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COMMUNICATIONS IN ALGEBRA, 18 (10 ) ,  3413-3422  (1990) 

ON WILD HEREDITARY ALGEBRAS 
WITH SMALL GROWTH NUMBERS 

Xi, Changchang 

Fakultat fiir Mathematik 
Universitat Bielefeld 
UniversitatsstraBe 25 
4800 Bielefeld 1 
Federal Republic of Germany 

Let A be an artinian algebra. The growth number p(A) of the algebra A has recently 
become important in investigations of the representations of A. For A hereditary it is the 
maximal real eigenvalue of the Coxeter matrix of A (see [DRl ]  and [K]). It measures to 
some extent the structure of the module category of A (see [DRl],[K]). The purpose of 
this note is to determine all finitedimensional basic hereditary algebras A over a field k 
with growth number less than c, where c is the real root of the polynomial z3 - x - 1. 
In [Z] it was shown that for a regular component C of the Auslander-Reiten-quiver of A 
with growth number smaller than c the shape of C can be determined. We will use the 
list of all minimal wild hereditary algebras which are finitedimensional over some field k 
(compare Appendix) and prove the following 

Theorem. Let A be a finite-dimensional connected wild hereditary algebra over a 
field k. Then p(A) < c if and only if the underlying valued graph of A is one of the 
following: 

Proof. If the algebra A has the above underlying graph, then we can easily show that the 
maximal eigenvalue of the corresponding Coxeter-matrix is smaller than c (for the cases 
T2,3," with n 2 8, see [Z]). 
Now we turn to the converse conclusion. First of all,we need some preparations. 

Definition. An algebra A is called minimal wild if A is wild and AIAeA is tame or 
representation finite for each idempotent 0 # e E A. 

Copyright 0 1990 by Marcel Dekker, Inc. 
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= = 
Lemma 1. (a) The minimal wild hereditary algebras except E7 and Ea have growth 
number bigger than c. 

(b) An algebra with one of the following underlying graphs has growth number greater 
than c. 

(c) the algebra with the following underlying graph has the growth number larger than c: 

Proof. (a) We check the graphs induced by a minimal wild hereditary algebra in the 
appendix. According to a well-known theorem in [BGP], for two different orientations 
of a tree the corresponding Coxeter matrices are similar, so we can choose for each tree 
a certain orientation and compute the corresponding growth number. For the graphs 
which contain cycles we should check all possible orientations, but the Bernstein-Gelfand- 
Ponomarov theorem may reduce the verification to a few cases. 

(b) As in (a) we may choose a convenient orientation for both graphs and calculate the 
largest positive eigenvalue and compare it with c. It turns out that p(I) > c and p(I1) > c. 

(c) We have to verify the result for five orientations. As in (a) the other orientations can 
be reduced to one of the five cases. 

Lemma 2. The algebra with the following underlying graphs has growth number greater 
than c: 

Proof. If we consider the preprojective components of two algebras A and B with under- 
lying graphs (IV) and (V) respectively, then we can easily see that p(A) = p(B). Hence it 
is enough to prove the lemma 2 for (V) in the following case: 

We use the notation in [Z], thus 
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WILD HEREDITARY ALGEBRAS 

P =  

I =  

R e m a r k .  We can easily show that pn > pn+, and lim p, = c. 
n-m 

= -  

L e m m a  3 [AS]. Suppose a module class C in A-mod is closed under factor modules 
and extensions. Let C be an indecomposable in C which is not Ext-projective and let 

0 -+ TC + B + C + 0 be an AR-sequence in A-mod. Then there is a commutative 
exact diagram 

' 1 0 0 0  . . .  0 0 0 '  
1 1 0 0  . . .  0 0 0  
. . . . . . .  . . . . . . .  . . . . . . .  
1 1 1 1  ... 1 0 0  
1 1 1 1  . . .  1 1 0  

- 1  11  0 . . .  0 0  1 

1 1 1 1  . . .  1 2 1 -  
1 1 1 1  ... 1 2 1  
0 0 1 1  . . .  1 2 1  
0 0 0 1  . . .  1 2 0  
. . . . . . .  . . . . . . .  . . . . . . .  
0 0 0 0  . . .  1 2 0  
0 0 0 0  ... 0 1 0  

- 0 0 0 0  ... 0 0 1 -  

' 

, 

and the Coxeter-matrix 

The characteristic polynomial E,(A) = det(@, + XI,) = An+' - A n  - An-' - A3 - XZ + 1. 
Since En(c) = c n + 2 - c n - c n - ' - ~ 3 - ~ 2 + 1  = c " - ~ ( c ~ - c - ~ ) - c ~ - c ~ + ~  = -c3-c2+1 < 0, 
we infer that the maximal real root pn of E,(X) must be bigger than c. Thus the lemma 
is proved. 

- 1  1 1  I . . .  1 1  2 1 -  
-1 0 0 o . . .  0 0 0 0 

0 - 1  0 o . . .  0 0 0 0 
0 0 - 1  o . . .  0 0 0 - 1  
0 0 0 - 1  . . .  0 0 0 0 
. . .  . . . .  . . .  . . . .  . . .  . . . .  

0 0 0 o . . . - 1  0 0 0 
0 0 0 o . . .  0 - 1  -1 0 

. . .  . 0 0 -1 -1 -1 -1 -2 0 -  

@, = -p-'I = 

(n+z ,x (n+2)  

- 1 0 0 0  ... 0 0 0 0 -  
-1 1 0 0  . . .  0 0 0 0  

0 - 1  1 0  ... 0 0 0 0  
. . .  0 0 - 1 1  0 0 0 0  

. . .  . . . . . . .  . . .  . . . . . . .  . . .  . . . . . . .  
0 0 0 0  1 1 0 0  
0 0 0 0  . . .  0 - 1 1 0  . 0 0 - 1 0  . . .  0 0 0 1 -  

r 1 1 1 1 . . . 1 1 2 1 '  
0 1 1 1  . . .  1 1 2 1  
0 0 1 1  . . .  1 1 2 1  

. . .  0 0 0 1  1 1 2 0  
. . . .  . . . .  . . . .  

0 0 0 0  . . .  0 1 2 0  
0 0 0 0  . . .  0 0 1 0  

. 0 0 0 0 . . . 0 0 0 1 ~  
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and 0 -+ C' -i B' -+ C -+ 0 is an AR-sequence in C, where t ( X )  denotes the maximal 
submodule of X which is in C. 
For the proof of this lemma see [AS, 3.81. 

L e m m a  4. Let A be a finite-dimensional connected wild hereditary algebra with valued - - - - 
quiver Q. Let Q' be a connected full subquiver of Q such that B := kQ' is a wild algebra. 
Then d B )  I P(A). 

Proof.  Put C = B-mod. Then C is closed under factor modules and extensions. We take 
an indecomposable regular B-module X ,  it is clear that X is not Ext-projective. Using 
lemma 3 we have r e X  C TAX, and therefore p(B) := lim v m  5 ,,l& = 

n-m 

L e m m a  5. Every finite-dimensional wild connected hereditary algebra contains a minimal 
wild hereditary algebra whose ordinary quiver is a full subquiver of that of the given 
algebra. 

The proof is obvious. 

L e m m a  6. Let A be a finite-dimensional wild connected algebra with p(A) < c and 
+ - - 

A = kQ. Suppose there is a full connected subquiver Q' of Q with trivial values such that 
the underlying graph Q' is a tree. If Qa = Q' U {I), then there is only one edge cr joining 
x to Q' in Q and the value of this edge is a(cr) 5 4. 

Proof.  Since Q # Q', there is a vertex x E Qo\Qb such that x is connected to Q' by r 
edges al,. . . ,a,. We will show that r = 1. 
Suppose r 2 2. Then we can choose a cycle K which is a full subgraph of Q. By lemma 
l(a) and p(A) < c, this cycle K must have trivial valuation. Since A is a wild connected 
algebra, there is a vertex y E Qo which does not lie in K and is such that y is connected 
to h' by n edges. The full subgraph generated by K U {y} is wild and must contain a 
minimal wild valued graph. If n 2 2 this must be (5), (6) or (7) in the appendix and these 
are ruled out by lemma l(a) ,  and therefore n = 1. Then we arrive at  a graph which is one 
of (8) to (13) in the appendix. Again by lemma 1 we obtain p(A) > c. This contradiction 
shows that r = 1 and finishes the proof of lemma 6. 

P r o o f  of t h e  theorem.  Let A be a basic finite-dimensional wild connected hereditary 
algebra with p(A) < c. By lemma 5 it contains a minimal wild hereditary algebra B whose 
ordinary quiver is a full subquiver of that of A. From lemma 4 one gets p(B) 5 p(A). 
Lemma l (a )  shows that any minimal wild hereditary algebra contained in A must be of ~, = = - - - 
type E7 or E8. If the algebra B is of the form E,, then by lemma 6 and lemma 1 the 
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WILD HEREDITARY ALGEBRAS 3417 

* 9 

algebra A itself is of type E,. Now we may assume that the algebra B is of type E8. We 
apply lemma 6 and lemma 2 by induction on the number of vertices to the algebra A. 
Thus we have that the algebra is of the form 

and this has completed the proof of the theorem. 

Remark. If we take a finite-dimensional wild hereditary algebra A with p(A) < c and 

a preinjective indecomposable A-module M then the algebra B = A[M] = [: Y ]  
(one-point extension) is trivially an algebra with p(B) < c, but not hereditary (see [R2]). 

Appendix 

T h e  minimal wild hereditary algebras which a r e  

flnite-dimensional over a fleld k 

Theorem. Let k be an arbitrary field. The fipite-dimensional minimal wild hereditary 
algebras are just the algebras with following valued graphs (see [DR2] for definitions): 

I. Cycle 

(1 ) a i S 4 , C a i 2 4  ( 2 )  *.a** a i S 3 , a i + a i + l ~ 4 , ~ a i 2 S  
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11. Tree 
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WILD HEREDITARY ALGEBRAS 

(ds, 4, ) 
Remark .  As usual we do not allow any orientated cycles. To a valued edge 0-0 

I I 

we draw simply 40 with a = d i j d i j ,  since we always suppose the valued quiver is 
I 1  

Sketch  of  t h e  proof. 

Note that if A is a finite dimensional minimal connected wild hereditary algebra then the 
underlying graph Q of A is either a tree or it contains a cycle. As before the value of an 
edge a is denoted by a(a). Let d = mas{a(a) I a E Qt }. 
First, suppose the underlying graph Q of A is a tree. If the maximal value d 2 5, then 

Q = o d  with d 2 5. So we have to discuss the case d 5 4. For d E {3,4} we obtain 
easily the graphs (3b), (3c), some graphs in (2) and a graph in (6) with a1 = 3. In case 
d = 1 we can borrow the list from [K] or [U]. 

Now assume d  = 2. We take an edge cr with maximal value d  and consider the degree of the 
ends of 0 case by case. Then we obtain (if necessary, we may repeate the consideration) 
all the other graphs which are not included in the above known cases by using the results 
in [DR2]. 
Second, assume that there is a cycle K with m vertices (m 2 3) in the graph Q. We choose 
a cycle such that m is minimal. 

(i) The cycle K is a trivial valued graph. 
Since the algebra is wild, there is at least one vertex x outside of the cycle I;, which is 
connected to  K by r edges: 
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It is clear that a (a , )  = 1 for t = 1 , .  . . , r, because if some a(a,) # 1, then we have a cycle 
K' which has non-trivial valuation, and therefore Q = K'. This contradicts the choice of 
A'. 
In case r 2 2, we may choose two vertices xi  and x, of the cycle h' such that xl  and x, are 
connected to x by a1 and a, respectively and there is no vertex y E {XI , .  .. , x,}\{xl, x , }  
which is connected to x. Since our algebra is minimal wild, we must have 2 5 j 5 3 If 
j = 2, then m = 3. In this case we obtain the following diagrams: 

Now let j = 3. Then m = 4 and we get the following diagram: 

Finally, we consider the case r = 1. Thus we get the graphs (8) to (12). 

(ii) If the valued graph K has non-trivial valuation, then Q = K. So we suppose the 
valued quiver of the minimal connected wild hereditary algebra is a cycle with non-trivial 
values and has m vertices. It is easy to see that m 5 6. 

We denote the number of edges a with a (a )  > 1 by s. From the minimality we know that 
s 5 4 Of course, s 5 m holds. 

1. s = 4. Suppose that m = 5 or 6.  Thus there is always an edge a with a(&) = 1. If we 
delete one of the points belonging to a (see [R2]), then we get a wild algebra, which is 
a contradiction. Therefore we must have m = 4. In this case we have a n  algebra of the 
type 

2. s = 3. Suppose m = 5 or 6 .  If there are two edges a1 and 02  with a fu , )  f 1 such 
that they have a common vertex, then we obtain a wild algebra by deleting one vertex 
which does not lie in a, or 02. By the minimality this is impossible. Therefore we have 
m 5 4. 
In the case m = 4 we get easily the following diagram: D
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WILD HEREDITARY ALGEBRAS 

with 1 < a, b, c 5 3 and 1 5 ab, bc 5 4. In the case m = 3 we obtain the following 
diagram: 

with 1 < a, b, c < 4. 
3. s = 2. Suppose m = 5,6. Thus we know easily that a(ai) 5 2 for all ai. In the case 

m = 6 we infer that the algebra must be of type: 

2 

In the case m = 5 we have a diagram as follows: 

Let m = 4. In this case we have a(a)  5 3 for all edges a. If the two non-trivial valued 
edges have a common vertex, then we arrive at the following diagram: 

with 1 < a ,  b 5 3 and 1 < ab 5 4. If not, we obtain a diagram as follows: 
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with 1 < a, b 5 3. 
Now let m = 3, thus we get a diagram of the following type: 

with 1 < a, b 5 4. 

4. s = 1 We obtain, in this case, the following diagram: 

with 2 5 a 5 4. 

The author would like to thank C.M. Ringel, Y.B. Zhang and D. Happel for helpful dis- 
cussions, the Deutsche Forschungsgemeinschaft for its support and Mrs. Kollner for her 
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