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Abstract

For a recollement of derived module categories of rings, vewide sufficient conditions to guar-
antee the additivity formula of higher algebrdiegroups of the rings involved, and establish a long
Mayer-Vietoris sequence of higher algebrKigroups for homological exact contexts introduced in the
first paper of this series. Our results are then applied tollernents induced from homological ring
epimorphisms and noncommutative localizations. Consetyjeve get an infinitely long Mayer-Vietoris
sequence df-theory for Milnor squares, re-obtain a result of Karoubo(@llary 5.6) on localizations and
a result on generalized free products pioneered by Waldimaaisd developed by Neeman and Ranicki.
In particular, we describe algebrafcgroups of the free product of two groups over a regular cerier
ring as the ones of the noncommutative tensor product of act@ontext. This yields a new description
of algebraidk-theory of infinite dihedral group.
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1 Introduction

Algebraic K-theory of rings and algebras in the sense of Quillen (se§ [@fllects elaborate invariants
for rings, groups and algebras. One of the most fundamenthiraportant questions in this theory is to
understand and calculate these invariants: algeltajcoupsK,, of rings, which are closely connected with
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Hochschild homologie$iH,, and with cyclic homologie$iC;; of rings by Chern characters on higher
theory (see [31, Chapter 6] for a survey). In computationighér algebraid-groups of rings, Quillen,
Suslin and many others have made important contributioiseirctases of finite fields, algebraically closed
fields and certain integral domains (see [27] and the refeein [31]). For arbitrary rings, however, the
guestion is too hard, and remains little to be known, thougyegal, abstract algebraicGtheories have been
explosively developed in the last a few decades. In ordentierstand these algebraicgroupsKy(R) for
arbitrary ringsR, it is reasonable to investigate relationship betweeretkegroups of different rings which
are linked in certain nice ways.

Along this direction are there some interesting and renmekevestigations in the literature. For ex-
ample, if two rings are derived equivalent, then they hagensrphicK,-groups by a result of Dugger and
Shipley (see [12]). For a homological noncommutative laegion A : R — Sof rings, Neeman and Ranicki
established a long exact sequence of algetitaggoups ofR andS(see [24]). As an application of this result,
Ranicki gave a new interpretation of Waldhausen’s resuklilgebraicK-theory of generalized free products
from the viewpoint of noncommutative localizations (se8,[29]). Later, Krause relaxed noncommutative
locations to homological ring epimorphisms with the praypdinat the chain map lifting problem has a pos-
itive answer, and established the same long exact sequéncaymups (see [19]). Recently, we show in
[8] that, for a homological ring epimorphisih: R — S, if the left R-moduleS has a finite-type resolution,
thenKn(R) is the direct sum oKy (S) andKn(R) whereR is a Waldhausen category determinedioyT his
result is then applied to study algebradegroups of endomorphism rings, matrix subrings and rings wi
idempotent ideals (see [8] for detail).

Another useful type of natural linkages among rings is decoénts of derived module categories, which
were introduced by Beilinson, Bernstein and Deligne in fi]tfiangulated categories. Roughly speaking, a
recollement consists of three derived (or triangulatethgmries linked by two triangle functors both of which
have left and right adjoint functors. The notion of recolents is an analogue of exact sequences for derived
(or triangulated) categories, which generalizes derivgaivalences and is closely related to homological
ring epimorphisms. Here, a natural question is whether amehvthe additivity formula still holds true for
algebraicK-groups of rings involved in aarbitrary recollement of derived module categories. Namely, we
consider the following question:

Question. Let R, SandT be rings with identity. Suppose that there is a recollememirgy the derived
module categorie®(T), Z(R) andZ(S) of the ringsT, RandS

2N 2N
2(S) — 2(R) 2(T) .
N~ N~

When does the following additivity isomorphism hold true:

Kn(R) ~ Kn(S) @ Kn(T) for eachne N?

whereKp(R) always means the-th algebraid-group of the ringR.

This question may trace back to the work of Berrick and Keatin K-theory of the matrix rings of 2
by 2 triangular matrices (see [2]), where they describedtfgroup of a triangular matrix ring as the direct
sum of the ones of rings in the diagonal. Recently, we showl]ithiat, if the ideaReRof a ringR generated
by an idempotent elemesthas a special finite-type resolution, then Kegroup ofR is the direct sum of
the ones oR/ReRandeRe In both cases, we do have recollements of derive modulg@ads of rings and
additivity formula ofK-groups. However, the isomorphida(R) ~ Ko(S) © Ko(T ) does not have to hold for
arbitrary recollements. This can been seen by an exampie Bection 8, Remark (2)]. So, answers to the
above question seem to be mysterious.

In this paper we shall apply representation-theoretic odsho investigate the above question in detail
and establish an additivity formula for higher algebréigroups of rings involved in recollements with a



compactness condition. Thus we provide a general answiee @hiove question. Further, we apply our result
to homological ring epimorphisms, exact contents, extarssand free products of groups.

In dealing with the above-mentioned question, a number dirtieal obstacles occur: To understand
Kn(R), one has to choose certain models of algelatbeory spac& (R) of R, up to homotopy equivalence.
For example, the usual favorite models are the category itélfirgenerated projectivB-modules (see [26,
31, 8]), the category of bounded complexes of finitely geteerprojectiveR-modules (see [37, 19, 23, 24,
33]), and certain full subcategories of the category of demgs overR with countable direct sums (see
[24, 12]). When comparing algebrai¢-theory of different rings, one has first to fix a suitable nidde
defineK-theory, and then to find exact functors compatible with thesen model. Unfortunately, given an
arbitrary recollement of derived module categories, mmhis known about the concrete forms of the six
triangle functors. This means that it would be quite diffi¢alfind a suitable model for all three rings in the
recollement such that the given six functors can induce etitle functors on the model for all rings and
connectK-theory spac& (R) with K-spaceK(S) andK(T) in a reasonable way. Hence the methods used
in [8, 24, 23, 19] actually does not work any more for the pnéesmse, and therefore some new ideas are
necessary for attacking the above question.

To overcome these obstacles, we pass to differential grédtgdalgebras and introduce a new defini-
tion of algebraicK -theory spaces for dg algebras, which captures the usuaitdefiof algebraicK-theory
spaces of ordinary rings up to homotopy equivalence. Ounitiefi of K-theory spaces is a modification
of Schlichting’s definition in [32], and excludes the poiahtet-theoretic difficulties in the corresponding
definition given by Dugger and Shipley in [12]. Also, this ndefinition gives much freedom for choices of
compatible functors among models that defix¢heory. Under a compactness assumption, we can identify
K(S) andK(T) with algebraicK-theory spaces of dg endomorphism algelsrasdT of perfect complexes
overR, respectively. After a systematical study on homotopy \ejances oK-theory spaces related to per-
fect dg modules, we establish decomposition formulas fgelaiaicK-groups of dg algebras. Particularly,
this leads to the following main result in this paper.

Theorem 1.1.Let R, Sand T be rings with identity. Suppose that there igallment among the derived
module categorie®(T), Z(R) and Z(S) of the rings T, R and S:

/i\ N

289 ——— 2(R) ——= 2(T).

N N
Ifi.(S) is quasi-isomorphic to a bounded complex of finitely gemelg@rojective R-modules, that is(9) is
compact inZ(R), then

Kn(R) ~ Kn(S) @& Kn(T) forall neN.

We remark that, under the compactness condition in Theor#pit 1s not difficult to prove thaKo(S) is
a direct summand dfo(R). However, the key point here, which seems to be highly nivialy is to prove
that an additive complement &, (S) is justK,(T) for all n > 0. Also, we note that Theorem 1.1 cannot be
extended to dg algebras because derived equivalences tjalgas do not preserve algebr&egroups, as
pointed out by an example in [12].

First, we apply Theorem 1.1 to recollements of derived medakegories arising from homological ring
epimorphisms.

Recall that a ring epimorphisi: R — Sis said to behomologicalif TorJR(S S)=0forall j >0. AnR-
moduleM has dinite-type resolutiomprovided that there is a finite projective resolution by &hjtgenerated
projectiveR-modules, that is, there is an exact sequence®, — --- — Py — Py — M — 0 for someme N
such that alR-modulesP; are projective and finitely generated.



Corollary 1.2. Suppose thak : R— S is a homological ring epimorphism which induces a recodienof
derived module categories of ringsH, S:
/i\ N
9§ —— IR ——=2(T)
N N~

where | is the restriction functor induced from If gS or & has a finite-type resolution, then
Kn(R) ~ Kn(S) @& Kn(T) forall neN.

We should note that not every homological ring epimorphi&mrs Scan induce a recollement of derived
module categories of rings because the Verdier quotieat(®) by Z(S) may not be realized as the derived
category of a usual ring. This can be seen by the counterdgagiven by Bernhard Keller to the Telescope
conjecture. Comparing Corollary 1.2 with [8, Theorem 1W¢ see that the conclusion of Corollary 1.2,
under the assumption of existence of a recollement, is gtritag. In fact, by [8, Theorem 1.1], we have
Kn(R) ~ Kn(S) @ Kn(R,A) for all n € N, whereK,(R,A) is the n-th algebraicK-group of the categorR
mentioned before, while Corollary 1.2 descriltggR, A) explicitly as theK,-group of a ringT if such a ring
T exists. Moreover, since stratifying ideals give rise tootkments of derived module categories, Corollary
1.2 also generalizes [8, Corollary 1.3].

Next, we consideK-theory of reollements arising from exact contexts intitliin the first paper of
this series (see [6]). This kind of recollements involvesc@mnmutative localizations in ring theory, which
occur often in algebraic topology and representation thésae [28, 29]).

LetR, SandT be associative rings with identity, and etR— Sandu: R— T be ring homomorphisms.
Suppose thatl is anS-T-bimodule together with an elememte M. The quadrupléA,, M, m) is called an
exact contexif the following sequence

(A (‘m)

0—RMseT M0

is an exact sequence of abelian groups, wherandm- denote the right and left multiplication by maps,
respectively. An exact contexh,, M, m) is called anexact pairif M = SerT andm=1® 1. In this
case we simply say th@h, ) is an exact pair. The exact contg®t, i, M, m) is said to behomologicalif
Tor¥(T,S) =0 for alli > 1.

For each exact contexh, u, M, m), we associate it with a new ringXr S, called thenoncommutative
tensor producof (A.u, M, m) in [6, Section 4.1], which is a generalization of the usuakte products over
commutative rings, and captures coproducts of rings anbedti@nsions.

For a homological exact contef, u, M, m), we have the following long Mayer-Vietoris sequence which
links algebraid-groups of the ringR, S, T andT X Stogether.

Theorem 1.3. Let (A, , M, m) be a homological exact context. Then the following statésneold true:
(1) There exists a long exact sequence of algebraic K-groups:

(—KalA),Kn() (o)

coo = Knaa(TRRS) — Kn(R) 5 Kn(S) @ K (T) Kn(T ®rS) — Kn_1(R) —>

e KO(R) — Ko(S) @& Ko(T) — KO(T XrS)

forallne N.
(2) If the left R-module S or the right R-module T has a finite-tgselution, then K(R) © Kn(T KrS) ~
Kn(S) @ Kn(T) forall neN.

Since a Milnor square of rings provides a typical exact mae(6, Example (3), Section3; Corollary 4.3],
we have the following long Mayer-Vietoris sequence whicteags and amplifies thi€-theory sequence in
[20].



Corollary 1.4. Given a pullback square of rings and surjective homomorpkis

RL> Ry

T

R, —2- R,
if TorJR(Rz, R;) =Ofor all j > 0, then there is a long Mayer-Vietoris sequence:

ee — Ko(R) —_— Ko(Rl) D Ko(Rz) — Ko(R’)
for all n € N.
As another consequence of Theorem 1.3, we obtain the faipvasult on ring extensions.

Corollary 1.5. Suppose that B S is an extension of rings, that is, R is a subring of the ringtB the same
identity. Let Sbe the endomorphism ring of the left R-modul&SiIf the left R-module S is projective and
finitely generated, then

where SXRr S is the noncommutative tensor product of an exact contéixedeby the extension.

A rather striking application of Theorem 1.3 is that algébié-groups of the free products of finite
groups can be characterized by nhoncommutative tensor gioddnich have finite ranks over ground rings,
while the group rings of free products usually have infingeks.

LetH andG be two groups, and I&®&H andRGbe the group rings dfi andG over a ringR, respectively.
Then the canonical maps froRito RH andRG can be completed into an exact context (see Section 5.2 for
details) and the associated noncommutative tensor prétidizir RG can be described explicitly as follows:

As an abelian groupRHXRg RG coincides with the group rinR(H x G) of the direct producH x G
overR. ThusRHXrRGis a finitely generated freB-module if G andH are finite. As an associative ring, it
admits the following multiplication:

r(ha g) = (ha g)r and (h’ g)(h/’g/) = (ha gg) + (hH’g/) - (ha g/),

wherer € R, h,h’ € H andg,d € G,

Recall that the free product éf andG, denoted byH * G, is the coproduct oH andG in the category
of groups. In general, the free product of finite groups mainfieite. For example, the free product of two
cyclic groups of order 2 is the infinite dihedral groDg.

We say that a rinqRis regular coherentf any finitely presented lefR-module has a finite-type resolution.
A typical example of regular coherent rings is the ring oégers.

The following corollary follows from Theorem 1.3 togetheit[38, Theorems 1 and 4], which reduces
surprisinglyK-theory of group rings of infinité&R-rank to the one of rings of finitB-rank.

Corollary 1.6. Let R be a regular coherent ring and let H and G be two group®nTh

Kn(R(H %G)) ~ Kn(RHKRRG) ~ K,(RGXRRH) forall n> 1.



As a consequence of our methods, we get a new descriptiogebraicK -theory for infinite dihedral
groupD.,: For an arbitrary ringR, Kn(R(Dw)) = Kn(RZ2Kr RZ2) & Nily_1(R) for n > 1, whereMil,(R) is
then-th reduced Nilgroup oR. This decomposition is different from the result in [11].

This paper is organized as follows: In Section 2, we brieflyallesome definitions and basic facts on
triangulated categories, recollements and homologiogl epimorphisms. In Section 3, we first recall the
algebraicK-theories developed by Waldhausen for Waldhausen caésgarid Schlichting for Frobenius
pairs, and then mention several fundamental theorems @bedicK-theory of Frobenius pairs. In Section
4, we first introduce our definition of algebractheory spaces for differential graded algebras, and then
discuss homotopy equivalences Kiftheory spaces constructed from perfect dg modules inldefes a
result, we establish a reduction in Proposition 4.14 focwation of algebraid<-groups of dg algebras. At
the end of this section, we prove Theorem 1.1 as well as Goyoll.2. In Section 5, we apply our results to
homological exact contexts, and prove Theorem 1.3 and {ades 1.4, 1.5 and 1.6.

In the third paper of this series, we shall discuss finitidtrmension theory for recollements of derived
module categories of rings (see [7]).

2 Preliminaries

In this section, we shall fix notation employed throughowt plaper, and provide some basic facts for later
proofs.

2.1 General terminology and notation on categories

Let ¢ be an additive category.

We always assume that a full subcategerpf ¢ is closed under isomorphisms, that isXife 3 and
Y € ¢ withY ~ X, thenY € 3.

Given two morphismd : X — Y andg:Y — Zin ¢, we denote the composite dfandg by fg which is
a morphism fronX to Z, while given two functors- : ¢ — » andG: » — £ among three categories »
and, we denote the composite BfandG by GF which is a functor fronc to £.

Let Ker(F) and Im(F) be the kernel and image of the functer respectively. That is, KéF) := {X €
C|FX~0}and ImF):={Y e |3IX e c,FX~Y}. In particular, KetF) and ImF) are closed under
isomorphisms i and?, respectively.

An additive functorF : 2 — 8 between two additive categoriesand 3 is called arequivalence up to
factorsif F is fully faithful and each object a is isomorphic to a direct summand of the image of an object
of 2 underF.

Let 2 be a triangulated category anda full triangulated subcategory af. Then, due essentially to
Verdier, there exists a triangulated categanyx , and a triangle functay: 2 — 4 /x with x C Ker(q) such
that q has the following universal property: ¢f : 2 — 7 is a triangle functor withx C Ker(q'), thend
factorizes uniquely througlt LN 4 /x by [22, Theorem 2.18]. The categowy/x is called theVerdier
quotientof 2 by x, and the functonq is called theVerdier localization functar In this case, Ke€) is the
full subcategory ofa consisting of direct summands of all objectsiin(see [22, Chapter 2] for details). We
remark that the objects of the categeryx are the same as the objectsaf

A sequencea Fop S cof triangle functors= and G between triangulated categories is said to be
exactif the following four conditions are satisfied:

(i) The functorF is fully faithful.

(i) The composit&sF : 2 — ¢ of F andG is zero.

(iii ) The image InfF) of F is equal to the kernel d&.

(iv) The functorG induces an equivalence from the Verdier quotiensdiy Im(F) to c.



Clearly, if x is closed under direct summands4n then we have an exact sequence of triangulated
categories:

x> g — a/x .

Let 7 be atriangulated category with small coproducts (thatdpreducts indexed over sets existiir).

An objectU € 7 is said to becompactif Hom, (U, —) commutes with small coproducts in. The full
subcategory of consisting of all compact objects is denotedd.

For any non-empty clas¥’ of objects in7, we denote by Trig7’) (respectively, thick’)) the smallest
full triangulated subcategory af containing.¥ and being closed under small coproducts (respectivelycdir
summands). {7 consists of a single objett, then we simply write Tri@U) and thickU ) for Tria({U })
and thick{U }), respectively. The notation Tri&’) without referring toz will not cause any confusions
because this notation can be clarified from the contexts otousiderations.

The following facts are in the literature (see [22, Propositl.6.8] and [6, Section 2.1]).

Lemma 2.1. (1) If 7 is a full triangulated subcategory af such thatz is closed under countable coprod-
ucts, thenrg is closed under direct summandsan

(2) Let7' be a triangulated category with small coproducts, and let#— 7' be a triangle functor. If
F preserves small coproducts, the((TFia(U)) C Tria(F(U)) foranyUe 7.

Special examples of triangulated categories are the demaule categories of (associative) rings with
identity, which are of our particular interest in this paggow, let us fix some notation for rings.

Let R be a ring with identity. We denote by-Mod the category of all lefR-modules. The complex,
homotopy and derived categoriesRMod are usually denoted by (R), 7 (R) and Z(R), respectively. It
is well-known that both’#’(R) and Z(R) are triangulated categories, and tB&R) = Tria(rR). As usual we
write Z°(R) for 2(R)¢, which is equal to the full subcategory 6f(R) consisting all those complexes that
are quasi-isomorphic to bounded complexes of finitely gateerprojectiveR-modules.

2.2 Recollements and homological ring epimorphisms

In this subsection, we recall the notion of recollementsotiiced by Beilinson, Bernstein and Deligne (see
[1]), which is widely used in algebraic geometry and repnésion theory. Some prominent examples of
recollements can be constructed from certain homologicglepimorphisms.

Let», »" andD” be triangulated categories with shift functors denotedensally by [1].

We say that is arecollementof »’ and” if there are six triangle functors indicated in the follogin
diagram

such that:

(1) The 4 pairg(i*,i.), (ir,i'), (ji,j') and(j*, j.) are adjoint pairs of functors.
(2) The 3 functord., j. andj, are fully faithful.
(3) The composite of two functors in each row is zero, that js,= 0 (and thus als¢'i; = 0 andi* j, = 0).
(4) There are 2 canonical triangles4nfor each objecK € »:

) —= X — LX) — 1O, BT (X) — X — L (X) — it (X)[1],

wherejj' (X) — X andi;i' (X) — X are counit adjunction maps, and whéte- i.i*(X) andX — j,j*(X)
are unit adjunction maps.



It is known that, up to equivalence of categories, recoll@mef triangulated categories are the same as
torsion torsion-free triples (TTF-triples) of triangwdalt categories (see, for example, [3] and [4, Section 2.3]
for details). In the following lemma we mention some factswttrecollements for later proofs.

Lemma 2.2. Suppose that the above recollement is given. Then the folidwold:

(a) The images of the three fully faithful functorsij and j. are closed under direct summandszin

(b) The Verdier quotients ab by the images of the triangle functorsand i. are equivalent ta»” and
D', respectively.

(c) Assume that, »’ and »” admit small coproducts. Then bothand i preserve compact objects.
Suppose further thab is compactly generated, that is, there is a set S of compgetisbin® such that
Tria(S) = o, then i preserves compact objects if and only if so'is Ij this case, we can obtain a “half
recollement” of subcategories of compact objects:

Note that(a) and(b) follow from [3, Chapter I, Proposition 2.6], whilg) follows from [3, Chapter I,
Lemma 1.2 (1) and Chapter IV, Proposition 1.11].

A typical example of recollements occurs in the followingoteituations.

(1) Recollements of derived module categories.

Let Rbe a ring with an idempotent idela= ReRfor € = e € R. Suppose thdtis astratifying idealof R,
that is, the multiplication maRe®<re€R— ReRis an isomorphism and T‘ﬁﬁe(Re eR =0for j > 1, then
there is a recollement of derived module categories:

R/ ek~ Rezkre
@ @

2(R/l1) —= 2(R) — %(eRe
~__ N
RHomg(R/I,—) RHomerd€R—)

whereD(Tt.) is the restriction functor induced from the canonical sutigg 11: R— R/I, and whereRe®5z,
— is the total left-derived functor oRe®e<re— and RHomerd€R —) is the total right-derived functor of
Homerd€R —). For more details, we refer the reader to [10].

In Section 5 and [4, 9, 6] one may find more examples of recdt@mof derived module categories,
which have not to be induced from idempotent elements.

(2) Recollements of triangulated categories induced frioigp @ pimorphisms.

Recall that a ring epimorphisi: R — Sis said to benomologicalif TorX(S,S) = 0 for alln > 0 (see
[13, 24]). This is also equivalent to that the restrictiondtorD(A.) : Z(S) — Z(R) is fully faithful.

According to [25, Section 4], for an arbitrary homologicailg epimorphism, we obtain the following
recollement of triangulated categories, of which the Figlnd term is not necessarily the derived category
of an ordinary ring.

Lemma 2.3. LetA : R— S be a homological ring epimorphism. Then there is a recalgnof triangulated
categories:
i I
@(S) — > .@(R) _— Trla(RQ‘)
N N—

where Q is the two-term compledX— R A s 0owithRand Sin degreddand1, respectively, and where
ji is the canonical embedding antl5 Q* ®k —, i* = S®k —, i, = D(\,).
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Thus, if we define? := {Y € Z(R) | Homyg)(X,Y) =0 for any X € Tria(rQ*)}, then it follows from
Lemma 2.3 that

¥ ={Y € 2(R) | Homyr (Q*,Y[n]) =0for ne Z} = {Y € 2(R) | Q° ®RY =0},

and that., induces an equivalencg(S) — %.

Finally, we point out that if a homological ring epimorphisnduces a recollement of derived module
categories of rings, then it also gives a recollement ofvédrimodule categories of opposite rings, though
the categorie®7(R) and _@(R°p) for a ring R may not be triangle equivalent. This fact will be used in the
proof of Corollary 1.2.

Lemma 2.4. LetA : R— S be a homological ring epimorphism. Then the following aneivalent for a ring
T:
(1) There is a recollement of derived categories:
A/D(K*)\ 2N
29 ——=2(R) ——=2(T)
N N

(2) There is a recollement of derived categories:

//D(T*)\ &= T
P (SPP) ——— P(RP) ——— 9(T°P)
~N— N

Proof. Observe that i\ : R— Sis a homological ring epimorphism, then so is the maf@R°P — P
by [13, Theorem 4.4]. Moreover, it follows from [25, Coral§a3.4] that(1) holds if and only if there is a
complexP*® € €°(R-proj) such that Tri&P*) = Tria(rQ*), Endy ) (P*) ~ T and Homy, g, (P*,P*[n]) = O for
anyn # 0, whereQ?* is the complex -+ R— S— 0. However, for such a compldX, we always have

Homg(ror) (P**,P**[N]) = Homy, g (P*,P*[n]) forall ne Z,

whereP** := Homg(P*,R) € ©®(R°P-proj). So, to prove thatl) and(2) are equivalent, it is enough to prove
the following statement:

If P* € €°(R-proj) such that TrigP*) = Tria(rQ"*), then TrigP**) = Tria(Qy).

In fact, letP® be such a complex and define

7' = {Y € 2(RP) | Homy g (X,Y) =0 for X e Tria(P**)}.

SinceP* € €°(R-proj), we haveP** € €P(ROP-proj). It follows from [4, Lemma 2.8] that there is a recolle-

ment: TS S
@y —— P(RP) — Tria(P**)
\_/ N—

wherep s the inclusion. This implies that
(@) Tria(P**) = {X € 2(R®) | Homy g (X,Y) =0 for Y € #'}.
Furthermore, we remark that
@' ={Y € 2(R°P) | Homy,rop)(P**,Y[n]) = 0 for ne Z} = {Y € Z(R°") | RHomger(P**,Y) = 0},

and that
RHOMgon(P**, —) = — @k P* 1 2(R°P) — 2(Z)



by [6, Section 2.1]. Thug?’ = {Y € 2(R%) | Y ®k P* = 0}. However, by Lemma 2.1 (2), for a given
Y € 2(R°P), the left-derived tensor functdf @k — : 2(R) — 2(Z) sends TriéQ") (respectively, TriérP*))
to zero if and only ifY ®5 Q* = 0 (respectivelyY @k P* = 0). Since TrigP*) = Tria(rQ"®) by assumption,
we certainly obtair?’ = {Y € 2(R°) | Y ®k Q® = 0}.

SinceA : R°P — P is a homological ring epimorphism, we obtain another retnént by Lemma 2.3:

F

25 2% RS Tria(e)
"o Tra

~N~— N—
whereF is the inclusion an@ is the tensor functor ®k Q®. This implies that IfD().)) = Ker(G) and
(b)  Tria(Qr) = {X € 2(R°) | Homyror) (X,Y) =0 for Y € Ker(G)}.

Since%’ = Ker(G), we conclude from(a) and (b) that TriaP**) = Tria(Qg). This finishes the proof of
Lemma 2.4[]

3 Algebraic K-theory

In this section, first, we briefly recall some basics on algilf-theory of Waldhausen categories and Frobe-
nius pairs developed in [37] and [32], respectively. Andntlee discuss algebrai€-theory of differential
graded algebras and prove a few facts as preparations foisprbthe main results.

3.1 K-theory spaces of small Waldhausen categories

Let us first recall some elementary notion and facts al¥ctheory of small Waldhausen categories (see
[37, 36, 26)).

Let ¢ be a small Waldhausen category, that is, a pointed categouifped with a zero object) with
cofibrations and weak equivalences. In [37, Section 1.3]diéausen has definedkatheory spacé(¢)
for ¢, which is a pointed topological space, andrath homotopy grougK,(c) of K(¢) for eachn € N,
which is called then-th K-group ofc. Clearly, if a Waldhausen category is essentially smallthat is, the
isomorphism classes of objects@fform a set, then the definition of Waldhaug¢€stheory still makes sense
for ¢’ because, in this case, one can choose a small Waldhausexegdigc of ¢’ such that is equivalent
to ¢’, and define th&-theory ofc’ through that of.

Note thatK (¢) is always homotopy equivalent to a CW-complex. In fact, toiows from the following
observation: The classifying space of a small categorytmasttucture of a connected CW-complex and the
loop space of a CW-complex is homotopy equivalent to a CWgtern(see [21]), whileK (¢ ) is the loop
space of the classifying space constructed from

TheK-theory space defined by Waldhausen is natural in the fatigwense: Each exact functer. ¢ —

D between Waldhausen categoriesand 2 induces a continuous mag(F) : K(¢) — K(2) of (pointed)
topological spaces, and a homomorphipiF ) : Kn(c) — Kn(2) of abelian groups for eaane N. If G:
D — £ is another exact functor between Waldhausen categoriesKtfGF) = K(F)K(G) in our notation.

Note that the associated poigt of K(¢) corresponds to the image of the m&p{0}) — K(¢) induced
from the inclusion{0} — ¢, where 0 denotes the zero objectcf

Finally, we recall some definitions and basic facts in homgptiheory for later proofs. For more details,
we refer the reader to [40, Chapters Ill and IV] and [34, Cee]. Those readers who are familiar with
homotopy theory may skip the rest of this subsection.

Letg:Y — Z be a continuous map of topological spaces. We saygdlisia homotopy equivalencié
there is a continuous mdp: Z — Y such thagh: Y — Y andhg: Z — Z are homotopic to the identities of
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Y andZ, respectively. If there is a homotopy equivalence betwéamd Z, then we say that andZ are
homotopy equivalenaind simply write¥ — Z.

Assume thaly andZ are pointed topological spaces with the base-pojgtand zy, respectively, and
that the mam : Y — Z sendsyp to zp. Thehomotopy fibre Fg) of g is defined to be the following pointed
topological space

with the base-poin(czo,yo), wherec,, is the constant path— z, for t € [0,1]. Note that homotopy fibres
are well defined up to homotopy equivalences.

The homotopy fibre of the mafzy} — Z is called theloop spaceof (Z,z), and denoted by2(Z,z).
Note that we can identif{2(Z,zy) with the set{w: [0,1] — Z | (0)w = 7Zp = (1)w}, and that there is a
canonical map

0: Q(Z,20) — F(g), w— (w,Yp) for we Q(Z,z).

Let t,(Z, ) denote then-th homotopy groupf (Z,z) for eachn € N. Thenti,(Q(Z,2)) = Th11(Z, 2).
Further, we defind: F(g) — Y by (w,y) — y for any (w,y) € F(g). Then the sequence

Q(Z,20) - F(9) = (Y,y0) % (Z.20)
gives rise to a long exact sequence of homotopy groups:

Th(9) h(h) Th(g)

- — Thy1(Z,20) = Th(F(9), (Cz,Y0)) = Ta(Y,Y0) — Th(Z,20) — Th-1(F(9),(Cz,Y0)) —

- — To(F(9), (¢z,¥0)) — To(Y,Yo) — To(Z, 20).
For a proof, we refer the reader to [40, Corollary IV. 8.9].

A sequencéX,Xo) — (Y,Yo) — N (Z,zy) of pointed topological spaces is calladhomotopy fibratiorif
the composite of andg is equal to the constant map which sends exdryX to the base-point of, and if
the natural map

X —F(g), X (Cq,(X)f) for xeX

is a homotopy equivalence. In this case, the loop saGE zy) is homotopy equivalent to the homotopy
fibre of f.

The sequencéX,Xo) LN (Y,yo) LN (Z,29) of pointed topological spaces is calladweak homotopy
fibration if there is a pointed topological spa¢#’,z)), and two pointed mapg; : Y — Z' andgy: Z' — Z
with g = g10» such that

(1) the sequencéX,xp) — LN (Y,yo0) — N (Z',7,) is a homotopy fibration, and that
(2) gz induces an injectiom( ’,26) — To(Z,2) and a bijectionty(Z',z)) — ™(Z,2) forn> 0.

Assume that (X, x) N (Y,Yo) — (Z,2) is a weak homotopy fibration. Then there is a long exact
sequence of homotopy groups:

- Thya(Z,20) — Th(X,%o) i (Y, Yo) it h(Z,20) — Th-1(X,X0) —

- (X, %0) — To(Y,Yo) — To(Z, 20)

for all n € N, and g, induces a homotopy equivalen€¥qy) : Q(Z,z) — Q(Z,2). ThusQ(Z,z) is
homotopy equivalent to the homotopy fibre fof

11



3.2 Frobenius pairs and theirK-theory spaces

We recall some definitions given in [32].

By aFrobenius categoryve mean an exact category (see [26, 17]) with enough pregeatid injective
objects such that projectives and injectives coincide. A inetween two Frobenius categories is an exact
functor which preserves projective objects.

Let ¢ be a Frobenius category.

We denote by -proj the full subcategory af consisting of all projective objects. It is well known thiaét
factor category: of ¢ moduloc-proj, called thestable categoryf ¢, is a triangulated category. Moreover,
two objectsX andY of ¢ are isomorphic irc if and only if X&P ~Y & Q in ¢ for someP,Q € ¢-proj. In
particular,X ~ 0 in ¢ if and only if X € c-proj.

A subcategoryx of ¢ is called aFrobenius subcategorgf ¢ if x is a Frobenius category and the
inclusionx C ¢ is a fully faithful map of Frobenius categories. In this gasegoroj C ¢-proj, and a morphism
in x factorizes throughx -proj if and only if it factorizes throughr-proj. This implies that the inclusion
x C ¢ induces a fully faithful inclusiorx C ¢ of triangulated categories. In generaldoes not have to be
a triangulated subcategory ofsincex is not necessarily closed under isomorphisms .itHowever, by our
convention, the image of the inclusianC ¢ is indeed a triangulated subcategorycof

A pair C := (¢, co) of Frobenius categories is calledrmbenius pairif ¢ is a small category andy is
a Frobenius subcategory of A map from a Frobenius pai, co) to another Frobenius paft’, cj) is a
map of Frobenius categories— ¢’ such that it restricts to a map from to ¢, (see [32, Section 4.3)]).

LetC:=(c, co) be a Frobenius pair. Then the image of the inclugiga ¢ is a triangulated subcategory
of ¢. So we can form the Verdier quotient ofby this image, denoted by

Ze(C) = /co

which is called thelerived categoryf the Frobenius pai€. Here, we use the same notatior ¢o as in [32]

to denote the derived category©f but the meaning af /co in our paper is slightly different from the one in
[32] because we require that the image of an inclusion furistolosed under isomorphisms. Nevertheless,
all results in [32] work with this modified definition of dedd categories.

Clearly, if co = c-proj, thenZg(C) = ¢. In this case, we shall often write for the Frobenius pair
(c,c-proj).

The categoryc of a Frobenius pai€ := (¢, o) can be regarded as a small Waldhausen category (for
definition, see [37] or [8]): The inflations in form the cofibrations of , and the morphisms ig which are
isomorphisms irZg (C) form the weak equivalences of In this note, we shall writ€ for the Waldhausen
categoryc to emphasize the role @f. According to our foregoing notation, we denotedyhe Waldhausen
category defined by the Frobenius pair, c-proj). For the Waldhausen categaty we denote th&-theory
space ofC in the sense of Waldhausen KyC) which is a pointed topological space, and thth K-group
of K(C) by K,(C) for eachn € N.

It is known thatKq(C) is naturally isomorphic to the Grothendieck grokig(Z¢(C)) of the small tri-
angulated categorgk (C) (see [36, Section 1.5.6], [39, Chapter IV, Proposition &dd [33, Proposition
3.2.22)).

LetG:C — C’ be a map of Frobenius pairs. On the one h&hdutomatically induces a triangle functor
P (G) : Zr(C) — Z&(C’), which sendX € ¢ to G(X) € ¢’. On the other hand3: ¢ — ¢’ is an exact
functor of associated Waldhausen categories, which irda@®ntinuous mali(G) : K(C) — K(C').

In this paper, we assume that all Waldhausen categoriesdeved arise from Frobenious pairs. Two
typical examples of Frobenius pairs are of our particultgrigst.

(a) The first typical example of Frobenius pairs is providgdhe categories of bounded complexes over
exact categories.

Let & be a small exact category (for definition, see [26] and [1%: denote byg(&£) the category of
bounded chain complexes owér Then%®(&) is a small, exact category with degreewise split conflations
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that is, a sequenc¥® — Y* — Z* is a conflation ing®(&) if X' — Y' — Z' is isomorphic to the split
conflationX' — X' @ Z' — Z' for each € Z. Actually, (&) is even a Frobenius category in which projective
objects are exactly bounded contractible chain complexes®. Recall that a chain complex® is called
contractiblewhen the identity oiX* is null-homotopic. Moreover, the stable categorys®¥(&) is the usual
bounded homotopy category ®(&), that is, 7 (€°(&)) = #P(&).

Recall that a complex® = (X',d")icz over & is calledacyclicif d' is a composite of a deflatiort
with an inflationA! such thatA', t*+?) is a conflation for ali. Let €2(&) C €°(&£) be the full subcategory
of objects which are homotopy equivalent to acyclic chaimptexes overs’. Then@2(&) contains all
projective objects of the Frobenius categ@fy(&£), and is closed under extensions, kernels of deflations as
well as cokernels of inflations i°(&). Thus€2,(&) inherits a Frobenius structure froe® (&) and

C:= (€°(6), Cal&))

is a Frobenius pair. In particular, the p&lr(or the associated categoBP (&) can be regarded as a Wald-
hausen category: A chain mdp: X* — Y* in €°(&) is called a cofibration if ' : X' — Y' is a split inflation

in & for eachi € Z; a weak equivalence if the mapping coneféfbelongs toz2(&). Moreover, Z¢ (C)
coincides with the bounded derived categét§(&) of (&), which is defined as follows:

Let & be an arbitrary exact category. The objectsZ8{&”) are the objects o&°(&”). The morphisms
of 2°(&") are obtained from the chain maps by formally inverting th@snahose mapping cones are acyclic
(as complexes of objects ifi'). For example, if6” is the usual exact categoB-Mod with R a ring, then
Z°(&") is the usual derived categoy®(R). For more details, see [17].

Assume that the exact structure £fis induced from an abelian categoy. That is,& C < is a full

. . f : o
subcategory such that itis closed under extensions, ahd geuencX — Y -9, Z with all terms in& is a

conflation ing” if and only if 0 — X vy % 7 ,0isan exact sequence. Furthermore, assume thét
is closed under kernels of epimorphisms in the abelian oagetn this case, the chain mdp : X* —Y*®isa
weak equivalence i€ if and only if f* is a quasi-isomorphism i (<), that is,H'(f*) : H'(X*) — H'(Y*)

is an isomorphism i/ for eachi € Z.

Note that an exact catego#y itself can also be understood as a Waldhausen category ofitirations
being inflations, and weak equivalences being isomorphiddagsto now, there are at least three algebraic
K-theory spaces associated with a small exact catefjofiyhe QuillenK-theory space of the exact category
&, the WaldhauseK-theory space with respect to the Waldhausen categoand the Waldhausef-theory
space of the Waldhausen category defined by the Frobeniusﬁiﬁ%w),%gc(g)). However, these spaces
are the same up to homotopy equivalence (see [37, Sectiprah®[36, Theorem 1.11.7]). So, in this paper,
we always identify these spaces.

(b) The next example of Frobenius pairs is constructed frategories of finitely generated projective
modules.

Let R be aring. Then the categoR-proj of finitely generated projectivB-modules is a small exact
category with split, short exact sequences as its conflatiGlearly, this exact structure &aproj is induced
from the usual exact structure of the abelian cate®od. Following Quillen [26], thealgebraic K-theory
space KR) of Ris defined to be the spat¢g R-proj) of R-proj, and then-th algebraic K-group IK(R) of R
to be then-th homotopy group oK (R).

We know from(a) that the pair(¢®(R-proj), 62(R-proj)) is a Frobenius pair. In this wag(R-proj)
can be regarded as a small Waldhausen category. Moré6iéR-proj) consists of all bounded contractible
chain complexes oveR-proj, which are exactly projective objects in the Frobenaategorys®(R-proj).

In other words, we havé™®(R-proj)-proj = €2 (R-proj). Thus Z¢ (¢°(R-proj)) is the bounded homotopy
category.# °(R-proj). Since each compact object 6f(R) is quasi-isomorphic to an object @f°(R-proj),
the Verdier localization functor# (R) — Z(R) restricts to a triangle equivalencé™(R-proj) — Z°(R).

Hence, we see th#t(R), K(%(R-proj)) andK (C) with C := (¢°(R-proj), 62 (R-proj)) are homotopy
equivalent, and therefore their algebréiggroups are all isomorphic.
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Let S be another ring andi® a bounded complex oB-R-bimodules. IfsN® € €°(S-proj), then the
tensor functomN® @g — : €°(R-proj) — ¢°(S-proj) is a map of Frobenious pairs. So, we obtain a map
K(N*®g—) : K(R) — K(S) of K-theory spaces.

In caseA : R — Sis a ring homomorphism, we chood = S and denote simply b¥K(A) the map
K(S®r—) : K(R) = K(S). Since the homomorphisi,(S[1] @& —) : Kn(R) — Kn(S), induced from the
mapK(S1] @k —) : K(R) — K(9), is equal to the minus df,(A), we shall denote the map(S1] ®g —) by
—K(A).

Note that the shift functofl] : ¥°(R-proj) — € (R-proj) is also a map of Frobenius pairs. Now, Zet
be the diagonal map— (x,x) for x € K(R) and letU : R-proj x R-proj — R-proj be the coproduct functor.
Then the induced mai§([1]) : K(R) — K(R) is a homotopy equivalence and a homotopy inverge (&) in
the sense that the composite of the following maps:

K([1)) x1d K (L)

K(R) x K(R) — = K(R)

K(R) —2> K(R) x K(R)

is homotopic to the constant map which serds the base-point dk (R).

3.3 Fundamental theorems in algebraid-theory of Frobenius pairs

Now, we recall some basic results on algebi&itheory of Frobenious pairs in terms of derived categories.
Our main reference in this section is the paper [32] by Shhhg.

The following localization theorem may trace back to thal@ation theorem in [26, Section 5, Theorem
5] for exact categories, the fibration theorem in [37, Theotk6.4] for Waldhausen categories, and the
localization theorem in [36, Theorem 1.8.2] for compliciWWaldhausen categories. For a proof of the
present form, we refer the reader to [32, Propositions 3 apdl26 and p.128]. Also, the approximation and
cofinality theorems are taken from [32, Propositions 3 and 4]

Lemma 3.1. (1) Localization Theorem:
9 g (C)

K(C) of K-theory spaces is a

LetA 5B -S:Chea sequence of Frobenius pairs. If the sequ@ﬁ@“) —> P& (B)

of derived categories is exact, then the induced sequerég K K(B @k

homotopy fibration, and therefore there is a long exact seqe®f K- groups

(F) Kn(G)

5 Knpa(C) — Kn(A) B K (8) Y Kn(C) — Kn_1(A) —

- — Ko(A) — Ko(B) — Kp(C) — 0

forallne N.

(2) Approximation Theorem:

Let G: B — C be a map of Frobenius pairs. If the associated funétefG) : Z¢ (B) — Z¢ (C) of derived
categories is an equivalence, then the induced megp)KK(B) — K(C) of K-theory spaces is a homotopy
equivalence. In particular, l{G) : K,(B) — Kq(C) for all n € N.

(3) Cofinality Theorem:

Let G: B — C be a map of Frobenius pairs. If the associated funci(G) : Z¢(
derived categories is an equivalence up to factors, therirtheced map KG) : K(B) — K
spaces gives rise to an injection (G) : Ko(B) — Ko(C) and an isomorphism: KG) : Kn(B
alln>0.

B) — Z¢(C) of
(C ) of K-theory
) — Kn(C) for

Note that the surjectivity of the last map in the long exacjusaice in Lemma 3.1 (1) follows from the
fact thatKo(C) is isomorphic to the Grothendieck grotp(Zr (C)) of Z¢(C).

The localization theorem is useful, but when we deal Wittheory of recollements, the obstacle for us to
use itis that, in a given recollement of derived module aatieg, we do not know whether the given functors
between derived categories are induced from exact funb&ivgeen Frobenius pairs.
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For our purpose of later proofs, we mention the followingufewhich is a slight variation of [32, Section
6.1] and has been mentioned there without proof. For theasoamce of the reader, we include here a proof
(see also [24, Lemma 2.5] for a special case).

Lemma 3.2. Thickness Theorem:

LetC := (¢, o) be a Frobenius pair. Suppose that there is a triangulatecgatty 4" together with a
triangle equivalence G%(C) — ¥. Let 2" be a full triangulated subcategory @f . Definex to be the
full subcategory of consisting of objects X such tha{X) € 2. Then the following statements are true:

(1) The categoryx containscp and is closed under extensionsdn Moreover,x naturally inherits a
Frobenius structure frong, and becomes a Frobenius subcategory &uch thatx -proj = ¢-proj.

(2) BothX := (x, o) andC4 := (c,x) are Frobenius pairs, and the inclusion functor— ¢ and the
identity functorc — ¢ induce the following commutative diagram of triangulatedegories:

P (X)— Z¢(C) — Zr(Cx)

-4k

2¢ ¢ |2

(3) If 2" is closed under direct summandsdh then both rows in the diagram ¢2) are exact sequences
of triangulated categories.

Proof. (1) By definition of Zr (C) := ¢ /o, the objects ofZF (C) are the same as the objectsofThus,
if M € coorM e ¢-proj, thenM ~ 0 in Z¢(C). This implies thatx contains bothcy and c-proj. SinceG
is a triangle functor and?” is a full triangulated subcategory @f, it is easy to see that is closed under
extensions irt.

Sincex is closed under extensions dn we can endow with an exact structure induced from the one
of ¢, namely, a sequencé — Y — Z with all terms inx is called a conflation inx if it is a conflation in
c. Then one can check that, with this exact structurdgecomes an exact category. Now, we claim that
is even a Frobenius category such thiaproj = ¢-proj. Indeed, it suffices to show thatlif—+ P — N is a
conflation inc with P € ¢-proj, thenL € x if and only if N € x . Actually, such a conflation can be extended
to a distinguished triangle — P — N — L[1] in ¢, and further, to a distinguished triangle 4 (C). Since
P~0in 2:(C), we haveN ~ L[1] in Z¢(C). As 2 is closed under shifts i#” andG is a triangle functor,
we know thatG(L) € 2" if and only if G(N) € .2". In other words| € x if and only if N € x. This verifies
the claim.

(2) Note thatcog € x C ¢ and Co-proj C x -proj = c-proj. ThusX := (x,¢cg) andCy = (C,x) are
Frobenius pairs.

Recall thatZr (X) := x /co and Zr (C4) := ¢ /x. Clearly, the inclusion functok : x — ¢ and the
identity functorld, : ¢ — ¢ are maps from the Frobenius pairto the Frobenius pair€, and fromC to
C -, respectively. So we have two triangle functo#s(A) : x /Co — ¢ /Coand Zr(1d.) : ¢ /Co — C /X,
which are induced from the inclusion C ¢ and the identity functor of , respectively.

Clearly, x containsco, that is, the objects afg is a subclass of the objects mfwith the morphism set
Hom,,(X,Y) =Homy (X,Y) for all objectsX,Y in ¢o. Since the inclusionr C ¢ is fully faithful, the functor

Pk (M) is also a fully faithful inclusion which gives rise to the flming commutative diagram:

A
0 x/cZ /e

|- o

X —%.
Consequentlyi induces a triangle equivalence

Gr:(C/Co)/(X/Co) —C/ .
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By the universal property of the Verdier localization fuwroty; : ¢ — ¢ /x (respectivelygz : ¢/Co —
(€ /Co)/(X /Co)), thereis atriangle functap: ¢ /x — (C /Co)/ (X / Co) (respectivelyw: (¢ /Co)/ (X /Co) —
C /X)) such thago = ¢q; (respectivelyZe (1d.- ) = W), wheregp : ¢ — ¢/, is the Verdier localization
functor. Sinces = Z¢(ld.)qo, we have

Pear = Yapdo = Zr (1d-)go = a1 and @Z¢ (1d.)do = @1 = 0200.

It follows thatW@= Id and@Zk (1d;) = go. As @i = QYeZk (1d.-) = ©Zk (1d,-) = g, we obtaingy = Id.
Thus@is a triangle isomorphism.
Now, we defineG := G19: ¢ /x — ¢ /2 . Then the following diagram of triangulated categories

d
() /o c/x

Gl~ 6|~

T

is commutative, wherq is the Verdier localization functor. Now?2) follows from (x) and ).
(3) In this case 2" is the kernel of the localization functar: ¢ — ¢ /2. Thus(3) follows. .

4 Algebraic K-theory of differential graded algebras

4.1 Definitions ofK-theory spaces of dg algebras

In this subsection, we shall give a definitionkoftheory spaces of differential graded algebras, which gene
alizes the one oK-theory spaces of usual rings and modifies slightly the dafmin [32]. But, at the level
of homotopy groups, the two definitions give the isomorphjehraicK,-groups fom € N.

Throughout this subsectiok,stands for an arbitrary but fixed commutative ring, and atjsiconsidered
here arek-algebras. Note that each ring with identity can be regaedealZ-algebra.

Let A be a differential graded (dg) associative and unitaalgebra, that isA = ®nczA" is aZ-graded
k-algebra with a differentiad” : A" — A" such that A",d"),c is a chain complex dk-modules and

(xy)d™ " = x(yd") + (—1)"(xd")y

forme Z,x e AMandy € A". Thus the mapg @ A — A, a®¢b— baforab e A, is a chain map.
A left dg A-moduleM* is aZ-graded left moduleM® = @,z M" over theZ-gradedk-algebraA, with
a differentiald such thatM",d),cz is a complex ok-modules, and for ang € A™ x € M", the following
holds:
(ax)d™" = a(xd") + (—1)"(ad™)x.

In particular, each dé.-module is &-gradedA-module (forgetting the differential).

For a dgA-moduleM*®, we denote by *[1] the shift ofM* by degree 1.

We should observe that the dg algebfad) and left dgA-moduleM* defined in this paper are actually
the dg algebrgA™,d) and right dgA*-module in the sense of [16, Summary], respectively.

In the following, we give a typical way to obtain dg algebrgstéking Hom-complexes of dg modules.

Let (X*,dx.) and(Y*,dy.) be two dgA-modules. ThéHom-complexof X* andY* overA is defined to
be the following complex Hof(X®,Y*) := (Homf} (X*,Y*),d5. v. ), overk:

As ak-module, then-th component Hoth(X*,Y*) is formed by the morphismis: X* — Y* of graded
A-modules, homogeneous of degireeln other wordsh is a homomorphism of\-modules such thdi =
(hP)pez with hP € Hom(XP,YP™"). Further, the differentialy. . : Homj (X*,Y*) — Homf} 1 (X*,Y*) of
degreenis given by

(hP)pez = (PP — (~1)"dR.hP*) .
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Furthermore, we take another dgmoduleZ®, and define
o1 Homj (X*,Y*) x Hom} (Y*,Z*) — Hom} (X*,Z%), (f,g)— (fPgP™™)pez

for f := (fP)pez € Hom(X®,Y*) andg := (gP)pez € Hom] (Y*,Z*) with m,n € Z. Thus the operation is
associative and distributive. In particular, under thisragion, Hom (X*, X*) is aZ-graded ring. Moreover,
the above-defined operatiersatisfies the following identity:

(fog)dize = fo(g)dV. 2 +(=1)"(f)di v 00

This implies that Horh(X*, X*), together with the differential of itself as a complex okers a dg algebra.
In this sense, Erfd X*) will be called thedg endomorphism ringf X*, and denoted simply by EAdX*).
Also, due to the above identity, the complex HoX*,Y*) is actually a left dg En}l(X*)- and right dg
End; (Y*)- bimodule.

Now, we recall the definition of the categd#y( A )of left dg A-modules. Actually, this category has all dg
A-modules as objects, and a homomorphiEh X* — Y* between dg\-modulesX® andY* is a chain map
of complexes ovek, which commutes with thé-actions orX*® andY*. This means that Hog,)(X*®,Y*)
is exactly the O-th cocycle of the complex HD(X®,Y*). It is known that#’(A) is a Frobenius category (see
[16, Section 2]) by declaring a conflation to be a short secai@i dgA-modules such that the underlying
sequence of gradedl-modules (forgetting differentials) is split exact. Thatde category of’(A) is the
dg homotopy category? (A) in which the objects are the dig-modules and the morphisms are the homo-
topy classes of homomorphisms of dgmodules. In other words, Hopy s (X®,Y*) is equal to the O-th
cohomologyH®(Hom, (X*,Y*)) of the complex Horfi(X®,Y*).

We say thatf® is aquasi-isomorphisnif it is a quasi-isomorphism as a chain map of complexes kyver
thatis,H'(f*) : H'(X*) — H(Y*) is an isomorphism for everiyc Z. By inverting all quasi-isomorphisms of
dg A-modules, we obtain thdg derived category/(A) of A. This is a triangulated category and generated
by the dg modulé&\, that is,Z(A) = Tria(A).

Observe that an ordinalkalgebraA can be regarded as a dg algebra concentrated in degree Gyaand t
the above-mentioned categorie§A), 7 (A) and Z(A) coincide with the usual complex, homotopy and
derived categories of the category of I8fimodules, respectively.

To give a description of7(A) by a triangulated subcategory .of (A) up to equivalence, we shall recall
some more definitions in [16].

The dgA-moduleX® is said to beacyclicif it is acyclic as a complex ok-modules, that isH!(X®) =0
for all i € Z; is said to have theroperty (P) if Hom () (X*,Y*®) = 0 for any acyclic dgA-moduleY*, or
equivalently, Horfy (X*®,Y*) is acyclic as a complex ovéde Note that the class of d§-modules with the
property (P) is closed under extensions, shifts, direct summands aedtdums i’ (A). We denote by
J (A)p the full subcategory of# (A) consisting of all modules with the propert). Then.7 (A), C
A (A) is a triangulated subcategory containihgand being closed under direct sums. More important, by
[16, Section 3.1], the Verdier localization funcipr 7 (A) — Z(A) restricts to a triangle equivalence

q: #(A)p — Z(A).

This implies that any quasi-isomorphism between twadgmodules with the propertfP) is an isomorphism
in # (A) and that, for each dg-moduleM®, there is a (functorial) quasi-isomorphigi® — M* of dg A-
modules such thgiM* has the propertyP).

With the help of the above triangle equivalence, we can defiedotal left-derived functors of tensor
functors. This procedure is similar to the one for usual dexgs over ordinary rings.

LetW?* be a right dgA-module andX*® a (left) dgA-module. Theensor complexf W*® andX*® over A
is defined to be the following compléi*® @3 X* := (W*®} X*,00. . ), Overk:

As ak-module, then-th componenW*®} X* is the quotient module ofp ,c;, WP @ X"~P modulo the
k-submodule generated by all elementsz v—u®av for uc W', ac A® andv € X! with r,s;t € Z and
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n=r +s+t. Further, the differentiadw. x- of degreen is given by
WX (W)dh. @x+ (—1)Pwe (x)dy. P

for we WP andx e X"P.
Assume further thaB is another dg algebra and thaf is aB-A-bimodule. TheW* ®% X* is indeed a
dg B-module. This gives rise to the following tensor functor

BW* @8 — 1 G(A) — F(B), X* s W* @5 X°.

Now, the total left-derived functol® @k — : Z(A) — 2(B) of this functor is defined bX*® — W* @4 (pX*).
Particularly, ifX* has the propertyP), thenW*® @k X* =W* &% X*in 2(B).

A dg A-moduleM is calledrelatively countable projectiveespectivelycountable projectiveif there is
a dgA-moduleN such thatM @ N is isomorphic tod;; A[ni] as dgA-modules (respectively, &-graded
A-modules), wherd is a countable set and € Z. Clearly, relatively countable projective modules are
countable projective modules, and have the prop@ysince Homy (4)(A[i},M) ~ H='(M) for all i.

Let x (A) be the full subcategory of’(A) consisting of countable projectivé-modules. Therx (A)
is an essentially small category. This is due to the follgnibservation: Let; (A) be the category of.-
gradedA-modules. For ever¥X := @, X' € G (A), we have the following(a) The classu (X) consisting
of isomorphism classes of direct summand¥ah g (A) is a set. In fact, there is a surjection from the set
of idempotent elements of Epgh)(X) to u(X). (b) The classy (X) consisting of all dgA-modules with
X as the underlying gradefi-module is also a set since(X) is contained into the set(X,d')icz | d' €
Hom (X', X'*1)}, which is a countable union of sets.

Furthermore,x (A) is closed under extensions, shifts, direct summands andtaiole direct sums in
C(A).

Let (A, o) be the smallest full subcategory ®{A) such that it

(1) contains all relatively countable projectidemodules;

(2) is closed under extensions and shifts;

(3) is closed under countable direct sums.

Then € (A,0p) is essentially small, inherits an exact structure fr@ghA), and becomes a fully exact
subcategory ofg’(A). Even more, % (A,p) is a Frobenius subcategory @f(A), in which projective-
injective objects are the ones @f(A) belonging to%(A,g). This can be concluded from the following
fact: For eactM € %'(A), there is a canonical conflatiodd — C(M) — M[1] in €' (A) such thaC(M) is a
projective-injective object 0%’ (A) (see [16, Section 2.2]). Hen&&(A, o) provides a natural Frobenius
pair (¢'(A,0p), % (A,Op)-proj), and the inclusiory’ (A, o) C ¥ (A) induces a fully faithful inclusion from
the derived categor@e (¢'(A,0p)) of €(A,0o) to # (A).

We denote by (A,p) the full subcategory of# (A) consisting of those complexes which are iso-
morphic in.# (A) to objects of¢'(A,Op). Then.# (A,p) is a triangulated subcategory &f (A) by the
condition(2), and the inclusiorZs (¢'(A,0Og)) C 22 (A,Oo) is a triangle equivalence. Since the full subcat-
egory ofx (A) consisting of all dgA-modules with the propertyP) satisfies the above condition$)-(3),
we deduce that each object@{ A, o) has the propertyP). This implies that’z (A,Og) C J#(A)p. Fur-
thermore, by definitionz’(A, Do) is closed under countable direct sumsifA ), and therefore’ (A, o)
is closed under countable direct sumsiAn(A),. It follows from Lemma 2.1 (1) thatZ (A, o) is closed
under direct summands it (A)p.

Now, let 2" (A) be the full subcategory aP(A) consisting of all those objects which are isomorphic in
2(A) to the images of objects o (A, 0o) under the equivalencg: .7 (A)p — Z(A). ThenZ (A) is a
triangulated subcategory 6f(A) closed under direct summands, apishduces a triangle equivalence from
(A, 0p) to Z7(A). In all, we have

e (€(A,O0)) C A (A, Oo) C A (A)p, Z(A)C 2(A)
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and
I (6(A,00)) — (A, 00) — 2°(A)

as triangulated categories.
Recall that a dg\-moduleM is called &finite cell moduléf there is a finite filtration

0=MoCM;1CMC---CMp=M

of dg A-modules such that, for each<0i < n—1 € N, the quotient modul®; 1 /M; is isomorphic toA[n;]
for somen; € Z (see [18, Part Ill]). Clearly, each finite celfl-module belongs t&’(A,0p). Moreover,
the category of finite cellh-modules is closed under extensionsdifA, dp). Actually, this category is a
Frobenius subcategory @f(A, Oo), in which projective-injective objects are the one&g#\, ) belonging
to this subcategory.

An objectM € Z(A) is said to becompactif Homg ) (M, —) commutes with direct sums i (A). Let
Z°(A) be the full subcategory a?(A) consisting of all compact objects. Thérf(A) is the smallest full
triangulated subcategory &#(A) containingA and being closed under direct summands of its objects. In
fact, each compact object 6f(A) is a direct summand of a finite cell moduled(A) (see [16, Section 5]).
This implies the following chain of full subcategorie®®(A) C 27 (A) C 2(A).

Now, we definew, to be the full subcategory &f (A, o) consisting of all those objects (A, Do)
such that they are isomorphic #i(A) to compact objects a#(A). Clearly, w, is essentially small. More-
over, by applying Lemma 3.2 to the Frobenius pé(\, 0o) and the equivalencgr (€' (A, o)) — 2 (A)
with the triangulated subcategoy®(A) of 27 (A), we deduce thatv, is a Frobenius subcategory of
¢ (A,0p) with the same projective objects, and that the followingychan of triangulated categories com-
mutes:

() De(Wa)— T (% (A,00)— K (A)p— ¥ (A)

N

P°(A)C 2 (A)C 7(A)

From now on, we regardy/, as a Waldhausen category in the sense of Subsection 3.2lyn@ragses
exactly from the Frobenius paim, W 4-proj).

Definition 4.1. The algebraic K-theory space of the dg k-algelirés defined to be the spacg ¥/, ) of the
Waldenhausen categomy,, denoted by KA). For each ne N, the n-th algebraic K-group o is defined
to be the n-th homotopy group of K) and denoted by KA).

Note thatKo(A) is isomorphic toKo(Zr (74)), the Grothendieck group of the (essentially small) trian-
gulated categorne (W, ) of the Frobenius paifw,, w4-proj)(see Subsection 3.2). As a result, we have
the following fact.

Lemma 4.2. The Verdier localization functor? (A) — 2(A) induces a triangle equivalenceZs (wy) —
Z°(A). In particular, Ko(%4) is isomorphic to the Grothendieck group(°©(A)) of Z¢(A).

Our definition ofK-theory spaces of dg algebras has the following property.

Lemma 4.3. Let #, be the full subcategory ai’, consisting of all finite cell.-modules. Then the inclusion
Fa — W, induces an injection i 74 ) — Ko(%4) and an isomorphism K 74 ) — Kn(%,) for each n> 0.

Proof. Note that#, is a Frobenius subcategory @af, and that the inclusiong, C W, C %' (A) induce
fully faithful inclusions Z¢ (#a) C Zr (W) C # (A)p (see Subsection 3.2).

To show that the inclusioe (74) — Ze (W4 ) is an equivalence up to factors, we shall compare the
images of these two categories under the equivalgncé (A), — Z(A) in the above diagramx]. In fact,
by Lemma 4.2, the restriction of the funciptd Z¢ () gives rise to a triangle equivalen& (w,) —
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72°(A). Let # be the smallest full triangulated subcategory@f(A) containingA. Since the objects
of Zr(7a) are the same as the ones ®f, the image of the restriction of the functqrté Zg (#4) is
contained ir?, and therefore is equal t&. Thusq'induces a triangle equivalencég: (7,) — %. Since
2°(A) = thick(A) andA € # C 2°(A), we have thick?') = 2°(A). So the inclusior’” — 2°(A) is an
equivalence up to factors. Consequently, the inclusiiiFs) — Zg (W) induced fromF, C Wy is also
an equivalence up to factors. Now, Lemma 4.3 follows from ben8.1 (3).C0.

Remark 4.4. In [32, Section 12.3], &-theory spectrunk(#, ) is defined for the category,. Moreover, it
is known in [32, Theorem 8] that, for eache N, then-th homology group oK(#, ) is given by

Kn(7a) if n>0,
T (K (7)) :{ KO(@AC(A)) if n=0.

Thus Lemmas 4.3 and 4.2 show tIma(K(fA)) ~Kp(A) for alln e N, and therefore, at the level of homotopy
groups, our definition oK-theory for dg algebras is isomorphic to the one defined byi&tmg in [32].

The following result, together with Lemma 4.3, may expldia idvantage of definirig-theory of arbi-
trary dg algebras by using the categary, rather thanzy.

Lemma 4.5. Let A be an algebra with identity, and létbe the dg algebra A concentrated in degBed hen
K(A) and K(A) are homotopy equivalent as K-theory spaces.

Proof. Clearly, ¢ (A) = €(A), # (A) = % (A) andZ(A) = 2(A). In particular,2°(A) = 2°(A). By
the construction ofv,, we see tha®®(A-proj) C w, and € (A-proj)-proj = €2 (A-proj) C w-proj. Thus
the inclusionj : €°(A-proj) — w, is a fully faithful map of Frobenius pairs. In other word€?(A-proj) is
a Frobenius subcategory of 4. This implies that the triangle funct@?r (j) : Zr (€°(A-proj)) — e (Wa)
is fully faithful (see Subsection 3.2). Now we show tHat(j) is an equivalence. On the one hand, the
localization functorg : 7 (A) — Z(A) induces an equivalena® : Z¢ (Wa) — Z°(A) by Lemma 4.2. On
the other hand, the composite of the following functors:

HP(Rproj) = Ze (6P (A-proi)) FY e (wy) L5 25(A)

is also an equivalence induced gyThus Zk () is a triangle equivalence. By Lemma 3.1 (2), we know that
K(A) = K(wy) =: K(A) asK-theory spaced.]

4.2 Homotopy equivalences oK-theory spaces from perfect dg modules

In this subsection, we introduce the definition of perfectnagdules over dg rings, and discuss homotopy
equivalences dok-theory spaces of dg algebras linked by perfect dg modules.

Let A be a dg algebra. A dg-module is said to bperfectif it belongs tow,. Recall that each perfect
dg A-module has the propert{P) and is compact inZ(A). Conversely, each compact dgmodule is
isomorphic inZ(A) to a perfect one, but itself may not have the propéRy. Moreover, ifA is an ordinary
ring concentrated in degree 0, then each bounded complexitdlyi generated projectivé-modules is
perfect.

First of all, we point out the following result, which mayu#itrate the importance of perfect dg modules.
For a proof, we refer to [16, Section 3.1].

Lemma 4.6. Let M be a dgA-module and le§ := Endi (M). If 4M is perfect, then the left-derived functor
M &t —: 2(S) — Tria(,M) is a triangle equivalence.

In the following lemma, we can see that perfect dg modulesygdwrovide us with maps of Frobenius
pairs which define algebrak-theory spaces of dg algebras.
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Lemma4.7. LetB be a dg algebra and let M be a dg-B-bimodule. If4M is perfect, then the tensor functor
AM ®g — : wg — W, is a map of Frobenius pairs.

Proof. For simplicity, we denote b the tensor functoM @p, — : ¢ (B) — ¢’ (A). In the following, we
show thatG(wp) C Wy.

Let x (B) andx (A) be the full subcategories &f(B) and% (A) consisting of all countable projective
modules, respectively. Recall thatA) is closed under shifts, direct summands and countabletdivecs in
%' (A). Then, it follows fromG(B) =M @3B ~M € w, C x (A) that the functoiG : x (B) — x (A) is well
defined. Sincé& always preserves conflations and commutes with both shiftcauntable direct sums, the
following full subcategory

G (A,00)) == {N € x (B) | G(N) € ¢'(A,0o)}

of x (B) contains all relatively countable projectiB2modules, and is closed under extensions, shifts and
countable direct sums. Given thHa(B, (o) is the smallest subcategory ©fB) admitting these properties,
we have?' (B,0o) € G (€ (A,Op)). ThusG(%' (B, 0o)) € ¢'(A, o) andG: €(B,0o) — € (A,0o) is a
well-defined functor.

Furthermore, since each objétte ¢’ (B,0o) always has the propertP), we see thaG(N) = M @5 N
in 2(A). So, to show thaG(wg) C w,, it suffices to prove that iN € wg, thenM ®5 N € 2°(A). For
checking this, we take an objelste wpgi. ThenN € 2°(B). Since each perfect dg-module is compact in
2(A), we haveM @5 B =M @pB ~ M € 2°(A). This implies that the functod @f — : 2(B) — 2(A)
preserves compact objects. TFNZI@}@g N e 2°(A) andG(wg) C Wy.

Recall that, for an arbitrary dg algeb$a the categoryws-proj consists of all those objects which are
homotopy equivalent to the zero objectdf(S). As G always preserves conflations and homotopy equiva-
lences, we see th& sends projective objects af’y to the ones ofw,. ThusG: Wy — W, is a map of
Frobenius pairsl]

Next, we show that perfect dg modules can offer homotopyvedgrices of algebraik-theory spaces.

Lemma 4.8. LetB be a dg algebra and let M be a dig-B-bimodule such thatM is perfect. Letr be the
full subcategory ofiw, consisting of all those dg.-modules, which, regarded as objectsfA ), belong to
Tria(yM). Then the followings hold true:

(1) The categoryr is a Frobenius subcategory o, and the mapM ®@p, — : W — W, factorizes
through the inclusiorr < /.

(2) If the left-derived functogM ®% — : Z(B) — Tria(4M) is an equivalence, thepM ®§, — : Wp — P
induces a homotopy equivalencéB§ — K (2 ) of K-theory spaces. If, in additior7(A) = Tria(,M), then
K(B) — K(A) as K-theory spaces.

Proof. (1) Let 2" := Tria(aM) N 2°(A). ThenZ is a full triangulated subcategory 6f°(A). Since
the localization functog: .7 (A) — 2(A) induces a triangle equivalencég: (w,) — 2°(A) by Lemma
4.2, we see thar is exactly the full subcategory af’, consisting of all those dd.-modules, which are
isomorphic inZ°(A) to objects of2". Hence, by Lemma 3.2 is a Frobenius subcategory @f, andq
induces a triangle equivalencge: Z¢ (¢) — 2.

By Lemma 4.7, the functo@ : wp — W, is @ map of Frobenius pairs. Note tha{B) = Tria(B) and
M ®f — commutes with arbitrary direct sums. By Lemma 2.1 (2), weshdw} N € Tria(,M). It follows
thatM @5 N € Tria(4M) N Z2°(A) = 2, and therefor&s(w) C . This implies thaM @, — : W — Wy
factorizes through the inclusion < /.

(2) Since Z(A) = Tria(A) and 4M € 2°(A), we know from [22, Theorem 4.4.9] that™ coincides
with the full subcategory of Trig.M) consisting of all compact objects in T(idM). Now, suppose that the
functorM % — : 2(B) — Tria(,M) is an equivalence. Then this functor restricts to a triargjeivalence
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2°(B) — 2 . Moreover, by Lemma 4.2, the localization functaf (B) — 2 (B) induces an equivalence
: Zr (Wg) — 2°(B). From the following commutative diagram:

P (M®p—)
D (Wg) ————> T (2)
qu Q\LN
L
@C(B) Mi]B P

we infer thatZs (M @, —) : Z¢ (Wg) — Z¢(#) is a triangle equivalence. It follows from Lemma 3.1 (2)
thatK (B) — K(2) asK-theory spaces. Clearly, i#(A) = Tria(y,M), then? = w,. Thus(2) follows. OJ

As a consequence of Lemma 4.8, we re-obtain the followinglrés[12, Proposition 6.7 and Corollary
3.10] where its proof uses knowledge on model categories.

Corollary 4.9. LetA : B — A be a homomorphism of dg algebras which is a quasi-isomomphiBhen the
functor A @3 — : ¢'(B) — ¢'(A) induces a homotopy equivalenceB — K(A) of K-theory spaces. In
particular, if H'(A) = Ofor all i # 0, then K(A) — K(HO(A)).

Proof. In Lemma 4.8, we tak® = A. ThenM is a dgA-B-bimodule viah : B — A such that it is perfect
as a dgA-module, and that TrigM) = 2(A). SinceA is a quasi-isomorphism of dg algebras, it follows
from [18, Proposition 4.2] that the functér®3$, — induces a triangle equivalence(B) — Z(A) (see also
[16, Section 3.1]). Now, the first part of Corollary 4.9 falle from Lemma 4.8 (2).

Suppose thah := (A',d")icz with H'(A) = 0 for all i # 0. We definet=C(A) to be the following dg
algebra:

s A I A2 I AL e d®) 50— -

Then there exist two canonical quasi-isomorphisra%A) — A andt=%(A) — H°(A) of dg algebras. It
follows from the first part of Corollary 4.9 that

K(1=0(A)) =5 K(A) andK(T=9(A)) = K(HO(A)).

Combining these homotopy equivalences with Lemma 4.5, wetlsa#tK (A) — K(H°(A)) asK-theory
spacesl]

Combining Lemma 4.8 with Lemma 4.6, we have the followingl@aple result.

Corollary 4.10. Let M be a perfect dg.--module and le§ := End} (M). Define? to be the full subcategory
of w, consisting of all those dg.-modules, which, regarded as objectsgt{A ), belong toTria(4M). Then
K(S) — K(®) as K-theory spaces. Moreover, #(A) = Tria(yM), then KS) — K(A) as K-theory
spaces.

As a consequence of Corollary 4.10, we obtain the followang.f

Corollary 4.11. Let M and N be two perfect d§y-modules. IfTria(M) = Tria(N) C Z(A), then
K(Endy(M)) — K(Endi(N)).

The following result conveys that, for ordinary rings, wenazhoose smaller subcategories of perfect
complexes to realize the homtopy equivalence in Corollatp 4

Corollary 4.12. Let A be an algebra and *P< ¢(A-proj). DefineS := Endi(P*) and # to be the full
subcategory of®(A-proj) consisting of all those complexes which, regarded as abjec?(A), belong to
Tria(P®). Then KS) — K() as K-theory spaces.
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Proof. We remark thatr is a Frobenius subcategory @ (A-proj) such that its derived categofj: ()
is equivalent toZ" := Tria(P*) N 2°(A) via the localization functoq: .7 (A) — 2(A).

Actually, since.2” is a full triangulated subcategory ¢1°(A) and Z¢ (¢°(A-proj)) = #°(A-proj) —
Z°(A), we see thatr is exactly the full subcategory &®(A-proj), in which the objects are complexes in
%" (A-proj) such that they are isomorphic i#°(A) to objects 0f2". Hence, by Lemma 3.2 is a Frobenius
subcategory of(A-proj) and the functog induces an equivalenag : Z¢ (?) — 2 .

Now we view A as a dg algebra concentrated in degree 0, and lee the full subcategory oft/a
consisting of those objects that are isomorphi&ifA) to objects of TrigaP*). Since each object of/a is
compact inZ(A), we clearly havex = {X € wa | X € 27}. Note thatP® is a dgA-S-bimodule such that it is
perfect as a dg-module. So, from the proof of Lemma 4.8 (1), we know thiais a Frobenius subcategory
of wa, the functorP® ®§ — : wWs — x is a map of Frobenius pairs amginduces a triangle equivalence
0o : Dk (X) i) Z.

In the following, we first show tha (#) — K(x ), and then thakK(S) — K(x ) asK-theory spaces.
With these two homotopy equivalences in mind, we will obgigthaveK (S) — K (), as desired.

Let us check thakK(?) — K(x). Actually, it follows from ‘Kb(A-proj) C wp thate C x. Since
P-proj = €L (A-proj) C wa-proj = x -proj, the inclusioru: 2 — x of Frobenius categories induces a fully
faithful functor Z (1) : Zr (?) — Ze(x). Sinceqr = G ZF (1), we see thaZg (W) is an equivalence. Thus
the mapK () : K(?) — K(x) is a homotopy equivalence by Lemma 3.1 (2).

It remains to show that the ma@# @& — : ws — x induces a homotopy equivalensgS) — K(x).

In fact, since each object &f°(A-proj) is perfect, it follows from Lemma 4.6 that the functet ®'§ —
9(S) — Tria(aP*®) is a triangle equivalence. Th#gS) — K(x ) by Lemma 4.8 (2)0

4.3 Decomposition of higher algebraid-groups

In this subsection, we shall establish reduction formutasélculation of algebraik-groups of dg algebras.
The main result of this subsection is Proposition 4.14, whidl be applied in the next subsection to show
Theorem 1.1.

First, we extend a result of Berrick and Keating (see [2]) lgelaraicK-groups of triangular matrix rings
to the ones of dg triangular matrix rings.
Lemma 4.13. LetR = § R{,ﬂ > be the dg triangular matrix algebra defined by dg algeb$ad and a
dg S-T-bimoduleM. Then

Kn(R) ~ Kn(S) ®Kn(T) forall neN.

Proof. Lete:= ( 8 1 ) eR, f:= ( é 8) e Rand] := ReR. Thene? = ¢, f2= f, eRe= T and

R/J =S. On the one hand, for eache Z, we have

0

Homyr)(Re, R f[n]) ~ Hom; r)(Re,Rf[n]) ~ H"(Hom (Re,Rf)) ~ H"(eHom (R, R) f) ~H"(eRf) =0.

On the other hand, botRe andR f are compact iZ(R) and TrigRe® Rf) = Tria(R) = Z(R). Then, by
[15, Theorem 3.3], there exists a recollement of derivedgmies of dg algebras:

Sek— Rexk—
Foo0 Famee N\
2(8) —= Z(R) —= 2(T)

~_ ~_
RHomg(S,—) RHomrt(eR,—)

whereD(A.) is the restriction functor induced from the canonical sttiger : R — S. Note that the functors
S®k — andRe®k — preserve compact objects, and thdt= Rf € 2°(R) andeR = T € 2(T). Thus,

23



from the above recollement we can get the following “halfoleanent” for the subcategories of compacts
objects:

Sek— Rexk—
/D(;*)\ PETRRN

eR®@%—
(x)  2°S) —> 2%R) —> 2°%T)
This implies that the following sequence of triangulatetegaries

S®k- Rewk—

7°(S)

7°(R)

2°(T).
is exact. SincgRe € Wy andsS € ws, we see from Lemma 4.7 that the following functors
Re@%—ZWT%WR, and S@ﬁ—ZW]R—)"I/Vg

are well-defined maps of Frobenius pairs. Moreover, by LedrBawe can construct the following commu-
tative diagram:

Sek— Rexh—

7°(8) 7°(R) 74(T)

T Dr (S@%—) T_ Zr (Ren1—) T_
.@F(‘WS) <R .@F(‘WR) -~ .@F(‘WT)

This implies that the second row is an exact sequence ofjilated categories:

P (S93-) T (Re—)

De(Ws) T (W) T (Wr).

By Lemma 3.1 (1), the following sequence of maps amiirtpeory spaces

K(Sox—) K(Rex$—)

K(S)

K(R)

K(T).
is a homotopy fibration, and therefore there is a long exapiesece oK-groups:

e K (S) — Ka(T) B ko ®) T k() — Ko (T) —

<o —> Ko(T) — Ko(R) — Ko(S) — 0

for all n € N. It remains to show that this sequence breaks up into a sdrigditoshort exact sequences.
Actually, sinceeR = T € wr, the functoreR @ — : Wr — Wr is a map of Frobenius pairs due to
Lemma 4.7. Note that

(eR QR —)(Re@% —) ~ (eRe) ®T — ~1d,,, . W — Wr.

Thus the composite of the mafRe®%. —) : K(T) — K(R) with the mapK(eR @} —) : K(R) — K(T) is
homotopic to the identity map df(T). In view of K,-groups, we have

for eachn € N. This implies thaK,(Re®%. —) : Kn(T) — Kn(R) is a split-injection. Combining this with the
above long exact sequence, we see KR ) ~ K, (S) @ K,(T) for eachn € N. O

Now, we give the main result of this subsection.
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Proposition 4.14. Let A be a dg algebra, and let M and N be two perfect lgnodules. Suppose that
Homy4)(M,N[i]) = Ofor alli € Z. Then

Kn(Endi (M &N)) ~ Kn(Endi (M)) & Kn(Endy (N)) forall neN.
If, in addition, Z(A) = Tria(M & N), then
Kn(A) ~ Ky (End} (M)) @ Kn(Endi (N)) forall neN.
Proof. We defineB := End} (M @ N). Then

([ Endy(M) Hom} (M,N)
N ( Hom$ (N,M) End(N) )

SinceM is perfect, it always has the propeify). This implies that Hony (4)(M,N([i]) =~ Homy 4 (M, N[i])
for eachi € Z. Consequently, we have

H' (Hom}, (M, N)) = Homy(4) (M, N[i]) = Homg4)(M,N[i]) = 0
and therefore the following canonical inclusion:

. End; (M) 0 End; (M) Hom} (M,N) \
C=( Fommm engn )= (romim Engony ) =P

is a quasi-isomorphism of dg algebras. It follows from Len#rathatk (B) — K(C) asK-theory spaces,
and therefor&,(B) ~ K,(C) for eachn € N. Further, due to Lemma 4.13, we have

Kn(C) = Kn(ENd, (M)) & Kn(Endj, (N)).

Thus the first part of Proposition 4.14 follows.
To show the second part of Proposition 4.14, we notekKhéd) ~ K,(B) by Corollary 4.10 because the
dg A-moduleM & N is perfect andZ(A) = Tria(M & N). [.

Following [25, Section 4], we say that a homomorphidamR — S of dg algebras is &#omological
epimorphismif the restriction functorD(A,) : Z(S) — Z(R) is fully faithful. This is also equivalent to
that the canonical homomorphimﬁS — S is an isomorphism ir7(S). Clearly, each homological ring
epimorphism is a homological epimorphism of dg algebrasentrated in degree O.

Corollary 4.15. LetA : R — S be a homological epimorphism of dg algebras. If theRlgnoduleS is
compact inZ(R), then there exists a dg algebfadetermined by such that

Kn(R) ~ Kn(S) ®Kn(T) forall neN.

Proof. SinceA is a homological epimorphism of dg algebras, it follows frf#h, Section 4] that there is
a recollement of triangulated categories:

P(S) —— P(R) —— Tria(rQ)
\_/ \_/

whereQ is a dgR-R-bimodule such thaR As— Q — R[1] is a distinguished triangle ¥ (R ®y
R°P), and whergj, is the canonical embedding afid= Q®% —, i* = S®k —, i, = D(A.). This implies that
Homy, ) (Q,S[m]) = 0 for anym € Z, and that? (R) = Tria(Q® S).
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Assume thakS € Z2°(R). ThenQ € Z2°(R). As each compact object 6(RR) is isomorphic inZ(R) to
a perfect dgR-module, there are two perfect d&gmodulesN andM such thalN ~ S andM ~ Q in Z(R).
It follows that Homy,z)(M,N[m]) = O for anym € Z, and thatZ (R) = Tria(M @ N). By Proposition 4.14,

Kn(R) ~ Ky (Endi,(M)) @ Kn(Endi(N)) forall ne N.

Now, we definel := End; (M) andB := End; (N). To finish the proof of Corollary 4.15, it suffices to show
thatKn(B) ~ Kn(S) asK-groups for eacim € N.

On the one hand, singgN is perfect, the left-derived functad ®I'@ —: 92(B) — Tria(gN) is a triangle
equivalence by Lemma 4.6. On the other hand, since the functe fully faithful, the adjoint pair(i*,i,)
implies thati* restricts to a triangle equivalence Tii®) — 2(S). Moreover, due tiN ~ S in 2(R), we
have TriggN) = Tria(zS). Thus the compositeS L —)(N®L —) : 2(B) — 2(S) of the functorsN @k —
andi* is a triangle equivalence. SingéN is perfect, we see thatN has the propertyP) and thatS @y N is
a perfect dgs-module by Lemma 4.7. As the functbrep, — : 7 (B) — ¢ (R) preserves dg modules with
the property(P), we clearly have

(S®E —)(N®E —) ~ (SeiN) ek —: 2(B) — 2(S).

It follows from Lemma 4.8 (2) thak (B) — K(S) asK-theory spaces. This gives riseKg(B) ~ Kn(S). O

Applying Corollary 4.15 to homological epimorphisms of maty rings, we obtain the following result.

Corollary 4.16. LetA : R— S be a homological ring epimorphism such th8thas a finite-type resolution.

Denote by Q the two-term complef — R X, s owithRand Sin degree® and 1, respectively. Let
P* € €°(R-proj) such thafTria(P*) = Tria(rQ*) € Z(R). Then

Kn(R) =~ Kn(S) @ Kn(Enck(P*)) forall n e N.

Proof. SincerS has a finite-type resolution, we can choose a compitin ¢°(R-proj) such thagSis
isomorphic ta\* in Z(R). So we get a chain map fropiRto N* such that its mapping corM*® is isomorphic
in 2(R) to Q°. It follows thatM* € ¥°(R-proj) and TrigM*) = Tria(rQ*) C Z(R).

Next, we regarR and S as dgZ-algebras concentrated in degree 0. TherkR — Sis a homological
epimorphism of dg algebras. Moreover, bdth andM*® are perfect diR-modules. By Lemma 4.5 and the
proof of Corollary 4.15, we see thEh(R) ~ K, (S) @ Kn(Endg(M*)) for all n € N.

Note that botiM* andP* are perfect, and that TiiR®*) = Tria(rQ*) = Tria(M*). By Corollary 4.11, we
haveKn(Endy(M*)) ~ Kq(Endy(P®)). ThusKn(R) =~ Kn(S) ® Kn(Endi(P*)). O

Remark 4.17. Let us give a comment on the relationship between Corollat$ 4nd [8, Theorem 1.1].
Recall that, in [8, Theorem 1.1], we describe the differebeeveerK,(R) andK,(S) by then-th algebraic
K-group of a complicial biWaldhausen categ®(R A) defined in [19, Theorem 14.9].

ConcretelyW (R, \) is the full subcategory o&®(R-proj) consisting of all those complex&¢ such that
S®rX* is acyclic. As a Waldhausen category, it has injective clma@ps which are degreewise split as
cofibrations, and has homotopy equivalences as weak egnoes. In this sense, the cofibrations and weak
equivalences oW (R A) are induced from the Frobenius p@W(R,)\),%abC(R)-proj).

In [8, Theorem 1.1], it was shown th#t,(R) ~ Kn(S) @ Kh(R,A) for all n € N, whereKy(RA) =
Kn(W(R,A)). Now, we point ouk,(Endy(P*)) ~ Kq(R,A) for the complexP* in Corollary 4.16.

In fact, sinceX : R— Sis homological, we see that K8k —) = Tria(rQ*) € Z(R) by Lemma 2.3.
Note thatW/ (R,\) consists of all those complex&¢ € €°(R-proj) such thatSek X* = 0 in 2(S). Thus
W(R,A) is the same as the full subcategoryzdf(R-proj) consisting of all those complexes which, regarded
as objects inZ(R), belong to TrigrQ*). SinceP* € ¥°(R-proj) and TrigrQ®) = Tria(grP*), we know from
Corollary 4.12 tha, (Endi(P*)) ~ Kn(W(RA)) = Kn(RA). O
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Finally, we give an example to illustrate that the dg algebr@orollary 4.16 cannot be substituted by its
underlying ring (just forgetting the differential). Notedt, in this example, the ring homomorphiamR — S
has already been considered in [8] to illustrate [8, Theateth

Let R be the following quiver algebra over a fiekdvith relations

PN
le 02, C(B:BC(:O.
~—
B
Further, letg be the idempotent element Bfcorresponding to the vertéxori =1,2, andlel :R— S

be the noncommutative localization Rfat the homomorphisrh : Re& — Re induced bya. ThenSis equal
to the following quiver algebra ovérwith relations:

le 2, 00 l=¢g andala=e,

andA : R— Sis given explicitly by
e—e,eo—e,a—dp—0.

For an explanation, we refer the reader to [8]. TBisisomorphic to the usual:2 2 matrix ringM (k) over
k. Note thatSe ~ Sg ~ Reg and thatS~ Sg @ Se ~ Reg @& Reg asR-modules. Henca is a homological
ring epimorphism such thaSis finitely generated and projective.

In [8], we show thatkn(R) ~ Kn(S) & Kn(R,A) for all n € N, whereW (R, A) coincides with the full
subcategory of(R-proj) consisting of those complex¢€ such thaH!(X*) € add ;) for all i € Z. Here
S denotes the simplB-module corresponding to the vertex 1.

Now, we follow Corollary 4.16 and Remark 4.17 to desci@g¢R,A) as theK,-group of a dg algebra.

Let

Q=0-—>Re s Reg -0 and P*:=0-—R-"S-—50

whereRe, andR are of degree 0. ClearlyQ* € ¢°(R-proj) and P*[1] is the mapping cone of. Since
Se ~ Sa ~ Reg asR-modules, we infer tha®® ~ P* in ¢'(R) and TrigQ°®) = Tria(rP*) C Z(R). Thus all
the assumptions of Corollary 4.16 are satisfied. It followesrf Corollary 4.16 that

Kn(R) ~ Kn(S) @ Kp(T) forall ne N,

whereT := Endk(Q*) is the dg endomorphism algebra of the comp#Xsee Subsection 2.1 for definition).
By Remark 4.17, we also haw(R,A) ~ Kn(T) for allne N.
It is easy to check that the dg algetita= (T')icz is given by the following data:

T 1=k T°=kak T =kT =0fori+#—10,1,
with the differential:
0Tt 0 0l
and the multiplicatiorv : T x T — T (see Subsection 2.1):
T loTt=TloT!=0=TtoTi=TloT
(a,b)o(c,d) = (ac,bd), fo(ab) = fa, (a,b)o f =Dbf, go(a,b) =gb, (a,b)og=ag,
where(a,b), (c,d) e T%, f e T-tandge T?.
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SinceH(T) = 0, the dg algebrd is quasi-isomorphic to the following dg algerd®(T) overk:
0— T -2 Ker(d®) — 0

whered® = (_11> : T® — T1. Clearly, the latter algebra is isomorphic to the dg algebra

A=0—k-2k—s0

where the firstk is of degree—1 and has &-k-bimodule structure via multiplication. Thus the algebra
structure ofA (by forgetting its differential) is precisely the triviakiensionk ix k of k by the bimodulek.
Now, by Lemma 4.9, we know that

K(T) =5 K(t=%(T)) = K(A)
asK-theory spaces. This implies th&g(T) ~ K,(A), and thereford,(R,A) ~ Kn(A). Thus
Kn(R) ~ Kn(S) @ Kn(T) ~ Kn(S) ® Kn(A) forall ne N.

It is worth noting that we cannot replace the dg algebra the above isomorphism by the trivial extension
k x k since the algebraik-theory of dg algebras is different from that of usual rinigsfact, in this example,
Ki(R) = Ki(K) ® Ki(k) = k* @ k*, K1(S) = k* andKy1(A) = k*, but Ki(kx k) = k@ k*. SoKi(R) #
Kl(S) D Kl(k X k)

4.4  Proofs of Theorem 1.1 and Corollary 1.2

With previous preparations, now we prove the first two resialthe introduction.

Proof of Theorem 1.1.

We regard the ordinary rin® as a dg algebr& concentrated in degree 0. Th&hR) is exactly the
category of dgR-modules, andZ(R) coincides withZ(R). Moreover, by Lemma 4.%(R) is homotopy
equivalent toK(R) asK-theory spaces, and therefdkg(R) ~ Ky(R) for all n € N. Note that a complex
X € 2(R) is compact if and only i is quasi-isomorphic to a complé&e €°(R-proj).

Now, we assume that there exists a recollement

such that.(S) is compact inZ(R). On the one hand, the dg moduyl€T) is always compact iZ(R) by
Lemma 2.2 (3). On the other hand, we see théR) = Tria(j:(T) ®i.(S)), and that

Homy) (11 (T),1.(S)[M]) =~ Homgg) (i* ji(T), Sm]) = 0

for eachm € Z becausdi*,i.) is an adjoint pair andf"j, = 0. Recall that each compact object@fR) is
isomorphic inZ(R) to a perfect ddR-module. So, there exist two perfect #BgmodulesM andN such that
M= ji(T) andN ~i.(S) in Z(R). Consequently, we have T(l ©N) = Z(R) and Homy, ) (M,N[m]) =0
for all me Z. It follows from Proposition 4.14 that

Kn(R) ~ Ky (Endy(M)) & Kn(Endi(N)) forall neN.
Next, we claim that

W HrEna o) ={ ¢ TG andtat ) WiEna) = g §TEG
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In fact, sincegM is perfect, it has the property). This implies that
H™(End; (M)) = Hom (g (M,M[m]) ~ Homg,g) (M, M[m]).
As i 2(T) — 2(R) is fully faithful, we have

0 ifm=#£0,

Homyg, g) (M, M[m]) ~ Homgg) (i (T), j:(T)[m]) =~ Homg,)(T, T[m]) ~ { T if m=o.

Thus(1) holds. Similarly, we can show thé&2) also holds sinceN is perfect and. : Z(S) — Z(R) is fully
faithful.

Now, by Corollary 4.9, it follows from(1) and (2) that Kn(Endi(M)) ~ Ky(T) and K, (Endg(N)) ~
Kn(S), respectively. Thu&p(R) ~ Ky(R) ~ Kn(S) @ Kn(T) for eachn € N. [

We remark that the proof of Theorem 1.1 shows a little bit méfre7(R) in Theorem 1.1 is replaced by
Z(R) with R a dg algebra, thelp(R) ~ K,(S) & Kn(T).

Proof of Corollary 1.2.

Note thati. (S) = Sand thakSis quasi-isomorphic to a bounded complex of finitely gerestqrojective
R-modules if and only ilrkS admits a finite-type resolution. So, for the recollement ordllary 1.2, ifrS
has a finite-type resolution, then it follows from Theorerh thatK,(R) ~ K,(S) @ Kn(T) for eachn € N.
Similarly, we can prove Corollary 1.2 for the case tlathas a finite-type resolution. In fact, this can
be understood from Lemma 2.4 and the following fact: For dng A, there is a homotopy equivalence
K(A) — K(A°P) (see [26, Sections 1 (3) and 2 (5)]). Thus Corollary 1.2 fedo .

5 Applications to algebraicK-theory of homological exact contexts

In this section, we apply our results to algebrditheory of exact contexts (see [6]). We mainly concentrate
on two classes of exact contexts, one is induced from nonagative localizations, and the other is from
the free products of groups.

5.1 K-theory of noncommutative localizations

First, we recall some results about noncommutative loatidins in algebraii-theory (see [24, 23]).

Let > a set of homomorphisms between finitely generated progBisnodules. By abuse of notation,
we always identify each map, 1 Po in X with the two-term complex 6+ Py N Po — 0 in €°(R-proj),
whereR is in the degree-i for i = 0,1. Moreover, lefAs : R— Rs be the noncommutative localization Rf
at>. Note that the terminology “noncommutative localizatiamds originally called “universal localization”
in the literature (for example, see [28, Part |, 4]). Morape is a ring epimorphism with T§(Rs, Rs) = 0.

Now, we recall from [24, Definition 0.4]the definition of a slinf&/aldhausen categorR. Precisely, the
categoryR is the smallest full subcategory @f°(R-proj) which

(i) contains all the complexes K

(i) contains all acyclic complexes,

(iii ) is closed under the formation of mapping cones and shifts,

(iv) contains any direct summands of any of its objects.

We remark that, iR, the cofibrations are injective chain maps which are degseesplit, and the weak
equivalences are homotopy equivalences. So, the cofibsadiod weak equivalences®fare exactly induced
from the Frobenius paifR, 42 (R)-proj). Following Remark 4.17, 18tV (R,Ax) be the full subcategory of
¢ (R-proj) consisting of all those complexéé® such thatRs ®r X* is acyclic. ThenR = W(R As) as
Waldhausen categories by the proof of [8, Corollary 1.2].

The following result follows from [24, Theorem 0.5].
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Lemma5.1. If Ay : R— Ry is homological, then there is a weak homotopy fibration oh&ety spaces:

K(R) —L k(R) — 2L K(Ry)

where F: & — €°(R-proj) is the inclusion. In this case, we have a long exact sequei¢egooups:

Kn(F) Kn(Az)

e — Kn+1(Rz) — Kn(R) Kn(R) Kn(Rz) — Kn_l(R) —

e — Ko(R) — Ko(R) — Ko(Rz)
foralln e N.

One of the significant methods for calculatikggroups is to have a kind of long Mayer-Vietoris se-
guences which link-groups of rings together. In the following, we shall esttbsome long exact sequences
of this type, which are induced from homological exact cristéntroduced in [6].

We follow all the notations introduced in Section 1.

Let (A\,i, M, m) be an arbitrary but fixed exact context, whareR — Sandu: R— T are ring homo-
morphisms, and whemd is anS-T-bimodule with an element. Then there is map: S®rT — M, defined
by s@t — smtfor s€ Sandt € T. Also, by the definition of exact context, there is a nflapM — T ®r S
which makes the following diagram commutative:

R ) SeT (m)

o | )

R SEBT T®RS

wherep=u®S: S>TRRS s—1®s and e=TRIA: T —>TRrS t—t®1 In[9], we useyB as
a twisting to define a ring structure dnxr S, called thenoncommutative tensor produat (A, 1, M, m) and
denotedT XgrS(see [9, Section 4.1] for details).

Define
(S M . (10 . (00
B._<0 T>’e1'_(0 0> and ez._(o 1>€B.

Then, by [6, Lemma 5.1], the noncommutative localizatio®Baft the map:

¢:Bey — Be: <3>'_>(s(r)n> for se S

is given by the following ring homomorphism:

(56
B:B:<S M) 0_><P <T®RS T@Rs>:0

0T TXRrS TKRS

Furthermore, leP® be the complex

0-Be 4 Be =0

over B with Be; andBe, in degrees-1 and 0, respectively. Note thBe, andBe, are also righR-modules
via A andy, respectively, and that the mam: S— M is a homomorphism o&R-bimodules. Thug is
actually a homomorphism @-R-bimodules, and thereforie® is a bounded complex ov@&®7 R°P. Since
gP* € €°(B-proj), it makes sense to discuss the tensor funetaps, — : €°(R-proj) — €°(B-proj).

Let W (B, 0) be the full subcategory &°(B-proj) consisting of those complex&¢ such thaC @g X* is
acyclic. As a Waldhausen categowy,(B, 6) is exactly induced from the Frobenius péiv (B, 6), C@E’C(B)-proj).
Now, we regardV (B, 6) as a Frobenius subcategory#@?(B-proj), and definek,(B, 6) := K,(W(B,0)).
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Lemma 5.2. The functor P @8 — : €°(R-proj) — %°(B-proj) induces a homotopy equivalence froniRK
to K(W(B,8)).

Proof. We first claim that the functdP® @& — : ¢’ (R-proj) — % (B-proj) factorizes through the inclusion
W(B,8) — ¢°(B-proj).

In fact, sinceB is the noncommutative localization &fat ¢, the mapC®g ¢ : C®gBe — C®gBe
is an isomorphism of-modules. This implies that the compléx P* is acyclic. ThusP® € W(B,8) and
P* ®@r — : €°(R-proj) — %€ (B-proj) admits a factorisation as follows:

%P (R-proj) —=» W(B,8) < ¢ (B-proj).

Note thatW (B, 8) is a Frobenius subcategory @f(R-proj) such that its derived categotyr (W (B,8)) is
equal to the full subcategory o ®(B-proj) consisting of all objects oV (B, 8). In this senseG is a map of
Frobenius pairs.

Next, we show that the maf(G) : K(R) — K(W/(B,8)) induced fromG is a homotopy equivalence.

Actually, by [6, Lemma 5.4], the left-derived funct®® =k — : Z(R) — 2(B) is fully faithful. This
induces a triangle equivalence

2(R) — Tria(P*)
which restricts to an equivalence between full subcategasf compact objects:
2°(R) — Tria(P*)°.

SinceZ(B) = Tria(B) andP* € 2°(B), we see from [22, Theorem 4.4.9] that T#4)¢ = Tria(P*) N 2°(B).
Further, by [23, Theorem 0.11], the category TR%)© coincides with the full subcategory 6f¢(B) consist-
ing of all those complexe%® such thaC @5 X* = 0in 2(C). Now, we identify.# (R-proj) and.# °(B-proj)
with 2¢(R) andZ¢(B) up to triangle equivalences, respectively. TR&®g — : .# °(R-proj) — .# °(B-proj)
induces a triangle equivalence

Pr(G) : Ze (€°(Rproj)) = #P(R-proj) — 2 (W(B,8)).
By Lemma 3.1 (2), the maki(G) : K(R) — K(W(B,8)) is a homotopy equivalencel
As a preparation for the proof of Theorem 1.3, we need theviatig result (see [6, Theorem 1.1]).

Lemma 5.3. Let (A\,i, M, m) be a homological exact context. Then the ring homomorpRisi® — C is a
homological noncommutative localization, and there is@tement of derived module categories:

Cok— I
7€) ——2(B) ——7(R)
N~ N~

where 006,) is the restriction functor induced 18, and where
jl =gP*®k— and | =Homg(P*,—).

For homological exact contexts, we can establish the fatigwesult, which linksK-theory spaces of
rings involved in exact contexts together.

Lemma 5.4. Let (A, 1, M, m) be a homological exact context. Then the sequence of Kitispaices:

K(S) x K(T) K(TXRS)

is a weak homotopy fibration, whereK (A) denotes the map (§1] @ —) : K(R) — K(S) induced from the
functor $1] @8 — : €°(R-proj) — €°(S-proj).
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Proof. By the proof of Lemma 5.2, we have a factorisation of the fan@* ®r — : €°(R-proj) —
€P(B-proj) as

%P (Rproj) -2 W (B, 8) —— ¢ (B-proj)

such that (G) : K(R) — K(W(B,8)) is a homotopy equivalence, wheffe: W (B,8) — € (B-proj) is the
inclusion. SincgA,, M, m) is a homological exact context, the ring homomorph&nB — C is a homo-
logical noncommutative localization by Lemma 5.3. Theriplfows from Lemma 5.1 that there is a weak
homotopy fibration:

K (W(B,0)) “Hk(B) “YK(C).

Next, we simplifyK(B) andK(C) up to homotopy equivalence.

Indeed, let : Sx T — B be the inclusion and let: B— Sx T = B/M be the projection. SincB is a
triangular matrix ring withfSandT in the diagonal, it is known that the ring homomorphisinasid j induce
inverse homotopy equivalences:

K(i) 1 K(S) x K(T) =5 K(B) and K(j):K(B) = K(S) x K(T).

For a proof of this result using Waldhausértheory, one may refer to the proof of [30, Proposition 5vj|{i
where the additivity theorem for Quilled-theory (see [37, Proposition 1.3.2 (4)]) was applied. Nt the
isomorphismK,(B) ~ Kn(S) @ Kn(T) were first obtained by Berrick and Keating (see [2]).

10
00
an equivalence of categories, we see @Cxc —) : K(C) — K(A). Moreover, there are the following
natural isomorphisms of exact functors:

Now, we definee .= < > € CandA :=THKXRS Since the functoeC®¢ — : C-proj — A-proj is

(B/Mzg—)(P*®r—) — (S ®r—, T@R—) : €°(Rproj) — €°(Sproj) x €°(T-proj),

(eC®g—)(C®s—) (B®(sct) —) — (A®s—) & (A®T —) : Sprojx T-proj — A-proj.

With the above preparations, we can construct the folloveignmutative diagram df-theory spaces
(up to homotopy equivalence):

K(W(B,6)) — L K(B) <O K(C)
K(G)Tz K<1>< >K(|) (e K(eOX)c—)lz
KO)K(W
K(R) _(xovw) K(S) x K(T) <@ K(A)
K(p)<K(®) K(e)
K(A) x K(A)

whereK (@) is the map induced from the coproduct functior A-proj x A-proj — A-proj. Note that the first
row is a weak homotopy fibration. This means that the secondsalso a weak homotopy fibration. Thus
the proof is completed]

As a byproduct of Lemma 5.4, we have the following corollariich says that, although the multipli-
cation of the noncommutative tensor prodlickr S of a homological exact contexA, i, M, m) depends on
the pair(M, m), the loop space of thK-theory space off XrSis independent of the pa{M,m), up to
homotopy equivalence. For definitions of loop spaces andohapy fibres, we refer the reader to Section 3.1
for details.
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Corollary 5.5. Let (A, M, m) be a homological exact context. Then the loop spa¢k (T XrS)) of the
K-theory space KT XrS) is homotopy equivalent to the homotopy fibre of the map

(=K, K(W) s K(R) — K(S) x K(T).

Proof of Theorem 1.3.

(1) Note that the long exact sequencekogroups in(1) is exactly the one of homotopy groups (see
Section 3.1) induced from the weak homotopy fibration in Lear&.

(2) Recall that we have a recollement of derived module categatescribed in Lemma 5.3. Due to
Corollary 1.2, in order to sho\2), it is sufficient to prove thatC (respectivelyCg) has a finite-type resolu-
tion if and only if so isgS (respectivelyTg).

In fact, gC has a finite-type resolution if and only #C € 2°(B). Applying Lemma 2.2 (3) to the
recollement in Lemma 5.3, we see ti2x, ) (C) = gC € 2°(B)) if and only if j*(B) € 2°(R). However,

j'(B) = Hom(P*,B) ~ (S® Con(A))[-1] € 2(R)

where CoifA) stands for the two-term complex-8 R 2, S 0 with R of degree—1. This implies that
ji'(B) € 2°(R) if and only if RS € 2°(R), while the latter is equivalent to saying th#® has a finite-type
resolution. ThugC has a finite-type resolution if and only if SOHS.

Note that, for the ring homomorphismp®’ : R°P — T°P andA°P : R°P — S°P of opposite rings, the quadru-
ple (L°P, AP 1op Mgp, m) is also a homological exact context. In a similar way, we deowsthatCg has a
finite-type resolution if and only if so iz . O

Proof of Corollary 1.4.

Since(iy, i) is an exact pair, we know from [6, Remark 5.2] tRatXr R; is isomorphic to the coproduct
R; LIrRR>. We can check, however, tHat LIRR; is isomorphic tdR (see also [7, Lemma 2.3]). Thus Corollary
1.4 follows immediately from Theorem 1.3 (1)L

Proof of Corollary 1.5.

Let A : R— Sbe the inclusionjt: S— S/R the canonical surjection and : R — S the induced map
by right multiplication. Recall from [6, Section 3] that tlgeiadruple(A,\’,Homg(S S/R), ) is an exact
context. So the noncommutative tensor prodBi&lir S of this exact context is well defined. Assume th&t
is finitely generated and projective. Then T8, S) = 0 for alli > 1. This means that this exact context is
homological. Now, Corollary 1.5 follows from Theorem 1.3.(2

As a consequence of Theorem 1.3 (1), we reobtain the folgpwasult of Karoubi [39, Chapter V, Propo-
sition 7.5 (2)].

Corollary 5.6. Let A and B be arbitrary rings, and let:fA — B be a ring homomorphism artd a central
multiplicatively closed set of nonzerodivisors in A suchttthe image of® under f is a central set of
nonzerodivisors in B. Assume that f induces a ring isomsrphl/sA— B/sB for each s ®. Then there
is a Mayer-Vietoris sequence

oo — K1 (P7IB) — Kp(A) — Kn(D71A) @ Ky (B) — Kn(P71B) — Ky_1(A) —
o — Ko(A) — Ko(P1A) & Ko(B) — Ko(P~1B)
for all n € N, whered 1A stands for the localization of A &b.

Proof. DefineR:=A, S:= ® 1A T:=Bandu:= f. LetA:R— Sbe the canonical map of the
localization. By [4, Lemma 6.2], we hav8Lir T = ® 1B, which is defined by the canonical maps
®~A — d~Bandg: B— ®~1B. Sinced and(®) f do not contain zerodivisors, bodandgare injective.
As the moduleg® 1A andg® 1B are flat, both\ andg are homological ring epimorphisms.
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Now, we claim thatA, ) is an exact pair. To show this, we first prove that the follaywrell-defined
map
h: d 'A@aB — ® 1B, a/s@b ((af)b)/(sf)
forae A s€ ® andb € B, is an isomorphism ob~1A-B-bimodules. In fact, sinc® 1A = lim s %A, where

—
sed

s !A:={a/s|ac A} C ® 1A we have

O A@AB = (lim s 1A)@aB — lim (s 'A®@aB) — lim(sf)"!B= o 1B.
scP scP scP

Next, we show that the cokernels »find@ are isomorphic aé-modules. Actually,

®*A/A= (lmsA) /A = lim(sT*A/A) = lim(A/sA).
scd scP scd

Similarly, ®~'B/B — lim(B/sB). SinceA/sA—: B/sBfor eachs e ®, the mapf induces an isomorphism
sc®d

of A-modules:®1A/A = ®1B/B, that is, CokefA) ~ Coker(@).

Finally, we point out that the ma) : B— ® 1A®aB, defined byb — 1® b for b € B, is injective and
that Coke(A) ~ Coker(\’). This is due to the equality= A'h.

Thus /

A
(*)

0 A o1as B ¢ tA©AB — 0

is an exact sequence Afmodules, wherg : 1A — ®~1A®AB s defined byx— x® 1 for x € ®1A. By
definition, the pairA, p) is exact.

Since® consists of central, nonzerodivisor elementéjrthe A-module® 1A is flat. This implies that
Tor(B,®*A) = 0 for alli > 0, and therefore Corollary 5.6 follows from Theorem 1.3 (fjriediately.C]

5.2 K-theory of free products of groups

Finally, we apply Theorem 1.3 to algebrdictheory of group rings. As a preparation, we first recall some
definitions and results from [38, 6] about pure extensions.

Recall that an extensidRC C of rings is calledoureif there exists a splitin@ = Re® X of R-R-bimodules.
The actual splitting is not part of the data, just its exiseenin general, th&®-R-bimoduleX may not be
unique. For example, for a gro the canonical embeddirigC RGis pure. In this caseX has two natural
choices. One is the fregsubmodule oRG generated by the nonidentity elements®f The other is the
kernel of the canonical surjective ring homomorphism

0c: RG— R, rgg— S r

whererg € R. The latter motivates the following definition. A pure ex¢eamR C C is said to bestrictly pure
if the R-R-bimoduleX is even &C-C-bimodule. In other wordsX is an ideal ofC such that the composite of
the inclusionR — C with the canonical surjectio@ — C/X is the identity map.

Pure extensions were originally used by Waldhausen to stlghbraicK-theory of generalized free
products in [38]. Now we briefly recall some of the results¢he

Leta:R— CandfB: R— D be two pure extensions of rings. We denoteChygr D the coproduct ofx
andp in the category oR-rings. In [38], coproducts of rings were called generalifree products. Note that
o andp give rise to a map

(K(a), —K(B)) : K(R) — K(C) x K(D)
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of K-theory spaces, whereK () denotes the mal(D[1] ®% —) : K(R) — K(D) induced from the functor
D[1] @8 — : €°(R-proj) — €°(D-proj). SinceK ([1]) : K(R) — K(R) is a homotopy equivalence and a homo-
topy inverse oK (R) (see the statements at the end of Subsection 3.2), we sd®th4 (o), —K(B)) and
(— K(a), K(B)) have the same homotopy fibre up to homotopy equivalence.

Further, we fix two split decompositions BfR-bimodules:

C=R®X and D =R&Y.

In order to describe thK-theory space of the coproduCt g D, Waldhausen introduced a topological
spacelZ‘Jti[(R,X,Y) in [38], of which the homotopy type depends only on the fignd theR-bimodulesX
andY. For the original definition oK91il(R, X,Y), we refer to [38, Page 217]; for further explanations of this
space, one may find in [29, Section 2.4] and [11, Section 02¢n-th algebraidK-group ofIZ‘Jti[(R,X,Y),
usually called thea-th reduced Nilgroup, will be simply denoted !ﬁln(R,X,Y).

Lemma 5.7. [38, Theorem 1 and Theorem 8Lippose that X and Y are free right R-modules. Then the loop
spaceQ(K(C LR D)) of the K-theory space of the ringl@g D is the direct product, up to homotopy, of the
spaceKMNil(R, X,Y) and of the homotopy fibre of the méis(a),—K(B)). Moreover, if the ring R is regular
coherent, then the spa¢&lil(R,X,Y) is contractible.

From the first part of Lemma 5.7, we obtain the following May@toris exact sequence &f-groups:

R Kl(R) @5’\&[1(R,X,Y) — Kl(C) D Kl(D) — Kl(C Ur D) — Ko(R) @gﬁ[o(R,X,Y) — Ko(C) D Ko(D)
whereK,(CURrD) — sftvi[n,l(R,X,Y) is a split surjection fon > 1.

Now, let us reveal how the homotopy fibre of the n{&{a), —K(B)) can be related to noncommutative
tension products whea andf3 are strictly pure. This is based on a construction of exantests in [6,
Section 4.2.2].

Assume thatt and are strictly pure. Then the pajo,3) can be completed into an exact context in
the following way: LetM = R@& X @Y, the direct sum of abelian groups. We end@wwith the following
multiplication:

(ri+x1+y1)(r2+Xo+Yo) i=raro+ (riXe +Xar2 +X1x2) + (r1y2 +yiro + yiyo)

forri e R x € X andy; € Y with i = 1,2. Under this multiplicationM is a ring with identity 1, and contains
bothC andD as subrings. Moreover, the quadrupte 3,M,1) is an exact context. Now, we identify the
noncommutative tensor produbtXrC with R& X aY Y @r X asR-R-bimodules. Then the multiplication
of DXIRC is given by

(ri+Xi+Y1+Ys®x3) 0 (fa4+Xo+ Yo+ Ya® Xg)

=r1r2+ (F1Xe +Xar2 +XaX2) + (F1y2 + yar2 + y1y2) + (Y1 ®© X2 + Y3 @ (Xarz2) + (r1ya) @ Xa + (Y1ya) @ Xa + Y3 ® (X3X2) ).

wherery,ro € R % € X andy; € Y for 1 <i <4.

Note that(a,3,M, 1) is homological if and only if Tgf(Y, X) = 0 for alli > 1. In particular,(a, B, M, 1) is
homological ifYg or gX is free. In this case, by Corollary 5.5, the homotopy fibréhefap( — K (a),K(B)) :
K(R) — K(C) x K(D) (and thus also the mafK(a),—K(B))) is homotopy equivalent to the loop space
Q(K(D XRC)). So, the following result follows immediately from Lemma 5Corollary 5.5 and the fact
thatCLIrD ~ D LIRC as rings.
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Corollary 5.8. Leta : R— C andp : R— D be strictly pure such that X and Y are free right R-modules.
Then the following hold:
(1) There is a homotopy equivalence:

Q(K(CURD)) — KMI(R X,Y) x Q(K(DXRC)).

In particular, K,(CLrD) ~ Mily_1(R,X,Y) & Kn(DKRC) for n> 1.
(2) If R is regular coherent, then there are homotopy equivadenc

Q(K(CUrD)) — Q(K(DKXRC)) — Q(K(CKRD)).
In particular, K,(CUrD) ~ K,(DXRC) ~ K,(CXRgrD) forn > 1.

Now, let us consider pure extensions from group rings. SsggtatH andG are two groups. LeRH and
RGbe the group rings afl andG overR, respectively. We tak€ := RGandD := RH. Leta andf be the
canonical inclusions. Themand are strictly pure. LeX andY be the kernels of the ring homomorphisms
0s : RG— Randdy : RH — R, respectively. ThelRG=R& X andRH = R&Y asR-R-bimodules. Note
thatY andX are freeR-modules withR-basis{h—1|he H\ {ey}} and{g—1|gec G\ {eg}}, respectively,
whereeg denotes the identity of the growp In this case, the multiplication of the rilRHXgrRGis exactly
the one defined in Section 1. We leave checking the detaileeadader. Note that the construction of
RHXgrRGstill makes sense if botH andG are semigroups with identity element.

Proof of Corollary 1.6.
Let ¢ be the category of groups, and I#tbe the category dR-rings. Recall that aiR-ring is a ringu
with identity and a ring homomorphism froRito U preserving identity. The group ring functor

R-): 9 —%, G—RG for Ge¥

is left adjoint to the functor which sends &aring to its group of invertible elements. So the funciir-)
preserves coproducts. Since the grédip G is the coproduct oH andG in the category?, we see that
R(H % G) is the coproduct oRH andRGin the categoryZ. ThusR(H « G) = RHLrRG. Now, Corollary
1.6 follows from Corollary 5.8 (2)J

Finally, we apply Corollary 1.6 to fundamental groups ofdlmgical spaces.

Let U be a topological space which is the union of two open and patmected subspacés and
U,. Suppose tha¥ := U;NU, is path connected and nonempty. Ixet V be a point. We consider the
fundamental groups; (U ),y (U1), ™ (U2) andm (V) of U, U, U andV atx. By the Seifert-van Kampen
theorem, the diagram of fundamental groups

T[l(V) E—— T[l(Ul)

Lo

T[1(U2) —_— T[l(U )

is a pushout in the category of groups. Réty (U)) be the group ring ofy (U ) over the ringR.
As a consequence of Corollary 1.6, we have the followingltesu

Corollary 5.9. Let R be a regular coherent ring (for example, the rib@f integers). Suppose that (V) is
trivial. Then

Kn(R(T[l(U))) ~ Kn(R(T[l(Uz)) Xgr R(T[l(Ul))) ~ Kn(R(Ttl(Ul)) Xgr R(T[l(Uz))) forall n> 1.
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Remark 5.10. Corollaries 1.6, 5.8 and 5.9 can be applied to some case&leoed in [29, 11]. For example,
for an arbitrary ringR, we have

Kn(R(Dw)) =~ Kn(RZ2RrRZy) & Mily_1(R),

whereZ, is the group of order 2. In fact, we know thBt, = Z, * Z, and R(Z; x Z3) = RZ, Ur RZ».

It follows from Corollary 5.8(1) thaK(R(Dw)) ~ Kn(RZ2 K RZy) @Sﬁln_l(R, R R) for n > 1. Note
that ‘ﬁ[*(R, RR) ~ s)Ati/[*(R) by [11, Corollary 3.27 (1)], where the reduced NiIgro&[*(R) appears
in algebraicK-groups of the polynomial rindR[x] with one variablex: K.(R[X]) ~ K.(R) @ﬁ[*,l(R).
Thus Kn(R(Dm)) ~ Kn(RZyKrRZj) @ﬁln_l(R), as desired. This is different from the decomposition:

Kn(R(De)) = (Kn(RZ2) ® Kn(RZ3)) /Kn(R) @‘ﬁln_l(R), given in [11, Corollary 3.27 (2)].

We have considered strictly pure extensions in this se@jomsing exact contexts. Now we mention the
following open question for arbitrary pure extensions.

Question. Leta : R— C andB : R— D bepure extensions such that andY are free rightR-modules.
How can one describe the homotopy fibre of the nfkga), —K(B)) : K(R) — K(C) x K(D) in terms of
algebraicK-theory space of a ring?
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