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� Introduction

Recently� Graham and Lehrer ���� ��� have introduced a new class of alge�
bras� which they called cellular algebras	 These are de
ned by the existence
of a certain basis with very special properties motivated by the Kazhdan�
Lusztig basis of Hecke algebras	 Graham and Lehrer have shown that various
important classes of algebras are cellular� in particular� Ariki�Koike Hecke
algebras� and Brauer �centralizer
 algebras	
The aim of this paper is to study the structure of cellular algebras� in

particular in the case of the ground ring being a 
eld �this is assumed in
sections four to seven
	 We start by shortly describing the two classes of
motivating examples just mentioned	 In section three we review some of the
results of Graham and Lehrer and give an equivalent form of their de
nition�
and some examples	
In section four we investigate the cell ideals �which are the building blocks

of cellular algebras
	 In particular we show that there are two di�erent
sorts of such ideals� one being familiar from �and thus providing a close
connection to
 the theory of quasi�hereditary algebras	 In section 
ve we
show that the involution occuring in the de
nition of cellular algebras must

x isomorphism classes of simple modules	 This is a strong restriction� as
we illustrate by the example of Brauer tree algebras	
In section six we collect some homological properties for later use	 In

section seven we give an inductive construction of cellular algebras	 This

���� Mathematics Subject Classi�cation� Primary ��E��� ��G��� 	�C��� 	�G�
� Sec�
ondary ��E
�� ��G�
� 	�F��� 
�M	
� ��R�
�

Both authors have obtained support from the Volkswagen Foundation �Research in
Pairs Programme of the Mathematical Research Institute Oberwolfach��

�



provides us with a method to produce many examples� which in particular
show that there are no restrictions on the cell ideals e	g	 with respect to
endomorphism rings � which is a strong contrast to the situation for quasi�
hereditary algebras	 We also give a bound on the Loewy length of a cellular
algebra in terms of the number of cell ideals	 Moreover we determine the
global dimension of certain cellular algebras	

This paper is the 
rst in a series of three papers	 In the subsequent paper
���� we de
ne integral cellular algebras	 This is a smaller class of algebras�
still containing the examples of ����� but with much stronger properties than
cellular algebras in general	 The paper ���� contains a new characterization
of cellular algebras which gives another inductive construction of cellular
algebras and which leads to a generalization of Hochschild cohomology	

We would like to thank Sebastian Oehms for a helpful discussion	

� Motivating examples

In representation theory of Lie algebras and algebraic groups several classes
of 
nite dimensional associative algebras play important roles	 Most of them
are de
ned by generators and relations	 The motivation for studying cellular
algebras or related classes of algebras �like quasi�hereditary algebras
 is
to understand these special classes of examples by putting them into an
axiomatic framework and thus to reveal hidden structure	 In this section we
give a list of those examples which at present seem to be the most interesting
ones	 Details are given only for those examples which are not already covered
by the literature on quasi�hereditary algebras	

��� Ariki Koike Hecke algebras

Hecke algebras of type A are well�known deformations of the group algebra
of the symmetric group �for a survey see e	g	 ����
	 They have been studied
and used intensively in many areas of mathematics	 For the other classical
Coxeter groups �type B� C� and so on
� Hecke algebras have been de
ned as
well	 Recently� several attempts have been made to de
ne Hecke algebras
in a more general context� for socalled complex re�ection groups	 The so�
called cyclotomic Hecke algebras are closely related to a system of results
and conjectures which has been built around Brou�e�s conjecture �on derived
equivalences for blocks with abelian defect group
	 For more information
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�on this topic and more general on the �generic� approach to modular rep�
resentation theory of 
nite groups of Lie type
 the reader is referred to ���	
One large class of cyclotomic Hecke algebras has been studied by Ariki and
Koike ��� in a direct way by deforming group algebras of wreath products	

De�nition ��� �Ariki and Koike ���� Let R be the ring Z�q� q��� u�� � � � � ur�
for some natural number r� Then the Hecke algebra Hn�r �called an Ariki�

Koike Hecke algebra� is de�ned over R by the following generators and
relations�

Generators� t � a�� a�� � � � � an
Relations� �t� u�
�t� u�
 � � � �t� ur
 � �
a�i � �q � �
ai � q�i � �� � � � � n

ta�ta� � a�ta�t
aiaj � ajai�j i � j j� �

aiai��ai � ai��aiai���i � �� �� � � � � n� �


Specializing r � � and u� � � respectively r � � and u� � �� one gets
back the classical Hecke algebras of types A and B� respectively	
This Hecke algebra can be seen as deformation of the group algebra of

the wreath product �Z�rZ
 o �n	 Ariki and Koike show in ��� that Hn�r is
a free R�module of rank n�rn� and they classify the simple representations
of the semisimple algebra frac�R
 �R Hn�r	 A criterion deciding for which
values of q and the ui�s the specialized Hecke algebra is semisimple is given
by Ariki ���	 An important application of Ariki�Koike Hecke algebras is
Ariki�s proof of �a generalization of
 the LLT�conjecture which gives an
explicit way of computing characters of Hecke algebras �see ��� and ����
	

��� Brauer algebras

These algebras �not to be confused with Brauer tree algebras
 arise in the
representation theory of orthogonal and symplectic groups in the following
way �which is how Brauer came about studying them ���
� For analogy� let
us 
rst recall a basic property of the representation theory of the group
G �� GLn�k
	 It acts naturally on the n�dimensional k�vector space V �
hence also on the r�fold tensor product V �r	 The centralizer algebra of the
G�action on the tensor product �that is� the set of all k�endomorphisms of
V �r which satisfy ��gv
 � g��v
 for all v � V �r
 is a quotient of �and in
many cases equal to
 the group algebra of the symmetric group �r	 This
fact had been used by Schur for relating the representation theories �in
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characteristic zero
 of the general linear and the symmetric group	 Now it is
natural to try what happens when one replaces GLn�k
 by one of its classical
semisimple subgroups� say an orthogonal or a symplectic one� which of course
still acts on the tensor space V �r	 Call the corresponding centralizer algebra
Dr�n
 �where n is the number of the group in the series containing it
	
Now Brauer observed that this algebra is a quotient of �and in many cases
isomorphic to
 another algebra� say Br�x
 �where x is specialised to a natural
number in case of the orthogonal group and to a negative integer in the
symplectic case
 which is de
ned as follows� and which is now called the
Brauer algebra �or the Brauer centralizer algebra
	
Fix a 
eld k� an indeterminate x� and a natural number r	 Then Br�x


has a basis consisting of all diagrams� which consist of �r vertices� divided
into � ordered sets� the r top vertices and the r bottom vertices� and r
edges such that each edge belongs to exactly � vertices and each vertex
belongs to exactly one edge	 Multiplication of basis elements is de
ned by
concatenating diagrams� Assume we are given two basis elements� say a and
b	 First� draw an edge from bottom vertex i of a to top vertex i of b �for
each i � �� � � � � r
	 This produces a diagram which is almost of the desired
form except that there may be cycles not attached to any of the �new
 top
and bottom vertices	 Denote the number of these cycles by d	 Then delete
all cycles� the result is a basis element� say c	 Now the product ab is by
de
nition xdc	
Of course� for a 
eld element� say n� the Brauer algebra Br�n
 is de
ned

by using n instead of x� that is� by forming the quotient of B�x
 modulo
x� n	
For examples and more details the reader is referred to Wenzl�s paper

����	
Brauer algebras have been studied extensively by Hanlon and Wales in

a series of long papers with many explicit results ���� ��� ���	 Based on
their computations they conjectured that Br�n
 is semisimple if n is not an
integer	 Wenzl ���� proved this conjecture	 He also studied applications to
knot theory ����	

��� Other examples

There are other algebras which also can be de
ned by diagrams �and are
of use in knot theory
	 We mention Temperley�Lieb algebras and Jones�
annular algebras	 The algebras in both classes are smaller �and thus more
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open to explicit computations
 than the Brauer algebras	

Other important classes of examples which we want to cover are the
blocks of the Bernstein�Gelfand�Gelfand category O of 
nite dimensional
semisimple complex Lie algebras� and the �generalized
 Schur algebras asso�
ciated with rational �or polynomial
 representations of semisimple algebraic
groups �in describing characteristic
	 The reader is referred to ���� for more
information on these two classes of algebras �which are the main examples
of quasi�hereditary algebras
	

� De�nitions and basic properties

First� we recall the original de
nition of Graham and Lehrer� and explain
how they use it	 Then we give an equivalent de
nition which we will use for
looking at the structure of cellular algebras	

De�nition 	�� �Graham and Lehrer	 �
��� Let R be a commutative ring�
An associative R�algebra A is called a cellular algebra with cell datum
�I�M�C� i
 if the following conditions are satis�ed�

�C
� The �nite set I is partially ordered� Associated with each � � I
there is a �nite set M��
� The algebra A has an R�basis C�

S�T where �S� T 

runs through all elements of M��
�M��
 for all � � I�

�C
� The map i is an R�linear anti�automorphism of A with i� � id
which sends C�

S�T to C�
T�S�

�C�� For each � � I and S� T � M��
 and each a � A the product
aC�

S�T can be written as �
P

U�M��� ra�U� S
C
�
U�T 
 � r� where r� is a linear

combination of basis elements with upper index � strictly smaller than �	
and where the coe�cients ra�U� S
 � R do not depend on T �

In the following� an R�linear anti�automorphism i of A with i� � id will
be called an involution	

Using this de
nition Graham and Lehrer could show that the following
examples �mentioned in the previous section
 
t into this context�

Theorem 	�� �Graham and Lehrer	 �
��� The following algebras are cellu�
lar�

�a� Ariki�Koike Hecke algebras�
�b� Brauer�s algebras�
�c� Temperley�Lieb algebras�
�d� Jones� annular algebras�
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The proofs for the 
rst and the second class of algebras are quite tricky
and complicated and use non�trivial combinatorial tools like Kazhdan�
Lusztig basis and Robinson�Schensted algorithm� the remaining classes of
examples are similar to �specializations of
 the Brauer algebras	

Other examples of cellular algebras are discussed in ���� ���	

Let us give an easy example� The algebra A � k�x���xn
 is cellular with
cell chain � � �xn��
 � �xn��
 � � � � � �x
 � A and involution i � id	 Note
however that it is not cellular with respect to the involution x �� �x	 In
fact� the cell chain would have to be the same as before� but one does not

nd a basis which is 
xed under this involution �see section � for details
	
This indicates that the involution is not just an extra condition but there is
a quite subtle interplay between the involution and the other conditions	

We remark that the 
niteness of the index set I is not required in the
de
nition in ����	 However� it is assumed in most of their results� and it is
satis
ed in all of their examples	 Thus it seems to be convenient to include
this condition in the de
nition� and thus to exclude in
nite dimensional
algebras like k�x� which would be cellular otherwise	 We will recall below the
results of ���� on classifying simple modules of a cellular algebra	 Roughly�
they give a bijection between isomorphism classes of simple modules and
those cell ideals which satisfy an additional condition	 The example k�x�
shows that this cannot work without assuming I to be 
nite	 There are�
however� remarkable examples of quantum groups �namely� Lusztig�s �U � see
part four of ����
 which are cellular with in
nite index set	 In the general
case of in
nite index set it seems natural also to look at completions of
cellular algebras �see ����
	

From the de
nition of cellular algebras it follows directly that they are

ltered by a chain of ideals�

Proposition 	�� �Graham and Lehrer	 �
��� Let A be cellular with cell da�
tum �I�M�C� i
� Fix an index � � I� Then the R�span of all basis elements
C�
S�T for � 	 � is a two�sided ideal in A�

The ideal in the proposition will be denoted by J�	 �
	 If � is minimal�
this ideal is called a cell ideal	 Varying � produces a chain of ideals �called
a cell chain
	 By J�� �
 we denote the sum of the ideals J��
 with � � �	
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Proposition 	�	 �Graham and Lehrer	 �
��� As a left module	 the quotient
J��
�J�� �
 is a direct sum of copies of a module  ��
 which has basis
C�
S�T where S runs and T is �xed �in particular	 the isomorphism class of

this module does not depend on the choice of T ��

The module in the proposition will be called standard module� since
we will see later on� that this notion extends the familiar notion of standard
modules of a quasi�hereditary algebra	 In ���� this module is called a cell
module	 Of course� there is a dual version of the proposition stating that as
a right module J��
�J�� �
 is a direct sum of copies of the module i� ��


�where the right action of A is via the involution i
	

Although J is a direct sum of copies of  as a left module� it does not
have to be generated by any of these copies as a two�sided ideal� Let A be
the noncommutative algebra k � a� b� c� d 	 �rad��k � a� b� c� d 	
 with four
generators and radical square zero	 De
ne i to send b to c and c to b and to

x a and d	 Then the radical J of A is the four�dimensional space with basis
a� b� c� d	 In fact� J is a cell ideal as one can check by choosing  � ka
 kb�
hence i� 
 � ka 
 kc	 But because of rad�A
J � � � Jrad�A
 this cell
ideal cannot be generated by any proper subspace	

The example k�x���xn
 shows that standard modules  �i
 and  �j
 hav�
ing di�erent indices i �� j may be isomorphic	 Moreover� there may be
non�trivial extensions between them	

The main use Graham and Lehrer make of these notions is for construct�
ing simple A�modules	 �For the above classes of algebras this is usually a
hard problem� see ���� for partial solutions	
 Since the coe!cients in ex�
pressing the product C�

S�TC
�
U�V as a linear combination of basis elements do

not depend on the indices S and V � one can de
ne a bilinear form 
� send�
ing S� V to the coe!cient of C�

S�V in this expression	 Graham and Lehrer
show� that in case of 
� being non�zero� the standard module  ��
 has a
unique simple quotient� say L��
	 All simple A�modules arise in this way�
and for di�erent � �� � one gets di�erent simple modules	 Since the radical
of the standard module equals the radical of the associated bilinear form�
the question of 
nding a basis of L��
 is reduced to a problem of linear
algebra �so� one has the possibility of doing explicit computations in each
individual case � which� of course� does not solve the problem of 
nding
general �formulae�� e	g	 for the dimensions of simple modules
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Now we rephrase the de
nition of cellular algebras and show that the
new de
niton is equivalent to the de
nition of ����	

De�nition 	�� Let A be an R�algebra where R is a commutative Noethe�
rian integral domain� Assume there is an antiautomorphism i on A with
i� � id� A two�sided ideal J in A is called a cell ideal if and only if
i�J
 � J and there exists a left ideal  � J such that  is �nitely gen�
erated and free over R and that there is an isomorphism of A�bimodules
� � J �  �R i� 
 �where i� 
 � J is the i�image of  � making the
following diagram commutative�

J
�

�  �R i� 


J

i

� �
�  �R i� 


x� y �� i�y
� i�x


�

The algebra A �with the involution i� is called cellular if and only if
there is an R�module decomposition A � J �� 
 J �� 
 � � � 
 J �n �for some n�
with i�J �j
 � J �j for each j and such that setting Jj � 
j

l��J
�

l gives a chain
of two�sided ideals of A� � � J� � J� � J� � � � � � Jn � A �each of them
�xed by i� and for each j �j � �� � � � � n� the quotient J �j � Jj�Jj�� is a cell
ideal �with respect to the involution induced by i on the quotient� of A�Jj���

From now on� we always will assume that the ring R is a commutative
Noetherian integral domain	 This is not necessary for the de
nitions	 How�
ever� all the examples of cellular algebras� which we know of� satisfy this
assumption	 Moreover� the basic problems of the theory of cellular algebras�
for example to compute decomposition numbers� make this assumption nat�
ural	 In particular� the notion of rank will be available	

We note one immediate consequence of this de
nition� A cellular al


gebra is �nitely generated and free as an R�module�

The two de�nitions of cellular algebras are equivalent� Proof� Assume
that A is cellular in the sense of Graham and Lehrer	 Fix a minimal index
�	 De
ne J��
 to be the R�span of the basis elements C�

S�T 	 By �C�
�
this is a two�sided ideal	 By �C�
 it is 
xed by the involution i	 Fix any
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index T 	 De
ne  �as remarked above
 as the R�span of C�
S�T �where S

varies
	 De
ning � by sending C�
U�V to C

�
U�T � i�C�

V�T 
 gives the required
isomorphism	 Thus J��
 is a cell ideal	 Continuing by induction� it follows
that A is cellular in the sense of the new de
nition	
Conversely� if a cell ideal� say J � in the sense of the new de
nition is given�

we choose any R�basis� say fCSg� of  � and denote by CS�T the inverse image
under � of CS � i�CT 
	 Since  is a left module� �C�
 is satis
ed	 �C�

follows from the required commutative diagram	 This 
nishes the proof for
those basis elements occuring in a cell ideal	 Induction �on the length of the
chain of ideals Jj
 provides us with a cellular basis of the quotient algebra
A�J 	 Choosing any preimages in A of these basis elements together with a
basis of J as above we produce a cellular basis of A	

At this point� one may ask the following questions� Is there a universal
property of the standard modules  " Are standard modules always inde�
composable" Do their endomorphism rings have special properties" Later
on� we will see� that the answer to each of these questions is no in general
�but yes in the examples in which one is interested� as will be shown in ����	
Since the de
nition of cellular algebras uses induction� one has to ask

which algebras provide the induction start	

Proposition 	�� Let A be an algebra with a cell ideal J which is equal to
A� Then A is isomorphic to a full matrix ring over the ground ring R�

Proof� The assumption says that A has an involution i and can be
written as  �R i� 
 for some left ideal  	 Hence there is an R�isomorphism
A � HomA�A�A
 � HomA� �R i� 
� A
 � HomR�i� 
�HomA� � A

	
Denote the R�rank of the free R�module  by m	 Then A has R�rank m��
and as left module� A is isomorphic to m copies of  	 Hence� HomA� � A

�which is a submodule of the R�free moduleHomR� � A
� hence torsionfree

has R�rank at least m	 But by the above isomorphism it cannot have larger
rank	 Thus� the A�endomorphism ring E �which again is torsionfree
 of  
has rank one and contains R	 Now E is a subring of frac�R
 �which equals
Endfrac�R��RA�frac�R
�R 

 which sends  into itself by multiplication�
hence E is equal to R	

The proof shows that for any cellular algebra� the standard modules
of maximal index are indecomposable and have endomorphism ring R	 Of
course� the full matrix ring over R is cellular� so the converse of the proposi�
tion also is true	 We remark that the proposition also follows from corollary
�	�� in ����	 Conversely� our argument reproves this result	
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We 
nish this section by giving another class of examples�

Proposition 	�� Let A be a �nite dimensional commutative algebra over an
algebraically closed �eld k� Then A is cellular with respect to the involution
i � id�

Proof� Since A is commutative� its maximal semisimple quotient is
commutative as well	 Thus the simple A�modules are one�dimensional	
The left socle of A coincides of course with the right socle� thus any one�
dimensional direct summand of it is a cell ideal	 Now we can proceed by
induction	

� Cell ideals

In this section we have a closer look at cell ideals	 It turns out that they
are of two di�erent kinds� one of them being familiar from the theory of
quasi�hereditary algebras	 Part of this information �phrased di�erently
 is
contained in sections two and three of ����	 From now on we assume R
to be a �eld�

Proposition ��� Let A be an R�algebra �R � k any �eld� with an invo�
lution i and J a cell ideal� Then J satis�es one of the following �mutually
exclusive� conditions�

�A� J has square zero�
�B� There exists a primitive idempotent e in A such that J is generated

by e as a two�sided ideal� In particular	 J� � J � Moreover	 eAe equals
Re � R	 and multiplication in A provides an isomorphism of A�bimodules
Ae�R eA � J �

Proof� By assumption� J has an R�basis CS�T whose products satisfy
the rule �C�
	 If all the products CS�TCU�V are zero� then we are in situation
�A
	 Thus we may assume that there is one such product which is not zero	
Since the coe!cients do not depend on S or V � the product CU�TCU�T also
is not zero	 But by ����� �	� �or a direct comparison of the two ways writing
this product as a linear combination of basis elements� using �C�
 and its
dual
� this product is a scalar multiple of CU�T 	 Hence there is an idempotent
in J � which thus cannot be nilpotent	
So� J contains a primitive idempotent� say e� and Ae is a left ideal which

is contained in J 	 The cell ideal J as a left A�module is a direct sum of copies
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of a standard module  	 But Ae is a submodule� hence a direct summand
of the left ideal J � Ae
J���e
	 It follows that Ae is a direct summand of
 which we can decompose into Ae
M for some A�moduleM 	 Because of
J �  �R i� 
 we can decompose J as left module into Ae

m
Mm where m
is the R�dimension of  �which equals the R�dimension of i� 

	 Of course�
Aem is contained in the trace X of Ae inside J �that is� the sum of all images
of homomorphisms Ae � J
	 This trace X is contained in the trace AeA
of Ae in A	 But the dimension of AeA is less than or equal to the product
of the dimension of Ae with the dimension� say n� of eA	 The number n
equals the dimension of Ai�e
� which �by the same argument
 also is a direct
summand of  	 Since m is less than or equal to n� there must be equality
i� 
 � i�e
A� hence also Ae �  and there must be equality in all of the
above inequalities	 In particular� J equals AeA and also Ae �R eA	 Since
multiplication Ae �R eA always is surjective� it must be an isomorphism	
As this multiplication factors over Ae �eAe eA it follows that eAe must be
equal to Re � R	

We note that here we need the assumption that R � k is a 
eld	
Case �B
 just says that J is a heredity ideal �generated by a primitive

idempotent
	 Conversely� a heredity ideal J which is 
xed by an involution
i and generated by a primitive idempotent e� clearly is a cell ideal	 The
following corollary is already known �see e	g	 ���� ���
	

Corollary ��� Let A be a quasi�hereditary algebra with an involution i �x�
ing a complete set of primitive orthogonal idempotents� Then A is cellular�
Conversely	 a cellular algebra with all cell ideals being idempotent �i�e� of
type �B�� is quasi�hereditary�

An ideal J �xed by an involution i and generated by a primitive idempo�
tent e �xed by i is a cell ideal if and only if it is a heredity ideal�

There are two subtle points in this context which we would like to men�
tion	 A cell ideal which is a heredity ideal must be generated by a primitive
idempotent	 But it can happen that no such idempotent is 
xed by i	 More�
over� a heredity ideal which is 
xed by an involution i need not be a cell
ideal	 Examples �which in fact use simple algebras
 are given in ����	

Here� a warning is necessary� The indexing of cell ideals of a cellular
algebra unfortunately is precisely the converse of the usual indexing for
ideals in a heredity chain of a quasi�hereditary algebra� so passing from one
theory to the other one should replace � by 		
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An alternative proof �and a generalization of this result
 has been given
already in the recent preprint ���� by Du and Rui	 A similar result for
integral quasi�hereditary algebras is given in ����	 The latter can be used to
see that integral Schur algebras are cellular	
In general� a quasi�hereditary algebra does not have to admit any involu�

tion	 But there is a large class of examples which are both quasi�hereditary
and cellular	 This includes in particular blocks of category O and Schur
algebras	 More examples can be found in ����	

With a quasi�hereditary algebra A� there come two series of smaller
quasi�hereditary algebras� having the form A�Ji or eAe� respectively	 Here�
the idempotents e have to be chosen in a special way �which is prescribed
by the partial order 	
	 For cellular algebras� there is a much larger class
of idempotents with eAe cellular�

Proposition ��	 Let A be cellular with respect to an involution i� Let e be
an idempotent in A which is �xed by i� Then eAe is cellular with respect to
the restriction of i�

Proof� Clearly� i is an involution of eAe	 For a cell ideal J of A we
have to show that eJe is a cell ideal of eAe	 Putting  � � e � hence
i� �
 � i�e 
� one gets the isomorphism eJe �  � �k i� 
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We note that this result does not need the assumption of k being a 
eld	
An application of this result is an alternative proof that Hecke algebras
of type A� in particular the group algebras of the symmetric groups� are
cellular�

Corollary ��� Hecke algebras of type An are cellular�

Proof� Integral Schur algebras are quasi�hereditary� and there is an
involution i 
xing the ideals in the usual heredity chain	 Now� the Hecke
algebras of type An can be written as eAe for A some integral Schur algebra
and e some idempotent 
xed by i	

� The involution

The involution occuring in the de
nition of cellular algebras plays a crucial
role	 It is not just an additional datum but it makes the other data in the
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de
nition much more subtle	 In this section we show in particular that the
involution necessarily 
xes isomorphism classes of simple modules	 As an
application we classify the cellular Brauer tree algebras	 This implies that
for the known classes of cellular algebras which are connected to 
nite group
theory� like the Hecke algebras� only a special kind of Brauer tree can occur	
In the case of Hecke algebras� this reproves a result of Geck ����	

A generalization of cellular algebras� called standardly based� obtained
by omitting the involution in the de
nition has been studied by Du and
Rui� see ����� the class of algebras obtained in this way is much larger than
the class of cellular algebras	 In fact� any 
nite dimensional algebra A over
a perfect 
eld is standardly based� A minimal �with respect to inclusion

two�sided ideal I of A is a minimal A �k A

op submodule of A	 Hence I is
simple as A �k A

op�module� and thus I has the form I � S � T for some
simple left A�module S and some simple right A�module T 	

We start with an easy example showing that it depends on the choice
of the involution whether an algebra is cellular or not	 In fact� for A �
k�x���x�
� k any 
eld of characteristic di�erent from two� we may consider
two involutions� i� � id and i� � x �� �x	 In the 
rst case� A is clearly
cellular �the cell chain being � � �x
 � A
	 In the second case� however� A
is not cellular	 Assume to the contrary� that J is a non�zero cell ideal with
respect to i�	 Then the dimension of J has to be a square� thus it equals
one	 So� J must be the ideal generated by x� and  equals J and also i�� 
	
But the square

J
�

�  �R i� 


J

i

� �
�  �R i� 


y � z �� i�z
� i�y


�

cannot be made commutative by any �� since the left hand vertical map
sends x to �x whereas the right hand vertical map sends a generator y � z
to itself	

Proposition ��� Let A be a cellular algebra with involution i and e a prim�
itive idempotent of A� Then i�e
 is equivalent to e�

Proof� �See ����� �	� for a similar argument	
 Fix a chain of cell ideals
J� � � � � � Jn � A and assume that e lies in Jj but not in Jj��	 Since

��



the ideals in a cell chain are 
xed by i� i�e
 also lies in Jj but not in Jj���
hence we can pass to a cellular quotient algebra of A and assume that e and
i�e
 both are contained in a cell ideal� say J which has the form  �R i� 
	
Since J contains an idempotent� it is a heredity ideal and  equals Ae by
proposition �	�	 But Ai�e
 is a direct summand of J � hence also of  � which
implies that Ae and Ai�e
 must be isomorphic	

Corollary ��� Let A be directed �that is	 the isomorphism classes of simple
A�modules can be ordered in such a way that Ext�A�L�i
� L�j

 �� � implies
i � j�� Then A is cellular �for some involution� if and only if it is split
semisimple�

Proof� We know already that split semisimple algebras are cellular �for
any involution 
xing simples
	 Conversely� let A be cellular with respect
to some involution� say i	 Then i 
xes simple modules� hence for any two
simple modules L and L�� there are extensions in one direction if and only
there are extensions in the other direction	 By the de
nition of directed�
ness� extensions in one direction are zero	 Hence there are no non�trivial
extensions at all� and A is semisimple	 Thus� A is a direct sum of its cell
ideals� hence it is split semisimple	

As an application we consider the following question� When is a Brauer
tree algebra cellular" �For de
nition and properties of Brauer tree algebras
we refer to ���� chapter 
ve	


Proposition ��	 A Brauer tree algebra �with an arbitrary number of excep�
tional vertices� is cellular if and only if the Brauer tree is a straight line �that
is	 at each vertex there are at most two edges	 with arbitrary multiplicities��

Proof� If there is a vertex with more than two edges meeting there�
then �by de
nition of Brauer tree algebra
 there are simple modules L��
L�� 	 	 	 � Lm �corresponding to these edges
 for some m � � such that
Ext��Lj � Lj��
 �� � �to be read cyclically
� and all other 
rst extensions be�
tween two of these simples vanish	 On the other hand� being cellular implies
the existence of an involution i 
xing isomorphism classes of simple modules
and hence providing vector space isomorphisms between Ext��Lj� Lj��
 and
Ext��Lj��� Lj
 which is a contradiction	
Thus it remains to show that in the case of a straight line the algebra

is cellular	 This can be done easily using the well�known description by
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quiver and relations	 We describe the procedure in the basic case	 The
involution i 
xes the vertices and reverses the arrows	 The cell chain can
be chosen in such a way that J� is one� dimensional� the unique socle of
a projective module P ��
 which belongs to an edge with one neighbour
only	 Then J��J� is four�dimensional and intersects non�trivially with P ��

and its neighbour P ��
	 If the vertex has multiplicity one� then J��J� is
a heredity ideal	 Otherwise� one continues to factor out four�dimensional
ideals containing composition factors L��
 and L��
 until the idempotent at
� has been factored out	 Then one continues inductively	

It follows that for example Brauer trees of Ariki�Koike Hecke algebras
are straight lines �this has been proved already by Geck� ����� also using an
involution argument � however� his result is more general
	
In ���� we will see that for the examples we are interested in �that is�

the integral cellular algebras
 the involution i has a rather special shape	 In
general� however� it seems to be an open problem to 
nd all involutions on
a given 
nite dimensional algebra	

� Homological properties

In proposition �	�� we have seen that �over a 
eld
 for a cell ideal J there
are precisely two possibilities	 Either it is a heredity ideal or it has square
zero	 In the 
rst case� the homological properties are well understood� for
example there is a homological epimorphism A� A�J � and A�cohomology
can� to a large extent� be read o� from A�J �see ���� ���
	 In the second
case this is not true� cohomology of A and of A�J can be rather di�erent as
one can see already from the example k�x���x�
	 In this section we give a
list of homological properties of J in the second case� in particular we show
how the cell basis can be read o� naturally from certain Ext or Tor groups	
We restrict to algebras over a 
eld in this section in order to have the above
dichotomy available	

We start by recalling an exercise of Cartan�Eilenberg ����� VI���
� If
A is a ring and I is a right ideal and J is a left ideal then the following
isomorphisms are easily shown by using long exact sequences�

TorA� �A�I�A�J
 � �I 
 J
�IJ�

TorA� �A�I�A�J
 � kernel�I �A J
mult
� IJ
�

��



TorAn �A�I�A�J
 � TorAn���I� J
� n 	 ��

Proposition 
�� For any ideal J in a k�algebra A	 the following two as�
sertions are equivalent�

�I� J� � �	
�II� TorA� �A�J�A�J
 � J �A J �

Proof� Applying J �A� to the exact sequence �� J � A� A�J � �
produces the exact sequence

�� TorA� �J�A�J
 � J �A J � J �A A� J �A A�J � �

Now� the last term equals J�J�	 Hence� if J� � �� the 
rst two terms must
be isomorphic	 Dimension shift then proves that �II
 is valid	 Conversely�
again by dimension shift� condition �II
 implies that the 
rst two terms�
hence also the last two terms are isomorphic� thus �I
 is valid	

Now assume A has a nilpotent cell ideal� say J � which is isomorphic to
 �k i� 
� where i is an involution on A and  is a left ideal inside J 	
Since J is isomorphic to  �k i� 
 we get an isomorphism of k vector

spaces J�AJ �  �k�i� 
�A 
�k i� 
� thus the Tor space in the previous
proposition will be quite large� provided i� 
�A is not zero	 But the latter
space is the k�dual of HomA� �Homk�i� 
� k

 which is non�zero since it
contains the map  � top� 
 � socle�Homk�i� 
� k

 � Homk�i� 
� k
	

Corollary 
�� Let J be a nilpotent cell ideal in the k�algebra A� Then the
space TorA� �A�J�A�J
 is not zero�

This has the following consequence� If A has a cell chain which contains
nilpotent cell ideals� then this chain of ideals does not give a recollement
of derived module categories� and the chain of ideals does not make A into
a strati
ed algebra in the sense of Cline� Parshall� and Scott ���	 Hence
their notion of strati
ed algebra is quite di�erent from the notion of cellu�
lar algebra �although both classes of algebras contain the quasi�hereditary
algebras
	

Another consequence of the exercise in Cartan�Eilenberg is the following
�here� we do not need that k is a 
eld� it is enough to assume that k is a
noetherian integral domain
�
If J can be written as  �k i� 
 andm is the k�rank of  � then there are

m linearly independent embeddings of  into J � and similarly for i� 
	 So�
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J can be written as a direct sum J � 
� j

 i� l
 where j and l run from
� to m each	 But  
 i� 
 is isomorphic to TorA� �A�i� 
� A� 
� which in
particular must have rank one over k	 Thus the choice of the cell basis

can be seen as choosing a decomposition of the above Tor�space	

The involution i on A induces an antiequivalence � � A�mod � mod�A	
Its e�ect on standard modules can be described explicitly�

Proposition 
�	 Let A be cellular with respect to an involution i and de�
note by � the antiequivalence A � mod � mod � A induced by i� Then
for a standard module  of minimal index there is an isomorphism of left
A�modules ��A� 
 � Homk�A�i� 
� k
�

Proof� We 
rst recall the de
nition of the module structures on the
two modules� On Homk�A�i� 
� k
 an element a � A acts by sending a
linear form � to the form which maps x to ��xa
	 On ��A� 
 �which as a
vector space coincides with Homk�A� � k

 the action is by sending f to
af � x �� f�i�a
x
	
Now the isomorphism is straightforward� Send f to �f � x �� f�i�x

	

	 An inductive construction

For a quasi�hereditary algebra� there are two inductive constructions� due
to Parshall and Scott ���� and to Dlab and Ringel ����	 �One should note�
that there are too many quasi�hereditary algebras� so one cannot use these
constructions in order to classify them all� but one can inductively check
properties or produce examples in this way	

The 
rst of these constructions ���� takes as input an algebra B with

n simples and produces as output an algebra A with n � � simples and a
heredity ideal J of A such that A�J � B	 One can use this construction as
well in case �A
 of our situation �i	e	 for heredity ideals
� one just has to
add the existence of an involution as an additional condition	
The aim of this section is to look at an inductive construction �similar

to that of ����
 which works in the second case of a nilpotent cell ideal	 In
particular we will use this construction for producing examples which give
negative answers to some of the questions asked in the third section	 As
positive results we get a statement about global dimensions and bounds for
the Loewy length of a cellular algebra	
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Proposition ��� Let B be a cellular algebra with an involution i� Let  
be any B�module� Let # be the image of  under the antiequivalence � �
B�mod� mod�B de�ned by i �thus	 as vector space # equals  �� Denote
by J the B�bimodule  �R

# � De�ne i on J by sending x�y to y�x� Pick
a Hochschild cocycle 
 � H��B� J
 which satis�es in addition the equation

�i�x
� i�y

 � i
�y� x
 for all x� y � B�

Then A � J 
B with multiplication de�ned by �j� b
�j�� b�
 � �jb�� j�b�

�b� b�
� bb�
 is a cellular algebra with nilpotent cell ideal J �

Conversely	 any cellular algebra with a nilpotent cell ideal can be written
in this form�

Proof� First we assume that A is a cellular algebra with a nilpotent
cell ideal J 	 Then J� � � implies that the A�module structure of J factors
over the quotient algebra B � A�J 	 Hence Hochschild cohomology can be
applied	 It is easy to check that the involution i on A imposes the above
condition on the Hochschild cocycle	
Conversely� it is well�known that the above data de
ne an associative

R�algebra structure on A and that J is an ideal	 Since i is de
ned both
on B and on J � it is de
ned on A as well and the condition on the cocycle
implies that i actually is an involutory antiautomorphism of A	 Clearly� J is
an ideal of A	 Its A�bimodule structure is given by its B�module structure�
thus it is a cell ideal	

An easy special case of Hochschild extensions are trivial extensions where
one chooses the cocycle to be zero	 One should not expect our examples
to be trivial extensions in general	 But trivial extensions can be used to
construct cellular algebras which provide negative answers to the questions
mentioned after de
nition �	�� In the theorem�  can be chosen arbitrary	
As a B�module� it is not distinguished by any property	 Since its A�module
structure coincides with its B�module structure� this implies that  does
not have to be indecomposable	 Moreover� there is no restriction on its
endomorphism ring� on its composition factors and so on	
We will see in ���� that the situation is much better if we restrict to

a smaller class of algebras still containing all the examples provided by
Graham and Lehrer	

Now we apply the inductive construction to get more information on the
ring structure of cellular algebras	 For an algebra A� we denote by LL�A

its Loewy length	
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Proposition ��� Let A be a cellular algebra with a nilpotent cell ideal J
and B � A�J the quotient algebra� Then the following assertions hold true�

�a� rad�A
 � rad�B

 J �
�b� there is a commutative diagram

� � X � rad��A
 � rad��B
 � �

� � J
�

� rad�A

�

� rad�B

�

� �

� � Y
�

� rad�A
�rad��A


�

� rad�B
�rad��B


�

� �

where X � J
rad��A
 � rad�B
J�Jrad�B
�f
�b� b�
� b� b� � rad�B
� bb� �
�g and Y � �rad��B

J
��rad�B
�A rad�B
� rad�B
J �Jrad�B

 �with
� indicating a non�direct sum and �A indicating multiplication in A�� In
particular	 the quiver of A contains the quiver of B as a subquiver	 and the
additional arrows correspond to a basis of Y �

�c� there is an inequality LL�A
 	 �LL�B
�

Proof� Since J is nilpotent� it is contained in rad�A
� this implies �a
	
Multiplying two elements in rad�A
 gives a product of the form �j�b� bj� �

�b� b�
� bb�
� which implies exactness of the 
rst row in the diagram in �b
	
The rest of the diagram is then clear	 Statement �c
 follows since J is a
B�module	

In the case of heredity ideals there is a similar bound as in �c
 �see ����
�
thus we get�

Corollary ��	 Let A be a cellular algebra with a cell chain consisting of n
ideals� Then the Loewy length of A is bounded above by �n�

Quasi�hereditary algebras alway have 
nite global dimension	 This is
not true for cellular algebras �for example� there are many local cellular
algebras which are not simple
	

Corollary ��� If A is a trivial extension of an algebra B by a nilpotent cell
ideal J 	 then the global dimension of A is in�nite�

Proof� For a trivial extension� the decomposition A � J 
 B is even a
decomposition of B�bimodules which induces B�bimodule decompositions

��



rad�A
 � J 
 rad�B
 and rad��A
 � rad��B
 
 �Jrad�B
 � rad�B
J
	
Thus rad�A
�rad��A
 decomposes into rad�B
�rad��B
 
 J��rad�B
J �
Jrad�B

	 Since J is 
xed by the involution i� the spaceJ��rad�B
J �
Jrad�B

 is 
xed by i as well	 In particular� there is an idempotent e in A
and a non�zero element� say x� in this space such that ex �� � �� xe	 Hence
the quiver of A contains a loop� and by ���� the global dimension of A is
in
nite	

The examples we have checked seem to indicate that there is a much
larger class of cellular algebras having in
nite global dimension �although
not necessarily containing loops in their quiver
� moreover� the results of
���� seem to be applicable in a more general context	 We note that the
above result also follows from a general criterion ���� deciding when a trivial
extension has 
nite global dimension	 We also note that �typical� examples
of cellular alegbras� like the group algebras of symmetric groups� are self�
injective� hence either semisimple or of in
nite global dimension	

Problem� When does an extension of an algebra B by a nilpotent cell
ideal J have in
nite global dimension" In particular� When does a cellular
algebra have in
nite global dimension"

A di�erent inductive construction of cellular algebras �not distinguishing
between the two sorts of cell ideals and valid over any ground ring
 will be
given in ����	
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