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1. Introduction

Let A be an Artin algebra. Then there are finitely many non-isomorphic simple
A-modules. Suppose S1, S2, . . . , Sn form a complete list of all non-isomorphic simple
A-modules and we fix this ordering of simple modules. Let Pi andQi be the projective
cover and the injective envelope of Si respectively. With this order of simple modules
we define for each i the standard module ∆(i) to be the maximal quotient of Pi with
composition factors Sj with j 6 i. Let ∆ be the set of all these standard modules
∆(i). We denote by F(∆) the subcategory of A-mod whose objects are the modules
M which have a ∆-filtration, namely there is a finite chain

0 = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mt = M

of submodules of M such that Mi/Mi−1 is isomorphic to a module in ∆ for all i.
The modules in F(∆) are called ∆-good modules. Dually, we define the costandard
module ∇(i) to be the maximal submodule of Qi with composition factors Sj with
j 6 i and denote by ∇ the collection of all costandard modules. In this way, we have
also the subcategory F(∇) of A-mod whose objects are these modules which have
a ∇-filtration. Of course, we have the notion of ∇-good modules. Note that ∆(n) is
always projective and ∇(n) is always injective.

From the definition, we have the following properties of standard modules:
(1) HomA(∆(i),∆(j)) = 0 if i > j,
(2) Ext1

A(∆(i),∆(j)) = 0 if i > j.
For the fixed order of simple modules, beside the subcategories F(∆) and F(∇),

we shall investigate the following subcategories of A-mod:
(i) Y(∆) = {Y ∈ A−mod|Ext1(F(∆), Y ) = 0},

(ii) F(∆) wY(∆),
(iii) W(∇) = {W ∈ A−mod|Ext1(W,F(∇)) = 0},
(iv) W(∇) wF(∇).
If AA ∈ F(∆) then A is said to be (left) standardly stratified (see [1, 7, 8 or 15]).

A standardly stratified algebra is called a quasi-hereditary algebra if the endomor-
phism ring of each standard module is semisimple (here the definitions are always
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with respect to the ordering of simple modules). Quasi-hereditary algebras were
introduced in [6] to deal with certain categories in the representation theory of
Lie algebras and algebraic groups. They appear also in knot theory (see [16]). For a
further generalization of standardly stratified algebras see [7].

In this paper we are mainly interested in studying these subcategories. First, we
retreat the materials of [3] in our context and add some new results, here the point
is that we want to give a more direct proof of the results in [3] only by working
on the category F(∆) without knowing the modules in Y(∆). In fact, this paper
comes from an understanding of standardly stratified algebras, especially the re-
sults in [3]. Second, we discuss some subcategories arising from cellular algebras.
The paper is organized as follows: in Section 2 we collect some elementary facts and
reprove that F(∆) is closed under kernels of surjections. This implies that if A is
a standardly stratified algebra then F(∆) is a resolving subcategory. In Section 3
we consider the subcategory ω(∆) = F(∆) wY(∆). Note that for a standardly strat-
ified algebra, the subcategory ω(∆) is completely determined by a tilting module
[3]. In general, this tilting module is not a cotilting module. We prove that it is
a cotilting module if and only if the algebra A is a Gorenstein algebra. The endo-
morphism algebra of the tilting module is discussed in Section 4, here some more
direct proofs are presented. In the last section we make some applications of our
methods to cellular algebras. Our main interest is in the study of the cohomology
of cell modules. The main results in this section are two new homological charac-
terizations of quasi-hereditary algebras in terms of the cohomology groups of cell
modules.

2. Elementary facts on F(∆)

Throughout the paper we denote by A an Artin algebra and by A-mod (respec-
tively, mod-A) the category of all finitely generated left (respectively, right) A-
modules. By a module we mean usually a left module. Given two homomorphisms
f : L → M and g: M → N , we denote the composition of f and g by fg which is a
homomorphism from L to N .

In this section, we collect some preliminary facts needed later on in the paper
and give a more direct proof of the known fact that F(∆) is closed under kernels
of surjective homomorphisms. In particular, if AA ∈F(∆), then F(∆) is a resolving
subcategory in A-mod.

Now let us recall some definitions from [5].
A morphism f : M → N in A-mod is said to be right minimal if an endomorphism

g: M →M is an automorphism whenever f = gf . Note that the morphism f is right
minimal if and only if the restriction of f to any direct summand of M is non-zero. A
subcategory X of A-mod is called contravariantly finite in A-mod if for each module
C there is a right X-approximation, that is, there is a morphism f : X → C with
X ∈ X such that the induced sequence HomA(X ′, X)→ HomA(X ′, C)→ 0 is exact
for all X ′ in X. A right X-approximation f : X → C is said to be a minimal right
X-approximation if f is right minimal. Dually, one has the notions of left minimal
morphisms, left X-approximations and covariantly finite subcategory in A-mod. A
subcategory X in A-mod is called functorially finite in A-mod provided it is both
contravariantly finite and covariantly finite in A-mod.
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Note that the subcategory F(∆) is always functorially finite in A-mod and Y(∆)

is covariantly finite in A-mod. Thus, as was proved in [14], the subcategory F(∆) is
closed under direct summands and has (relative) almost split sequences.

A subcategory X of A-mod is said to be a resolving subcategory if it is closed
under extensions, kernels of epimorphisms and it contains all projectives. Dually,
a subcategory X of A-mod is said to be coresolving if it is closed under extensions,
cokernels of monomorphisms and it contains all injectives.

Given a module M in F(∆), we denote by [M : ∆(i)] the multiplicity of ∆(i) in a ∆-
filtration of M . Note that this number is independent of the choice of the filtration.
By S∆(M ) we denote the set of all numbers i in {1, 2, . . . , n} with [M : ∆(i)]� 0.
This set is called the ∆-support of M .

The following result is proved in [10, lemma 1.5]. We give here a more elementary
proof.

Proposition 2·1. F(∆) is closed under kernels of surjections.

Proof. First we have the following fact.
Let 1 6 t 6 n. Then each module M in F(∆) has a unique maximal submodule

M1 ∈F(∆(t),∆(t+ 1), . . . ,∆(n)) such that M/M1 ∈F(∆(1),∆(2), . . . ,∆(t− 1)). (This
is the consequence of the Ext1-property of standard modules.)

Now suppose M and N are in F(∆) and f is a surjection from M to N . We shall
use induction on the cardinality of S∆(M ) to prove that the kernel K of f is still in
F(∆).

Suppose |S∆(M )| = 1. In this case, M = ∆(i)m and N = ∆(i)s with m > s. We shall
show that Ext1(∆(i),K) = 0 and then K is in F(∆). By definition of the ∆(i), we
have the following exact sequence

0 −→ U (i) −→ Pi −→ ∆(i) −→ 0,

where U (i) is the sum of all images of the homomorphisms g: Pj → Pi with j > i.
Suppose that h is a non-zero homomorphism fromU (i) toK. Then there is an element
x ∈ U (i) and a homomorphism g: Pj → Pi with j > i such that x ∈ Im(g) and the

image of x under h is not zero. Hence the composition Pj
g→ Im(g) ⊆ U (i) h→K is not

zero. This means that K has a composition factor Sj with j > i, and thus M has
a composition factor isomorphic to Sj , a contradiction. Hence we have proved that
HomA(U (i),K) = 0. Now applying HomA(−,K) to the above exact sequence, we get
the following exact sequence

· · · −→ Hom(Pi,K) −→ Hom(U (i),K) −→ Ext1(∆(i),K) −→ 0.

This shows that Ext1(∆(i),K) = 0, as we desired.
Suppose the theorem is proved for M with the cardinality of S∆(M ) smaller than

s. Now consider the case that the cardinality of S∆(M ) is s. Let t be the largest
number in S∆(M ). Then, by the fact stated at the beginning of the proof, there is a
submodule M1 of M and a submodule N1 of N such that M/M1, N/N1 ∈ F(∆(1),
∆(2), . . . ,∆(t− 1)) and both M1 and N1 are in add(∆(t)).



40 Changchang Xi
Let us consider the following commutative diagram:

0 Ker(f)

0 K′ M/M1

M

N/N1

0

0

N

p π

0 0

M1

0

N1

0

µ ν

f

f ′

Note that f ′ exists since µfπ = 0 and that f ′ is surjective since f is surjective and t
is the maximal number in the ∆-support of M . The kernel of f ′ lies in F(∆) because
|S∆(M1)| = 1. Since the modules M/M1 and N/N1 have smaller ∆-supports than M ,
the kernel K ′ of the canonical homomorphism M/M1 → N/N1 is already in F(∆)
by induction. Then the induced exact sequence

0 −→ Ker(f ′) −→ Ker(f ) −→ K ′ −→ 0

shows that Ker(f ) is in F(∆) since F(∆) is closed under extensions. This finishes the
proof.

Remark. If AA ∈ F(∆), then we may use induction on the number of simple
modules to prove Proposition 2·1. The argument in this case is based on the following
simple fact.

Lemma 2·2. If AA ∈ F(∆), then for the module AA we have A1 = AeA, where A1

is the maximal submodule of AA such that A1 lies in add(∆(n)) with ∆(n) = Ae for a
primitive idempotent e in A and A/A1 is in F(∆(1),∆(2), . . . ,∆(n− 1)).

Dually, we have the following result on the subcategory F(∇).

Proposition 2·3. F(∇) is closed under cokernels of injections.

As an immediate consequence, we have the following result.

Proposition 2·4. (1) If AA ∈F(∆), then F(∆) is a resolving subcategory in A-mod.
(2) If DA ∈F(∇), then F(∇) is a coresolving subcategory of A-mod.

Note that AA ∈F(∆) does not imply that DA ∈F(∇), in general. Thus A being
standardly stratified does not imply that the opposite algebra of A is also standardly
stratified. An easy example is the following one: the algebra is given by the quiver

1 2
yx α
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with relations x2 = αx = yα = y2 = 0. (The composition of two arrows α and x is
written in the way that α comes first and then x follows.) Here the right regular
module is ∆-filtered, while the left regular module is not.

Given a subcategory X in A-mod, we define the subcategory Y (related to X) to
be the full subcategory whose objects are the A-modules Y with Ext1(X,Y ) = 0 for
all X ∈ X. We denote by Y(∆) the corresponding subcategory Y for the category
X = F(∆).

As a consequence, we have the following fact in [1, theorem 3·1(iii)].

Corollary 2·5. If AA ∈ F(∆), then ExtiA(X,Y ) = 0 for all X ∈ F(∆) and
Y ∈ Y(∆) and i > 1.

The following proposition shows the relation of F(∇) and Y(∆).

Proposition 2·6. (1) If AA ∈ F(∆), then Y(∆) is a coresolving subcategory of A-
mod.

(2) F(∇) ⊆ Y(∆).

Proof. Though (1) follows from [1, theorem 3·1] by using the description of the
modules in Y(∆), we prefer to have a direct proof of (1). Y(∆) is closed under exten-
sions and contains all injective modules. Suppose f :M → N is an injective morphism
with M and N in Y(∆). Denote the cokernel of f by C. Applying HomA(∆(i),−) to
the exact sequence 0→M → N → C → 0, we get then

Ext1
A(∆(i), N ) −→ Ext1

A(∆(i), C) −→ Ext2
A(∆(i),M ).

By 2·5, both end terms vanish, thus the middle term vanishes, too. This means that
C is in Y(∆).

(2) follows from [10, lemma 1·3].

The dual statement of the above result is the following.

Proposition 2·7. (1) If DA ∈F(∇), then W(∇) is resolving subcategory in A-mod.
(2) F(∆) ⊆W(∇).

Remark. The above inclusion can be proper. Let us illustrate this by examples. We
denote by k a field in the following examples.

(1) Consider the algebra A = k[x]/(x2). This is a local algebra with only one simple
module. We have F(∆) = F(∇) = add(A). But Y(∆) is the whole module category
which contains properly the subcategory F(∇).

(2) In the quasi-hereditary case, the intersection of F(∆) with F(∇) is not zero,
but for the standardly stratified algebras the situation is different. Consider the
algebra A = k[x, y]/(x, y)2. It is clear that F(∆) is just the projective modules and
that F(∇) is just the injective modules. Thus the intersection of F(∆) with F(∇) is
zero. Of course, we also have a proper inclusion of F(∇) into Y(∆).

For quasi-hereditary algebras, we know that F(∇) = Y(∆), as was shown in [14].
The following result in [1] shows when this is true for standardly stratified algebras.

Proposition 2·8. Let A be a standardly stratified algebra. Then F(∇) = Y(∆) if and
only if gl.dim(A) <∞ if and only if A is quasi-hereditary.

Note that we can give a more direct proof of this proposition without using the
fact that Y(∆) = F(∇̄) for standardly stratified algebras proved in [1].
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3. Tilting modules and cotilting modules

In this section we consider the intersection of the subcategory F(∆) with Y(∆),
which is denoted by ω(∆). This subcategory is determined by a tilting module.
We shall prove that this tilting module is cotilting if and only if the algebra A is
Gorenstein.

Definition 3·1. Let A be an Artin algebra. A module T in A-mod is called a tilting
module if

(1) ExtiA(T, T ) = 0 for all i > 0, and
(2) the projective dimension of T is finite, and
(3) there is an exact sequence

0 −→ AA −→ T0 −→ T1 −→ · · · −→ Ts −→ 0,

such that Ti belongs to add (T ) for all i.
Dually, we have also the concept of cotilting module: an A-module T in A-mod is

said to be a cotilting module if it satisfies (1), and
(2′) the injective dimension of T is finite, and
(3′) there is an exact sequence

0 −→ Ts −→ · · · −→ T1 −→ T0 −→ DA −→ 0,

such that Ti belongs to add (T ) for all i. Here we use D to denote the usual duality
for Artin algebras.

Now let us begin with the following general result proved in [4, proposition 3·4].

Lemma 3·2. Let X be a resolving contravariantly finite subcategory of A-mod. Denote
by Y the subcategory whose objects are the modules C with Ext1

A(X, C) = 0. Then ω =
X wY has the following properties:

(1) ω is self-orthogonal, that is, ExtiA(X,Y ) = 0 for all X,Y ∈ ω and all i > 0;
(2) for each X in X there is an exact sequence 0 → X → W → X ′ → 0 with W in ω

and X ′ in X;
(3) for each Y in Y there is an exact sequence 0 → Y ′ → W → Y → 0 with W in ω

and Y ′ in Y.

The following theorem is proved in [3]. We include here a short proof.

Theorem 3·3. Let A be a standardly stratified algebra. Then there is a tilting module T
(unique up to multiplicity of indecomposable direct summands) such that add (T ) = ω(∆).

Proof. It is easy to see that proj.dimX 6 n − 1 for all X ∈ F(∆) (see also [2]).
Let X−1 = X. By Lemma 3·2, we can construct exact sequences εi: 0 → Xi−1 →
Wi → Xi → 0 with Wi ∈ ω(∆) and Xi ∈ F(∆). Applying HomA(Xn−1,−) to εi, we
get that ExtjA(Xn−1, Xi)%Extj+1

A (Xn−1, Xi−1). This yields that Ext1
A(Xn−1, Xn−2) =

Ext2
A(Xn−1, Xn−3) = · · · = ExtnA(Xn−1, X−1) = 0 since proj.dimXn−1 6 n− 1. Hence

the exact sequence εn−1 splits and therefore the module Xn−2 is a direct summand
of Wn−1 and in ω(∆). So we have an exact sequence

0 −→ X −→W0 −→W1 −→ · · · −→Wn−2 −→Wn−1 −→ 0,

with Wn−1 = Xn−2.
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Since A ∈F(∆), we have an exact sequence

0 −→AA −→W0 −→W1 −→ · · · −→Wn−2 −→Wn−1 −→ 0,

with Wi ∈ ω(∆). Put T = ⊕jWj . Then T is a tilting module. Moreover, if M ∈ ω(∆),
then T ⊕ M is a tilting module. By tilting theory, we must have M ∈ add(T ).
Therefore ω(∆) = add(T ). This finishes the proof.

Comparing this result with that for quasi-hereditary algebras, however, one cannot
hope that the module T with add(T ) = ω(∆) would be always a cotilting module. Let
us see an example. Put A = k[x, y]/(x, y)2. Then F(∆) = add(A) and Y(∆) = A-mod.
Hence F(∆) = Y(∆)wF(∆). Since A is a local algebra, we know that the A-modules
of finite injective dimension are just the injective modules. This shows that the
injective dimension of AA is infinite and therefore there is no cotilting module T
with ω(∆) = add(T ).

For a quasi-hereditary algebra, we know from [14] that there is a cotilting module
T such that ω(∆) = add(T ). The following easy corollary indicates that in some other
cases we can obtain a cotilting module T , too.

Corollary 3·4. Let A be a standardly stratified algebra. Then the following are
equivalent:

(1) ω(∆) = add(DA),
(2) DA ∈F(∆).

Proof. If DA ∈ F(∆), then DA ∈ ω(∆). Since the number of non-isomorphic
indecomposable modules in ω(∆) is the number of non-isomorphic simple modules,
we must have that add(DA) = ω(∆).

Now let us give an algebra satisfying the conditions in the above corollary. Consider
the algebra A given by the following quiver with relations:

1 2
β α β2 = 0.

Then ∆(2) = S2 and ∆(1) is the uniserial module with two composition factors
which are isomorphic to S1. Clearly, A is standardly stratified. It is obvious that the
injective module Q1 is isomorphic to ∆(1), thus it lies in F(∆). One can also check
that the injective module Q2 possesses a ∆-filtration. Hence DA ∈F(∆). Note that
this algebra is neither self-injective, nor quasi-hereditary.

The condition that ω(∆) = add(DA) gives us an interesting class of algebras.
Recall that an Artin algebra is called a Gorenstein algebra if inj.dimAA < ∞ and
inj.dim AA <∞. We have the following easy observation.

Corollary 3·5. Let A be a standardly stratified algebra. If ω(∆) = add(DA), then A
is a Gorenstein algebra.

Proof. We know from ω(∆) = add(DA) that DA ∈ F(∆), this implies that
proj.dimDA < ∞, that is, inj.dimAA < ∞. By [2], the finitistic dimension of A
is finite. (Recall that the finitistic dimension of A is by definition the supremum of
projective dimensions of all modules with finite projective dimension.) This yields
together with [4, proposition 6·10] that inj.dimAA <∞. Thus A is Gorenstein.
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It would be interesting to know how the algebra A looks when the module T with

ω(∆) = add(T ) is cotilting. The rest of this section is devoted to a discussion of this
and provides an answer to the question.

Theorem 3·6. Let A be a standardly stratified algebra and ω(∆) = add(T ). The follow-
ing are equivalent:

(1) T is a cotilting module;
(2) inj.dimAA <∞;
(3) A is a Gorenstein algebra.

Proof. If T is a cotilting module, then there is an exact sequence

0 −→ Ts −→ · · · −→ T1 −→ T0 −→ DA −→ 0,

with Ti ∈ ω(∆). Since each Ti in F(∆) has finite projective dimension, we see that
DA has finite projective dimension, and this is equivalent to saying that AA has
finite injective dimension.

Conversely, if inj.dimAA < ∞, then proj.dimDA < ∞. By Lemma 3·2, we can
construct a series of short exact sequences

εi: 0 −→ Yi −→Wi −→ Yi−1 −→ 0,

with Y−1 = DA, Yi ∈ Y(∆) and Wi ∈ ω(∆). Assume that proj.dimDA = m <∞. We
apply HomA(−, Ym) to the exact sequence εi and get the following exact sequence

ExtjA(Wi, Ym) −→ ExtjA(Yi, Ym) −→ Extj+1
A (Yi−1, Ym) −→ Extj+1

A (Wi, Ym).

For j > 1 we have that ExtjA(Wi, Ym) = 0 = Extj+1
A (Wi, Ym) since Wi ∈ F(∆) and

Yi ∈ Y(∆). This yields that ExtjA(Yi, Ym)%Extj+1
A (Yi−1, Ym) for j > 1 and all i. In

particular, Ext1
A(Ym−1, Ym) = Ext2

A(Ym−2, Ym) = · · · = Extm+1
A (Y−1, Ym) = 0 since

proj.dimDA = m. Thus the sequence εm splits and Ym−1 ∈ ω(∆). This implies that
for DA we have an exact sequence

0 −→Wm −→ · · · −→W1 −→W0 −→ DA −→ 0,

with Wi ∈ ω(∆). Now we show that T ′ := ⊕j Wj is a cotilting module. It is sufficient
to prove that the injective dimension of T ′ is finite. Since inj.dimAA < ∞ and the
finitistic dimension ofA is finite, we see that inj.dimAA <∞ by [4, proposition 6·10].
This shows that A is Gorenstein. It follows now from [4, proposition 6·9] that each
module with finite projective dimension also has finite injective dimension. Thus
T ′ has finite injective dimension. By Theorem 3·3, the number of non-isomorphic
indecomposable modules in ω(∆) is the number of non-isomorphic simple A-modules,
hence ω(∆) = add(T ′) = add(T ). This finishes the proof of the equivalence of (1) and
(2). It follows from the above proof and the definition of Gorenstein algebras that
(2) and (3) are also equivalent. Thus the proof is completed.

Clearly, F(∆) ⊆ ⊥ω(∆) for any standardly stratified algebra, where ⊥ω(∆) is the
subcategory of A-mod whose objects are the X with ExtiA(X,ω(∆)) = 0 for all
i > 0. In general, this inclusion is proper, one can know this from an example like
A = k[x]/(x2). It would be interesting to know under which conditions on the stan-
dardly stratified algebra A we could have F(∆) = ⊥ω(∆). Of course, quasi-hereditary
algebras have this property. The following is another example of this kind of algebra.
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Let A be a local algebra which is not self-injective, then A is automatically a

standardly stratified algebra with F(∆) = add(A) = ⊥ω(∆).

Remark. We remark that a special case is considered in [3], namely it was shown
in [3] that F(∆)wY(∆) = add(T ) for a cotilting module T with F(∆) = ⊥(add(T )) if
and only if the algebra is quasi-hereditary.

4. Endomorphism algebras of tilting modules

We have seen that if A is a standardly stratified algebra then there is a tilt-
ing module T such that ω(∆) = add(T ). In this section we consider the endomor-
phism algebra of this module T . Though the results in this section are basically
known in [3], we prefer to give more direct proofs by just working with the category
F(∆).

First let us describe the indecomposable modules in ω(∆). The following prop-
osition is basically contained in [3, lemma 2·5].

Proposition 4·1. Let A be a standardly stratified algebra. Then, for each i, there is
an exact sequence

0 −→ ∆(i)
β−→T (i) −→ X(i) −→ 0,

with β a left minimal Y(∆)-approximation and X(i) ∈F(∆(1), . . . ,∆(i−1)). Moreover,
the module T (i) is indecomposable and ω(∆) = add(⊕jT (j)).

Proof. By Lemma 3·2, or [14, lemma 4], there is an exact sequence

0 −→ ∆(i)
β′−→T ′(i) −→ X ′(i) −→ 0,

with T ′(i) ∈ ω(∆) and X ′(i) ∈ F(∆(1), . . . ,∆(i − 1)). Clearly, the β′ is a left Y(∆)-
approximation for ∆(i). Thus we may choose a minimal left Y(∆)-approximation for
∆(i):

0 −→ ∆(i)
β−→T (i) π−→X(i) −→ 0,

where T (i) lies in Y(∆) and X(i) in F(∆(1), . . . ,∆(i− 1)). Now we show that T (i) is
indecomposable.

Suppose that T (i) = T1 ⊕ T2, β = (β1, β2) and π = (π1, π2)t, with βj : ∆(i)→ Tj and
πj : Tj → X(i) for j = 1, 2. Since β is minimal, both β1 and β2 are non-zero. Now we
consider the following pullback diagram:

β2

T2
π2 X(i)

∆(i) T2
β1

–π1

Since X(i) has no composition factor isomorphic to Si, we see that
HomA(∆(i), X(i)) = 0. This implies that β1π1 = β2π2 = 0. It follows then from the
property of pullback diagrams and from β1(−π1) = 0π2 = 0 that there is a homomor-
phism α: ∆(i)→ ∆(i) such that β1 = αβ1 and 0 = αβ2. Since End∆(i) is a local algebra,
we know from 0 = αβ2 that α is nilpotent, and therefore β1 = αβ1 = αmβ1 for all m,



46 Changchang Xi
thus β1 is zero, a contradiction. Hence T (i) is indecomposable. Since the composition
factors of T (i) are of the form Sj with j 6 i and Si occurs at least once, the modules
T (i), 1 6 i 6 n, are pairwise non-isomorphic, and therefore ω(∆) = add(⊕j T (j)).

We also need the following fact:

Lemma 4·2. Suppose A is standardly stratified. Let T = ⊕jT (j) and B = End(AT ).
Then

(1) for each module X ∈F(∆), the evaluation map

eX :AX%AHomB(HomA(X,T )B, T )

is an isomorphism of A-modules.
(2) The contravariant functor HomA(−, T ) is an equivalence between the category

F(∆) and its image which is a subcategory of mod-B.

Proof. (1) The isomorphism is true for X = T , so it is true for direct summands
of T and therefore for all modules X in add(T ). By 3·2, for a general X in F(∆) we
have an exact sequence

0 −→ X −→ T0
f0−→T1 −→ · · · fs−1−→Ts −→ 0

such that the image Xi of fi is in F(∆) and Ti in add(T ). So we have the following
exact sequences

εi: 0 −→ Xi−1 −→ Ti −→ Xi −→ 0

for 1 6 i 6 s−1 withX−1 = X andXs = Ts, and the following commutative diagram
(for simplicity, we denote Hom(X,T ) just by X∗):

X**
s–2

π20

Xs–20

T**
s–1

Ts–1

T**
s

Ts 0

eXs–2
eTs–1

eTs

Note that HomA(−, T ) is exact on F(∆). Since eTs−1 and eTs are isomorphisms, we see
that eXs−2 is an isomorphism. Inductively, we can show that eX is an isomorphism.
This proves (1).

Lemma 4·2(2) is essentially in [3, theorem 2·6(iv)]. It also follows from (1) and the
canonical isomorphism

HomR(RM,HomS(NS ,R US))%HomS(NS ,HomR(RM,R US))

for two rings R and S, and the modules M , N and U . Here we take R = A, S = B,
U = T , M = Y and N = HomA(X,T ). This finishes the proof.

Now we reprove the following theorem 2·6(v) in [3].

Theorem 4·3. Let A be a standardly stratified algebra. Then the endomorphism alge-
bra of T is right standardly stratified algebra (the order is just the opposite order of that
for the algebra A).

Proof. We define i′ = n − i + 1 and denote the projective right B-module
HomA(T (i′), T ) by P ′(i). Now we define ∆′(i) = HomA(∆(i′), T ). Let ∆′ be the
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collection of ∆′(1),∆′(2), . . . ,∆′(n). Since ∆(1) is in ω(∆), we see that ∆′(n) is a pro-
jective right B-module. It is clear that each P ′(i) has a ∆′-filtration since the func-
tor F = HomA(−, T ) is exact on F(∆). To finish the proof, we need to show that
∆′(i) is obtained from P ′(i) by factoring out all homomorphic images Im(g) with
g: P ′(j)→ P ′(i) with j > i. It follows from Proposition 4·1 that we have the follow-
ing exact sequence of right B-modules:

0 −→ F (X(n− i + 1)) −→ F (T (n− i + 1)) −→ F (∆(n− i + 1)) −→ 0.

If g is a right B-module homomorphism from P ′(j) to P ′(i) with j > i, then, by
Lemma 4·2, there is a left A-module homomorphism h from T (i′) to T (j′) such that
g = F (h). Let βi′ denote the minimal morphism in Lemma 4·1, then βi′h = 0 since
i′ > j′ and the composition factors of T (j′) are of the form St with t 6 j′. Thus
h factors through the morphism T (i′) → X(i′) and then the image of g belongs to
FX(i′). This shows that ∆′(i) is a maximal quotient module of P ′(i) with composition
factors of indices at most i. This completes the proof.

If we start from the right standardly stratified algebra B and make the similar
construction as we did for the left standardly stratified algebra A, then we get a
tilting right B-module T ′B for the corresponding orthogonal category ω(∆′). The
following question now arises. Is the endomorphism algebra of T ′B isomorphic to the
algebra A? Before we answer this question, we deduce the following lemma from 4·2
which is needed.

Lemma 4·4. Suppose that A is left standardly stratified. Then, for modules X, Y in
F(∆), the following holds: Ext1

B(FY, FX)%Ext1
A(X,Y ), where F is the contravariant

functor HomA(−, T ).

Proof. By Lemma 3·2, we have an exact sequence

0 −→ Y −→ T0 −→ Y0 −→ 0,

with T0 ∈ ω(∆) and Y0 ∈F(∆). This provides the following exact sequences:

0 −→ FY0 −→ FT0 −→ FY −→ 0

and

HomB(FT0, FX) −→ HomB(FY0, FX) −→ Ext1
B(FY, FX) −→ Ext1

B(FT0, FX).

Note that the last term in the last sequence vanishes because FT0 is a projective right
B-module. Now it follows from Lemma 4·2 and the following commutative diagram

HomB(FT0, FX) −→ HomB(FY0, FX) −→ Ext1
B(FY, FX) −→ 0y y y

HomA(X,T0) −→ HomA(X,Y0) −→ Ext1
A(X,Y ) −→ 0,

that the lemma is true since the first two vertical maps are bijective by Lemma 4·2.

The following theorem essentially proved in [3, theorem 2·6(vii)] is an answer to
the above question.

Theorem 4·5. Let A be a standardly stratified algebra and T the tilting module such
that add(T ) = ω(∆). Let B be the endomorphism algebra of T. For the right standardly
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stratified algebra B, we denote by T ′ the right tilting B-module with add(T ′) = ω(∆′).
Then the endomorphism algebra of T ′ is Morita equivalent to the opposite algebra of A.

Proof. We show that FPi is in ω(∆′). Once we have achieved this, then the theorem
follows immediately from Lemma 4·2. Since Pi has a ∆-filtration, FPi is in F(∆′).
But the above lemma says that FPi belongs also to Y(∆′). Thus it is in ω(∆′), as was
desired.

5. Subcategories from cellular algebras

In this section we study some subcategories arising from the cell modules over
a cellular algebra. We first recall the definitions of cellular algebras given in [11]
and [12], and then we give new homological characterizations of quasi-hereditary
algebras inside the class of cellular algebras in terms of the cell modules. For further
information on the study of cellular algebras one may refer to the survey paper [13].

Let k be an arbitrary field.

Definition 5·1 ([11]). An associative k-algebra A is called a cellular algebra with
cell datum (I,M,C, i) if the following conditions are satisfied.

(C1) The finite set I is partially ordered. Associated with each λ ∈ I there is a finite
set M (λ). The algebra A has a k-basis CλS,T where (S, T ) runs through all
elements of M (λ)×M (λ) for all λ ∈ I.

(C2) The map i is a k-linear anti-automorphism of A with i2 = id which sends CλS,T
to CλT,S .

(C3) For each λ ∈ I and S, T ∈ M (λ) and each a ∈ A the product aCλS,T can
be written as (

∑
U∈M (λ) ra(U, S)CλU,T ) + r′ where r′ is a linear combination of

basis elements with upper index µ strictly greater than λ, and where the
coefficients ra(U, S) ∈ k do not depend on T .

Note that our partial order on Λ is just the opposite one used in [11]. Typical ex-
amples of cellular algebras are Hecke algebras of type An, Brauer algebras, partition
algebras and many others (see [11, 13 and 16]).

In the following we shall call a k-linear anti-automorphism i of A with i2 = id an
involution of A.

For each λ ∈ Λ, there is a cell module W (λ) with a k-basis {CS |S ∈ M (λ)}, the
module structure is given by

aCS =
∑

T∈M (λ)

ra(T, S)CT ,

where the coefficients ra(T, S) are the same as in Definition 5·1. We also have a right
cell module i(W (λ)) which is defined dually. For a cell module one can also define a
bilinear form Φλ: W (λ)×W (λ)→ k by

CλS,SC
λ
T,T ≡ Φλ(CS , CT )CλS,T

modulo the ideal generated by all basis elements with upper index greater than λ.
We denote this ideal by J>λ.

Let Λ0 = {λ ∈ Λ|Φλ� 0}.
We also need the following equivalent definition of cellular algebras in [12].
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Definition 5·2 ([12]). Let A be a k-algebra. Assume that there is an involution i

on A. A two-sided ideal J in A is called a cell ideal if and only if i(J) = J and there
exists a left ideal W ⊂ J such that W has finite k-dimension and that there is an
isomorphism of A-bimodules α: J ' W ⊗k i(W ) (where i(W ) ⊂ J is the i-image of
W ) making the following diagram commutative:

J WCk i(W)α

α WCk i(W)J

i xCy* i(y)Ci(x)

The algebra A (with the involution i) is called cellular if and only if there is a
vector space decomposition A = J ′1 ⊕ J ′2 ⊕ · · · ⊕ J ′n (for some n) with i(J ′j) = J ′j
for each j and such that setting Jj = ⊕jl=1J

′
l gives a chain of two-sided ideals of

A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A (each of them fixed by i) and for each j
(j = 1, . . . , n) the quotient J ′j = Jj/Jj−1 is a cell ideal (with respect to the involution
induced by i on the quotient) of A/Jj−1.

The modules W (j), 1 6 j 6 n, which are obtained from the sections Jj/Jj−1 of
the chain, are the cell modules. The above chain in A is called a cell chain. It is
proved ([12]) that a cell ideal J is either a heredity ideal or J2 = 0. Note that the
cell modules are called standard modules in [12, 13].

The following result is shown in [11].

Lemma 5·3. Let A be a cellular algebra with cell datum (I,M,C, i). Then:
(1) the simple modules are parameterized by Λ0 := {λ ∈ Λ|Φλ� 0}. For λ ∈ Λ0, we

denote by Sλ the simple module corresponding to λ, which is isomorphic to the top of
the cell module W (λ);

(2) the following holds for the multiplicity [W (λ) : Sµ] of a simple module Sµ(µ ∈ Λ0)
in a cell module W (λ):

[W (λ) : Sµ] =
{

0, unless µ 6 λ,
1, λ = µ.

In particular, for λ, µ ∈ Λ0, HomA(W (λ),W (µ)) = 0 unless λ 6 µ, and
EndA(W (λ)) = k.

Let A be a cellular algebra with respect to an involution i. Then we have a natural
duality i from A-mod to mod-A: given X ∈ A-mod, define i(X) = X with the
right module structure x · a = i(a)x for all x ∈ X and a ∈ A. Furthermore, we
define X∗ = Homk(i(X), k). Clearly, the functor ∗ is a self-dual functor and fixes
isomorphism classes of simple modules by [12].

For a subset Φ ⊆ Λ, we put W (Φ) = {W (µ)|µ ∈ Φ} and W (Φ)∗ = {W (µ)∗|µ ∈ Φ}.
Note also that given a cellular algebra A with a cell chain

0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = A,

the lengthm of this chain is the cardinality of the poset Λ, and this number is usually
larger than the number of non-isomorphic simple modules. It is known that the cell
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chain is a heredity chain if and only if J2

j is not contained in Jj−1 for all j, and this
is equivalent to that the poset Λ coincides with Λ0 (see [13]).

Before we give our criteria for quasi-hereditary algebras, we first point out the
following fact.

Proposition 5·4. Let A be a cellular algebra. If gl.dim(A) = ∞, then there is a cell
module W (λ) with λ ∈ Λ0 such that the projective dimension of W (λ) is infinite.

Proof. We prove the following statement: if proj.dimW (µ) < ∞ for all µ ∈ Λ0,
then proj.dimSµ <∞ for all µ ∈ Λ0 and gl.dim (A) <∞.

Indeed, if µ is a minimal element in Λ0, then W (µ) is a simple module since the
composition factors of W (µ) are of the form Sλ with λ 6 µ and [W (µ) : Sµ] = 1.
Hence proj.dimSµ = proj.dimW (µ) <∞. Suppose that µ is not a minimal element
in Λ0. Then the radical of W (µ) has composition factors of the form Sλ with λ < µ
by Lemma 5·3, and by induction, for those λ we have that proj.dimSλ < ∞. It
follows now from the exact sequence 0 → rad(W (µ)) → W (µ) → Sµ → 0 that
proj.dimSµ <∞. Hence gl.dim(A) <∞.

The next result gives a criterion for quasi-heredity in terms of first cohomology
groups of cell modules.

Theorem 5·5. For a cellular algebra A the following are equivalent:
(1) A is quasi-hereditary;
(2) Ext1

A(W (λ), (W (µ))∗) = 0 for all λ, µ ∈ Λ.

Proof. If A is quasi-hereditary, then we know that the cardinality of Λ is the
number of the non-isomorphic simple A-modules and that the cell modules are just
the standard modules. Hence the statement (2) holds true.

Conversely, assume that (2) holds. For the given cell datum, we have a cell chain

0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = A.

Note that the cell modules are obtained from the sections of this chain. If J1 is a
heredity ideal in A, then, by induction on the length of the cell chain, we can show
that A is a quasi-hereditary algebra. Since J1 is either a heredity ideal or J2

1 = 0
by [12], the remaining case to be considered is the latter one, i.e. when J2

1 = 0. We
shall prove that this is impossible unless J1 = 0. Let J = J1 and B = A/J . Then
J%W ⊗k i(W ), where W is a left cell module and i(W ) is the right cell module. This
means that JA is a direct sum of copies of i(W ). The canonical exact sequence

0 −→ J −→ A −→ B −→ 0

shows that J ⊗A J%TorA2 (B,B)%TorA1 (⊕i(W ), B) by [12, proposition 6·1]. From
the definition of the cell chain, we may assume that Jj/Jj−1 % W (j) ⊗k i(W (j)),
where W (j) is the cell module for all j and W = W (1). Now it follows from the
canonical isomorphism DExtjA(X,Y ) % TorAj (DY,X) that TorAj (i(W (s)),W (t)) %
ExtjA(W (t), Di(W (s))) = 0 for j = 1 and all s, t. Now we apply i(W )⊗A – to the exact
sequences

0 −→ Jj/J −→ Jj+1/J −→W (j + 1)⊗k i(W (j + 1)) −→ 0,

with j = 2, 3, . . . ,m − 1, and we get that TorA1 (i(W ), B) = 0. Thus J ⊗A J = 0.
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However [12, corollary 6·2] says that if J is not zero, then J ⊗A J is never zero.
Hence we must have J to be zero, and the proof is finished.

Combining the results in [13], we have the following corollary in which only the
last two conditions are new.

Corollary 5·6. Let A be a cellular algebra with cell modules W (λ), λ ∈ Λ. Then the
following are equivalent:

(1) A is quasi-hereditary;
(2) the Cartan determinant of A is 1;
(3) there is a cell chain which is a heredity chain;
(4) every cell chain in A is a heredity chain;
(5) Ext1

A(W (λ),W (µ)∗) = 0 for all λ, µ ∈ Λ;
(6) proj.dimW (µ) <∞ for all µ ∈ Λ0.

In terms of subcategories, the above theorem can be reformulated as follows:

Theorem 5·7. Let A be a cellular algebra. Then A is quasi-hereditary if and only if
F(W (Λ)∗) = Y(W (Λ)).

Proof. If A is quasi-hereditary, then we know by [13] that the cell modules are the
standard modules and the modulesW (λ)∗ are the costandard modules. Thus we have
F(W (Φ)∗) = Y(W (Λ)). The converse follows from Theorem 5·5 and the definition of
Y(W (Λ)).

Thus the first cohomology groups of cell modules may play a role in the study
of cellular algebras. In this direction, we have the following result on cohomology
groups of cell modules.

Proposition 5·8. Let A be a cellular algebra. Then:
(1) if X is an A-module with Ext1

A(X,W (Λ)∗) = 0, then X ∈ F(W (Λ)), that is,
W(W (Λ)∗) ⊆F(W (Λ));

(2) Y(W (Λ)) ⊆F(W (Λ)∗). In particular, if gl.dim(A) =∞, then Y(W (Λ)) is prop-
erly contained in F(W (Λ)∗).

Proof. (1) Suppose that X is an A-module with Ext1
A(X,W (Λ)∗) = 0. Let

0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = A

be a cell chain which gives the cell modules W (Λ). Assume that Jj/Jj−1%W (j)⊗k
iW (j) for all j. Thus Jj/Jj−1%W (j)mj as a left module, where mj = dimkW (j). We
have the following exact sequence

TorA1 (iW (j)mj , X)→ Jj−1 ⊗A X → Jj ⊗A X →W (j)⊗k iW (j)⊗A X → 0.

The first term vanishes since TorA1 (iW (j), X)% Ext1
A(X,W (j)∗) = 0. This implies

that we have a chain of submodules of X:

0 = J0 ⊗A X ⊂ J1 ⊗A X ⊂ J2 ⊗A X ⊂ · · · ⊂ Jm ⊗A X = X

with the sections being direct sums of cell modules. Hence X is in F(W (Λ)).
(2) follows by applying the dual functor ∗ to the statement (1). This finishes the

proof.
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Now let us consider the second cohomology groups of cell modules. Comparing

with the homological definition of quasi-hereditary algebras, the following question
arises naturally.

Question. Let A be a cellular algebra. Are the following statements equivalent?
(1) A is quasi-hereditary;
(2) Ext1

A(W (Λ),W (Λ)∗) = 0;
(3) Ext2

A(W (Λ),W (Λ)∗) = 0.

Our answer to this question is the following theorem.

Theorem 5·9. Let A be a cellular algebra with cell modules W (λ). Then A is quasi-
hereditary if and only if Ext2

A(W (Λ),W (Λ)∗) = 0.

Proof. We need only to show the ‘if ’ part. Let

0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jm = A

be a cell chain which produces the cell modules W (Λ). It follows from Ext2
A(W (Λ),

W (Λ)∗) = 0 that Ext1
A(Jj ,W (Λ)∗) = Ext2

A(A/Jj ,W (Λ)∗) = 0 since A/Jj has a W (Λ)-
filtration. Now we show that J1 is a heredity ideal. If this is done, then we can use
induction to obtain the desired statement.

Since a cell ideal J is either a heredity ideal or J2 = 0, what we have to do is just
to exclude the case J2

1 = 0. Now the proof is similar to that of Theorem 5·5. The
condition that Ext1

A(Jj ,W (Λ)∗) = 0 can be interpreted as TorA1 (i(W (Λ)), Jj) = 0 by
the canonical isomorphism DExtjA(X,Y )%TorAj (DY,X). Since as a right A-module
A/J1 has an i(W (Λ))-filtration, we know that TorA1 (A/J1, J1) = 0. Suppose that J1

is non-zero with J2
1 = 0. Then we have

J1 ⊗A J1%TorA2 (A/J1, A/J1)%TorA1 (A/J1, J1) = 0.

This implies that J1 must be zero, a contradiction. Thus J1 must be a heredity ideal
in A. This finishes the proof.
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