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A new construction of derived equivalences is given, which relates different
endomorphism rings and, more generally, cohomological endomorphism rings,
including higher extensions, of objects in triangulated categories. These objects need
to be connected by certain universal maps that are cohomological approximations and
that exist in very general circumstances. The construction turns out to be applicable
to a wide variety of situations, covering finite-dimensional algebras as well as certain
infinite-dimensional algebras, Frobenius categories and n-Calabi–Yau categories.

1. Introduction

Derived equivalences have become increasingly important in representation theory,
Lie theory and geometry. Examples range from mirror symmetry over non-com-
mutative geometry to the Kazhdan–Lusztig conjecture and to Broué’s conjecture
for blocks of finite groups. In all of these situations, and in many others, derived
equivalences that involve finite or infinite-dimensional algebras are used. Derived
equivalences between algebras, or rings, exist if and only if there exist suitable tilting
complexes, as explained quite satisfactorily by Rickard’s Morita theory for derived
categories of rings [20]. Derived equivalences have been shown to preserve many
significant algebraic and geometric invariants, and often to provide unexpected and
useful new connections.

A crucial question in this context has, however, not yet received enough answers:
how to construct derived equivalences between rings in a general setup.

589
c© 2013 The Royal Society of Edinburgh



590 W. Hu, S. Koenig and C.C. Xi

A good (but certainly not unique) answer to this question should be general, flex-
ible and systematic and apply to a multitude of algebraic and geometric situations.

One well-developed approach is based on the theory of tilting modules, building
upon results by Happel [8]. Other answers use ring theoretic constructions, such as
trivial extensions [21].

The aim of this paper is to provide a rather different approach. The input of the
technology developed here is a triple of objects (X, M, Y ) in a triangulated category.
These objects are required to be related by certain universal maps (cohomologi-
cal approximations, a new concept introduced here, continuing the approximation
theory of Auslander et al . [1]) and some cohomological orthogonality conditions in
non-zero degrees only. The output is a derived equivalence between cohomological
endomorphism rings of X ⊕ M and of M ⊕ Y .

The flexibility of the construction lies in the following features: we enhance endo-
morphism rings by higher extensions to produce cohomological endomorphism rings,
broadening the classical concept of Yoneda extension algebras. Here, we can choose
a set of cohomological degrees to define the cohomological endomorphism ring.
Choosing degree zero only gives endomorphism rings in the usual sense, and then
no orthogonality assumption is needed. Choosing all integers, or a suitable sub-
set thereof (satisfying an associativity constraint), amplifies the concept of Yoneda
extension algebras

⊕
j Extj(S, S). There is also some flexibility in the choice of M .

A special case of such a triple is given by any Auslander–Reiten triangle X →
M → Y in a derived module category; this already indicates generality of the
construction. Our assumptions are actually much more general and not limited to
objects in derived categories of algebras.

A particular feature of the derived equivalences constructed by this method is
that they also provide a very general mutation procedure, turning one ring into
another in a systematic way. Tilting theory has arisen as a far-reaching extension
of reflection functors for quivers. Under some assumptions, but not in general,
it provides mutation procedures between two given quivers or algebras, both of
which are endomorphism rings of tilting modules; in the case of quivers, one may
reflect at sink or source vertices. Mutations similar in style have also come up in
various geometric situations. The theory of cluster categories, or more generally of
Calabi–Yau categories, has extended reflections to a mutation procedure that works
for representations of quivers at all vertices. Such mutations fit into the present
framework as well. There is, though, a new feature introduced by our approach:
reflection does not work in general in derived categories (of quivers or algebras).
Therefore, cluster theory passes to the cluster category, a ‘quotient’ of a derived
category modulo the action of some functor; endomorphism rings are taken there.
In contrast to this, the approach herein always produces equivalences on the level of
derived categories, not just of quotient categories; throughout, we consider derived
equivalences between (cohomological) endomorphism rings or quotients thereof. In
the case of quivers, this possibility of passing to quotient algebras allows mutation
at an arbitrary vertex.

More generality and flexibility is added by extending the concept of ‘higher exten-
sions’, that is, of shifted morphisms; it is possible to replace the shift functor by
any other auto-equivalence of the ambient triangulated category. There is even a
version using two such functors.
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The main result of this paper provides a construction of derived equivalences in
a setup that is very general in several respects. In the following explanation we
start with a special case and then add generality step by step, finally arriving at
the main result.

The setup is always a triangulated category T , which is an R-category for some
commutative Artinian ring R, with identity; so, morphism sets in T are R-modules.

• Initially, we choose any object M in T and a triangle X
α−→ M1

β−→ Y → X[1],
where α and β are add(M)-approximations, that is universal maps from X
to objects in add(M) or from add(M) to Y , respectively; in particular, M1 is
in add(M). For instance, Auslander–Reiten triangles (over algebras) provide
such situations. If the triangle is induced by an exact sequence in an abelian
category, then the theorem implies a derived equivalence between the two
endomorphism rings EndT (X ⊕ M1) and EndT (M1 ⊕ Y ). This can be seen
as a mutation procedure relating the two endomorphism rings. The derived
equivalence has already been established in [11].

• In the second step, recasting an idea of [10], endomorphism rings are replaced
by cohomological endomorphism rings in the following sense: higher exten-
sions between modules S and T are shifted morphisms in the derived cate-
gory, Extj(S, T ) � Hom(S, T [j]). Using Yoneda multiplication of extensions,
this defines an algebra structure on the cohomological endomorphism ring,
or generalized Yoneda algebra,

⊕
j∈Z

Hom(S, S[j]). When S is a complex, or
any object in a triangulated category T , negative degrees j may occur. The
main theorem provides derived equivalences between such generalized Yoneda
algebras. The construction works, however, not only for these Yoneda alge-
bras, but also for ‘perforated’ ones in the following sense: choose a subset
Φ ⊂ Z. Then, under some associativity constraint requiring Φ to be ‘admis-
sible’ (see § 2.3), the space

⊕
j∈Φ Hom(S, S[j]) is an associative algebra, that

in general is neither a subalgebra nor a quotient algebra of the Yoneda alge-
bra

⊕
j∈Z

Hom(S, S[j]). This algebra is called a Φ-Yoneda algebra or a Φ-
perforated Yoneda algebra. We shall use the notation E

Φ
T (Z) for the algebra⊕

j∈Φ Hom(Z, Z[j]), where Z is any object in T .

The assumptions of the first step get modified by using cohomological approx-
imations, in the degrees specified by Φ, instead of approximations in degree
zero only. Auslander–Reiten triangles still satisfy these properties. Adding
higher extensions requires the addition of an orthogonality assumption with-
out which the result would be wrong: assume

Hom(M, X[j]) = 0 = Hom(Y, M [j]) for all j ∈ Φ, j �= 0.

For the sake of exposition, also assume for a moment that the above trian-
gle X

α−→ M1
β−→ Y → X[1] is in a derived module category and it is induced

from an exact sequence with corresponding properties. Then there are derived
equivalences between Φ-Yoneda algebras

Db(EΦ
T (X ⊕ M)) � Db(EΦ

T (M ⊕ Y )).
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• This result needs to be modified if the triangle is no longer induced by an exact
sequence. Then some annihilators have to be factored out of the degree-zero
parts of the cohomological endomorphism rings, and the derived equivalences
connect the quotient algebras E

Φ
T (X ⊕ M)/I and E

Φ
T (M ⊕ Y )/J . Here, the

ideals I and J can be described as follows: let Γ0 = EndT (M ⊕ Y ) and let e
be the idempotent element in Γ0 corresponding to the direct summand M .
Then J is the submodule of the left Γ0-module Γ0eΓ0, which is maximal with
respect to eJ = 0. Let Λ0 = EndT (X ⊕ M), and f be the idempotent in Λ0
corresponding to the direct summand M . Then I is the submodule of the
right Λ0-module Λ0fΛ0, which is maximal with respect to If = 0.

Another, equivalent, description of I and J is that I consists of all elements
(xi)i∈Φ ∈ E

Φ
T (X ⊕ M) such that xi = 0 for 0 �= i ∈ Φ and x0 factorizes

through add(M) and x0α̃ = 0, and J consists of all elements (yi)i∈Φ ∈
E

Φ
T (M ⊕ Y ) such that yi = 0 for 0 �= i ∈ Φ and y0 factorizes through add(M)

and β̄y0 = 0, where α̃ is the diagonal morphism diag(α, 1) : X⊕M → M1⊕M ,
and β̄ is the skew-diagonal morphism skewdiag(1, β) : M1 ⊕ M → M ⊕ Y .

• The fourth level of generalization allows replacement of the shift functor by
any auto-equivalence of the triangulated category T , thus providing a new
and versatile meaning of ‘higher extensions’ in terms of morphisms with one
variable shifted by powers of the auto-equivalence. The additional datum F
gets mentioned, when necessary, in the notation as an additional superscript,
as in E

F,Φ
T (Z).

In this general form, the main theorem is as follows.

Theorem 1.1. Let Φ be an admissible subset of Z, and let T be a triangulated R-
category and M an object in T . Assume that F is a triangle functor from T to
itself, which is an auto-equivalence, that is, provided with a quasi-inverse. Suppose
that

X
α−→ M1

β−→ Y
w−→ X[1]

is a triangle in T such that the following hold:

(i) The morphism α is a left (add(M), F, Φ)-approximation of X and β is a right
(add(M), F,−Φ)-approximation of Y ;

(ii) HomT (M, F iX) = 0 = HomT (F−iY, M) for all 0 �= i ∈ Φ.

Then E
F,Φ
T (X ⊕ M)/I and E

F,Φ
T (M ⊕ Y )/J are derived equivalent, where I and

J are the above ideals of the Φ-Yoneda algebras E
F,Φ
T (X ⊕ M) and E

F,Φ
T (M ⊕ Y ),

contained in EndT (X ⊕ M) and EndT (M ⊕ Y ), respectively.

A fifth level of generalization, using two functors F and G, will be discussed in
the appendix. A further generalization of some results in this paper to n-angulated
categories will be considered in [4].

The second level of generality, where F is the shift functor and both I and J
are zero, is already widely applicable. This case happens frequently for the derived
category Db(A) of an R-algebra A.
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Corollary 1.2. Let Φ be an admissible subset of N, and let A be an R-algebra and
M an A-module. If 0 → X

α−→ M1
β−→ Y → 0 is an exact sequence in A-mod such

that α is a left (add(M), Φ)-approximation of X and β is a right (add(M),−Φ)-
approximation of Y in Db(A), and that Exti

A(M, X) = 0 = Exti
A(Y, M) for all

0 �= i ∈ Φ, then the Φ-Yoneda algebras E
Φ
A(X ⊕ M) and E

Φ
A(M ⊕ Y ) are derived

equivalent.

These results partly generalize some results of [11].
The setup here, and the main result, covers, combines and extends several clas-

sical concepts.
Auslander algebras (endomorphism rings of direct sums of ‘all’ modules of an

algebra of finite representation type) are the ingredients of the celebrated Aus-
lander correspondence, characterizing finite representation type via homological
dimensions. Auslander algebras of derived equivalent algebras are, in general, not
derived equivalent; positive results in this direction (for self-injective algebras of
finite representation type) have previously been obtained in [10]. In the current
approach, new results can be obtained by appropriate choices of X ⊕ M .

Another intensively studied class of algebras is that of Yoneda algebras, that is,
algebras of self-extensions of a semisimple module, or, more generally, of any mod-
ule. The constructions in corollary 1.2 and in [10] would appear to provide the first
general class of derived equivalences for Yoneda algebras. Perforated Yoneda alge-
bras were first defined in [10], under the name Φ-Auslander–Yoneda algebras. The
approach developed there was based on the existence of particular kinds of derived
equivalences for algebras, which were then used to construct derived equivalences
for perforated Yoneda algebras.

The main novelty of the present approach is the systematic use of cohomological
data, such as cohomological approximations and perforated Yoneda algebras. This
effectively relates our approach to a wide variety of concepts, such as Auslander–
Reiten sequences and triangles, dominant dimension, Calabi–Yau categories and
Frobenius categories.

The paper is organized as follows. In § 2, we first fix notation and then recall
definitions and basic results on derived equivalences as well as on admissible sets
and perforated Yoneda algebras. Also, we extend the notion of D-approximation
to what we call cohomological D-approximation with respect to (F, Φ), where F is
a functor and Φ is a subset of N. In § 3, the main result, theorem 1.1, is proven
and various easier to access situations are described, for which the assumptions
of theorem 1.1 are satisfied. Section 4 explains how theorem 1.1 applies to a vari-
ety of situations: derived categories of Artin algebras, Frobenius categories and
Calabi–Yau categories. Also, the connection to the concept of dominant dimension
is explained. In § 5, two examples are given to illustrate the results and to show
the necessity of some assumptions in theorem 1.1. In the appendix, a more general
formulation of theorem 1.1 is stated, which involves two functors, in order to add
more flexibility with a view to potential future applications.

2. Preliminaries

In this section, we shall recall basic definitions and facts that will be needed in the
proofs later on.
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2.1. Conventions

Throughout this paper, R is a fixed commutative Artinian ring with identity.
Given an R-algebra A, by an A-module we mean a unitary left A-module; the
category of all (respectively, finitely generated) A-modules is denoted by A-Mod
(respectively, A-mod), the full subcategory of A-Mod consisting of all (respectively,
finitely generated) projective modules is denoted by A-Proj (respectively, A-proj).
There is a similar notation for right A-modules. The stable module category A-mod
of A is, by definition, the quotient category of A-mod modulo the ideal generated by
homomorphisms factorizing through projective modules in A-proj. An equivalence
between the stable module categories of two algebras is called a stable equivalence.

An R-algebra A is called an Artin R-algebra if A is finitely generated as an R-
module. For an Artin R-algebra A, we denote by D the usual duality on A-mod, and
by νA the Nakayama functor D HomA(·, AA) : A-proj → A-inj. For an A-module
M , we denote the first syzygy of M by ΩA(M), and call ΩA the Heller loop operator
of A. The transpose of M , which is an Aop-module, is denoted by Tr(M).

Let C be an additive R-category, that is, C is an additive category in which the
set of morphisms between two objects in C is an R-module, and the composition of
morphisms in C is R-bilinear. For an object X in C, we denote by add(X) the full
subcategory of C consisting of all direct summands of finite direct sums of copies of
X. An object X in C is called an additive generator for C if C = add(X). For two
morphisms f : X → Y and g : Y → Z in C, we write fg for their composite. Thus,
for an A-module X, we always have a natural A-EndA(X)-bimodule structure on X.
We shall not consider thus any bi-structure of categories for two functors F : C → D
and G : D → E . However, we write GF for the composite instead of FG.

Given an object M ∈ C, we say that a morphism f : X → Y in C factorizes
through add(M) if there are morphisms f1 : X → M ′ and f2 : M ′ → Y in C with
M ′ ∈ add(M) such that f = f1f2. Given a morphism g : U → V in C, we say that a
morphism α : W → V (respectively, β : U → W ) factorizes through g if there exists
a morphism α′ : W → U (respectively, β′ : V → W ) such that α = α′g (respectively,
β = gβ′).

If f : X → Y is a map between two sets X and Y , we denote the image of f by
Im(f). Moreover, if f is a homomorphism between two abelian groups, we denote
the kernel and cokernel of f by Ker(f) and Coker(f), respectively.

Recall that a functor F : C → D is an equivalence if there is a functor G : D → C
such that GF � idC and FG � idD. The functor G is called a quasi-inverse of
F . In this case, we write F−1 for G. If C = D, then an equivalence F is called an
auto-equivalence. An auto-equivalence F is called an auto-isomorphism if F has a
quasi-inverse G such that FG = GF = idC . If F is a functor from C to C, then we
write F 0 = idC , and F−i = (F−1)i for i > 0 if F−1 exists, and F−i = 0 otherwise.

Let T be a triangulated R-category with a shift functor [1]. For two objects
X and Y in T , we sometimes write Exti

T (X, Y ) for HomT (X, Y [i]). Let Φ be a
subset of Z. An object M (or a full subcategory M) of T is called Φ-self-orthogonal
provided that Exti

T (M, M) = 0 (or Exti
T (M,M) = 0) for all 0 �= i ∈ Φ, where

Exti
T (M,M) = 0 means that Exti

T (X, Y ) = 0 for all X, Y ∈ M. In the case when
Φ = Z, we say that M is self-orthogonal. For Φ = {0, 1, . . . , n}, we say that M
is n-self-orthogonal, which is sometimes, perhaps less suggestively, referred to as
n-rigid.
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Replacing the shift functor by a triangle auto-equivalence F , one may also define
the notion of (F, Φ)-self-orthogonality, but we refrain from introducing this notion
here.

2.2. Derived equivalences

Let C be an additive R-category.
By a complex X• over C we mean a sequence of morphisms di

X between objects
Xi in

C : · · · → Xi di
X−−→ Xi+1 di+1

X−−−→ Xi+2 → · · · ,

such that di
Xdi+1

X = 0 for all i ∈ Z; we write X• = (Xi, di
X). For a complex X•, the

brutal truncation σ<iX
• of X• is a quotient complex of X• such that (σ<iX

•)k is
Xk for all k < i and zero otherwise. We define σ�iX

• similarly. For a fixed n ∈ Z,
we denote by X•[n] the complex obtained from X• by shifting degree by n, that
is, (X•[n])0 = Xn.

The category of all complexes over C with chain maps is denoted by C(C). The
homotopy category of complexes over C is denoted by K(C). When C is an abelian
category, the derived category of complexes over C is denoted by D(C). The full
subcategories of K(C) and D(C) consisting of bounded complexes over C are denoted
by Kb(C) and Db(C), respectively. As usual, for an algebra A, we simply write C(A)
for C(A-mod), K(A) for K(A-mod) and Kb(A) for Kb(A-mod). Similarly, we write
D(A) and Db(A) for D(A-mod) and Db(A-mod), respectively.

For an R-algebra A, the categories K(A) and D(A) are triangulated R-categories.
For basic results on triangulated categories, we refer the reader to [8, 18,24,25].

The following result, due to Rickard [20, theorem 6.4] by a direct approach, and
to Keller by working in the more general setup of differential graded algebras, is
fundamental in the investigation of derived equivalences.

Theorem 2.1 (Rickard [20]). Let Λ and Γ be two rings. The following conditions
are equivalent.

(a) K−(Λ-Proj) and K−(Γ -Proj) are equivalent as triangulated categories.

(b) Db(Λ-Mod) and Db(Γ -Mod) are equivalent as triangulated categories.

(c) Kb(Λ-Proj) and Kb(Γ -Proj) are equivalent as triangulated categories.

(d) Kb(Λ-proj) and Kb(Γ -proj) are equivalent as triangulated categories.

(e) Γ is isomorphic to EndKb(Λ-proj)(T •), where T • is a complex in Kb(Λ-proj)
satisfying the following:

(1) T • is self-orthogonal, that is, HomKb(Λ-proj)(T •, T •[i]) = 0 for all i �= 0;

(2) add(T •) generates Kb(Λ-proj) as a triangulated category.

Two rings Λ and Γ are called derived equivalent if the above conditions (a)–(e)
are satisfied. A complex T • in Kb(Λ-proj) as above is called a tilting complex over Λ.

For Artin algebras, the above equivalent conditions can be reformulated in terms
of finitely generated modules: two Artin R-algebras A and B are said to be derived
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equivalent if their derived categories Db(A) and Db(B) are equivalent as triangu-
lated categories. In this case, there is a tilting complex T • in Kb(A-proj) such that
B � EndKb(A)(T •).

2.3. Admissible subsets and Φ-Yoneda algebras

Let N = {0, 1, 2, . . . } be the set of natural numbers, and let Z be the set of all
integers. For a natural number n or infinity, let Nn := {i ∈ N | 0 � i < n + 1}.

Recall from [10] that a subset Φ of Z containing 0 is called an admissible subset
of Z if the following condition is satisfied:

if i, j and k are in Φ such that i + j + k ∈ Φ, then i + j ∈ Φ if and only
if j + k ∈ Φ.

Clearly, if Φ is an admissible subset of Z, then so is −Φ := {−x | x ∈ Φ}. Any
subset {0, i, j} of N is an admissible subset of Z. Moreover, for any subset Φ of
N containing zero and for any positive integer m � 3, the set {xm | x ∈ Φ} is
admissible in Z (for more examples, see [10]). Nevertheless, not every subset of N

containing zero is admissible; for instance, {0, 1, 2, 4} is not admissible. In fact, this
is the ‘smallest’ non-admissible subset of N.

Admissible sets were used to define Φ-Yoneda algebras in [10], under the name
of ‘Φ-Auslander–Yoneda algebras’. The formulation there works more generally for
monoid graded algebras. For our purpose in this paper, we restrict our exposition
to the case of an object in a triangulated category.

Let Φ be an admissible subset of Z, and let T be a triangulated R-category with
a shift functor [1]. Suppose that F is a triangle functor from T to T . Recall that
we set F i = 0 for i < 0 if F−1 does not exist.

Let E
F,Φ
T (·, ·) be the bi-functor

⊕
i∈Φ

HomT (·, F i·) : T × T → R-Mod, (2.1)

(X, Y ) �→ E
F,Φ
T (X, Y ) :=

⊕
i∈Φ

HomT (X, F iY ), (2.2)

X
f−→ X ′ �→

⊕
i∈Φ

HomT (f, F iY ), Y
g−→ Y ′ �→

⊕
i∈Φ

HomT (X, F ig). (2.3)

Suppose that X, Y and Z are objects in T . Let f = (fi)i∈Φ ∈ E
F,Φ
T (X, Y ) and

g = (gi)i∈Φ ∈ E
F,Φ
T (Y, Z). We define a composition as follows:

E
F,Φ
T (X, Y ) × E

F,Φ
T (Y, Z) → E

F,Φ
T (X, Z),

(f, g) �→ fg :=
( ∑

u,v∈Φ
u+v=i

fu ∗ gv

)
i∈Φ

,

where fu ∗ gv := fuF (gv)χ(u, v)Z with χ(u, v) being a natural transformation from
FuF v to Fu+v defined as follows.

If F−1 does not exist, then χ(u, v) = 0 if u or v is negative, and χ(u, v) = idF u+v

otherwise.
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If F−1 exists, then (F, F−1) is an adjoint pair. Let ε : idT → F−1F be the unit
and let η : FF−1 → idT be the counit. The natural transformation χ(u, v) is defined
to be idF u+v if uv � 0. If u > 0 and v < 0, then χ(u, v) is defined as the composite
of a sequence of natural transformations

FuF v F u−1ηF v+1−−−−−−−→ Fu−1F v+1 F u−2ηF v+2−−−−−−−→ Fu−2F v+2 → · · ·
→ Fu−iF v+i → · · · → Fu+v.

If u < 0 and v > 0, then χ(u, v) is defined as the composite of the following natural
transformations

FuF v
F u+1ε−1

F v−1−−−−−−−→ Fu+1F v−1 F u+2ε−1
F v−2−−−−−−−→ Fu+2F v−2 → · · ·

→ Fu+iF v−i → · · · → Fu+v.

In this setting, the above-defined composition is associative. To prove this, one
needs to check that the multiplication fu ∗ gv is associative. This follows if the
following diagram is commutative:

F iF jF k
F iχ(j,k)��

χ(i,j)
F k

��

F iF j+k

χ(i,j+k)
��

F i+jF k
χ(i+j,k)�� F i+j+k

for all integers i, j, k ∈ Φ. However, using the fact that

F (ε)ηF = idF and ηF −1F−1(ε) = idF −1 ,

one can get the above commutative diagram by drawing a big commutative diagram
with the above two sequences of natural transformations. Here, we omit the details.
Note that if F is an auto-isomorphism, that is, FF−1 = idT = F−1F , then χ(u, v)
is an identity for all u, v ∈ Z, and therefore will not appear in the definition of the
multiplication.

Thus, E
F,Φ
T (X, X) is an R-algebra. It is called the Φ-Yoneda algebra or, when Φ

is fixed, the perforated Yoneda algebra of X with respect to F . Then E
F,Φ
T (X, Y ) is a

left E
F,Φ
T (X, X)-module. When Φ = N, the algebra E

F,Φ
T (X, X) is the orbit algebra

of X under F (see [2]).
For convenience, we write E

F,Φ
T (X) for E

F,Φ
T (X, X). In the case T = Db(A),

where A is a ring with identity, we write E
F,Φ
A (X, Y ) for E

F,Φ
Db(A)(X, Y ) and E

F,Φ
A (X)

for E
F,Φ
Db(A)(X).

When F coincides with the shift functor, we omit the upper index F , and call
E

Φ
T (X) the Φ-Yoneda algebra of X, without referring to the shift functor. This is

the algebra introduced in [10] and therein called an Auslander–Yoneda algebra.
The following lemma is essentially taken from [10, lemma 3.5], where a variation

of it appears. The proof given there carries over to the present situation.

Lemma 2.2. Let T be a triangulated R-category with a triangle endo-functor F ,
and let U be an object in T . Suppose that U1, U2 and U3 are in add(U), and that
Φ is an admissible subset of Z. Then, we have the following.
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(i) There exists a natural isomorphism

µ : E
F,Φ
T (U1, U2) → Hom

E
F,Φ
T (U)(E

F,Φ
T (U, U1), E

F,Φ
T (U, U2))

that sends x ∈ E
F,Φ
T (U1, U2) to the morphism a �→ ax for a ∈ E

F,Φ
T (U, U1).

Moreover, if x ∈ E
F,Φ
T (U1, U2) and y ∈ E

F,Φ
T (U2, U3), then µ(xy) = µ(x)µ(y).

(ii) The functor E
F,Φ
T (U, ·) : add(U) → E

F,Φ
T (U)-proj is faithful.

(iii) If HomT (U1, F
iU2) = 0 for all i ∈ Φ\{0}, then the functor E

F,Φ
T (U, ·) induces

an isomorphism of R-modules:

E
F,Φ
T (U, ·) : HomT (U1, U2) → Hom

E
F,Φ
T (U)(E

F,Φ
T (U, U1), E

F,Φ
T (U, U2)).

The properties described in lemma 2.2 will be used frequently in the proofs below.
The class of Φ-Yoneda algebras with respect to a functor includes a large class of

algebras, including the following.

(a) The endomorphism algebra of a module, in particular, the Auslander algebras
of representation-finite algebras; Here we choose Φ = {0}.

(b) The generalized Yoneda algebra of a module if we take Φ = N: this includes
the pre-projective algebras (see [2]) and the Hochschild cohomology rings of
given algebras. Choosing Φ = 2N, we get, for instance, the even Hochschild
cohomology rings of algebras.

(c) Certain trivial extensions: for an Artin algebra A and an A-module M , we
choose Φ = {0, i} for i � 1 an arbitrary natural number. Then E

Φ
A(M) is

the trivial extension of EndA(M) by the bimodule Exti
A(M, M). Such rings

appear naturally in the (bounded) derived category Db(X) of coherent sheaves
of a smooth projective variety X over C. Indeed, if X is a d-spherical object
in Db(X), then its cohomological ring End•

Db(X)(X) is E
{0,d}
Db(X)(X); this is a

graded ring isomorphic to C[t]/(t2) with t of degree d. For further information
on spherical objects, we refer the reader to [22, § 3c].

In general, if Φ = {0, a1, . . . , an} ⊆ N such that ai > 2ai−1 for i = 2, . . . , n,
then E

Φ
A(X) is the trivial extension of EndA(X) by the bimodule

⊕
0 �=i∈Φ

Exti
A(X, X).

Note that Φ = {0} ∪ {2n + 1 | n ∈ N} is admissible. In this case, we also get
a trivial extension.

(d) The polynomial ring R[t]: if we take Φ = mN for m � 1, then the perforated
Yoneda algebra E

Φ
R[x]/(x2)(R) is isomorphic to R[tm] with t a variable. If Φ =

{0, 1, . . . , n}, then
E

Φ
R[x]/(x2)(R) � R[t]/(tn).
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2.4. D-split sequences and cohomological D-approximations

D-split sequences have been defined in [11] in the context of constructing derived
equivalences between certain endomorphism algebras. Let us recall the definition
and a result in [11].

Let C be an additive category and D be a full subcategory of C. A sequence

X
f−→ M

g−→ Y

in C is called a D-split sequence if

(i) M ∈ D,

(ii) f is a left D-approximation of X and g is a right D-approximation of Y and

(iii) f is a kernel of g and g is a cokernel of f .

Typical examples of D-split sequences are Auslander–Reiten sequences. Every
D-split sequence provides a derived equivalence (see [11, theorem 1.1]). Here are
some details, for later reference.

Theorem 2.3 (Hu and Xi [11]). Let C be an additive category and M be an object
in C. Suppose that

X → M ′ → Y

is an add(M)-split sequence in C. Then the endomorphism ring EndC(M ⊕ X) of
M ⊕ X is derived equivalent to the endomorphism ring EndC(M ⊕ Y ) of M ⊕ Y
via a tilting module of projective dimension at most 1.

Now, the question arises of whether theorem 2.3 can be extended to Φ-Yoneda
algebras. The second example in § 5 demonstrates that this is no longer true if
we just replace the endomorphism algebras in theorem 2.3 by Φ-Yoneda algebras.
Nevertheless, we shall show that under certain orthogonality conditions there is still
a positive answer. This will be discussed in detail in the next section.

The condition (3) of a D-split sequence is a substitute in this general setup for
requiring the short sequence to be exact. Since triangles in triangulated categories
are replacements of short exact sequences, we may reformulate the notion of D-split
sequences in the following sense for triangulated categories.

Let T be a triangulated category with a shift functor [1], and let D be a full
additive subcategory of T . A triangle

X
α−→ M ′ β−→ Y → X[1]

in T is called a D-split triangle if M ′ ∈ D, the map α is a left D-approximation of
X and the map β is a right D-approximation of Y .

Thus, for an Artin R-algebra A, every D-split sequence in A-mod extends to a
D-split triangle in Db(A).

Next, we introduce the left and right cohomological D-approximations with re-
spect to (F, Φ), which generalize the notions of left and right D-approximations,
respectively.

Suppose that C is a category with an endo-functor F : C → C. Let D be a full
subcategory of C, and let Φ be a non-empty subset of N. If F has an inverse,
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then Φ may be chosen to be a subset of Z. Suppose that X is an object of C. A
morphism f : X → D in C is called a left cohomological D-approximation of X with
respect to (F, Φ) (or, for short, a left (D, F, Φ)-approximation of X) if D ∈ D, and
for any morphism g : X → F i(D′) with D′ ∈ D and i ∈ Φ there is a morphism
g′ : D → F i(D′) such that g = fg′. Here F 0 = idC . Similarly, we have the notion of
a right (D, F, Φ)-approximation of X in T , i.e. a morphism f : D → X with D in D
is called a right (D, F, Φ)-approximation of X if, for any i ∈ Φ and any morphism
g : F iD′ → X with D′ in D, there is a morphism g′ : F iD′ → D such that g = g′f .

Note that if F = idC and Φ = {0}, then we get the original notion of approxima-
tions in the sense of Auslander and Smalø. (In ring theory, such approximations are
called pre-envelope and pre-cover, respectively). Moreover, if 0 ∈ Φ, then every left
(D, F, Φ)-approximation of X is also a left D-approximation of X and every right
(D, F, Φ)-approximation of X is also a right D-approximation of X.

If F = [1] and T = Db(A) for an Artin algebra A, then HomT (X, F iY ) �
Exti

A(X, Y ) for all X, Y ∈ A-mod and all i � 0. For this reason, a (D, F, Φ)-
approximation has been called a cohomological approximation.

In this paper, we are mainly interested in the case where C is a triangulated
R-category T with a triangle functor F from T to itself and D is a full subcategory
of T . Thus, a morphism f : X → D with D ∈ D and X ∈ T is a left (D, F, Φ)-
approximation of X if and only if the canonical map

E
F,Φ
T (f, D′) : E

F,Φ
T (D, D′) → E

F,Φ
T (X, D′),

defined by (xi)∈Φ �→ (fxi)i∈Φ, is surjective for all D′ ∈ D. Similarly, a morphism
g : D → X with D ∈ D and X ∈ T is a right (D, F, Φ)-approximation of X if and
only if the canonical map

HomT (F jD′, g) : HomT (F jD′, D) → HomT (F jD′, X)

is surjective for every D′ ∈ D and j ∈ Φ. If, moreover, F is a triangle auto-
equivalence, then a morphism g : D → X with D ∈ D and X ∈ T is a right
(D, F, Φ)-approximation of X if and only if the canonical map

E
F,−Φ
T (D′, g) : E

F,−Φ
T (D′, D) → E

F,−Φ
T (D′, X)

is surjective for all D′ ∈ D. Note that here we need the minus sign for Φ and that
F−1 exists.

Note that if Φ contains zero and if HomT (X, F iD′) = 0 for all 0 �= i ∈ Φ
and D′ ∈ D, then f is a left (D, F, Φ)-approximation of X if and only if f is a
left D-approximation of X. A dual statement is also true for a right (D, F, Φ)-
approximation of X.

If F coincides with the shift functor [1], then we simply speak of (D, Φ)-approxi-
mations, without mentioning F .

Here is a source of examples of (D, Φ)-approximations. Suppose that T = Db(A)
for A an Artin R-algebra and that Φ is a subset of Z. Let

X
α−→ M

β−→ Y → X[1]

be an Auslander–Reiten triangle in T . If neither X nor Y belongs to add(M [i]) for
every 0 �= i ∈ Φ, then α is a left (add(M), Φ)-approximation of X and β is a right
(add(M), Φ)-approximation of Y .
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Finally, we note the difference of a left (D, F, Φ)-approximation of X from a
left (

⋃
i∈Φ F iD)-approximation of X in the sense of Auslander and Smalø, where⋃

i∈Φ F iD is the full subcategory of T with all objects in F iD for all i ∈ Φ. Sup-
pose that 0 ∈ Φ. Then a (D, F, Φ)-approximation is a (

⋃
i∈Φ F iD)-approximation,

but the converse is not true in general. If 0 /∈ Φ, then the two concepts are inde-
pendent. So, roughly speaking, a cohomological D-approximation with respect to
(F, Φ) emphasizes not only the factorizations but also that the object belongs to
the given subcategory D (and not to F iD for 0 �= i ∈ Φ).

3. Derived equivalences for Φ-Yoneda algebras

In this section, we shall prove theorem 1.1 and derive some consequences and some
simplifications in special cases.

Suppose that T is a triangulated R-category with a shift functor [1] and M is
an object in T . Suppose that F is a triangle auto-equivalence of T , which may be
different from the shift functor.

For a subset Φ of Z, we define −Φ := {−x | x ∈ Φ} and

X
F,Φ
T (M) = {X ∈ T | HomT (X, F iM) = 0 for all i ∈ Φ \ {0}},

Y
F,Φ
T (M) = {Y ∈ T | HomT (M, F iY ) = 0 for all i ∈ Φ \ {0}}.

Let n be a positive integer. For brevity, we write XF,n(M) for X
F,{0,1,2,...,n}
T (M)

and XF,∞(M) for X
F,N
T (M) if T is clear in the context. YF,n(M) and YF,∞(M) are

defined similarly.
As usual, F is omitted in notation when it coincides with the shift functor.
Given a triangle

X
α−→ M1

β−→ Y
w−→ X[1] in T

with M1 ∈ add(M), we define

w̃ = (w, 0) : Y → (X ⊕ M)[1], w̄ = (0, w)T : M ⊕ Y → X[1],

where (0, w)T denotes the transpose of the matrix (0, w), and

I := {x = (xi) ∈ E
F,Φ
T (X ⊕ M) | xi = 0 for 0 �= i ∈ Φ,

x0 factorizes through add(M) and w̃[−1]},

J := {y = (yi) ∈ E
F,Φ
T (M ⊕ Y ) | yi = 0 for 0 �= i ∈ Φ,

y0 factorizes through add(M) and w̄}.

The sets I and J are indeed independent of F and Φ \ {0}, and contained in
EndT (X ⊕ M) and EndT (M ⊕ Y ), respectively.

The main result of this paper is the following theorem, which is a reformulation
of theorem 1.1.

Theorem 3.1. Let Φ be an admissible subset of Z, let T be a triangulated R-
category with a triangle auto-equivalence F and let M be an object in T . Suppose
that

X
α−→ M1

β−→ Y
w−→ X[1]
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is a triangle in T such that the morphism α is a left (add(M), F, Φ)-approximation
of X, the morphism β is a right (add(M), F,−Φ)-approximation of Y and X ∈
YF,Φ(M) and Y ∈ XF,Φ(M). Then the algebras

E
F,Φ
T (X ⊕ M)/I and E

F,Φ
T (M ⊕ Y )/J

are derived equivalent.

Proof. Let V = X ⊕ M and W = M ⊕ Y . Set

ᾱ := (α, 0) : X → M1 ⊕ M, α̃ :=
(

α 0
0 1

)
: X ⊕ M → M1 ⊕ M,

β̄ :=
(

0 β

1 0

)
: M1 ⊕ M → M ⊕ Y, β̃ :=

(
β

0

)
: M1 ⊕ M → Y,

w̄ :=
(

0
w

)
: M ⊕ Y → X[1], w̃ := (w, 0) : Y → (X ⊕ M)[1].

Then there are two triangles in T :

X
ᾱ−→ M1 ⊕ M

β̄−→ W
w̄−→ X[1],

Y [−1]
−w̃[−1]−−−−−→ V

α̃−→ M1 ⊕ M
β̃−→ Y.

Since F is a triangle functor, there exists a natural isomorphism δ : F [1] →
[1]F . That is, for any object X in T , there is an isomorphism δX : F (X[1]) →
(FX)[1] that is natural in X. The isomorphism F i(X[j]) → (F iX)[j] is denoted by
δ(F, i, X, j).

First, we have the following lemma.

Lemma 3.2.

(i) For any morphism yi : V → F iV with i ∈ Φ, there is a morphism ti : Y [−1] →
(F iY )[−1] such that (w̃[−1])yi = tiδ(F, i, Y,−1)−1(F i(w̃[−1])).

(ii) For any morphism xi : W → F iW with i ∈ Φ, there is a morphism ti : X[1] →
(F iX)[1] such that xi(F iw̄)δ(F, i, X, 1) = w̄ti.

Proof. (i) Note that α̃ is a left (add(M), F, Φ)-approximation of V . Thus, given
yi : V → F iV , there is a morphism zi : M1 ⊕ M → F i(M1 ⊕ M) such that α̃zi =
yi(F iα̃). Since F is a triangle functor, the second triangle implies that there is a
triangle (see [8, p. 4])

(F iY )[−1]
δ(F,i,Y,−1)−1(−F i(w̃[−1]))−−−−−−−−−−−−−−−−−−→ F iV

F iα̃−−→ F i(M1 ⊕ M)
F iβ̃−−→ F iY.

Thus, there is a morphism ti : Y [−1] → (F iY )[−1] such that

(w̃[−1])yi = tiδ(F, i, Y,−1)−1(F i(w̃[−1])).

(ii) The proof is similar to that of (i), using the following triangle:

F iX
F iᾱ−−→ F i(M1 ⊕ M)

F iβ̄−−→ F iW
(F iw̄)δ(F,i,X,1)−−−−−−−−−−→ (F iX)[1].
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Now we prove that the quotient rings in theorem 3.1 are well defined.

Lemma 3.3. The I and J appearing in theorem 3.1 are ideals of E
F,Φ
T (V ) and

E
F,Φ
T (W ), respectively.

Proof. We shall only prove that I is an ideal in E
F,Φ
T (V ). The proof for J can be

carried out analogously.
The set I is closed under addition in E

F,Φ
T (V ). To show that I is a two-sided

ideal in E
F,Φ
T (V ), we pick an x = (xi)i∈Φ ∈ I and a y = (yi)i∈Φ ∈ E

F,Φ
T (V ) and

calculate the products xy and yx in E
F,Φ
T (V ). We write x0 = uv for u : V → M ′

and v : M ′ → V , where M ′ is an object in add(M), and x0 = s(w̃[−1]) for a
morphism s : V → Y [−1]. Note that xy = (x0yi)i∈Φ and yx = (yiF

ix0)i∈Φ, since
xi = 0 for 0 �= i ∈ Φ.

We first show that I is a right ideal.

(i) Let i = 0. The map x0y0 factorizes through an object in add(M). Since x0
factorizes through w̃[−1], it follows from lemma 3.2(i) that x0y0 also factorizes
through w̃[−1].

(ii) Let 0 �= i ∈ Φ. In this case, HomT (M, F iX) = 0 by the assumption X ∈
YF,Φ(M). Let pX and pM be the projections of V onto X and M , respectively.
Then the composite

vyiF
ipX : M ′ v−→ V

yi−→ F iV
F ipX−−−→ F iX

belongs to HomT (M ′, F iX) = 0. Thus,

x0yiF
ipX = uvyiF

ipX = 0.

By lemma 3.2(i), there is a morphism ti : Y [−1] → F iY [−1] such that

(w̃[−1])yi = tiδ(F, i, Y,−1)−1F i(w̃[−1]).

Hence,

x0yi(F ipM ) = s(w̃[−1])yi(F ipM ) = stiδ(F, i, Y,−1)−1F i(w̃[−1])(F ipM )

= stiδ(F, i, Y,−1)−1F i(w̃[−1]pM )

= stiδ(F, i, Y,−1)−1F i

(
(w[−1], 0)

(
0

1M

))
= 0.

Altogether, x0yi = x0yi(F ipX , F ipM ) = 0 for 0 �= i ∈ Φ.
Hence, xy ∈ I, and I is a right ideal in E

F,Φ
T (V ).

Next, we show that I is a left ideal, that is, we check (yiF
ix0)i∈Φ ∈ I.

(iii) The map y0x0 factorizes through an object in add(M) and through w̃[−1].

(iv) Let 0 �= i ∈ Φ. Note that α̃ : V → M1 ⊕ M is a left (add(M), F, Φ)-approxima-
tion of V . Thus, there is a morphism

hi : M1 ⊕ M → F i(M ′)
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such that yi(F iu) = α̃hi. By assumption, HomT (M, F iX) = 0. This implies that
hi(F iv)(F ipX) = 0, and therefore yi(F ix0)(F ipX) = 0. Since (F iw̃[−1])(F ipM ) =
0, we get yi(F ix0)(F ipM ) = 0. Thus, yiF

ix0 = 0 for 0 �= i ∈ Φ.
Hence, yx ∈ I, and I is a left ideal in E

F,Φ
T V . Thus, I is an ideal in E

F,Φ
T (V ).

We know that E
F,Φ
T (V, Z) is an E

F,Φ
T (V )-module for any object Z in T . The

following lemma shows that the ideal I of E
F,Φ
T (V ) may annihilate some modules

of this form.

Lemma 3.4. Keep the notation as above. Then we have the following.

(i) I · E
F,Φ
T (V, M) = 0.

(ii)

I · E
F,Φ
T (V, X) = {(xi)i∈Φ ∈ E

F,Φ
T (V, X) | xi = 0 for 0 �= i ∈ Φ,

x0 factorizes through add(M) and w[−1]}.

(iii) For x = (xi)i∈Φ ∈ E
F,Φ
T (V ′, X) with V ′ ∈ add(V ), we have

Im(µ(x)) ⊆ I · E
F,Φ
T (V, X)

if and only if xi = 0 for all 0 �= i ∈ Φ and x0 factorizes through add(M) and
w[−1], where µ is defined in lemma 2.2(i).

(iv) Let f : M ′ → X with M ′ ∈ add(M). Then Im(EF,Φ
T (V, f)) ⊆ I · E

F,Φ
T (V, X) if

and only if f factorizes through w[−1].

Proof. (i) We denote by λM = (0, 1) : M → V the canonical inclusion. Let (xi)i∈Φ ∈
I and (yi)i∈Φ ∈ E

F,Φ
T (V, M). Then (xi)(yi) = (x0yi)i∈Φ, since xi = 0 for 0 �= i ∈ Φ. It

follows, since I is an ideal in E
F,Φ
T (V ), that x(yi(F iλM ))i∈Φ = (x0yi(F iλM ))i∈Φ ∈ I.

By the definition of I, we have x0yi(F iλM ) = 0 for all 0 �= i ∈ Φ and x0y0λM

factorizes through w̃[−1]. Moreover,

x0y0λM = (x0y0λMpM )λM = s(w̃[−1]pM )λM = s · 0 · λM = 0,

where s is a morphism from V to Y [−1]. Hence, x0yi(F iλM ) = 0 and

x0yi = x0yi(F iλM )(F ipM ) = 0 · F ipM = 0 for all i ∈ Φ.

Thus, (i) follows.

(ii) Let λX : X → V be the canonical inclusion. As in (i), it follows that, for
(xi)i∈Φ ∈ I and (yi)i∈Φ ∈ E

F,Φ
T (V, X), we have (xi)(yi) = (x0yi)i∈Φ, and that

x0y0λX factorizes through w̃[−1] and add(M). Hence,

x0y0 = (x0y0λX)pX = s(w̃[−1])pX = s(w[−1]),

where s is a morphism from V to Y [−1]. Conversely, let x = (xi)i∈Φ ∈ E
F,Φ
T (V, X)

and suppose that xi = 0 for all 0 �= i ∈ Φ and that x0 factorizes through add(M) and
w[−1]. For f : U → Z in T , we denote by f the element of E

F,Φ
T (U, Z) concentrated

only in degree 0 ∈ Φ. Then it is straightforward to check that xλX belongs to I.
Thus, x = xλXpX ∈ I · E

F,Φ
T (V, X).
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(iii) Firstly, suppose V ′ = V and Im(µ(x)) ⊆ I · E
F,Φ
T (V, X). Then x, the image

of 1V under µ(x), belongs to I · E
F,Φ
T (V, X). Thus, by (ii), we know that xi = 0

for all 0 �= i ∈ Φ and that x0 factorizes through add(M) and w[−1]. Conversely,
suppose that x ∈ I · E

F,Φ
T (V, X). Then, for any y ∈ E

F,Φ
T (V ), the image of y under

µ(x) is y · x. Since I · E
F,Φ
T (V, X) is an E

F,Φ
T (V )-submodule of E

F,Φ
T (V, X), we have

yx ∈ I · E
F,Φ
T (V, X).

Secondly, suppose that V ′ is a direct sum of n copies of V , and x ∈ E
F,Φ
T (V ′, X).

We identify E
F,Φ
T (V ′, X) with

⊕n
i=1 E

F,Φ
T (V, X) and write x = (a1, . . . , an)T, a

column matrix with ai ∈ E
F,Φ
T (V, X). Then the image of µ(x) is the sum of the

image of µ(ai) for 1 � i � n. Now the conclusion follows from the first case.
Finally, suppose that V ′ is a direct summand of n copies of V , that is,

n⊕
i=1

V = V ′ ⊕ V ′′.

If x ∈ E
F,Φ
T (V ′, X), we may consider (x, 0)T to be an element in E

F,Φ
T (

⊕n
i=1 V, X).

Then the proof is reduced to the second case.

Part (iv) follows from (iii) because E
Φ
T (V, f) = µ(f).

Let T̃ • be the complex

T̃ • : 0 → E
F,Φ
T (V, X)

E
F,Φ
T (V,ᾱ)−−−−−−→ E

F,Φ
T (V, M1 ⊕ M) → 0,

where the term E
F,Φ
T (V, X) is in degree zero. Then it is the direct sum of the

following two complexes:

0 → E
F,Φ
T (V, X)

E
F,Φ
T (V,α)−−−−−−→ E

F,Φ
T (V, M1) → 0,

0 → 0 → E
F,Φ
T (V, M) → 0.

Let P = E
F,Φ
T (V, X)/I · E

F,Φ
T (V, X) and let p : E

F,Φ
T (V, X) → P be the canonical

surjection. Then, by lemma 3.4(i), we may write E
F,Φ
T (V, ᾱ) = pq with q : P →

E
F,Φ
T (V, X). The complex

T • : 0 → P → E
F,Φ(V, M1 ⊕ M) → 0

in Db(EF,Φ
T (V )/I) is the direct sum of the complexes

0 → P
q−→ E

F,Φ
T (V, M1) → 0,

0 → 0 → E
F,Φ
T (V, M) → 0.

Each term of T • is a finitely generated projective E
F,Φ
T (V )/I-module.

Before proceeding further, we need to introduce some more notation. Set

Λ := E
F,Φ
T (V ), Γ := E

F,Φ
T (W ), Λ̄ := Λ/I, Γ̄ := Γ/J,

where I and J are defined just before theorem 3.1.

Lemma 3.5. T • is a tilting complex over Λ̄.
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Proof. It is clear that
HomKb(Λ̄-proj)(T

•, T •[i]) = 0
for i � −2 and i � 2. We have to check that

HomKb(Λ̄-proj)(T
•, T •[1]) = 0 and HomKb(Λ̄-proj)(T

•, T •[−1]) = 0.

In the following, for a morphism f• between complexes U• and V •, we write [f•]
for the class of f• in the homotopy category.

Let [f•] ∈ HomKb(Λ̄-proj)(T •, T •[1]). Consider the following diagram:

E
F,Φ
T (V, X)

p

��
0 ��

��

P
q ��

f0

��

E
F,Φ
T (V, M1 ⊕ M) ��

��

0

0 �� P
q �� EF,Φ

T (V, M1 ⊕ M) �� 0

Since both X and M1 ⊕ M are in add(V ), lemma 2.2(i) provides an isomorphism
µ : E

F,Φ
T (X, M1 ⊕ M) � HomΛ(EF,Φ

T (V, X), EF,Φ
T (V, M1 ⊕ M)) and an element u =

(ui)i∈Φ ∈ E
F,Φ
T (X, M1 ⊕ M) such that pf0 = µ(u). By assumption, ᾱ is a left

(add(M), F, Φ)-approximation of X. This yields a morphism

u′
i : M1 ⊕ M → F i(M1 ⊕ M)

for each i ∈ Φ such that ui = ᾱu′
i. Clearly, u′ := (u′

i)i∈Φ ∈ E
F,Φ
T (M1 ⊕ M, M1 ⊕ M)

and µ(u′) ∈ HomΛ(EF,Φ
T (V, M1 ⊕ M), EF,Φ

T (V, M1 ⊕ M)). Now, we have to check
that the following diagram is commutative:

E
F,Φ
T (V, X)

E
F,Φ
T (V,ᾱ) ��

µ(u)
��

E
F,Φ
T (V, M1 ⊕ M)

µ(u′)
��

E
F,Φ
T (V, M1 ⊕ M) E

F,Φ
T (V, M1 ⊕ M)

In fact, if a = (aj)j∈Φ ∈ E
F,Φ
T (V, X), then it is sent to b := (ajF

j(ᾱ))j∈Φ by
E

F,Φ
T (V, ᾱ) and further sent to bu′ = (aj(F jᾱ))j∈Φu′ by µ(u′). An easy calculation

shows that bu′ = au, the image of a under µ(u). Thus, the diagram is commutative
and

pf0 = µ(u) = E
F,Φ
T (V, ᾱ)µ(u′) = pqµ(u′).

This means that f0 = qµ(u′) (since p is surjective) and that [f•] = 0 in Kb(Λ̄-proj).
Therefore, HomKb(Λ̄-proj)(T •, T •[1]) = 0.

Let [f•] ∈ HomKb(Λ̄-proj)(T •, T •[−1]). Consider the following diagram:

0 �� P

��

q �� EF,Φ
T (V, M1 ⊕ M) ��

f1

��

0

��
0 �� P

q �� EF,Φ
T (V, M1 ⊕ M) �� 0
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Since p is surjective and E
F,Φ
T (V, M1⊕M) is projective in Λ-mod, the map f1 can be

lifted along p, say f1 = gp with g : E
Φ
T (V, M1 ⊕ M) → E

F,Φ
T (V, X). By assumption,

we have X ∈ YF,Φ(M) and, by lemma 2.2(iii), there is a homomorphism u : M1 ⊕
M → X such that g = E

F,Φ
T (V, u). Thus,

E
F,Φ
T (V, uᾱ) = E

F,Φ
T (V, u)EF,Φ

T (V, ᾱ) = gpq = f1q = 0.

Lemma 2.2(ii) implies uᾱ = 0 = uα. Therefore, u factorizes through −w[−1]. By
lemma 3.4(iv), the image of g(= E

F,Φ
T (V, u)) is contained in I ·EF,Φ

T (V, X). It follows
that f1 = gp = 0 and [f•] = 0. Hence,

HomKb(Λ̄-proj)(T
•, T •[−1]) = 0.

It is easy to see that the subcategory add(T •) generates Kb(Λ̄-proj) as a trian-
gulated category. Thus, T • is a tilting complex over Λ̄.

Remark 3.6. To get a tilting complex from T̃ •, one may consider the ideal I0 of
E

Φ
T (V ) consisting of all endomorphisms V → V which are of the form fg with

f : V → M ′ and g : M ′ → V such that M ′ ∈ add(M) and gα̃ = 0. Then it is easy to
show that the quotient complex of T̃ • modulo I0T̃

• is a two-term tilting complex
over E

Φ
T (V )/I0. We shall not use this complex, because its endomorphism algebra

cannot be described in a nice way. Note that the ideal I0 of E
Φ
T (V ) is properly

contained in I in general.

Lemma 3.7. The two rings Γ̄ and EndKb(Λ̄-proj)(T •) are isomorphic.

Proof. Since Λ̄ is a quotient algebra of Λ, the category Λ̄-mod can be viewed as
a full subcategory of Λ-mod, and it follows that Kb(Λ̄) can be viewed as a full
subcategory of Kb(Λ). Thus, we have an isomorphism

EndKb(Λ̄-proj)(T
•) � EndKb(Λ)(T

•).

To prove the lemma, we shall construct an isomorphism from EndKb(Λ)(T •) to Γ̄ .
Let [f•] ∈ EndKb(Λ)(T •). Since p : E

F,Φ
T (V, X) → P is an epimorphism and

E
F,Φ
T (V, X) is a projective Λ-module, there is a Λ-module homomorphism

u0 : E
F,Φ
T (V, X) → E

F,Φ
T (V, X)

such that u0p = pf0. Let u1 := f1 and ui = 0 for all i �= 0, 1. Then it follows from

u0
E

F,Φ
T (V, ᾱ) = u0pq = pf0q = pqf1 = E

F,Φ
T (V, ᾱ)u1

that u• = (ui)i∈Z is an endomorphism in EndCb(Λ)(T̃ •). By lemma 2.2(i), we can
assume that u0 = µ(x) and u1 = µ(y) with x = (xi)i∈Φ ∈ E

F,Φ
T (X) and y =

(yi)i∈Φ ∈ E
F,Φ
T (M1 ⊕ M). Now, it follows from

E
F,Φ
T (V, ᾱ)u1 = u0

E
F,Φ
T (V, ᾱ)

that
(ᾱyi)i∈Φ = (xiF

iᾱ)i∈Φ, that is, ᾱyi = xiF
iᾱ for i ∈ Φ.
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For each i ∈ Φ, we can form the following commutative diagram in T :

X
ᾱ ��

xi

��

M1 ⊕ M
β̄ ��

yi

��

W
w̄ ��

hi

��

X[1]

xi[1]
��

F iX
F iᾱ �� F i(M1 ⊕ M)

F iβ̄ �� F iW
(F iw̄)δ(F,i,X,1)�� (F iX)[1]

(3.1)

for some morphism hi ∈ HomT (W, F iW ). Thus, for each [f•] ∈ EndKb(Λ)(T •), we
get an element h := (hi)i∈Φ ∈ Γ which is E

F,Φ
T (W ) by definition. This leads us to

defining the following correspondence:

Θ : EndKb(Λ)(T
•) → Γ̄ = Γ/J, [f•] �→ h + J.

Claim 3.8. Θ is well defined.

Proof of claim 3.8. Suppose that [f•] ∈ EndKb(Λ)(T •) is null-homotopic, that is,
there is a map

r : E
F,Φ
T (V, M1 ⊕ M) → P

such that f0 = qr and f1 = rq. Since p is surjective and E
F,Φ
T (V, M1 ⊕ M) is

projective in Λ-mod, there is a map

s : E
F,Φ
T (V, M1 ⊕ M) → E

F,Φ
T (V, X)

such that sp = r. Hence, (u0 − pqs)p = u0p − pqsp = u0p − pqr = u0p − pf0 = 0
and u1 = rq = spq. By the assumption X ∈ YF,Φ(M), lemma 2.2(iii) yields a map
t : M1 ⊕ M → X such that s = E

F,Φ
T (V, t) = µ(t). Therefore,

µ(x − ᾱt)p = (u0 − E
Φ
T (V, ᾱ)EΦ

T (V, t))p = (u0 − pqs)p = 0

and µ(y − tᾱ) = u1 − spq = 0. Consequently, Im(µ(x − ᾱt)) ⊆ I · E
F,Φ
T (V, X) and

y − tᾱ = 0. Thus, yi = 0 for all 0 �= i ∈ Φ and y0 = tᾱ. By lemma 3.4(iii), we
have xi = 0 for all 0 �= i ∈ Φ and x0 − ᾱt = ab for some morphisms a : X → M ′

and b : M ′ → X with M ′ ∈ add(M). Since ᾱ is a left add(M)-approximation of X,
there is a morphism c : M1 ⊕ M → M ′ such that a = ᾱc. It follows that

x0 = ab + ᾱt = ᾱcb + ᾱt = ᾱ(cb + t).

Now we consider the commutative diagram (3.1). Suppose that 0 �= i ∈ Φ. Then
we have shown that xi = yi = 0. Hence, β̄hi = yiF

iβ̄ = 0. This implies that hi

factorizes through w̄, and, consequently, that hi|M = 0, since w̄|M = 0. It follows
from hi(F iw̄)δ(F, i, X, 1) = w̄(xi[1]) = 0 that hi : W → F iW factorizes through
F i(M1 ⊕M). Since Y ∈ XF,Φ(M), we get hi|Y = 0. Altogether, we have shown that
hi = 0 for all 0 �= i ∈ Φ. Now consider the diagram (3.1) in the case when i = 0.
First, we have β̄h0 = y0β̄ = tᾱβ̄ = 0, which means that h0 factorizes through w̄.
Second, since

h0w̄ = w̄(x0[1]) = w̄(ᾱ[1])(cb + t)[1] = 0,

the morphism h0 factorizes through M1 ⊕ M which is in add(M). Thus, h ∈ J and
h + J is zero in Γ̄ . This shows that Θ is well defined.
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Claim 3.9. Θ is injective.

Proof of claim 3.9. Suppose that Θ([f•]) = h + J = 0 + J . Then h ∈ J , i.e. hi = 0
for all 0 �= i ∈ Φ, and h0 factorizes through both w̄ and add(M). Suppose that
h0 = w̄s for a morphism s : X[1] → W . For each 0 �= i ∈ Φ, since yiF

iβ̄ = β̄hi = 0,
the morphism yi : M1⊕M → F i(M1⊕M) factorizes through F iX, and consequently
yi = 0 for all 0 �= i ∈ Φ, since X ∈ YF,Φ(M). For each 0 �= i ∈ Φ, it follows from
w̄(xi[1]) = hi(F iw̄)δ(F, i, X, 1) = 0 that xi[1] factorizes through (M1 ⊕ M)[1] or,
equivalently, the morphism xi : X → F iX factorizes through M1⊕M . Hence, xi = 0
for all 0 �= i ∈ Φ, since X ∈ YF,Φ(M). Now we consider the case when i = 0. First, we
have y0β̄ = β̄h0 = β̄w̄s = 0, which implies y0 = tᾱ for a morphism t : M1⊕M → X.
Second, (x0−ᾱt)ᾱ = ᾱy0−ᾱtᾱ = ᾱy0−ᾱy0 = 0. It follows that (x0−ᾱt)α = 0, and
therefore x0 − ᾱt factorizes through −w[−1]. Since h0 : W → W factorizes through
add(M) and since β̄ : M1 ⊕ M → W is a right add(M)-approximation of W , we
see that h0 factorizes through β̄, say h0 = rβ̄ for some r : W → M1 ⊕ M . Thus,
w̄(x0[1]) = h0w̄ = rβ̄w̄ = 0, or equivalently, (−w̄[−1])x0 = 0. It follows that x0
factorizes through M1 ⊕ M . Since ᾱt also factorizes through M1 ⊕ M , we see that
x0 − ᾱt factorizes through add(M). Thus, we have shown that x0 − ᾱt factorizes
through both add(M) and −w[−1]. Now, by lemma 3.4(iii), we have

Im(µ(x) − E
F,Φ
T (V, ᾱt)) = Im(µ(x − ᾱt)) ⊆ I · E

F,Φ
T (V, X).

Hence,

p(f0 − qE
F,Φ
T (V, t)p) = u0p − pqE

F,Φ
T (V, t)p = (µ(x) − E

F,Φ
T (V, ᾱt))p = 0.

This implies that f0 = q(EΦ
T (V, t)p) since p is surjective. Moreover, one can check

that
f1 = u1 = µ(y) = E

F,Φ
T (V, t)EF,Φ

T (V, ᾱ) = (EF,Φ
T (V, t)p)q.

Hence, f• is null-homotopic, and consequently Θ is injective.

Claim 3.10. Θ is surjective.

Proof of claim 3.10. Let h = (hi)i∈Φ ∈ Γ with hi : W → F iW for i ∈ Φ. Since β̄ is
a right (add(M), F,−Φ)-approximation of W , we have a morphism yi : M1 ⊕ M →
M1 ⊕ M such that β̄hi = yiF

iβ̄ for i ∈ Φ. This means that there is a commutative
diagram

X
ᾱ ��

xi

��

M1 ⊕ M
β̄ ��

yi

��

W
w̄ ��

hi

��

X[1]

xi[1]
��

F iX
F iᾱ �� F i(M1 ⊕ M)

F iβ̄ �� F iW
(F iw̄)δ(F,i,X,1)�� F iX[1]

Now, we define x := (xi)i∈Φ ∈ E
F,Φ
T (X), y := (yi)i∈Φ ∈ E

F,Φ
T (M1 ⊕ M); u0 := µ(x),

u1 := µ(y) and uj := 0 for j �= 0, 1. Then u• := (ui)i∈Z belongs to EndCb(Λ)(T̃ •).
Since

u0 : E
F,Φ
T (V, X) → E

F,Φ
T (V, X)
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takes elements in I · E
F,Φ
T (V, X) to elements in I · E

F,Φ
T (V, X), the image of I ·

E
F,Φ
T (V, X) under the map u0p is zero, and consequently there exists a unique map

f0 : P → P such that pf0 = u0p. Now we have

p(f0q − qu1) = pf0q − pqu1 = u0pq − pqu1 = u0
E

F,Φ
T (V, ᾱ) − E

F,Φ
T (V, ᾱ)u1 = 0.

Hence, f0q = qu1 since p is surjective. Defining f1 = u1 and f j = 0 for all j �= 0, 1,
we see that f• = (f i)i∈Z is an endomorphism in EndCb(Λ)(T •) and Θ([f•]) = h+J .
Thus, Θ is surjective.

Claim 3.11. Θ is an R-algebra homomorphism.

Proof of claim 3.11. The map Θ is R-linear, so it preserves addition. For multipli-
cation, we take [f•] and [g•] in EndKb(Λ)(T •). Let [u•] and [v•] be in EndKb(Λ)(T̃ •)
such that u0p = pf0, u1 = f1, v0p = pg0 and v1 = g1. Suppose that

(u0, u1) = (µ(x), µ(y)) and (v0, v1) = (µ(x′), µ(y′))

with x, x′ ∈ E
F,Φ
T (X) and y, y′ ∈ E

Φ
T (M1 ⊕ M). Let h := (hi)i∈Φ and h′ := (h′

i)i∈Φ

be in Γ , making the diagram (3.1) commutative, that is,

β̄ ∗ hi = β̄hi = yiF
iβ̄ = yi ∗ β̄,

β̄ ∗ h′
i = β̄h′

i = y′
iF

iβ̄ = y′
i ∗ β̄,

w̄(xi[1]) = hi(F iw̄)δ(F, i, X, 1) = (hi ∗ w̄)δ(F, i, X, 1),

w̄(x′
i[1]) = h′

i(F
iw̄)δ(F, i, X, 1) = (h′

i ∗ w̄)δ(F, i, X, 1),

for all i ∈ Φ. Then, by definition, we have Θ([f•]) = h + J , Θ([g•]) = h′ + J and

Θ([f•])Θ([g•]) =
( ∑

i,j∈Φ
i+j=k

hi ∗ h′
j

)
k∈Φ

+ J.

Now we calculate Θ([f•g•]). Let s• := u•v•. Then s0p = pf0g0 = p(f•g•)0, s1 =
f1g1 = (f•g•)1 and (s0, s1) = (µ(xx′), µ(yy′)), where

(xx′)k =
∑

i,j∈Φ
i+j=k

xi ∗ x′
j and (yy′)k =

∑
i,j∈Φ
i+j=k

yi ∗ y′
j .

For each k ∈ Φ, we have

(yy′)kF kβ̄ = (yy′)k ∗ β̄ =
( ∑

i,j∈Φ
i+j=k

yi ∗ y′
j

)
∗ β̄

= β̄ ∗
( ∑

i,j∈Φ
i+j=k

hi ∗ h′
j

)
= β̄

( ∑
i,j∈Φ
i+j=k

hi ∗ h′
j

)
.

Similarly, for each k ∈ Φ, we have( ∑
i,j∈Φ
i+j=k

hi ∗ h′
j

)
(F kw̄)δ(F, k, X, 1) = w̄((xx′)k[1]).
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This means that

Θ([f•][g•]) = Θ([f•g•]) =
( ∑

i,j∈Φ
i+j=k

hi ∗ h′
j

)
k∈Φ

+ J = Θ([f•])Θ([g•]).

Thus, Θ is a ring homomorphism, and the proof of theorem 3.1 is finished.

Before proceeding, we comment on the conditions in theorem 3.1.

Remark 3.12. (a) Let

X
α−→ M1

β−→ Y
w−→ X[1]

be a triangle in T with M1 ∈ add(M), X ∈ YF,Φ(M) and Y ∈ XF,Φ(M). If α is a
left (add(M), F, Φ)-approximation of X, then HomT (X, F iM) � HomT (M1, F

iM)
for 0 �= i ∈ Φ. Similarly, if β is a right (add(M), F,−Φ)-approximation of Y , then
HomT (M, F iY ) = HomT (M, F iM1) for 0 �= i ∈ Φ. In particular, if M is an (F, Φ)-
self-orthogonal object of T , that is, HomT (M, F iM) = 0 for every 0 �= i ∈ Φ, and
if α is a left (add(M), F, Φ)-approximation of X and β is a right (add(M), F,−Φ)-
approximation of Y , then X ∈ XF,Φ(M) and Y ∈ YF,Φ(M).

(b) Under the conditions of theorem 3.1, there are isomorphisms HomT (X, F iX) �
HomT (Y, F iY ) for every 0 �= i ∈ Φ. In fact, this follows from the following general
statement.

Let T be a triangulated category with a shift functor [1]. Suppose that F is a
triangle functor from T to itself and that D is a full subcategory of T . Let i be a
positive integer. Suppose that

Xj
αj−→ Dj

βj−→ Yj → Xj [1]

is a triangle in T , such that αj is a left (D, F, {i})-approximation of Xj , and that

HomT (D′, F i(βj)) : HomT (D′, F iDj) → HomT (D′, F iYj)

is surjective for every D′ ∈ D and j = 1, 2. If

HomT (D, F iXj) = 0 = HomT (Yj , F
iD)

for 1 � j � 2, then HomT (X1, F
iX2) � HomT (Y1, F

iY2).

Proof. From the given two triangles the following exact commutative diagram can
be formed:

HomT (D1, F
iX2) ��

��

HomT (D1, F
iD2)

(α1,F iD2)
��

HomT (X1, F
iX2) ��

��

HomT (X1, F
iD2)

0
��

HomT (Y1, F
iD2) ��

��

HomT (Y1, F
iY2) ��

��

HomT (Y1, F
iX2[1]) ��

��
(∗)

HomT (Y1, F
iD2[1])

��
HomT (D1, F

iD2)
(D1,F i(β2)) �� HomT (D1, F

iY2)
0 �� HomT (D1, F

iX2[1]) �� HomT (D1, F
iD2[1])
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Since
HomT (Y1, F

iD2) = HomT (D1, F
iX2) = 0

by assumption, and since HomT (α1, F
iD2) and HomT (D1, F

iβ2) are surjective
by the property of approximation, the conclusion follows from the commutative
square (∗).

(c) Let X
α−→ M1

β−→ Y
w−→ X[1] be an add(M)-split triangle in T . Define V :=

X ⊕ M , Λ0 := EndT (V ), W := M ⊕ Y and Γ0 := EndT (W ). Let I and J be as
defined in theorem 3.1. Then the ideals I and J in theorem 1.1 have the following
characterization.

(i) Let e be the idempotent in Γ0 corresponding to the direct summand M of
W . Then J is the submodule of the left Γ0-module Γ0eΓ0, which is maximal
with respect to eJ = 0.

(ii) Let f be the idempotent in Λ0 corresponding to the direct summand M of
V . Then I is the submodule of the right Λ0-module Λ0fΛ0, which is maximal
with respect to If = 0.

Proof. By lemma 3.3, the sets I and J are ideals of Λ0 and Γ0, respectively.

(i) Let pM : W → M and λM : M → W be the canonical projection and injec-
tion, respectively. By definition, e = pMλM . The set Γ0eΓ0 is precisely the set
of all endomorphisms of W that factorize through add(M). The endomorphisms
of W factorizing through w̄ are those endomorphisms x that satisfy β̄x = 0, and
consequently

ex = pMλMx = pM (β̄|M )x = 0.

Hence, J is a submodule of Γ0Γ0eΓ0 with eJ = 0. Suppose that J̄ ⊆ Γ0Γ0eΓ0 is
another submodule containing J with eJ̄ = 0. Then eJ̄ = 0 implies

HomΓ0(HomT (W, M), J̄) = 0,

and consequently HomΓ0(HomT (W, M ′), J̄) = 0 for all M ′ ∈ add(M). For each
x ∈ J̄ , the image of the morphism HomT (W, x) is contained in J̄ since J̄ is a
left ideal of Γ0. Thus, the morphism HomT (W, β̄x) is a Γ0-module morphism from
HomT (W, M1 ⊕ M) to the image of HomT (W, x). Hence, HomT (W, β̄x) = 0, and
consequently β̄x = 0. This implies x ∈ J . Thus, (i) is proved.

(ii) The proof is similar to that of (i).

Note that if HomT (X, F iD′) = 0 for all 0 �= i ∈ Φ and D′ ∈ D, then f is a
left (D, F, Φ)-approximation of X if and only if f is a left D-approximation of X.
A dual statement is also true for a right (D, F, Φ)-approximation of X. Thus, a
special case of theorem 3.1 is the following corollary for D-split triangles (see § 2.4
for definition).

Corollary 3.13. Let Φ be an admissible subset of Z, T be a triangulated R-cate-
gory with a triangle auto-equivalence F and M be an object in T . Suppose that

X
α−→ M1

β−→ Y
w−→ X[1]
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is an add(M)-split triangle in T and that X and Y both are in XF,Φ(M)∩YF,Φ(M).
Then E

F,Φ
T (X ⊕ M)/I and E

F,Φ
T (M ⊕ Y )/J are derived equivalent.

Another special case of theorem 3.1 is the following corollary, which is useful for
constructing explicit examples.

Corollary 3.14. Let T be a triangulated R-category with [1] the shift functor, and
let M be an object in T . Suppose that X

α−→ M1
β−→ Y

w−→ X[1] is a triangle in T
such that M1 ∈ add(M), and suppose that X ∈ Yn+1(M) and Y ∈ Xn+1(M). Then,
for any admissible subset Φ of Nn, the algebras E

Φ
T (X ⊕ M)/I and E

Φ
T (M ⊕ Y )/J

are derived equivalent.

Proof. We show that β is a right (add(M),−Φ)-approximation of Y . Note that, for
i ∈ Φ, we always have i + 1 � n + 1. Hence, HomT (M, X[i + 1]) = 0 for i ∈ Φ. Now
apply HomT (M [−i], ·) with i ∈ Φ to the triangle X

α−→ M1
β−→ Y

w−→ X[1]:

· · · → HomT (M [−i], M1) → HomT (M [−i], Y ) → HomT (M [−i], X[1]) → · · · .

Because
HomT (M [−i], X[1]) = HomT (M, X[i + 1]) = 0,

the map β is a right (add(M),−Φ)-approximation of Y .
Similarly, it follows from Exti+1

T (Y, M) = 0 for i ∈ Φ that α is a left (add(M), Φ)-
approximation of X. Now, corollary 3.14 follows from theorem 3.1.

An interesting case of theorem 3.1 is when I = 0 and J = 0. The following
proposition is a sufficient condition for I = 0 and J = 0.

Proposition 3.15. Let X
α−→ M1

β−→ Y
w−→ X[1] be an add(M)-split triangle in T .

Define V := X ⊕M , Λ0 := EndT (V ), W := M ⊕Y and Γ0 := EndT (W ). Let I ′ be
the ideal of Λ0 consisting of all f : V → V that factorizes through w̃[−1] : Y [−1] →
V , and let J ′ be the ideal of Γ0 consisting of all g : W → W that factorizes through
w̄ : W → X[1].

(i) Suppose that Λ0 is an Artin algebra. If

add(topΛ0
HomT (V, X)) ∩ add(top(Λ0DΛ0)) = 0,

then I ′ = 0.

(ii) Suppose that Γ0 is an Artin algebra. If

add(topΓ0
HomT (W, Y )) ∩ add(soc(Γ0Γ0)) = 0,

then J ′ = 0.

By definition, there are inclusions I ⊆ I ′ and J ⊆ J ′. Sometimes it is easy to
verify that I ′ and J ′ vanish if the algebras Λ0 and Γ0 are described by quivers with
relations.

Proof of proposition 3.15. We prove (i). The proof of (ii) is similar and we omit it.
We have a triangle

Y [−1]
−w̃[−1]−−−−−→ V

α̃−→ M1 ⊕ M
β̃−→ Y ;
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apply HomT (·, V ) to this triangle, and get the following exact sequence of right
Λ0-modules:

HomT (M1 ⊕ M, V ) → HomT (V, V ) → C → 0,

where C is the cokernel of HomT (α̃, V ). Now, applying HomΛop
0

(HomT (M, V ), ·) to
the above exact sequence, we get another exact sequence, which is isomorphic to
the following exact sequence:

HomT (M1 ⊕ M, M)
(α̃,M)−−−−→ HomT (V, M) → HomΛop

0
(HomT (M, V ), C) → 0.

Since α̃ is a left add(M)-approximation of V , the map HomT (α̃, M) is surjec-
tive, and consequently HomΛop

0
(HomT (M, V ), C) = 0. So, the right Λ0-module

C has no composition factors in top(HomT (M, V )), and C has composition fac-
tors only in top(HomT (X, V )). This is equivalent to saying that the Λ0-module
D(C) has composition factors only in soc(D HomT (X, V )) which is isomorphic to
top(HomT (V, X)).

Let x : V → V be an element in I ′ ⊆ Λ0. Then x factorizes through −w̃[−1] or,
equivalently, xα̃ = 0. This implies that (D HomT (x, V ))(D HomT (α̃, V )) = 0. Thus,
the image of D HomT (x, V ) is contained in the kernel of D HomT (α̃, V ), which is
isomorphic to D(C). Therefore, if D HomT (x, V ) �= 0, then the top of the image
of D HomT (x, V ) is contained in add(topΛ0

HomT (V, X)) ∩ add(top(Λ0DΛ0)) = 0;
this is a contradiction. Thus, we must have HomT (x, V ) = 0. Since HomT (·, V ) is
a duality from add(V ) to Λop

0 -proj, we obtain x = 0. Thus, I ′ = 0.

Remark 3.16. If we substitute ‘add(M)-split’ for ‘left (add(M), Φ)-approximation’
and ‘right (add(M),−Φ)-approximation’ in proposition 3.15, and if we consider
E

Φ
T (V ) and E

Φ
T (W ) instead of Λ0 and Γ0, then proposition 3.15 is still true. The

proof is almost the same.

For the derived category of an abelian category, the following result provides an
explicit example for I = 0 = J .

Proposition 3.17. Let A be an abelian category and let M be an object of A.
Suppose that 0 → X

α−→ M1
β−→ Y → 0 is an exact sequence in A with M1 ∈ add(M).

Consider the induced triangle X
α−→ M1

β−→ Y
w−→ X[1] in Db(A). Then the ideals I

and J defined in theorem 3.1 vanish.

Proof. Every exact sequence 0 → X → M1 → Y → 0 in A gives rise to a triangle
X → M1 → Y → X[1] in Db(A). Now we show that the exactness of the given
sequence in A implies that the two ideals I and J in theorem 3.1 are equal to zero.
Since I is contained in EndDb(A)(X ⊕ M), it is sufficient to show that if a morphism
x : X ⊕M → X ⊕M factorizes through add(M) and w̃[−1], then x = 0. In fact, let
x be such a morphism. Then we see immediately that xα̃ = 0 in Db(A). Since A is
fully embedded in Db(A), we also have xα̃ = 0 in A. Consequently, x = 0 since α̃
is injective in A. Thus, I = 0. Dually, we can show J = 0. Hence, proposition 3.17
holds true.

As an immediate application of the proof of theorem 3.1 together with a result
on derived equivalences in [19], we have the following corollary.
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Corollary 3.18. We keep all assumptions of theorem 3.1. If Λ̄ and Γ̄ both are
left coherent rings (for example, if Φ is finite and T = Db(A) with A a finite-
dimensional algebra over a field), then fin dim(Λ̄)−1 � fin dim(Γ̄ ) � fin dim(Λ̄)−1,
where fin dim(Λ̄) stands for the finitistic dimension of Λ̄.

Recall that, given a ring S with identity, the finitistic dimension of S is defined
to be the supremum of the projective dimensions of finitely generated S-modules
of finite projective dimension.

Now, let us make a few remarks on theorem 3.1.
Since the map q in the proof of theorem 3.1 is not always injective, the tilting

complex T • is not, in general, isomorphic in Db(EF,Φ
T (V )/I) to a tilting module.

Thus, the derived equivalence presented in theorem 3.1 is not given by a tilting
module in general (in contrast with the situation of theorem 2.3). In fact, it is easy
to see that the derived equivalence in theorem 3.1 is given by a tilting module if
the kernel of E

F,Φ
T (V, α) is I · E

F,Φ
T (V, X).

Moreover, a small additive category may be embedded into an abelian category
of coherent functors (see [17, ch. IV, § 2]). However, this will not, in general, turn
a D-split sequence in the additive category into an exact sequence in the abelian
category, since otherwise the sequence would split, and it therefore cannot provide a
triangle in the derived category of the abelian category. Consequently, theorem 2.3
cannot be obtained from theorem 3.1 by taking Φ = {0} and embedding an additive
category into an abelian category.

Finally, we mention that theorem 3.1 generalizes the result [11, proposition 5.1]
by choosing Φ = {0}. Indeed, under the conditions of [11, proposition 5.1], the
ideals I and J in theorem 3.1 vanish. Theorem 3.1 covers various other situations,
some of which will be discussed in the next section.

4. Φ-Yoneda algebras in some explicit situations

In this section, we shall describe some natural habitats for theorem 3.1 and relate
them to several widely used concepts that fit with or simplify the assumptions of
theorem 3.1. Throughout, we choose F to be the shift functor of the triangulated
category considered.

We note that Dugas, in independent work [5] that is also motivated by [11], has
constructed derived equivalent pairs of symmetric algebras. As explained in [5, § 4,
remark 3] his examples appear in our framework too.

4.1. Derived categories of Artin algebras

A first consequence of theorem 3.1 is the following result for T = Db(A) with A
an Artin R-algebra.

Theorem 4.1. Let Φ be an admissible subset of N, let M be an A-module and let
0 → X

α−→ M1
β−→ Y →0 be an exact sequence in A-mod with α a left (add(M), Φ)-

approximation of X and β a right (add(M),−Φ)-approximation of Y in Db(A) such
that X ∈ YΦ(M) and Y ∈ XΦ(M). Then the perforated Yoneda algebras E

Φ
A(X ⊕ M)

and E
Φ
A(M ⊕ Y ) are derived equivalent.

Proof. This is a consequence of theorem 3.1 and proposition 3.17 if we take T =
Db(A).
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Under the assumptions of theorem 4.1, the higher cohomology group Exti
A(X, X)

of X is isomorphic to the higher cohomology groups Exti
A(Y, Y ) of Y for each

0 �= i ∈ Φ. This follows from the comment (b) before corollary 3.13.
If we relax the conditions on the exact sequence, but strengthen the orthogonality

conditions in theorem 4.1, then we get the following consequence.

Corollary 4.2. Suppose that M is an A-module. Let 0 → X
α−→ M1

β−→ Y → 0
be an add(M)-split sequence in A-mod such that X, Y ∈ Xn(M) ∩ Yn(M) for n a
positive number or infinity. Then, for any admissible subset Φ of Nn, the perforated
Yoneda algebras E

Φ
A(X ⊕ M) and E

Φ
A(M ⊕ Y ) are derived equivalent.

Note that the orthogonality conditions in corollary 4.2 occur very naturally in
Calabi–Yau categories (see § 4.2).

The following result shows that the orthogonality conditions are related to the
concepts of short cycle and short chain in A-mod [1, ch. IX, p. 313]. Recall that
a short cycle of length 2 from an indecomposable module X to X is a sequence
of non-zero radical homomorphisms X

f−→ M
g−→ X with M indecomposable; and a

short chain is a sequence of non-zero radical homomorphisms X
f−→ M

g−→ D Tr(X)
with X indecomposable.

Corollary 4.3. Let A be an Artin algebra and let 0 → X → M → Y → 0 be an
Auslander–Reiten sequence in A-mod. Suppose neither X nor Y lies on a short cycle
of length 2 or on a short chain. Then the trivial extension of EndA(X ⊕ M) by the
bimodule Ext1A(X, X) ⊕ Ext1A(M, M) is derived equivalent to the trivial extension
of EndA(M ⊕ Y ) by the bimodule Ext1A(Y, Y ) ⊕ Ext1A(M, M).

Proof. An Auslander–Reiten sequence 0 → X → M → Y → 0 is always an add(M)-
split sequence. Since Y does not lie on a short cycle, the Auslander–Reiten formula

DHomA(Tr D(X), M) � Ext1A(M, X) � DHomA(X, D Tr(M))

(see [1, p. 131]) implies Ext1A(M, X) = 0. Moreover, X not lying on a short
cycle implies Ext1A(Y, M) = 0. Similarly, the Auslander–Reiten formula yields that
Ext1A(X, M) = 0 (since X does not lie on a short chain) and that Ext1A(M, Y ) = 0
(since Y does not lie on a short chain). Thus, corollary 4.3 follows from corollary 4.2
when n = 1.

The next corollary is a consequence of corollary 4.2.

Corollary 4.4. Let A be an Artin algebra and let X be an A-module such that
Exti

A(X, A) = 0 for all 1 � i < n + 2 with n a fixed positive integer or infinity.
Then, for any admissible subset Φ of Nn, the perforated Yoneda algebras E

Φ
A(A ⊕ X)

and E
Φ
A(A ⊕ Ω(X)) are derived equivalent.

Proof. If Exti
A(X, A) = 0 for a fixed i � 1, then

0 → Ωi(X) → Pi−1 → Ωi−1(X) → 0

is an add(AA)-split sequence in A-mod, where Pi is a projective cover of Ωi(X).
Using this fact, corollary 4.4 follows immediately from corollary 4.2.
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The condition Exti
A(X, A) = 0 on X in corollary 4.4 is related to the context of

the generalized Nakayama conjecture. This states that if an A-module T satisfies
Exti

A(A ⊕ T, A ⊕ T ) = 0 for all i > 0, then T should be projective. Corollary 4.4
(or [11, theorem 1.1]) describes the shape of the syzygy modules Ωi(X): if X is
indecomposable and non-projective and satisfies Exti

A(X, A) = 0 for all i > 0,
then, for each j � 0, there is an indecomposable non-projective module Lj such
that Ωj(X) � L

mj

j for an integer mj > 0.
In corollary 4.4, there are isomorphisms Exti

A(X, X) � Exti
A(Ω(X), Ω(X)) for

all i � 1. Thus, the algebras E
Φ
A(A ⊕ X) and E

Φ
A(A ⊕ Ω(X)) are the extensions

of EndA(A ⊕ X) and EndA(A ⊕ Ω(X)) by the same ideal E
Φ\{0}
A (X, X), respec-

tively. The algebras E
Φ
A(X ⊕ M) and E

Φ
A(M ⊕ Y ) in corollary 4.2, however, are the

extensions of EndA(X ⊕ M) and EndA(M ⊕ Y ) by possibly different ideals

E
Φ\{0}
A (M) ⊕ E

Φ\{0}
A (X) and E

Φ\{0}
A (M) ⊕ E

Φ\{0}
A (Y ),

respectively.
Recall that a module M ∈ A-mod is called reflexive if the evaluation map

αM : M → M∗∗ := HomAop(HomA(M, A), AA)

is an isomorphism of modules.

Corollary 4.5. Let M be a reflexive A-module. Then, for any subset 0 ∈ Φ ⊆
{0, 1}, the perforated Yoneda algebras E

Φ
A(D(AA) ⊕ D Tr(M)) and E

Φ
A(D(AA) ⊕

Ω−1(D Tr(M))) are derived equivalent, where Ω−1 is the co-syzygy operator.

Proof. By [1, ch. IV, proposition 3.2], the kernel and cokernel of the evaluation map
αM are Ext1Aop(Tr(M), A) and Ext2Aop(Tr(M), A), respectively. As

E
Φ
A(U) � E

Φ
Aop(D(U))op

for any A-module U , corollary 4.5 follows from corollary 4.4 for right modules.

A special case of corollary 4.4, or corollary 4.5, is the following result on self-
injective algebras, which was obtained in [10, corollary 3.14].

Corollary 4.6. If A is a self-injective Artin algebra, then, for any admissible
subset Φ of N, the perforated Yoneda algebras E

Φ
A(A ⊕ X) and E

Φ
A(A ⊕ Ω(X)) are

derived equivalent.

Another concept related to the generalized Nakayama conjectures and to modules
being projective and injective is the dominant dimension of an algebra or a module.

Suppose that A is an Artin R-algebra. By definition, the dominant dimension of
A is greater than or equal to n if, in the minimal injective resolution of AA,

0 → A → I0 → I1 → · · · → In−1 → In → · · · ,

the first n injective A-modules I0, . . . , In−1 are projective. In this case we write
dom dim(A) � n. Let Ci be the cokernel of the map Ii−1 → Ii.

For an A-module X, we define a(X) to be the number of non-isomorphic inde-
composable direct summands of M . The self-injective measure of A is defined to
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be the number m(A) := a(A) − a(I0), where I0 is an injective hull of A. Thus, if A
is self-injective, then m(A) = 0. If dom dim (A) � 1, then A is self-injective if and
only if m(A) = 0. So the famous Nakayama conjecture can be reformulated as: if
dom dim (A) = ∞, then m(A) = 0.

Corollary 4.7. Let A be an Artin algebra and let T be the direct sum of all non-
isomorphic indecomposable projective-injective A-modules.

(i) If dom dim (A) � n � 2, then EndA(T ⊕ Ci) is derived equivalent to A for
1 � i < n.

(ii) If dom dim (A) � n + 1 < ∞, then m(A) = a(Cn).

Proof. Since the sequence 0 → Ci−1 → Ii → Ci → 0 is an add(Ii)-split sequence
(or an add(T )-split sequence), the orthogonality conditions in corollary 4.2 are triv-
ially satisfied. Derived equivalence preserves the number of non-isomorphic simple
modules. Therefore, corollary 4.7 now follows from corollary 4.2. Here we also use
the observation that add(Ci)∩add(Ij) = {0} for all 0 � i, j � n. Alternatively, one
can also use theorem 2.3 to prove this corollary.

Examples of algebras of dominant dimension at least n can be obtained in
the following way: let A be a self-injective algebra and X be an A-module. If
Exti

A(X, X) = 0 for all 1 � i � n, then dom dim(EndA(A ⊕ X)) � n + 2.
Finally, we remark that the condition Exti

A(X, A) = 0 for an A-module X also
appears in Auslander-regular algebras.

Let Λ be a k-algebra over a field k. Recall that Λ is called Auslander-regular if
Λ has finite global dimension and satisfies the Gorenstein condition: if p < q are
non-negative integers and M is a finitely generated (left or right) Λ-module, then
Extp

Λ(N, Λ) = 0 for every submodule N of Extq
Λop(M, Λ). Here, if M is a right

Λ-module, then N is a left Λ-module. Let j(M) be the minimal number r � 0 such
that Extr

Λop(M, Λ) �= 0. Then, for any submodule N of Extj(M)
Λop (M, Λ), we have

Exti
Λ(N, Λ) = 0 for 0 < i < j(M). Thus, the following corollary holds.

Corollary 4.8. Let Λ be an Auslander-regular k-algebra and M be a finitely gen-
erated right Λ-module. Then, for any submodule X of Extj(M)

Λop (M, Λ) and any
admissible subset Φ of Nj(M)−2, the algebras E

Φ
Λ(Λ ⊕ X) and E

Φ
Λ(Λ ⊕ Ω(X)) are

derived equivalent.

4.2. Calabi–Yau categories

The theory of Calabi–Yau and cluster categories provides very natural contexts
for our construction of derived equivalences.

Let k be a field and let T be a k-linear triangulated category which is Hom-finite,
i.e. the Hom-space HomT (X, Y ) is finite dimensional over k for all X and Y in T .

Recall that T is called (n + 1)-Calabi–Yau for some non-negative integer n if
there is a natural isomorphism between D HomT (X, Y ) and HomT (Y, X[n + 1])
for all X and Y in T , where D = Homk(·, k) is the usual duality. It follows that
Xn

T (M) = Yn
T (M) for M ∈ T . (See [13] for more information on Calabi–Yau cate-

gories.)
Note that if Φ = {0, 1, . . . , n}, then n − i ∈ Φ for each i ∈ Φ.
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Lemma 4.9. Let Φ = {0, 1, . . . , n}. Suppose that T is an (n + 1)-Calabi–Yau trian-
gulated category and that M is an object in T . Let

X
α−→ M1

β−→ Y → X[1]

be a triangle in T with M1 ∈ add(M). Then we have the following.

(i) The morphism α is a left (add(M), Φ)-approximation of X if and only if the
morphism β is a right (add(M),−Φ)-approximation of Y .

(ii) If α is a left (add(M), Φ)-approximation of X and if M is n-self-orthogonal,
then X ∈ Xn(M) ∩ Yn(M) and Y ∈ Xn(M) ∩ Yn(M).

Proof. We shall abbreviate HomT (·, ·) by (·, ·). First we assume that α is a left
(add(M), Φ)-approximation of X. Now, for each i ∈ Φ, there is a commutative
diagram with exact rows

(M [−i], M1)
(M [−i],β) ��

�
��

(M [−i], Y )

�
��

(M, M1[i])
(M,β[i])�� (M, Y [i]) �� (M, X[i + 1])

(M,α[i+1]) ��

�
��

(M, M1[i + 1])

�
��

D(X, M [n − i])
D(α,M [n−i]) �� D(M1, M [n − i])

Since n − i is in Φ, and since α is a left (add(M), Φ)-approximation of X, the map
(α, M [n − i]) is surjective, and consequently D(α, M [n − i]) is injective. Hence,
(M, α[i + 1]) is injective, and therefore (M [−i], β) is surjective. This shows that β
is a right (add(M),−Φ)-approximation of Y . The other implication in (i) can be
proved similarly.

(ii) It follows from (i) and remark 3.12(a) that X ∈ XΦ
T (M) and Y ∈ YΦ

T (M).
Since T is (n + 1)-Calabi–Yau, we have (M, X[i]) � D(X, M [n + 1 − i]) = 0 and
(M, Y [i]) � D(Y, M [n + 1 − i]) = 0 for all 0 �= i ∈ Φ. Thus, X ∈ YΦ

T (M) and
Y ∈ XΦ

T (M).

Corollary 4.10. Let Φ = {0, 1, . . . , n} and let T be an (n + 1)-Calabi–Yau tri-
angulated category. Suppose that M is n-self-orthogonal and Y ∈ Yn(M). Let
X

α−→ M1
β−→ Y

w−→ X[1] be a triangle in T with β a right add(M)-approximation
of Y . Then the algebras E

Φ
T (M ⊕ X)/I and E

Φ
T (M ⊕ Y )/J are derived equivalent,

where I and J are defined as in theorem 3.1.

Proof. Since Y ∈ YΦ
T (M), for each 0 �= i ∈ Φ, the map (M [−i], M1) → (M [−i], Y ) =

0 induced by β is surjective. Taking into account that β is a right add(M)-approxi-
mation of Y , we see that β is, in fact, a right (add(M),−Φ)-approximation of Y .
By proposition 4.9(i), the map α is a left (add(M), Φ)-approximation of X. Since
M is n-self-orthogonal, the proof can be finished by applying proposition 4.9(ii)
and corollary 3.13 to the triangle.



620 W. Hu, S. Koenig and C.C. Xi

Corollary 4.10 is related to mutations in a Calabi–Yau category. We now give
some definitions from [12].

Let T be an (n+1)-Calabi–Yau category. An object T in T is called an n-cluster
tilting object if T is n-self-orthogonal and if any X ∈ T with Exti

T (T, X) = 0 for
1 � i � n is in add(T ). The object T is called basic if the multiplicity of each
indecomposable direct summand of T is 1.

Let T be an n-cluster basic tilting object in an (n + 1)-Calabi–Yau category T
and let Y be a direct summand of T , i.e. T = Y ⊕M . Let β : M1 → Y be a minimal
right add(M)-approximation of Y and let

X
α−→ M1

β−→ Y → X[1]

be a triangle containing β. Note that we allow Y to be decomposable, and that X
is indecomposable if and only if Y is indecomposable. The object X ⊕ M is called
the left mutation of T at Y . In the case of tilting modules, X is called a tilting
complement to M in the literature (see, for example, [9]). It was pointed out in [12]
that the left mutation of T at Y is again an n-cluster tilting object (for some special
cases, see [3,7] and [16, p. 314]). In fact, this can be seen in the following way: the
proof of corollary 4.10 and comment (b) on the conditions of theorem 3.1 imply
that T ′ := M ⊕ X is n-self-orthogonal. Moreover, let X ′ ∈ Xn(T ′) and consider a
triangle X ′ α′

−→ M ′ → Y ′ → X ′[1] with α′ a left add(M)-approximation of X ′. Then
Y ′ ∈ Xn(T ) by lemma 4.9 and comment (b). Thus, Y ′ ∈ add(T ), X ′ ∈ add(T ′)
and T ′ := X ⊕ M is again an n-cluster tilting object in T . The notion of a right
mutation of T at Y is dual.

Usually, EndT (X ⊕ M) and EndT (M ⊕ Y ) are not derived equivalent. When
they are derived equivalent is an interesting question. We now give a sufficient
condition.

Corollary 4.11. Let Λ := EndT (X ⊕M) and Γ := EndT (M ⊕Y ). Then we have
the following.

(i) EndT (X ⊕ M)/I and EndT (M ⊕ Y )/J are derived equivalent.

(ii) Suppose that Y is indecomposable. Let SX be the simple Λ-module correspond-
ing to X and let SY be the simple Γ -module corresponding to Y . Suppose that
SY is not a submodule of Γ , and that SX is not a quotient of D(Λ). Then Λ
and Γ are derived equivalent.

Proof. Statement (i) is a direct consequence of corollary 4.10, and (ii) follows from
(i) and proposition 3.15.

Remark 4.12. Consider a 2-Calabi–Yau category, and assume that

Ext1Γ (SY , SY ) = 0.

Then we once more obtain the result [14, theorem 5.3] from corollary 4.11(ii).

4.3. Frobenius categories

As is known, triangulated categories are closely related to Frobenius categories.
In fact, the only known general method to get triangulated categories is first to
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construct Frobenius categories and then pass to their stable categories (see [8]). In
this section, we shall apply our results to Frobenius abelian categories.

Let A be a Frobenius abelian category, that is, A is an abelian category with
enough projective objects and enough injective objects such that the projective
objects coincide with the injective objects. We denote by A the stable category of
A modulo projective objects. It is shown in [8] that A is a triangulated category, in
which the shift functor [1] is just the co-syzygy functor Ω−1, and the triangles in
A are all induced by short exact sequences in A. For each morphism f : U → V in
A, we denote by f the image of f under the canonical functor from A to A. Note
that the objects of A are the same as those of A.

Lemma 4.13. Let Φ be an admissible subset of N and let M , X and Y be objects
in A. Then

(i) for arbitrary 0 �= i ∈ N and U, U ′ ∈ A, there exists an isomorphism

HomDb(A)(U, U ′[i]) � HomA(U, U ′[i]),

which is functorial in U and U ′,

(ii) a monomorphism α : X → M1 in A is a left (add(M), Φ)-approximation of
X in Db(A) if and only if α is a left (add(M), Φ)-approximation of X in A,

(iii) an epimorphism β : M2 → Y in A is a right (add(M),−Φ)-approximation
of Y in Db(A) if and only if β is a right (add(M),−Φ)-approximation of Y
in A.

Proof. (i) For 0 �= i ∈ N, the isomorphisms

HomDb(A)(U, U ′[i]) � Exti
A(U, U ′) � HomA(U, Ω−iU ′) = HomA(U, U ′[i]).

are functorial in U and U ′. Thus, (i) follows.

(ii) First, let 0 �= i be in Φ. By (i), there is a commutative diagram

HomDb(A)(M1, M [i])
(α,M [i]) ��

�
��

HomDb(A)(X, M [i])

�
��

HomA(M1, M [i])
(α,M [i]) �� HomA(X, M [i])

Thus, the map HomA(α, M [i]) is surjective if and only if HomDb(A)(α, M [i]) is
surjective. Now we consider the case i = 0. If every morphism from X to M in A
factorizes through α, then every morphism from X to M in A factorizes through
α. Conversely, assume that every morphism from X to M in A factorizes through
α. Let f : X → M be a morphism in A. Then f = αh for some h : M1 → M in
A. Thus, f − αh in A factorizes through a projective object P , say f − αh = st
for some s : X → P and t : P → M in A. Since P is also injective and α is a
monomorphism, there is some morphism r : M1 → P such that s = αr. Altogether,
f = αh + st = αh + αrt = α(h + rt) factorizes through α. Thus, statement (ii)
follows. The proof of (iii) is similar to that of (ii).
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Proposition 4.14. Let Φ be an admissible subset of N. Suppose that A is a Frobe-
nius abelian category, M is an object in A and 0 → X

α−→ M1
β−→ Y → 0 is a short

exact sequence in A with M1 ∈ add(M) such that the induced triangle

X
α−→ M1

β
−→ Y → X[1]

in A satisfies the conditions in theorem 3.1. Then the algebras E
Φ
D(A)(M ⊕ Y ) and

E
Φ
D(A)(X ⊕ M) are derived equivalent.

Proof. This follows from lemma 4.13 and proposition 3.17.

5. Examples

First, we present an explicit example which satisfies all conditions in theorem 3.1.

Example 5.1. Let k be an algebraically closed field of characteristic 2 and let
A := kA4 be the group algebra of the alternating group A4. Then there are three
simple A-modules, which are denoted k, ω and ω̄, respectively. Their projective
covers are P (k), P (ω) and P (ω̄), respectively. It was shown in [6, § V2.4.1, p. 129]
that kA4 is Morita equivalent to the following algebra given by quiver

•
α1ω ω̄��

β1

k

���
��

��
��

��
� •

α2

����
��

��
��

��β2

��

•

α3

������������

β3

������������

and relations αiβi+1 − βiαi+2 = αiαi+1 = βiβi−1 = 0, where the subscripts are
considered modulo 3.

As this algebra is symmetric, the Auslander–Reiten translation D Tr is just the
second syzygy Ω2 (see [1, proposition 3.8, p. 127]). Thus, a direct computation
shows that the Auslander–Reiten quiver of this algebra has a component of the
form shown in figure 1.

Consider the Auslander–Reiten sequence

0 → Ω3(ω) → Ω2(k) ⊕ Ω2(ω̄) → Ω(ω) → 0.

Let X = Ω3(ω), Y = Ω(ω) and M = Ω2(k) ⊕ Ω2(ω̄). This sequence provides an
Auslander–Reiten triangle in the triangulated category A-mod:

X → M → Y → X[1].

We shall check that this triangle satisfies the conditions of theorem 3.1.
We choose Φ = {0, 1} and F = [1]. Since this is an Auslander–Reiten triangle in

A-mod, the map X → M is a left (add(M), Φ)-approximation of X, and the map
M → Y is a right (add(M),−Φ)-approximation of Y (see the example at the end
of § 2). It follows from the above Auslander–Reiten quiver of A that

Ext1A(M, X) � HomA(M, Ω−1(X)) � HomA(Ω2(k) ⊕ Ω2(ω̄), Ω2(ω)) = 0
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�
���

��
Ω2(k)

�
�� �

��

Ω2(ω̄)

�
�� �

��

�
�� �

��

Ω2(ω)

�
�� �

��

�
�� �

��

Ω2(k)

· · · Ω3(ω)

· · · Ω3(k)

· · · Ω2(ω̄)

�
�� �

��

Ω−2(k)

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�� �

��

Ω−2(ω̄)

�
�� �

��

�
�� �

��

Ω−2(ω)

�
�� �

��

�
�� �

��

Ω−2(k)

· · ·Ω−3(ω)

· · ·Ω−3(k)

· · ·Ω−3(ω̄)

k

�
�� �

��
Ω(ω) �P (ω) � Ω−1(ω)

�
�� �

��

ω̄

�
�� �

��
Ω(k) �P (k) � Ω−1(k)

�
�� �

��

ω

�
�� �

��
Ω(ω̄) �P (ω̄) � Ω−1(ω̄)

�
�� �

��

k

Figure 1. A component of Auslander–Reiten quiver of A in Example 5.1.

and

Ext1A(Y, M) � HomA(Y, Ω−1(M)) = HomA(Ω(ω), Ω(k) ⊕ Ω(ω̄)) = 0.

Thus, the above triangle in A-mod satisfies all conditions in theorem 3.1, and there-
fore, by proposition 4.14, the algebras E

Φ
A(M ⊕ X) and E

Φ
A(M ⊕ Y ) are derived

equivalent.
Furthermore, we have

Ext1A(M, M) � HomA(M, Ω−1M) � HomA(Ω(k) ⊕ Ω(ω̄), k ⊕ ω̄).

There are an epimorphism from Ω(k) to ω̄ and an epimorphism from Ω(ω̄) to k. The
latter cannot factorize through a projective module, we get dimk Ext1A(M, M) = 2.
Moreover, there are an epimorphism from Ω(k) to ω and an epimorphism from Ω(ω̄)
to ω. This implies dimk Ext1A(M, Y ) = 2. Similarly, dimk Ext1A(X, M) = 2. Note
that all the indecomposable modules appearing in the Auslander–Reiten triangle
are 1-self-orthogonal. A more precise calculation shows that dimk E

Φ
A(M ⊕X) = 33

and dimk E
Φ
A(M ⊕ Y ) = 21.

The following example shows that the Ext-orthogonality conditions in corol-
lary 4.2 and therefore in theorem 3.1 cannot be dropped.

Example 5.2. Let A be the algebra (over a field k) given by the quiver with rela-
tions shown in figure 2.
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• •
β

1 2
α, 2 = 0 =α αβ

Figure 2. The quiver and relations of A in Example 5.2.

This example is in a class of examples constructed by Small [23]. The algebra A
is of finite representation type, its finitistic dimension equals one, while the finitistic
dimension of the opposite algebra Aop is zero.

We denote by S(i) and P (i) the simple and projective modules corresponding
to the vertex i, respectively. Let Mi be the quotient module of P (2) by S(i) and
let M := M1 ⊕ M2 = D(AA), where D is the usual duality. Then there is an
Auslander–Reiten sequence

0 → X := P (2) → M → S(2) =: Y → 0.

This is an add(M)-split sequence in A-mod.
If we take Φ = {0, 1}, then E

Φ
A(X ⊕ M) = EndA(X ⊕ M). An easy calculation

shows that EndA(X ⊕ M) is a quasi-hereditary algebra, and thus has finite global
dimension. The algebra E

Φ
A(M ⊕ Y ) contains a loop which is given by the short

exact sequence induced by the loop α at the vertex 2. Thus, it has infinite global
dimension by [15]. It follows that E

Φ
A(X ⊕ M) and E

Φ
A(M ⊕ Y ) cannot be derived

equivalent since derived equivalences preserve the finiteness of global dimensions.
Also, one can see that Exti

A(X, M) = 0 = Ext1A(M, X) and Exti
A(Y, M) = 0 �=

Ext1A(M, Y ) for i � 1. This example shows that the orthogonality conditions in
corollary 4.2 cannot be omitted. Moreover, it shows that the result in [11, theo-
rem 1.1] cannot be extended from endomorphism algebras to Φ-Yoneda algebras
without any additional conditions.

Acknowledgements

The authors are grateful to Rundong Zheng and Yiping Chen at BNU for care-
fully reading the first version of the manuscript. C.C.X. (the corresponding author)
thanks NSFC for partial support. W.H. is grateful to SRFDP for partial support,
and the Alexander von Humboldt Foundation for a Humboldt Fellowship. Much
of this work was done during visits of C.C.X. and W.H. to the Mathematisches
Institut, Universität zu Köln in 2010.

Appendix A. A two-functors version of theorem 1.1

In theorem 3.1, there is only one functor F involved. When working with the derived
category of a hereditary algebra, the stable category of a self-injective algebra or
the derived category of coherent sheaves of a projective variety over C, apart from
the shift functor there are other prominent functors, for example, the Auslander–
Reiten translation D Tr. To have available a general statement of construction of
derived equivalences, which is similar to theorem 3.1, we define Φ-perforated Yoneda
algebras for two functors over a triangulated category and formulate a two-functor
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version of theorem 3.1. In this appendix, we summarize the ingredients for a gen-
eralization of theorem 3.1. The proof of this generalization is analogous to that of
theorem 3.1, but more technical and tedious. So we only sketch it here.

Let Φ be a subset of N × N which we consider as a semigroup with ordinary
addition. Let T be a triangulated R-category with shift functor [1] and let X be an
object in T .

Suppose that F and G are two triangle functors from T to itself, such that FG
is naturally isomorphic to GF . For X in T , let δ(i, j, X) : F jGiX → GiF jX be an
isomorphism induced from the natural transformation FG ∼ GF . Then we define

E
F,G,Φ
T (X) :=

⊕
(i,j)∈Φ

HomT (X, GiF jX),

with elements of the form (fi,j)(i,j)∈Φ, where fi,j : X → GiF jX. The multiplication
on E

F,G,Φ
T (X) is given by

(fi,j)(i,j)∈Φ · (gi,j)(i,j)∈Φ

=
( ∑

(p,q),(u,v)∈Φ
(u+p,v+q)=(l,m)∈Φ

fu,v(GuF vgp,q)(Guδ(p, v, F qX))
)
(l,m)∈Φ

.

A general model for the above definition is as follows. Given a bi-graded algebra
Λ =

⊕
i,j∈Z

Λi,j , we define
Λ(Φ) =

⊕
(i,j)∈Φ

Λi,j ,

and a multiplication by ai,j · ap,q = ai,jap,q if (i+ p, j + q) ∈ Φ, and zero otherwise.
If Φ is admissible, for example, Φ is the Cartesian product of two admissible sets
in Z, then Λ(Φ) is an associative algebra. So, we have to check that, given two
auto-isomorphism functors F and G on T , the R-module

E
F,G
T (X) :=

⊕
i,j∈Z

HomT (X, GiF jX)

is an associative algebra with respect to the above multiplication. This can be based
on the following lemma.

Lemma A.1. Suppose that F and G are two triangle functors from T to itself such
that FG is naturally isomorphic to GF . For any triangle functor L from T to itself,
there is a natural isomorphism δ(i, j, L) : F jGiL → GiF jL for all i, j � 0 such that,
for p, q, r, s ∈ N,

(i) δ(p + q, r, L) = δ(p, r, GqL)(Gpδ(q, r, L)),

(ii) δ(p, r + s, L) = (F sδ(p, r, L))δ(p, s, F rL).

Proof. For functors L1 and L2 from T to itself, we define L1δ(1, 1, L2) : L1FGL2 →
L1GFL2 to be the induced natural isomorphism from the functor L1FGL2 to the
functor L1GFL2. So, δ(1, 1, 1T ) is just the given natural isomorphism from FG
to GF . Now we shall construct inductively a natural isomorphism δ(i, j, L) from



626 W. Hu, S. Koenig and C.C. Xi

F jGiL to GiF jL for all non-negative integers i and j and functors L from T to
itself.

If i = 0 or j = 0, then F jGiL = GiF jL, and we define δ(i, j, L) to be the identity
natural transformation. For each positive integer j > 1, we assume that δ(1, j−1, L)
is defined. Now we define

δ(1, j, L) := (Fδ(1, j − 1, L))δ(1, 1, F j−1L).

For each positive integer i > 1, assume that δ(i − 1, j, L) is defined. We define

δ(i, j, L) := δ(1, j, Gi−1L)(Gδ(i − 1, j, L)).

(i) It is straightforward to check that (i) holds for p + q � 2. We shall prove (i) by
induction on p + q. Now assume that p + q > 2. Then we have

δ(p + q, r, L)

= δ(1, r, Gp+q−1L)(Gδ(p + q − 1, r, L)) (by definition)

= δ(1, r, Gp+q−1L)G(δ(p − 1, r, GqL)(Gp−1δ(q, r, L))) (by induction)

= (δ(1, r, Gp+q−1L)(Gδ(p − 1, r, GqL)))(Gpδ(q, r, L))
= δ(p, r, GqL)(Gpδ(q, r, L)) (by definition).

This proves (i).

(ii) We first prove (ii) for p = 0, 1. If p = 0, then (ii) is clearly true. Now suppose p =
1. We shall show (ii) by induction on r+s. In fact, if r+s � 2, it is straightforward
to check (ii). Now we assume that r + s > 2. Then we have

δ(1, r + s, L)

= (Fδ(1, r + s − 1, L))δ(1, 1, F r+s−1L) (by definition)

= F ((F s−1δ(1, r, L))δ(1, s − 1, F rL))δ(1, 1, F r+s−1L) (by induction)

= (F sδ(1, r, L))((Fδ(1, s − 1, F rL))δ(1, 1, F r+s−1L))
= (F sδ(1, r, L))δ(1, s, F rL) (by definition).

This proves (ii) for p = 1. Now assume p > 1. Then

δ(p, r + s, L)

= δ(1, r + s, Gp−1L)(Gδ(p − 1, r + s, L)) (by definition)

= (F sδ(1, r, Gp−1L))δ(1, s, F rGp−1L)
× G((F sδ(p − 1, r, L))δ(p − 1, s, F rL)) (by induction)

= (F sδ(1, r, Gp−1L))(δ(1, s, F rGp−1L)(GF sδ(p − 1, r, L)))
× (Gδ(p − 1, s, F rL)).

Since

δ(1, s, F rGp−1L)
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is a natural transformation from F sGF rGp−1L to GF sF rGp−1L, the following
diagram of natural transformations is commutative:

F sGF rGp−1L
δ(1,s,F rGp−1L) ��

F sGδ(p−1,r,L)
��

GF sF rGp−1L

GF sδ(p−1,r,L)
��

F sGGp−1F rL
δ(1,s,Gp−1F rL) �� GF sGp−1F rL

Hence,

δ(p, r + s, L)

= (F sδ(1, r, Gp−1L))(δ(1, s, F rGp−1L)(GF sδ(p − 1, r, L)))(Gδ(p − 1, s, F rL))

= (F sδ(1, r, Gp−1L))((F sGδ(p − 1, r, L))δ(1, s, Gp−1F rL))(Gδ(p − 1, s, F rL))

= F s(δ(1, r, Gp−1L)(Gδ(p − 1, r, L)))(δ(1, s, Gp−1F rL)(Gδ(p − 1, s, F rL)))
= (F sδ(p, r, L))δ(p, s, F rL).

This proves (ii).

Remark A.2. If, in addition, F and G are auto-isomorphisms, then lemma A.1
remains valid for i, j, p, q, r and s any integers.

Let D be a full subcategory of T and let X be an object of T . A morphism
f : X → D with D ∈ D is called a left (D, F, G, Φ)-approximation of X if

HomT (f, GiF jD′) : HomT (D, GiF jD′) → HomT (X, GiF jD′)

is surjective for every object D′ ∈ D and (i, j) ∈ Φ. Dually, we define the right
(D, F, G, Φ)-approximation of X.

Given a triangle

0 → X
α−→ M1

β−→ Y
w−→ X[1] in T

with M1 ∈ add(M) for a fixed M ∈ T , we define w̃[−1] = (−w[−1], 0) : Y [−1] →
X ⊕ M , w̄ = (0, w)T, where (0, w)T stands for the transpose of the matrix (0, w),
and

I := {x = (xi,j) ∈ E
F,G,Φ
T (X ⊕ M) | xi,j = 0 for (0, 0) �= (i, j) ∈ Φ,

and x0,0 factors through add(M) and w̃[−1]},

J := {y = (yi,j) ∈ E
F,G,Φ
T (M ⊕ Y ) | yi,j = 0 for (0, 0) �= (i, j) ∈ Φ,

and y0,0 factors through add(M) and w̄}.

Now, with a proof similar to theorem 3.1, one can get the following result with
two functors.

Theorem A.3. Let Φ be an admissible subset of Z×Z, T be a triangulated R-cate-
gory and M be an object in T . Assume that there are two triangle auto-isomorph-
isms F and G from T to itself such that FG is naturally isomorphic to GF by
δ : FG → GF , Suppose that X

α−→ M1
β−→ Y

w−→ X[1] is a triangle in T such that α is
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a left (add(M), F, G, Φ)-approximation of X and β is a right (add(M), F, G,−(Φ))-
approximation of Y . If

HomT (M, GiF jX) = 0 = HomT (Y, GiF j(M)) for (0, 0) �= (i, j) ∈ Φ,

then E
F,G,Φ
T (X ⊕ M)/I and E

F,G,Φ
T (M ⊕ Y )/J are derived equivalent.

Taking G = [1] and F = id in a derived module category yields a result on Φ-
Auslander–Yoneda algebras. Taking G = id, we recover theorem 3.1 for the case of
F being an arbitrary auto-isomorphism.

Outline of the proof of theorem A.3. Clearly, as in the proof of lemma 3.3, we can
use lemma 3.2 to show that I and J are ideals in

E
F,G,Φ
T (X ⊕ M) and E

F,G,Φ
T (M ⊕ Y ),

respectively. The next step is to check that the complex T •, which can be defined
analogously to lemma 3.5, is a tilting complex. Finally, one needs to prove the
isomorphism described in lemma 3.7. However, this verification follows the proof of
lemma 3.7 verbatim.
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