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Quasi-hereditary algebras were introduced by Cline, et al. in order to study highest weight
categories in the representation theory of Lie algebras and algebraic groups[”. Typical examples
of quasi-hereditary algebras are Schur algebras'?!, the algebras to the blocks of the category ¢*'in-
troduced in ref.[3] and the Temperley-Lieb algebras. Quasi-hereditary algebras seem to become
a very interesting class of algebras.

Let A be a quasi-hereditary k-algebra over an algebraically closed field % . Ringel construct-
ed in ref. [4] a new quasi-hereditary algebra #(A) from A such that . 2(.#(A)) is Morita
equivalent to A, and in fact he used a generalized tilting and cotilting module. This special mod-
ule is called the characteristic module for the quasi-hereditary algebra A and seems 1o be of spe-
cial interest in the representation theory of algebraic groups[ﬂ. The algebra .#(A) is usually
called the Ringel dual of A .

Since quasi-hereditary algebras appear always in pair A and .2(A4 ), it is natural to ask the
following question: If one of them is known, how does the other look like? To understand the
characteristic module and the algebra .22( A ), we study in this paper a special class of quasi-
hereditary algebras which are dual extensions (for the definition see sec. 1). Our aim is to con-
struct explicitly the characteristic module over the dual extension of a directed monomial algebra .
The main result of this paper describes explicitly the quiver of .#(A) for A the dual extension of
an arbitrary hereditary algebra. This implies that the quivers of these algebras .22( A) are bipar-
tite, thus generalizing the main result in ref. [6]. We show also that these algebras .#(A) have
triangular decompositions and are of global dimension at most 2.

1 Definitions

Let A be a finite-dimensional k-algebra over a field k. By A-mod we denote the category of
~ all finitely generated left A-modules. Maps between A-modules will be written on the right side of
the argument; thus the composition of maps f: M| —>M, and g : M, —> M, will be denoted by
/g -

Given a class ©® of A-modules, we denote by A ®) the class of all A-modules in A-mod
which have a finite @-filtration; that is, a filtration
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0O=M cM_.ccMcM=M
such that each factor M;_,/M; is isomorphic to an object in ® for | <i<t. For a module M &
A-mod, we denote by add (M) the full additive subcategory of A-mod consisting of all finite di-
rect sums of direct summands of M .

Let X be a finite poset in bijective correspondence with the isomorphism classes of simple A-
modules. For each A€ X, let E()) be a simple module in the isomorphism class corresponding
to A and P(A) (or P,(A)) a projective cover of E(2) and denote by & (A) the maximal fac-
tor module of P(A) with composition factors of the form E(y), <A . Dually, let Q(A) (or
Q4(1)) be an injective hull of E(A) and denote by V (1) the maximal submodule of Q(A)
with the composition factors of the form E( ), g <2A. Let & (respectively, V ) be the full
subcategory of all & (1), A€ X (respectively, all v (1),2€ X). We call the modules in &
the standard modules and the ones in V the costandard modules.

The algebra A is said to be quasi-hereditary with respect to (X, <) if for each A € X we
have

(i) End4(A(A)) is a division ring; and

(ii) P(A)E.RA L), and moreover, P(A) has a &-filtration with quotient & () for p
> A in which & (A) occurs exactly once.

For a quasi-hereditary algebra A with respect to a poset X we call the elements in X weights
and X the weight poset of A. By (A, X) we denote a quasi-hereditary algebra A with the weight
poset X .

If a quasi-hereditary algebra has a duality & on the category A-mod which fixes simple mod-
ules, we call it a BGG-algebra (see ref. [7]).

As examples of BGG-algebras, dual extension algebras are constructed in ref. [8]. Let us
give the definition more generally in the language of ring theory.

Let C and B be two rings such that there is a common subring S of C and B and there are
ideals M in C and N in B with

C=Sé&M, B=S®N,
where © means the direct sum of S-bimodules. We define a multiplication on
A(C,B): = SO®M PN DM QsN
by the following law:
(s+m+n+m ®On)(s" +m +n +m’ Qn)
= ss' + (sm" + ms' + mm') + (sn' + ns’ + nn')
+(m/ @n/ +m@n + mm;' Qn,' + m n;s’ + m Onn’)
fors,ss €S, m, m, m,m' €EM, n, n,n,n’EN.Then #(C,B) is an associa-
tive ring. We call the algebra .Z( C, B) the trivially twisted extension of C and B.

If S is commutative and B = C”, then we call .4(C, B) the dual extension of C with re-
spect to the decomposition C = S © M. We denote simply by .Z( C) the dual extension of C .

We are mainly interested in the case where S is a maximal commutative semisimple subalge-
bra of C and M is the radical of C. Of particular interest to us is a special case of this construc-
tion which arises from the description of an algebra by quivers and relations.

Let C be a finite-dimensional basic algebra over k. As usual, we may assume that C is de-
scribed by a quiver Q = (Qq, Q) with relations | p; € kQ1i€ I}, where I; is an index set,
(note that we do not specify these relations and we allow multiple arrows) . Thus we consider the
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algebra kQ " /(1p/ 1i€ I;1), where Q~ is the opposite quiver of () and the multiplication of3
of two arrows a and S means that a comes first and then j follows (for the notation see ref.
[9]). For each a from i to j in Q,, we associate it with an arrow a'from j to ;. We denote by
Q) the set of all such a’ with « € Q. For a path a;***a,, we denote by (a,**"a, )’ the path
a'p+ra’y in the quiver ( Qg, Q' ). With this notation we may define a BGG-algebra.

Let A be the algebra given by the quiver ( Qq, Q,U Q") with relations {p;1 1€ I.{ U {p/
i€ IctUlaf 1a,B€ Q,}. Then it is a finite-dimensional algebra over k. Clearly, A is just
the dual extension of C defined above.

Lemma 1. If C has no oriented cycle in its quiver, we may assume that Qo= i1,...,n|

such that Hom¢ (P (i), Pc(j)) =0 for i > j. Then A is a BGG-algebra. Furthermore, the
standard A-modules are &, (i) = Po(i) for i€ {1,..., nt.

For the proof of this lemma we refer to ref.[8 ], and for the further properties of the algebra
A#(C) one may see refs. [10,11].

2 A construction of certain .-Z{ C)-modules

Let k be a field. Let C be a finite-dimensional monomial algebra Thus C = kQ " /1"
where Q = (Qo, Q,) is a finite quiver and / an admissible ideal in k() generated by monomials.
Given an arrow @ in (), with starting vertex s(a) and terminal vertex t(a ), we associate

with it an arrow ¢ ~', with the same starting and terminal vertex as « . (The notation @ ~' may
not be a good notation here; it really suggests the inverse of « ~' in some sense below) . Let Q'

be the set of all arrows of the form @ ~!. For a monomial a,a,** a, in Q, we denote by (a,a,
a,) " the monomial a; 'a; '+, ' in the quiver (Qq, Q7 ') . Let Q = ( Oy, 0,UQr") and A
be the monomial algebra glven by the quiver Q with relations I, where I is the union of / and
I". (Here we write ' for the set {w ™ '1w &€ I1). Note that the algebra A is infinite-dimen-
sional if and only if @ contains an oriented cycle.

In the following we shall construct for each indecomposable projective A-module a module
over A(C).

Given a vertex x € (g, let T(x) have the same vector space as the indecomposable projec-
tive A-module P;(x) corresponding to x. Thus T(x) has a k-basis B(x) consisting of mono-
mials in kQ starting at the vertex x and not in /. For any vertex a, let T(x), be the k-sub-
space spanned by all monomials in B(x) having terminal vertex a. Then

T(x) = u@)uT(:O,,.

For each arrow a:a —>b in Q,, let T(x),: T(x), —>T(x), be defined by sending w
€ T(x),towa€ T(x),. Foreach o’ :a—>bin Q,", let T(x),:T(x), —T(x), be de-
fined by

" l__»{w,, ifw=wa',
0, otherwise.
Note that since we deal with a monomial algebra each monomial w has the unique form w,a =" if
it exists. So the above map is well-defined. By this definition, we see that T(x) is a module
over #4(C).
Let f: Ps(a)—>P;(b) be an A-homomorphism. Then it is given by left multiplying an
element w = 2 Aw; where w; are words with starting vertex b and terminal vertex @, and A, €
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k. Thus f induces a C-homomorphism from T(a) to T(b). If all w; end with arrows in Q,
then f is also an ../4( C)-homomorphism. Suppose w;,"**, w, are all paths in the expression of w
of the form w; = B7',B,€ Q). Let UCa, b,f) be the A4(C)- submodule of T(b) generated
by u;,]1<j<s. Then f induces an ..Z( C)-homomorphism from T(a) to T(b)/U(a,b,f).

Conversely, let f be an .-Z( C)-homomorphism from T(a) to T(b). Then f sends a to an
element w of T(b) which may be written in the form w = 2. | Aw, with w;,1 < i< m, paths
in Q from b to a. Suppose w 0. Since f is also a C-homomorphism, it sends each o« in Q,

“!= ¢ and the action of ' on the image of @ ' under f is

with s(a) = a to we . Since a' @
w, we see that f sends a "' to wa ~' by the definition of the action of a'. By induction on the
lenght of the words, we can show that f is just the left multiplication by the element w . Since f
is an ../#( C)-homomorphism, each path w, terminates with either a vertex in Qg or an arrow in
Q.. Clearly, for each element w of this form one can get an ..Z( C)-homomorphism from T(a)
to T(b) by mapping a to w. Note that there are also ..Z( C)-homomorphisms which send a to

zero; they are not of this form.

3 Properties of the module 7(a)

In the following we denote by C a finite-dimensional monomial k-algebra given by a quiver
Q =(Qq, Q,) with relations, and by A the dual extension of C. By A-Mod we denote the cate-
gory of all left A-modules. Given a class ® of A-modules in A-Mod, we say that a module M has
an . -filtration in @ if there is a filtration
0=Fy,CF, CF,C
of submodules of M such that U ;F; = M and F;,,/F,€ ©. Dually, we have the notion of -
cofiltration: if there is a filtration
" CFRCF CFy =M
of submodules of M with (,F; =0 and F,/F;,,€ ©. Let us denote by #* (®) (respectively,
F~(0)) the full subcategory of A-Mod consisting of all modules with an - -filtration (respective-
ly, an . '-cofiltration) in ©.
Lemma 2. Let a be a vertex in Q. Then
(1) T(a) contains an A-submodule & (@) which is isomorphic to P;(a) considered as
an A-module.
(2) There is an exact sequence

0—> A(a) —>T(a) —>X(a) —>0,
where X(a) is an A-module with an = -filtration in {2 () 1b€ Qql .
Dually, we have
(1) T(a) has a factor A-module V (@) which is isomorphic to C”-module Qc(a)
considered as an A-module.
(2’°) There is an exact sequence

0—> Y(a) — T(a) —>V (a) —0,
where Y(a) is an A-module with an i-cofiltration in { v (b)1b6€ Qo .
Proof. (1) Let & (a) be the k-space generated by all paths in B(a) of the form a;** a,,
of non-negative length with all o; € Q,. Then & (a) is an A-submodule of T (a) which is
clearly ismorphic to P.(a) as an A-module.
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(2) By the construction of T(a), for any path w in B(a) ending with an arrow « ', the
k-space wC spanned by all paths wu € B(a) with u€ A (t(a)) is a C-module and isomor-
phic to Po(t(a)) as C-modules. Let M, be the subset of B(a) consisting of all paths w end-
ing with an arrow « ' and S; the k- space spanned by all wC, where w runs over all pahts in M,
of length i. Then we have a filtration:

F:=4A(a) CF,CF, C-
of A-submodules of T(a) such that F,, ,/F;=S,,, as C-modules for all ;. This shows that
T(a)/A(a) has an  filtration in { A () 16E Q! .

The rest of the lemma can be proved dually.

Lemma 3. Let & = {A(a)la€ Qpf and V = {V (a)la€ Qy. Then we have T(1)
CF(A)NF (V).

Lemma 4. Tor'(DT(a), T(b)) =0 for i=1, where D is the usual dual Hom,( - ,
k).

Proof. Since the direct limit of flat modules is flat and M & ‘q]i{n F,= li{n M QL F;, we

see that Torj4 (M ,li{nF,-) = lir.nTorji4 (M, F,) for all j. It follows from ref.[12] that DExt{ (X,

Y) ':vTorf(DY, X) for any finitely generated module X . Now let F, be the filtration of T(b)
given in the proof of Lemma 2. Then the direct limit of F, is just the module T(b). Since T(b)
as C”-module is a direct sum of modules of the forms Q. (x),x € Qy, and the ring C” is a
noetherian ring, we know that as C*-module T(b) is injective. Then Tor! (DT (a)),T(b))
= TorjA(DT(a),]i{nF,-) = ]i{nTorjq(DT((L) ,F) = lir_n Ext)(F,,T(a)). Now suppose j =1

and we show that Ext|( F;, T(a)) =0 for all ;. Since each F, has a finite 2 filtration, it is
enough to show that Ext} (A (x),T(a)) =0 forall x € Qo . But this follows from Extj (A& (x),
T(a))=Ext{(E(x),T(a)) =0 since Ay is projective and & (x)=A Q@ E(x).
Thus, by induction on i, we can show that Ext}( F;, T(a)) = 0.

Lemma 5. Suppose () does not contain any oriented cycle. Then T(a) is indecompos-
able .

Proof. Note that T(a) is a finite-dimensional module and dim,7(a),=1. Let M be the
indecomposable direct summand of T(a) containing a. We show that M contains B(a) by in-
duction on the length of the paths in B(a). If the lenght is zero then it is true. Suppose all paths
in B(a) of lenght i are contained in M. let w = w B with € @, U Q" of length ; + 1.
Since M is a submodule of T(a) containing w), there holds w& M if BE (. Now suppose 3
=a”'. If w, is of length O then w € M since a € M and M contains all paths of the form a; '
o' with ;€ Q. If w, ends with an arrow in Q; then kw, forms a C”-module. Since T(a)
is in. #" (Vv ), itis as C”-module a direct sum of modules of the forms Q¢*(x),x € Q. Thus
the module (*M is also a direct sum of indecomposable injective C”-modules. Let V (b) be the
direct summand containing kw, . (Note that such a direct summand exists since kw, appears as
socle in the module *M.) Then w€ v (b) since a’ *w = w,. Hence w& M. If w, ends with
an arrow in ;' we may assume w, is of the form w, By "=+ B, such that w, ends with an arrow
in @ or wy = a. In this case we may consider the C”-module kw, instead of kw, in the above
discussion. With a similar argument, we can show that w € M. Thus M = T(a) is indecompos-

able .
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Lemma 6. If 7(a) is finite-dimensional,, then T(a) is isomorphic to Hom,(T(a),k),
where the A-module structure on DT(a): = Hom,(T(a),k) is given by
(x+ f)(w) = f(x' *w), x € A,w &€ T(a) and fE€ Hom,(T(a),k).
Proof. Let B(a)* = {w” |w€ B(a)} be the dual basis of B(a). We define a bijective
k-linear map ¢ as the map sending w € B(a) to (w™')" € B(a)”" . Then one can verify that
¢ is an A-homomorphism. Hence ¢ is an isomorphism.
Note that if T(a) is infinite-dimensional then T(a) % DT(a) as A-modules.

4 Application

As a consequence we apply the previous construction to the case where the monomial algebra
C is directed, namely there exitsts no oriented cycle in its quiver Q. First let us recall the fol-
lowing theorem which characterizes the canonical modules over quasi-hereditary algebras. For the
proof one may refer to ref. [4]. (Note that a proof of part (3) can also be found in ref. [1]).

Theorem A. Let A be a quasi-hereditary algebra with the weight poset X .

(1) The intersection A &) (1A ¥ )contains exactly | X | isomorphism classes of indecom-
posable modules, where | X1 is the cardinality of X. They may be parametrized as T(1),A €
X ,such that the following holds: There are exact sequences

(a) 0— &) — T(2) — X(1) —0,

(6) 0 Y(a) T(2) v(a)—>0,
where X (1) is filtered by A(,zz)’s for certain ¢« < A and Y(A) by ¥ (/u)'s for certain g < A .
In particular, T(A) has a unique composition factor isomorphic to E(A) and all other composi-

tion factors are of the form E( ) with z < A, where E ( ;z) denotes the simple A-module corre-
sponding to the weight ;€ X.

(2) Put T = ‘?‘T( A) and £(A) =End,(T). Then T is a tilting-cotilting module and

#(A) is a quasi-hereditary algebra, with standard modules & 44, (A) = Hom, (T, v (A ),
where the weight poset of 2(A) is X% .

(3)

n kyif n=0 and A = pu,
Exti(A(4), v (1)) = {0, otherwise. :

The modules T(A) are called canonical modules, the tilting-coltilting module T is called the
characteristic module for (A, X ), and the algebra .2(A) = End, (T) is usually called the
Ringel dual of A.

Note that if the quiver Q of C has no oriented cycle then there is a natural order on Qy: We
say that A < g in () if there is a path from x to A in the quiver Q.

Suppose we are given a finite-dimensional monomial algebra C having no oriented cycle in
its quiver Q. Then A = .Z( C) is a quasi-hereditary algebra. Moreover, the module T(a) con-
structed in sec. 2 is a finite-dimensional A-module because the algebra A is a finite-dimensional
k-algebra, and belongs to A &) (1.7 V). Hence T(a) are the canonical modules of the
quasi-hereditary algebra A. We restate the results in sec. 3 as follows:

Lemma 7 . Let C be a finite-dimensional directed monomial k-algebra and A its dual ex-
tension. Then for each a € Qy,

(1) there is a unique submodule & (a) of T(a) such that A(a) are isomorphic to P
(@) as an A-module and the factor module X(a) is a module in A | A (b)1b< a by,
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(2) there is a unique factor module v (a) of T(a) such that vV (a) are isomorphic to
Q¢*(a) as an A-module and the kernel Y(a) is a module in Aiv(b)lb<al).

5 Ringel duals of dual extensions of hereditary algebras

From now on we suppose A = .#( C) is the dual extension of a finite-dimensional hereditary
algebra C given by a quiver Q. In this case, we know that A A ) is closed under submodules
and A V ) is closed under factor modules. Hence the modules X (@) and Y(a) in Lemma 7 are
direct sums of the canonical modules and isomorphic to each other since A is a BGG-algebra. The
following lemma gives an explicit description.

Lemma 8. Let [ a: b ] denote the multiplicity of the composition factor £(b) in the projec-
tive C-module P.(a).

(1) There is an exact sequence

0—> A(a) —>T(a) —> ,@GT(C)[“:"] —0,
(2) there is an exact sequence
0—> ®T() " > 7(a) "> 7 (a) 0.
Proof. Suppose as b. Since [ a:b] is the number of all paths in () starting at a and

It

ending at b, we see that this number is equal to the cardinality of the set I, of all paths w
w8 " in B(a) such that w, is a path in Q, BE€ Q, and t(B) =b. Let w€ I, with t(w)
¢. We denote by X, the space spanned by wB (c¢). Since X, (1 & (a) =0 as subspace of
T(a), we see that as vector spaces (X, + &(a))/A(a) are isomorphic to T(c¢) by sending
w, € B(c) to ww; + &(a). Note that X, + &(a) is also an A-module. Thus the foregoing

isomorphism is also an isomorphism of A-modules. Now it follows from the construction of k-basis
of T(a) that the first exact sequence in the lemma exists. The rest of the lemma can be proved
dually.

Theorem 1. Let C be a finite dimensional hereditary algebra given by quiver (. Then for
every x,y € Qg, there holds

[x:y], ifx < y and y is maximal, or
dimyirr» (T(x),T(y)) = if x > y and x 1s maximal,
0, otherwise,
where 7= add (T) and irr >( T(x ), T(y)): =rad ~( T(x), T(y))/rad?;( T(x),T(y)) is
the bimodule of irreducible maps from T(x) to T(y) in .7~

Proof. By Lemma 2.2 of ref. [6], it remains to prove that irr >( T(x), T(y)) =0 if nei-
ther ¥ nor y is maximal. Since the Ringel dual does not contain a loop, we have to examine the
following different cases.

(i) x and y are not comparable. Then every map & Hom,( T(x), T(y)) factors through
p. since T(y) has no composition factor £(x) and fl A, =0.

(ii) x < y. If fis a non-zero homomorphism from T(x) to T(y) and fl () =0 then f
factors through X (x) by Lemma 8. Suppose f|a(,)#0. By the construction, f maps x to a
non-zero element w in T(y) and the map f is just given by the left multiplication of w . Since y
is not maximal, there exists an arrow a :y<-z€ (. Let g be the map from T(x) to T(z) de-
fined by x > a 'w. Then g is an A-homomorphism. Let h be the composition of the canoni-
cal projection of T(z) onto X(z) and the canonical projection of X(z) onto its direct summand
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X, '(see the proof of Lemma 8). Then X, '= T(y) and f= gh by the construction of modules
T(a).

(iii) x> y. The dual of (ii). This finishes the proof.

Remark. (1) It follows from the above theorem that the quiver of .22(A) is bipartite, that
is, the vertex set is a disjoint union of Q'g= {a € Qyl | a is maximal} and Q"o = Qo \ Q'y,
and the arrows are between Q' and (”,. This generalizes the main result in ref. [6].

(2) In general the quiver of a Ringel dual may not be of the form described in Theorem 1
since the structure of the characteristic module may be different from the one constructed in
sec. 2. For this one may see ref.[13] and the recent work ref. [14].

6 The global dimension of .22{ A)

Since the Ringel dual .2(A) is the endomorphism ring of a generalized tilting module T,
we know from the tilting theory (Proposition 3.4 of ref. [15]) that the global dimension of
#(A) is between the two numbers gl.dim (A) - proj.dim (T) and gl.dim(A) + proj.dim
(T). Under the hypothesis in sec. 5 we will see that the global dimension of 2(4) is equal to
that of A .

Lemma 9. Let A be the dual extension of a finite-dimensional hereditary algebra C. Then
#(A) has a triangular decomposition. More precisely, there are directed subalgebras E and E
of #(A) satisfying the following conditions:

(i) EM E” is the maximal semisimple subalgebra E, of .Z(A) generated by the identity
maps idy(,), a€ Qg considered as elements in #2(A).

(ii) The multiplication map

E Qe E?"— #£(A)
is bijective.

Proof. Let E be the k-space spanned by idy(,),a € Q¢ and all monomials in 7, , where
7, are defined as components of p, with a € Qg in Lemma 8. Then E is a directed subalgebra of

H(A): = End, (D¢ 0, T(b)). We can identify E * idy(,) with the space spanned by idy(,)
and all monomials L R with t(w;) = s(w;,,) for l<i<m-1and t(w,)=a. We
shall show that E is a &-subalgebra of .2(A), namely the map E * idy,y)—> Hom, (T,
V(A)) =Hom,(T,T(a))/Hom, (T, D, ., T(v)) given by f > fp is an isomorphism,
where p = 7, is as in Lemma 8.

(1) This is an injective map. We pick a non-zero element f€ E*idy(,,. Then f is a linear
combination of monomials =, =, ***7, . Since the canonical projection 7, maps w to t(w) €
1 2

T(t(w)), the map f is always surjective, and therefore fp 0.

(2) 1t is surjective. If 05« f€ Hom, (T, V (a)), then f=fp with f: T(x) —>T(a).
Note that @ <« since f£0. If x = a then f is an automorphism of T(a). By the construction
of T(a), f is a scalar of the identity map idr(,) and hence in E*idp,). If a < x then by Lem-
ma 8, we can decompose [ into [ = rrwlfl + 4 ﬂw"fn with f;: T(t(w;))—>T(a) and t(w;)

<x. If f;p=0 then ;€ Hom,(T,D, . T(v)); if f;p#0 then a<t(w;). In this case we

may repeat the above discussion. Since the poset Q is finite, after finitely many steps, f is of
the form

f=2)
f = /1j7rwl Ty "My + &
- )
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with t(w,, ) = a and g € Hom, (T, P, ,T(v)). Then (f— g)p = f. This shows that our

map is surjective.
By the definition of a A -subalgebra ref. [16], we see that E is a O-subalgebra of
A#(A). Since #2(A) is a BGG-algebra, it follows that .#2( A) has a triangular decomposition E

® g, E” with E* generated by the maps idr(,) and all monomials in i, , where i, are components

of the maps [,,a€ Qg in Lemma 8.

Theorem 2. Let A be the dual extension of a finite-dimensional hereditary algebra C. Then

ol dim2(A) = {O, if C is. semisimple;
2, otherwise.

Proof. It follows from Lemma 8 that the projective dimension of & ,,y(a) = Hom, (T,
V (a)) is at most one. Thus by ref. [17] the category #( ¥ ,(4)) is closed under factor mod-
ules and the category .# (& ,(4)) is closed under submodules. By Lemma 9, the standard
#2(A)-modules are just the projective E-modules. Hence E is a hereditary algebra and gl . dim
A(A)<2+gl.dim (E). If C is semisimple, then C = A = #£(A) and gl.dim #(A) =0. If
C is not semisimple, it is easy to see that .72( A) is not hereditary and hence gl.dim .#(A4) =2.
Thus gl.dim2(A) =2 =¢l.dim (A).

Usually, a quasi-hereditary algebra A and its Ringel dual .2(A) may have different global
dimensions. The following lemma gives a suffcient condition for having equal global dimension.

Lemma 10. Let A be a quasi-hereditary algebra of global dimension 2m, and suppose the
characteristic module of A is of projective dimension at most one. If #A(A) has a triangular de-
composition E ®E0 E® such that the standard .72( A )-modules are semisimple on restriction to

E, then gl.dim A2(A) = ¢gl.dim(A).
Proof. We know from Theorem 1.1 of ref. [16] that the global dimension of .2(A) is an
even number. Thus this even number is between 2m — 1 and 2m + | and must equal 2m .

7 Questions

Before we state our questions, let us recall the definition of algebraically compact modules .
Given a left A-module M, let a = (a;); be an m x n matrix, and b = (b,); a vector of length
m, with entries a;, b, in A. We denote by U(a,b)the set of elements y € M such that there
are elements x,, ", x, & M with

\ .
Laijxj = by for 1 <i< m.
This is a subgroup of M. A subgroup of this form U(a,b) is called a finitely definable subgroup

of M. The module M is called algebraically compact (or pure injective) provided for every codi-
rected system of finitely definable subgroups M; of M, the canonical map M —— limM /M, is

surjective .
The following questions related to the module T(a) are open.
Let C be an arbitrary finite-dimensional monomial k-algebra and A the dual extension of C.
Question 1. Is ,7(a) always algebraically compact?
Question 2. Which properties may the algebra End, (D ,¢ 0, T(a)) have?

Question 3. Suppose C is a directed algebra. Can we describe the relations for the Ringel
dual of . Z(C)?
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