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TWISTED DOUBLES OF ALGEBRAS I
DEFORMATIONS OF ALGEBRAS AND THE JONES INDEX

CHANGCHANG X1

ABSTRACT. We show that the deformations of certain doubles of a finite~dimensional
hereditary algebra are always quasi-hereditary. Moreover, we prove that the 1-
deformations of dual extensions of finite dimensional hereditary algebras provide
us always multi-matrix algebras. Thus we can get a natural pair of multi-matrix
algebras. If the hereditary algebra has radical square zero, then the Jones index
of this pair is linked to the spectral radius of the associated Coxeter matrix of the
Cartan matrix of the given hereditary algebra.

In the study of quasi-hereditary algebras introduced by Cline, Parshall and
Scott in order to study highest weight categories in the representation theory
of Lie algebras and algebraic groups (see (CPS]), we constructed in [X1] a class
of finite dimensional algebras which is called dual extensions. It turns out that
these algebras inherit some nice properties from given algebras. A more general
construction is the so—called twisted doubles which were studied in [Dy], [DX1]
and [KX]. The twisted doubles are used to construct BGG-algebras introduced
in [CPS] and [I], that is, quasi-hereditary algebras with a duality which fixes all
simple modules, and moreover, quasi-hereditary algebras which are twisted dou-
bles possess exact Borel subalgebras and A-subalgebras, thus having triangular
decompositions (see (K] for the definition). Typical examples of twisted doubles
are the Schur algebras of finite-representation type and Temperley-Lieb algebras.
A lot of quantum groups such as Manin’s quantum 2 x 2 matrices , Dipper and
Donkin’s quantum groups, and the coordinate rings of quantum symplectic spaces
(for a survey see [P]) provides another class of interesting examples of twisted
doubles. This means that twisted doubles can be used to construct Hopf-algebras
and certain quantum groups, as we will see in [X3].

Naturally, one may think of some kind of perturbations or deformations on
the twisted doubles and hope that the resulting algebras could still be quasi-
hereditary or have some other nice properties. Motivated by this, we introduce
in the present paper the socalled deformations of twisted doubles. Weyl algebras
and Woronowicz's C*-algebras C(S,U(2)) (see for example [P]) are examples of
this kind of deformations. As the first step we investigate some properties of
the deformations of twisted doubles for the class of finite dimensional hereditary
algebras. In this case we show that the deformations of twisted doubles of a finite~
dimensional hereditary algebra are always quasi-hereditary. Our main result says
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that for a finite dimensional hereditary algebra C given by a quiver Q = (Qo, Q1)
the 1-deformation D(C) of the dual extension A(C) of C is always a semisimple
algebra. Moreover, the decomposition of this 1-deformation into matrix algebras
is completely determined by the dimensions of the indecomposable projective C—
modules. In this way, we get a natural pair kQp C D(C) of multi-matrix algebras.
By tilting theory we may further assume that the algebra C has radical square
zero. In this case, the Jones index of this pair is just the spectral radius of the
Cartan matrix of D(C) and can be linked to the spectral radius of the Coxeter
matrix of the Cartan matrix of C if C is not representation—finite.

The paper is organized in the following way: We recall the definition of twisted
doubles in section 1 and introduce the notion of deformations in section 2. The
main result is stated and proved in section 3. The last two sections are devoted to
the computation of the Jones index of our natural pair of multi-matrix algebras.

Throughout the paper we denote by k a fixed field.

1. Twisted doubles

The definition of M-twisted double incidence algebras of posets given in [DX1]
generalizes the construction in [Dy] where he constructed certain BGG-algebras
to approach the ones appearing in the representation theory of Lie algebras and
algebraic groups. In the following we present a more general definition from [KX]
applicable to any algebra given by a quiver with relations.

Assume that we are given a k-algebra C over a field k defined by a quiver
Q = (Qo, Q1) and certain relations which we do not have to specify. (The quiver
may be an infinite quiver or have multiple arrows or loops. In case the quiver
is infinite, we require that it must be locally finite, i.e., for each vertex z, there
are only finitely many arrows starting and ending at z). We denote by QP the
opposite quiver of @, the arrows of which will be denoted by o' with o an arrow
1Q. For an arrow o we denote by s(a) and t(«) its starting vertex and the terminal
vertex respectively.

First we define twisting labels. Assume we are given an ordered pair of arrows
a:w+ zand f:z — zin Q. Consider all (ordered) pairs (7;,d;) of arrows
Yitw >y, 0ty +z, 1 <1< m. With each such pair of arrows we associate
an element [{c, 3,7;,d;) € k, the label. The collection of all labels is called the
labelling M of C. This labelling can also be described by all mesh diagrams: For
each pair z,w of vertices in Qg with a path of length two from w to z there is a
unique mesh diagram consisting of all paths w — y; — z,i = 1,--- ,m, of length
two from w to z. Then we associate this mesh diagram with a m x m matrix over
the field &, and the labelling M is just the collection of all entries of the associated
matrices. Hence we call the labelling a matrix labelling.

1.1 Definition. Let C be a k-algebra with a matrix labelling M. We define a
new algebra A(C, M) which is given by the quiver obtained from Q and the op-
posite quiver Q°7 by forming the union and identifyiny the vertices, and imposing
the following three types of relations:

(1) the relations of the algebra C;
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(2) the relations of the algebra C°?; and
(3) the twisting relations: for each pair a, 8 of arrows in Q with s(a) = s(8),
put the relation

odB=" " l(a,B,7,5)7d

where the summation runs over all ordered pairs (y,4) of arrows in Q such that
s(y) = t{a), s(6) = t(B) and t(y) = t(8). Note that we allow '3 = 0 if such a pair
(,8) does not exist.

It is clear that A(C, M) is an associative k—algebra. If C has the identity then
A(C, M) has also the identity. We call the algebra A(C, M) the twisted double
of C with the labelling M.

To illustrate this definition, let us see one example.

1.2 Example. Suppose the algebra C is defined by the quiver

2
a 7N\ Y2
1 4
BN ¢
3

with relation ay; = 34. The labellings for the pair (o, a) are given by 4 elements
in the field k: a1 = o, @, 71,71),a12 = o, 0,71,72),a21 = (@, @,72,71) and
azs = l(a,a,vs2,72), the labellings for the pair («, ) are given by 2 elemnts,
a13 = l(a, B,71,6) and as3 = l(c.3,72,8). For the pair (5, ), the labellings are
az1 = (B, a,8,v1) and a3z = (B, a,d,v2), finally, the labelling for the pair (3, 5)
is an elments a3z = (B, 8,4, d) in the field k. Thus the matrix we have associated
is a 3 x 3 matrix (a;;) and the twisting relations for the twisted double A(C, M)
read as follows:

da=anmv + enrs + a21727) + a22727%,
a'B = aizmé’ + a6’

B'a = a3167; + 632675

B'B = a3z366’

MM =0, 7My2=0

Y11 =0, YY¥2=0

86 =0.

A special case of the above definition is that we take all labels to be zero. In
this case we call the twisted double of C simply the dual extension of C (see
{X1,1.6]). We shall see in section 3 that the deformation of dual extensions may
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provide us a very nice semisimple k-algebra. For the discussion of these algebras
A(C, M) one may see [Dy],[DX1],[DX2},(KX] and [X2].

2. Deformations of twisted doubles

In this section we introduce the definition of a deformation of the twisted double
of a given algebra C with a matrix labelling M.

Let C be as in the definiton 1.1. For each pair «a, 8 of arrows in @; with the
same starting and terminal vertex we attach an element x{c, ) € k. Let X be
the collection of all these z(a, 8), we call X an evaluation.

2.1 Definition. Let C be a k-algebra with a matrix labelling M and an
evaluation X. We define a new algebra D(C, M, X) which has the same quiver as
the algebra A(C, M) does, and the following relations:

(1) the relations of the algebra C;

(2) the relations of the algebra C°P; and

(3) the deformed twisting relations: for each pair o, 8 of arrows in Q with
s(a) = s(B), put the relation

&' B = b1(a) (8% (; B)ey(ay + Z e, By y:)vd'

where 4, , is the Kronecker symbol, ;4 is the idempotent corresponding to the
vertex t(a), and the summation runs over all ordered pairs (v, 8) of arrows in Q
such that s(y) = t{a), s(6) = t(B) and t(vy) = t().

We call the algebra D(C, M, X) the deformation of A(C, M) at the evaluation
X. If X is an evaluation such that &) ¢s)z(a, B) = o, for all o, € Q1, we
call D(C, M, X) the 1-deformation of A(C, M). Note that this condition on X
is satisfied in the following two cases:

(1) If Q has no multiple arrows and z(a, 8) = 1; or

(ii) if @ has multiple arrows and z(a, 8) = 84 for all o, 8 € Q, with the same
starting vertex.

Many important algebras are deformations in the above sense. Let us just
mention some of them.

2.2 Examples. (1) The polynomial ring k[T] in one variable T is the path
algebra of a loop . The deformations of the twisted doubles of k[T] are the
algebras k < 0,0/ > / < d’a — paa’ — A > with A, € k. In case A = 1 = p, the
corresponding algebra is the Weyl algebra and has been studied by many authors.

(2) If we take the algebra C to be the factor algebra of k < z,y > modulo
the ideal generated by zy — vyz, then one can easily verify that Woronowicz's
algebra C(S,U(2)) is a 1-deformation of a twisted double of C' as mentioned in
the introduction.

(3) If C is the algebra of all 2 x 2 upper triangular matrices over k , then the
1-deformation of the dual extension of C is isomorphic to My (k) @ M (k), where
M, (k) stands for the full n x n matrix algebra over k.

(4) If C is the factor algebra of the algebra of all 3 x 3 upper triangular matrices
modulo the square of the radical, then the 1-deformation of the dual extension of
C is isomorphic to Ma(k) & M (k).
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(5) Let @ be the quiver with two vertices {1,2} and two arrows a and b from 1
to 2. We take all z(a, 8) = 1 for all arrows. Then the corresponding deformation
A of A(kQ) is a 10~dimensional algebra. Since A(a—b) = k(a—b) and (a—b)2 =0,
the algebra A is not semisimple (cf.(3)). Note that in this case the algebra is not
an 1-deformation since z{a,b) # q b

3. Main result
The main result of this paper is the following theorem.

Theorem. Let C be a finite dimensional hereditary k—-algebra given by a quiver
Q = (Qo, Q1) and A the 1-deformation of the dual extension of C. Then A is a
semisimple k—algebra isomorphic to

D Ma.(k),

i€Qo

where d; = dimiCe; and My (k) denotes the full n X n matriz ring over k.

The proof of the theorem is divided in several lemmas. In the following we de-
note by C the path algebra kQ defined by the quiver Q@ and A the 1- deformation
of the dual extension of C. For each X € Qq, choose a k-basis B, for the inde-
composable kQ-module kQe, consisting of monomials in kQ ending at the vertex
A. We begin with the following more general lemma which tells us that the alge-
bra D(kQ, M, X) has a triangular decomposation and thus is a quasi-hereditary
algebra by a result in [K].

3.1 Lemma. For any matriz labelling M and evaluation X on the algebra kQ,
there is a vector space isomorphism

i kQ ®ro, QP — D(kQ, M, X)

given by the multiplication.

Proof. We know that the relations of D(kQ, M, X) are of the form

a’IB = ét(a),t(g)x(a, ﬁ)et(ﬁ) + Z l(a, ,B) Y 6)761

where l(a, 3,7, 6) is a label in M, &, ,, is the Kronecker symbol, and the summation
runs over all pairs (v, 8) of arrows in @ such that s(y) = t(a), t(y) = t(6) and s(6) =
t(3). Thus each element of D(kQ, M, X ) can be written as a linear combination
of the monomials of the form aj - a8 --- B, with n,m positive integers and
a;i,fBj € Qo U@y By Bergman’s diamond lemma [B], These monomials form a
k-basis for the algebra D(kQ, M, X). Thus the surjective map  is injective and
an isomorphism of vector spaces.

3.2 Lemma. Let ) be a sink vertez in Q. Then

c'b = bcpes(r),
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for all ¢,b € B,.

Proof. If c or b is the idempotent element ey, then the statement is obviously
true since the quiver has no oriented cycle and ) is a sink vertex. So we assume
that ¢ = a;---an, and b = F;--- 8, with o; and B; in Q1. If b = ¢, then the
statement follows, according to the relations in A. If b # ¢, then we have to
consider the two cases: m < n and m > n. Since b # ¢, there is a natural number
J such that a; = §; for 1 < i < j and a1 # Bjs1. In the case m < n, we see
that j <m and ¢'b=0if j < m. If j = m we must have Bm+1- - Pn = €y since Q
has no oriented cycle, but this shows that ¢ = b, a contradiction. Hence ¢’b = 0 in
case m < n. Similarly, we can show that the statement is true for m > n. 0

3.3 Lemma. Let A be a sink vertez and £y = 2_bep, bb'- Then

(1) &x is an idempotent element in A, and the summands bb' are orthogonal
tdempotents.

(2) €x is the identity of the ring Ae, A.

(3) Each summand bb' is a primitive idempotent of Aey A.

Proof. Since b'b = ey, there holds bb'bb’ = b, this means that bb' is an
idempotent. For distinct monomials b and ¢ in Bj with positive length, we have
c’b=0in A. Thus (1) follows.

To show (2) and (3), we note that the elements of the forms bc’ with b,c € B),
form a k-basis of AeyA by Lemma 3.1. Thus it is easy to check that (2) holds
by using the relation ¢'b = Ob,ceypy for all b,c € B,. Since an idempotent e is
primitive in a ring R if and only if the ring eRe is local, the statement (3) follows
also straightforward (here we need that ) is a sink vertex).

3.4 Lemma. Suppose A is a sink verter. Then AejyA is isomorphic to the
matriz algebra My, (k), with dy = dimCe,,.

Proof. Let by,---,by, be a list of the basis B,. We define fij = b,-b} for all
1,3. Then in A we have

fij fim = bbby, = 65 bibl = 8, fur.

Combinating with Lemma 3.3 we see that Aey A is isomorphic to the matrix algebra
My, (k). O

3.5 Proof of the Theorem. We use induction on the number of the vertices
to show the theorem. For |Qq] = 1, the theorem is true. Suppose the theorem is
valid for all quivers Q having no oriented cycle and with |Qo| < n. Now let £Q be
a finite dimensional algebra with n non-isomorphic simples and A a sink vertex in
Q. We consider the ideal Aey A in A and the factor ring A/AeyA. According to the
relations in A, we know that the factor algebra is isomorphic to the 1-deformation
Ao of the path algebra kA, where A = (Ao, A1) is obtained from Q by delating the
vertex A and the arrows ending at A. By induction, the algebra Ay is isomorphic
to @ica, My, (k), where d; = dimgkAe; = dimikQe;. Thus A is semisimple.
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Let £, be as in Lemma 3.3. Then £, € Ae)A is the identity for AeyA. Since
AGNA C AexA = Aey AL, C A€y C A€ A, we have A6rA = AepyA. Thus AE A =
Al =6 A Put f =1—€,. Then

A=Al o Af
=ALDOHAf O fAS
=ALDALS D fAS
= AL D fAS
= AHA® fFAS

This shows that fAf = AJAE A = A/AeyA is isomorphic to Ag. By Lemma 3.4,
the algebra A is isomorphic to the direct sum of the matrix algebras My, (k),1 €
Qo

The above proof of the theorem shows also the following fact.

3.6 Corollary. Let M be any finite dimensional kQ° -module with dimension
vector (m;)icq,. Then the induced A-module A ®rgor M is completely reducible
and 1s isomorphic to €P;c o, miS(i), where S(i) denotes the unique (up to isomor-
phism) simple A-modules corresponding to the block Mg, (K)o

3.7 Corollary. If Q be the quiver with Qo =N and Q; = {i — i+1|i € N}.
Then the 1-deformation of the dual extension of kQ is isomorphic to @;2; M;(k).

Proof. Let Q) be the full subquiver of @ with the vertex set {1,2,--- ,n}
Then the 1-deformation A, of the dual extension of kQ™ is isomorphic to
‘@7, M;(k) by the above theorem. Hence, as a direct limit of A, the 1-deformation
of A(kQ) is isomorphic to @7° M; (k).

3.8 Remark. (1) In general the conanical inclusion kQ° < A is not the uni-
versal localization of kQ°P using the relative irreducible maps « between indecom-
posable projective kQ?-modules (see [S]) since 4 ®kQer @ is NOt an isomorphism
of A-modules.

(2) The example 2.2 (4) shows that if the algebra C is not hereditary, then the
Theorem may be false.

(3) The following question is still open: Is the 1-deformation of the dual exten-
sion of any finite-dimensional algebra semisimple ?

4.Tower theory for the pair kQ, C A
4.1 For each pair 1 € N C M of algebras there is a tower
IEM()———NCMl:MCMzC"'

by the fundamental construction M, = Endn(yM) O M;. The rank rk(My|Mp)
over My is defined to be the smallest possible number of generators of My viewed
as a left My—module, and the index of N in M is the rate

[M : N):= limsup(rk(M|Mq))'/*.

k—o0
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For pairs of semisimple k-algebras this index can be equivalently defined as

[M : N] = limsup(dimg M ®y --- ®n M)}/™,

m times

To compute the index one defines for each pair 1 € N C M of multi-matrix
algebras the index matrix A% . As consequence of the main result, the index matrix
of this pair is CT. For the details of this theory one may refer to IGHJ].

4.2 We are interested in the following pair of multi-matrix algebras. Let kQ be a
finite dimensional hereditary k—algebra. We have seen that the 1-deformation A of
the dual extension of Q) is a multi-matrix algebra containing kQ as a subalgebra.
So we have a pair 1 € S = kQo C A of multi-matrix k-algebras. Since the index
matrix is CT, we have by [GHJ,§2] the following theorem.

Theorem. Let C = (ci;j) be the Cartan matriz of kQ°P. Then for the pair
S C A we have
[A: S] = p(CTC), where p(C) denotes the spectral radius of C, and the upper

indez T stands for transpose.

4.3 Suppose that we work with the complex field C and that @ is connected.
It follows from 3.1 that the Cartan matrix of A is CTC which is nonnegative,
symmetric and positive definite. By using the graphic criterion of the irreducibility
of a matrix in [LT] one can easily know that CTC is an irreducible matrix. This
implies that there is a positive vector y = (y1,*-,¥jqQ,|) such that yCTC =
p(CTC)y. Since CT is a nonnegative matrix with diagonal (1,1,---,1), we deduce
that yC7 has all components bigger than 0. Thus by [GHJ,Th.2.1.6] we have

Proposition. Let S C A be the above pair of semisimple C- algebras and
leMg=NCM =McCcM,C---

the tower generated by S C A using the fundamental construction. Then
(1) the algebra M; is generated by A and the idempotents Ey,--- , E;_;,
(2) the idempotents Ey,--- , E;_1 satisfy

p(A)E]EkEJ = Ej lf |] - kl =1, and
E;Ey = ExE; i li—j| > 2,
where p(A) denotes the spectral radius of the Cartan matriz of A.

4.4 We say A = (Ag, A;) is a full subquiver of @ = (Qo, Q1) if Ag = Qo and
A is a subset of Q1. Given a full subquiver A of Q, we define the complement of
A in Q is the full subquiver A = (Qo, @ \ A;). In this case we can consider the
1-deformations of the dual extensions of kA, kA and kQ. Let D, B and A be the
1-deformations of the dual extensions of kA, kA and kQ respectively. Then we
have multi-matrix pairs 1 € D C A and 1 € B C A. For these pairs we have

Lemma. [A : B] > maz{[A: S]/[B: S],|A: S}/[D: S]}.
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Proof. It follows from [GHJ,2.3.2 ] that A2 = A4AZ. This yields together
with 4.2 the Lemma. :

5. Jones index and the eigenvalues of the Coxeter matrix

It is well-known that the Jones index [A : B] of a semisimple pair can be
computed by using the spectral radius of the Coxeter matrix of a hereditary algebra
A(B, A) constructed in {[DR1]. In this section we shall link the Jones index of the
pair of multi-matrix algebras given in the previous section to an eigenvalue of a
Coxeter matrix in a direct way. Thus we can compute the Jones index by using
the Coxeter matrix of the index matrix.

Throughout this section we assume that kQ is a finite dimensional connected
hereditary algebra with radical square zero. Let C be the Cartan matrix of kQ°P.
Then C is invertible and can be written as C = I + M for some matrix M with
M? = 0. We denote by A the 1-deformation of the dual extension of kQ. For a
matrix C we denote by p(C) the spectral radius of C.

5.1 Lemma. Let ® := —C~TC be the Cozeter matriz of C and A an eigenvalue

of CTC. Then
5\ (p2+1+\/p“+6p2+1)2
2p ’

where p? is an eigenvalue of the Cozeter matriz ®.

Proof. We apply the same argument as in [A] to the matrix CTC.

det(z? — CTC) = det(z? — CTC) det(C™Y)
= det(z2C~! - CT)
= det(z?(1 — M) — (I + MT))
= det((z% ~ 1)I - (>M + MT))
=z"det((z — z7 )] - (zM + z7MT))
=z det((z — z7)] — (MT + M)).

2 1

Hence z? is an eigenvalue of CTC if and only if z—z~! is an eigenvalue of M+ MT.
Similarly, for a complex number p # 0, we have that p? is an eigenvalue of ® if and
only if p+ p~! is an eigenvalue of M + M7T. Suppose z is a positive real number
such that A = 22. Then there is some p # 0 € Csuch that z —z~! = p+ p~! and
p? is an eigenvalue of ®. This means that z2 — (p+ p~})z — 1 = 0. Thus

e PP V(oY) +4
B 2

since z is positive. The lemma follows.

Since @ is connected, the nonnegative matrix M + M7 is irreducible by [LT].
If we assume that the underlying graph of @ is not Dynkin diagram, then by [PT,
1.5) there is a real number A > 1 such that p(®) = A2 and A+ A~! = p(M 4 MT).
Thus we have the following result:
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5.2 Proposition. If the underlying graph of Q is not a Dynkin diagram, then

AM+1+VA+6A241

[A: 8] = ( .

)2?

where X is a real number such that A2 = p(®).

5.3 Corollary. If kQ is a connected tame hereditary algebra, then
[A:8]=(1+V2)?=3+2V2

Proof. This follows from the fact that in our case the spectral radius p(®) is
equal to 1 (see [DR2]).
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