statement is due to G.Pall.

Lemma 5. (1) n ∈ S2 if and only if all prime factors of the form 4k + 3 of the
number n have even exponents in the standard factorization of n into primes and either the
prime 2 has an odd exponent (in the factorization of n) or n has at least one prime divisor
of the form 4k + 1.

(2) n ∈ S4 if and only if it does not belong to{1, 3, 5, 9, 11, 17, 29, 41, 4h · 2, 4h ·
6, 4h · 14, where h runs over all non-negative integers}.

(3) n ∈ S5 if and only if it does not belong to {1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 18, 33}.

(4) If m is a natural number > 6, then n ∈ Sm if and only if it does not belong to
{1, 2, 3, ...,m − 1,m + 1,m + 2,m + 4,m + 5,m + 7,m + 10,m + 13}.

4 Main results and proofs

In this section we shall prove our main results. The strategy of the proofs runs as
follows: first we describe when a natural number m is in K(n) for 2 6 m 6 5. This will
be done case by case. After that we treat the general case of m > 6.
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Throughout this section we keep all notations introduced in the previous sections.
Recall that we denote by K(n) (n > 2) the set of all numbers m such that there is a
partition in S(n − 1) with m parts.

The following is an easy observation.

Lemma 6. If d is a divisor of n − 1, then d ∈ K(n).

Now let us show when the number 2 is in K(n).

Proposition 2. The number 2 lies in K(n) if and only if the factorization of n − 1

into prime factors contains either the prime divisor 2 or at least one prime divisor of the
form 4k + 1.

Proof. If the factorization of n − 1 into prime factors contains either the prime
divisor 2 or at least one prime divisor of the form 4k + 1, then 2 is in K(n) by Lemma 6
and Lemma 5(1). Otherwise, it follows from Lemma 5(1) that any divisor of n − 1 is not
in S2. So 2 is not in K(n).

The condition for the number 3 to be in K(n) is as follows.

Proposition 3. Suppose n−1 is not a prime which is of the form 8k+5 and bigger
than 5 · 1010. Then 3 is in K(n) if and only if n − 1 is not the following numbers:
13, 25, 37, 2k5, 2k, and prime numbers of the form 8l + 7, where k, l are non-negative
integers.

Proof. We consider two cases: (1) n − 1 is even, (2) n − 1 is odd.

(1) Suppose that n − 1 is even. Let q be an arbitrary prime divisor of n − 1. Then
either q = 2 or q is one of the forms 8k + 1, 8k + 3, 8k + 5, 8k + 7.

Suppose that q is of the form 8k + 1. By Lemma 4, the prime q is in S3 since q can
not be 1 or 25.

Now suppose that q is of the form 8k + 3. We infer from Lemma 3(2) that every
natural number of the form 8k + 3 is the sum of three squares of integers, which must all
be odd integers. So q is in S3.

Further, if q = 8k + 7 for some non-negative integer k, then it follows from Lemma
3(2) that q is not in S3. However, we shall prove that 2q is in S3. In fact, 2(8k + 7)(≡
6(mod 8)) is the sum of three squares of integers by Lemma 3(2). But 2(8k + 7) can not
be the sum of two squares of integers by Lemma 3(1). So 2(8k + 7) is in S3.

Suppose that q = 8k + 5 for some non-negative integer k. We consider two cases:
q > 130 and q 6 130.

(i) Suppose that q > 130. We shall prove that q or 2q is in S3. In fact, at most one
number of the form 8h + 2 or 8h + 5 greater than 130 is not in S3 (see ref.[7], p.393). If
this number is not equal to q , then q is in S3. If this number is just q, then q is not in S3.
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However, 130 < 2q = 2(8k + 5) ≡ 2(mod 8), so 2q belongs to S3.

(ii) Suppose that q 6 130. Among the numbers, which are less than 5 · 1010 and of
the form 8h + 5, are only the numbers 5, 13, 37, and 85 not in S3 (see ref.[7], p.392).
If q is not 5, 13 or 37, then q is in S3. Note that 37 × 2 = 74 = 82 + 32 + 12 and
13 × 2 = 26 = 42 + 32 + 12. If q = 37 or q = 13, then 2q is in S3. If q = 5 and
q2 | (n − 1), then 2q2 | (n − 1). Since 5 × 5 × 2 = 50 = 52 + 42 + 32, we have that
2q2 is in S3.

Now it remains to consider n− 1 = 2l5, where l is a positive integer. First, we claim
that a natural number of the form 4k is in S3 if and only if k itself is in S3. In fact, if 4k =

a2 + b2 + c2, where a, b, c are natural numbers, then a, b, c must be even numbers. Put
a = 2a1, b = 2b1 and c = 2c1 with a1, b1 and c1 natural numbers. Then k = a2

1+b2
1+c2

1,
as desired. Conversely, the last equality implies that 4k = (2a1)

2 +(2b1)
2 +(2c1)

2. Now
we use this claim to finish the case (ii): since 2, 4, 10 and 20 are not in S3, all divisors of
n − 1 = 2l5 are not in S3. Therefore, if n − 1 = 2l5 with l a positive integer, then 3 is
not in K(n).

If q is 2, then we may assume that n− 1 = 2l for some positive integer l. In this case
we can use the claim in the above proof to show that 3 is not in K(n).

Thus we have proved that, for n−1 an even number, 3 is in K(n) if and only if n−1

is not equal to 2k5 or 2k, where k is a natural number.

(2) Suppose that n − 1 is odd. If n − 1 = 1, then it is clear that 3 is not in K(n).
Assume that n > 3. From the proof of the first case (1), we see that the prime divisors of
n−1 not in S3 may be 5, 13, 37, 8k+7(k > 0) or a number 8k0+5 > 5·1010. Suppose
that q1, q2 are such two (possibly the same) prime divisors. Then q1q2 ≡ 1 or 3(mod 8).
So q1q2 is in S3 except q1q2 = 52. However, 53 is in S3 since 53 = 102 + 42 + 32.
Thus, since n− 1 is not a prime which is of the form 8k + 5 and bigger than 5 · 1010, the
number 3 is in K(n) if and only if n−1 is not one of the numbers: 1, 5, 13, 25, 37, prime
numbers of the form 8k + 7(k > 0).

Now summarizing the two cases (1) and (2) together, we have that 3 is in K(n) if and
only if n− 1 is not equal to 13, 25, 37, 2k5, 2k , or the prime numbers of the form 8l + 7,
where k, l are non-negative integers. This finishes the proof.

Now let us consider the case when the number 4 is in K(n).

Proposition 4. The number 4 is in K(n) if and only if n − 1 does not lie in
{1, 2, 3, 5, 6, 9, 11, 17, 29, 41}.

Proof. (1) Suppose that n− 1 is even. If 4 | (n− 1), then 4 is in K(n) by Lemma
6. If 4 - (n− 1) and n− 1 is not 2, 6 or 14, then n− 1 is in S4 by Lemma 5(2). Hence 4

is in K(n). Clearly, the number 4 is not in K(3) or K(7). Since 7 is in S4, the number 4

is in K(15). Thus we have proved that 4 is in K(n) if and only if n − 1 is not in {2, 6}.

Copyright by Science in China Press 2005



The number of simple modules of a cellular algebra 7

(2) Suppose that n − 1 is odd. In this case, an argument similar to (1) shows that 4 is
in K(n) if and only if n − 1 is not in {1, 3, 5, 9, 11, 17, 29, 41}.

Now we summarize the two cases together and know that 4 is in K(n) if and only if
n − 1 is not in {1, 2, 3, 5, 6, 9, 11, 17, 29, 41}. This finishes the proof.

The following proposition handles the case when the number 5 is in K(n).

Proposition 5. The number 5 is in K(n) if and only if n−1 is not in {1, 2, 3, 4, 6, 7,
9, 12, 18}.

Proof. This is similar to the proof of Proposition 4 by Lemma 5(3).

For the general case of m > 6 we have the following proposition.

Proposition 6. Let K6(n) := {m ∈ K(n) | m > 6}. Then

(1) If n < 7, then K6(n) = ∅.

(2) K6(15) = {14, 11, 8, 7, 6},K6(21) = {20, 17, 14, 12 . . . , 6},
K6(27) = {26, 23, 20, 18, 17, 15, . . . , 6}.

(3) If n > 7 and n 6= 15, 21, 27, then

K6(n) = {n − k > 6 | k ∈ {1, 4, 7, 9, 10, 12, 13, 15, 16, 17, . . .}.
Proof. (1) is clear. Now we prove (2) and (3). Lemma 5(4) implies that only the

numbers m,m + 3,m + 6,m + 8,m + 9,m + 11,m + 12,m + 14, . . . are in Sm.
Hence n − 1 is in Sk, where k > 6 and lies in {n − 1, n − 4, n − 7, n − 9, n − 10, n −
12, n − 13, n − 15, n − 16, n − 17, . . .}. Moreover, if n − 15 > 6 and n − 15 >

n−1
2

,
that is, n > 29, then any divisor of n − 1 is not more than n − 15, whence K6(n) =

{n − 1, n − 4, n − 7, n − 9, n − 10, n − 12, n − 13, n − 15, . . . , 6}.

For 7 6 n 6 28, one can check that (3) holds except 15, 21 and 27. This finishes the
proof.

From the discussion in this section, we know that for a natural number n, the set K(n)

can be described by the the following theorem, which is the main result of this paper.

Theorem 1. Let n be a fixed natural number such that n − 1 is not a prime which
is of the form 8k + 5 and bigger than 5 · 1010. If A is an indecomposable cellular algebra
over a field such that its Cartan matrix has determinant n and each eigenvalue is either n

or 1, then the number of non-isomorphic simple A-modules must be a number in K(n),
where K(n) is given as follows:
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n K(n) |K(n)|
2 1 1

3 1, 2 2

4 1, 3 2

5 1, 2, 4 3

6 1, 2, 5 3

7 1, 2, 3, 6 4

8 1, 4, 7 3

10 1, 3, 6, 9 4

12 1, 3, 5, 8, 11 5

13 1, 2, 3, 4, 6, 9, 12 7

14 1, 2, 4, 5, 7, 10, 13 7

15 1, . . . , 8, 11, 14 10

18 1, 2, 3, 5, 6, 8, 9, 11, 14, 17 10

19 1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 18 11

21 1, 2, 4, . . . , 12, 14, 17, 20 14

26 1, 2, 4, . . . , 11, 13, 14, 16, 17, 19, 22, 25 17

27 1, . . . , 15, 17, 18, 20, 23, 26 20

30 1, 2, 3, 5, . . . , 15, 17, 18, 20, 21, 23, 26, 29 21

38 1, 2, 4, . . . , 23, 25, 26, 28, 29, 31, 34, 37 29

42 1, 2, 3, 5, ..., 27, 29, 30, 32, 33, 35, 38, 41 33

Suppose n is not displayed in the above list. Then K(n) = {1, 4, 5} ∪ {n − k >

6 | k ∈ {1, 4, 7, 9, 10, 12, 13, 15, 16, 17, . . .}} ∪ X , where X is a subset of {2, 3}, and
satisfies:

(1) 2 lies in X if and only if the factorization of n − 1 into prime factors contains
either the prime divisor 2 or at least one prime divisor of the form 4k + 1;

(2) 3 lies in X if and only if n − 1 is not in {2k5, 2k , prime numbers of the form
8l + 7, where k and l are positive integers}.

As a consequence of Theorem 1, we have the following corollary which gives an
answer to the question posed in ref.[2].

Corollary 1. Let p be a prime. If A is an indecomposable cellular algebra with the
property that all eigenvalues of its Cartan matrix C are rational and det(C) = p, then the
number of non-isomorphic simple A-modules is a number in K(p), where K(p) is given
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as follows:
p K(p) |K(p)|
2 1 1

3 1, 2 2

5 1, 2, 4 3

7 1, 2, 3, 6 4

11 1, 2, 4, 5, 7, 10 6

13 1, 2, 3, 4, 6, 9, 12 7

17 1, 2, 4, 5, 7, 8, 10, 13, 16 9

19 1, 2, 3, 4, 6, 7, 9, 10, 12, 15, 18 11

Suppose p > 23. Then K(p) = {1, 2, 4, . . . , p − 15, p − 13, p − 12, p − 10, p −
9, p− 7, p− 4, p− 1} ∪Y , where Y = ∅ if p− 1 is either of the form 2k5 or of the form
2k for positive integers k, and Y = {3} otherwise.

Let us remark that if the spectrum of a Cartan matrix is {n,m, ...,m}, our method
still works, in this case we need to consider the partitions of n − m instead.

The following proposition indicates that the set K(n) is quite big when n is suffi-
ciently large.

Proposition 7.

lim
n→∞

|K(n)|
n

= 1.

Proof. If n is sufficiently large, then, 1, 4, 5, 6, . . . , n−15, n−13, n−12, n−10, n−
9, n−7, n−4, n−1 must be in K(n). So we have that |K(n)| > n−1−2−7. On the
other hand, for a sufficiently large n, the numbers n−2, n−3, n−5, n−6, n−8, n−11

and n − 14 are not in K(n) by Theorem 1. So we have that |K(n)| 6 n − 1 − 7. Thus
(n − 10)/n 6 |K(n)|/n 6 (n − 8)/n. This implies that limn→∞

|K(n)|

n
= 1.

Finally, let us mention the following question: is there a formula or recursive formula
for |K(n)| ?

5 Realization of cellular algebras

In this section we consider whether the matrix corresponding to a partition in S(n)

can be realized as the Cartan matrix of an indecomposable cellular algebra, namely, the
following general question:

Question. Given a number m in K(n), can we construct an indecomposable cellular
algebra A such that the spectrum of the Cartan matrix of A is {λ1 = n, λ2 = 1, ..., λm =

1}?
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Although we cannot answer this question in general, we do have information along
this line in some special situations as we now proceed to show.

Proposition 8. Let C be an m × m matrix of the form














a + b1 a . . . a

a a + b2 . . . a
...

...
. . .

...

a a . . . a + bm















with a a positive integer and bi non-negative integers. Then there is an indecomposable
cellular algebra A such that its Cartan matrix equals to C .

Proof. We shall define an algebra A by quiver and relations. The quiver Q of A has
the vertex set Q0 = {1, 2, ...,m}. The arrows are defined as follows:

For two vertices i, j, there are a arrows from i to j, which are labelled as αij(1),
αij(2), ..., αij(a). For each vertex i, we attach additionally bi loops at i, which are
labelled as βii(1), βii(2), ..., βii(bi). For relations we put rad2(A) = 0.

To make A a cellular algebra, we have to define an involution, which sends αij(l) to
αji(l). So the involution fixes each vertex and each loops at each vertex.

To prove that A is a cellular algebra, we need to display a basis and check the condi-
tions of ref.[8, Proposition 3.4].

α11(1) α12(1) . . . α1m(1)

α21(1) α22(1) . . . α2m(1)
...

...
. . .

...

αm1(1) αm2(1) . . . αmm(1)

; ... ;

α11(a) α12(a) . . . α1m(a)

α21(a) α22(a) . . . α2m(a)
...

...
. . .

...

αm1(a) αm2(a) . . . αmm(a)

;

β11(1); ... ; β11(b1); ... ; βmm(1); ... ; βmm(bm); e1; ... ; em.

Since the square of the radical of A is zero, one can check easily that this is a cellular
basis for A with respect to the given involution.

From this proposition we know that if m is a divisor of n − 1, then there is an in-
decomposable cellular algebra A with m simple modules such that the Cartan matrix of
A has the spectrum {λ1 = n, λ2 = 1, ..., λm = 1}. This means that the corresponding
partition has all equal parts. In the following we consider partitions with different parts.

Proposition 9. Let C be an m × m matrix of the form




















x a a . . . a

a 2 1 . . . 1

a 1 2 . . . 1
...

...
...

. . .
...

a 1 1 . . . 2




















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with x a positive integer. If x > (a − 1)2(m − 1) + 2, then there is an indecomposable
cellular algebra A such that its Cartan matrix equals to C .

Proof. The algebra A will be given by quiver and relations. The quiver Q of A has
the vertex set Q0 = {1, 2, ...,m}. The arrows are defined as follows:

There are a arrows from 1 to j with j > 2, which are labelled as α1j(1), α1j(2),

..., α1j(a). Of course, there are a arrows from j to 1 with j > 2, and they are labelled
as αj1(1), αj1(2), ..., αj1(a). For the vertex 1, we attach additionally b := x − (a −
1)2(m−1)−2 loops at 1, which are labelled as α11(1), α11(2), ..., α11(b). There is only
one arrow from i to j for all 2 6 i, j 6 m. For relations we take all paths of length 2

except the paths α1j(i)αj1(l) with 2 6 i, j, l 6 m.

We define an involution on A by fixing all vertices and the loops at the vertex 1,
and sending αij(l) to αji(l). To show that A is a cellular algebra with respect to this
involution, we display a cell chain of ideals in A as follows:

Let Jm+1 be an ideal generated by all αij(1) with 1 6 i, j 6 m, and let Ji be the
ideal generated by ei and Ji+1 for i = 2, ...,m. If b > 0, we define I1 to be the ideal
generated by J2 and α11(1), and It to be the ideal generated by It−1 and α11(t) for t 6 b.
Finally, we define J1 to be the ideal generated by Ib and e1. Then we have a chain

0 ⊂ Jm+1 ⊂ Jm ⊂ ... ⊂ J2 ⊆ I1 ⊂ I2 ⊂ ... ⊂ Ib ⊂ J1 = A

of ideals in A. Using the proposition 3.4 in ref.[8], we can verify that this is a cell chain.
Thus A is a cellular algebra.

From this result we see that if (a − 1)m − 2a 6 0, then there is an indecomposable
cellular algebra A such that its Cartan matrix corresponds to the partition (a2, 1, ..., 1) of
m parts and has spectrum {λ1 = a2 + m,λ2 = 1, ..., λm = 1}.
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